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We study the problem of stabilization for a class of evolution systems with fractional-damping. After writing the equations as an augmented system we prove in this article first that the problem is well posed. Second, using the LaSalle's invariance principle we show that the system is strongly stable. Then, based on a resolvent approach we show a luck of uniform stabilization. Next, using multiplier techniques combined with the frequency domain method, we shall give a polynomial stabilization result under some consideration on the stabilization of an auxiliary dissipating system. Finally, we give some applications to the wave equation.

Introduction

In recent years, fractional calculus has been increasingly applied in different fields of science [START_REF] Magin | Fractional calculus in bioengineering[END_REF][START_REF] Tarasov | Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media[END_REF][START_REF] Valério | Some pioneers of the applications of fractional calculus[END_REF]. Physical phenomena related to electromagnetism, propagation of energy in dissipative systems, thermal stresses, models of porous electrodes, relaxation vibrations, viscoelasticity and thermoelasticity are successfully described by fractional differential equations [START_REF] Gómez-Aguilar | Solutions of the telegraph equations using a fractional calculus approach[END_REF][START_REF] Machado | Analysis of natural and artificial phenomena using signal processing and fractional calculus[END_REF][START_REF] Matignon | Asymptotic stability of Webster-Lokshin equation[END_REF][START_REF] Matignon | Asymptotic stability of linear conservative systems when coupled with diffusive systems[END_REF]. Fractional calculus allows for the investigation of the nonlocal response of mechanical systems, this is the main advantage when compared to the classical calculus.

In the literature, a number of definitions of the fractional derivatives have been introduced, namely the Hadamard, Erdelyi-Kober, Riemann-Liouville, Riesz, Weyl, Grünwald-Letnikov, Jumarie and the Caputo representation. A thorough analysis of fractional dynamical systems is necessary to achieve an appropriate definition of the fractional derivative. For example, the Riemann-Liouville definition entails physically unacceptable initial conditions (fractional order initial conditions); conversely, for the Caputo representation, which is introduced by Michele Caputo [START_REF] Caputo | Linear model of dissipation whose Q is almost frequency independent. II[END_REF] in 1967, the initial conditions are expressed in terms of integer-order derivatives having direct physical significance; this definition is mainly used to include memory effects. Recently, Michele Caputo and Mauro Fabrizio in [START_REF] Caputo | A new definition of fractional derivative without singular kernel[END_REF] presented a new definition of the fractional derivative without a singular kernel; this derivative possesses very interesting properties, for instance the possibility to describe fluctuations and structures with different scales. Furthermore, this definition allows for the description of mechanical properties related to damage, fatigue and material heterogeneities.

Let H be a Hilbert space equipped with the norm . H , and let A : D(A) ⊂ H → H be a self-adjoint and strictly positive operator on H. We introduce the scale of Hilbert spaces H β , β ∈ R, as follows: for every β ≥ 0, H β = D(A β ), with the norm z β = A β z H . The space H -β is defined by duality with respect to the pivot space H as follows: H -β = H * β for β > 0. The operator A can be extended (or restricted) to each H β , such that it becomes a bounded operator A :

H β → H β-1 , ∀ β ∈ R.
Let a bounded linear operator B : U → H -1 2 , where U is another Hilbert space which will be identified with its dual.

The system we consider here is described by: (1.1)

∂ 2 t u(t) + Au(t) + BB * ∂ α,η t u(t) = 0, t > 0, u(0) = u 0 , ∂ t u(0) = u 1 ,
where ∂ α,η t denoted the fractional derivative defined by (1.2) ∂ α,η t v(t) = 1 Γ(1 -α) t 0 (t -s) -α e -η(t-s) v (s) ds, 0 < α < 1, η ≥ 0.

We define also the following exponentially modified fractional integro-differential operators

I α,η v(t) = 1 Γ(α) t 0 (t -s) α-1 e -η(t-s) v(s) ds, 0 < α < 1, η ≥ 0.
With these notations we have (1.3) ∂ α,η t v(t) = I 1-α,η v (t). There are many definitions for fractional derivatives [START_REF] Das | Functional fractional calculus for system identification and control[END_REF], among which Riemann-Liouville definition and Caputo definitions are most widely used [START_REF] Machado | Application of fractional calculus in engineering[END_REF]. The latter has the same Laplace transform as the integer order one, so it is widely used in control theory. In this paper, the fractional derivative damping force is regarded as a control force to study the properties of free damped vibration of the system, so the Caputo definition is used here.

Noting that the case of the wave equation with boundary fractional damping have treated in [START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF][START_REF] Mbodje | Boundary fractional derivative control of the wave equation[END_REF] where it is proven the strong stability and the lack of uniform stabilization. However, the case of the plate equation or the beam equation with boundary fractional damping was treated in [START_REF] Achouri | The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type[END_REF] where in addition of that using the domain frequency method it was shown that the energy is polynomially stable.

The main result of this paper concerns the precise asymptotic behavior of the solutions of (2.3)-(2.5). Our technique is based on a resolvent estimate. This paper is organized as follows. In section 2 we reformulate problem (1.1) into an augmented system. In Section 3, we give the proper functional setting for the augmented model (2.3)- (2.5), and prove that this system is well-posed. In section 4, we use the LaSelle's invariance principle to show that the energy of the system is strongly stable. In section 5, we prove the luck of uniform stabilization of the system (2.3)- (2.5) . In Section 6, we establish a resolvent estimate which gives an explicit decay rate of the energy of the solutions of (2.3)- (2.5). In section 7, we give some applications to the wave equation.

Augmented model

In this section we reformulate (1.1) into an augmented system. our main result is the following. .

Then the relation between the input U and the output O of the following system (2.1)

       ∂ t ϕ(t, ξ) + (|ξ| 2 + η)ϕ(t, ξ) = p(ξ)U (t) ∀ ξ ∈ R, t > 0 ϕ(0, ξ) = 0 ∀ ξ ∈ R O(t) = γ R p(ξ)ϕ(t, ξ) dξ, ∀ t ≥ 0,
where U ∈ C 0 ([0, +∞)), is given by

(2.2) O(t) = I 1-α,η U (t).
Proof. Solving equation (2.1), we obtain

ϕ(t, ξ) = p(ξ) t 0 e -(|ξ| 2 +η)(t-s) U (s) ds.
If follows from the third line of (2.1) that

O(t) = γ t 0 U (s) R p(ξ) 2 e -(|ξ| 2 +η)(t-s) dξ ds = 2 sin(απ) π t 0 +∞ 0 ρ 2α-1 e -(ρ 2 +η)(t-s) dρ U (s) ds. Now using the fact that 1 Γ(α)Γ(1 -α) = sin(απ) π then a simple change of variable leads to the relation (2.
2). This completes the proof.

Using now Proposition 2.1 and relation (1.3), system (1.1) may be recast into the following augmented system

(2.3) ∂ 2 t u(t) + Au(t) + γ B R p(ξ) ϕ(t, ξ) dξ = 0, t > 0, (2.4) ∂ t ϕ(t, ξ) + (|ξ| 2 + η) ϕ(t, ξ) = p(ξ) B * ∂ t u(t), ξ ∈ R, t > 0, (2.5) u(0) = u 0 , ∂ t u(0) = u 1 , ϕ(0, ξ) = 0,
where the function p(ξ) and the constant γ are given in Proposition 2.1.

Well-posedness

In this section, we are interested in showing that system (1.1) is well posed in the sense of semigroups.

Let V = L 2 (R; U ), we set the Hilbert space

H = H 1 2 × H × V with inner product   u 1 v 1 ϕ 1   ,   u 2 v 2 ϕ 2   H = A 1 2 u 1 , A 1 2 u 2 H + v 1 , v 2 H + γ R ϕ 1 (ξ), ϕ 2 (ξ) U dξ. If we put X =   u ∂ t u ϕ   it is clear that (2.3)-(2.5) can be written as (3.1) X (t) = AX(t), X(0) = X 0 ,
where

X 0 =   u 0 u 1 0   and A : D(A) ⊂ H → H is defined by (3.2) A   u v ϕ   =     v -Au -γ B R p(ξ) ϕ(ξ) dξ -(|ξ| 2 + η)ϕ + p(ξ)B * v     ,
with domain

D(A) = (u, v, ϕ) ∈ H : v ∈ H 1 2 , Au + γ B R p(ξ) ϕ(ξ) dξ ∈ H, |ξ|ϕ ∈ L 2 (R; U ), -(|ξ| 2 + η)ϕ + p(ξ)B * v ∈ L 2 (R; U ) . (3.3)
Our main result is giving by the following theorem. Proof. To prove this result we shall use the Lumer-Phillips' theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Theorem 4.3]). Since for every

X = (u, v, ϕ) ∈ D(A) we have Re AX, X H = -γ R (|ξ| 2 + η) ϕ(ξ) 2 U dξ ≤ 0.
then the operator A is dissipative.

Let λ > 0, we prove that the operator (λI -A) is a surjection. In other words, we shall demonstrate that given any triplet Z = (f, g, h) ∈ H, there is an other triplet X = (u, v, ϕ) ∈ D(A) such that (λI -A)X = Z, which can be recast as follow

         v = λu -f, (λ 2 I + A)u = λf + g -γB R p(ξ)ϕ(ξ) dξ, ϕ(ξ) = p(ξ) |ξ| 2 + η + λ B * v + h(ξ) |ξ| 2 + η + λ .
Since A is a non-negative operator then according [32, Proposition 3.3.5], -A is m-dissipative. Thus the operator (λ 2 + A) is a bijection and we have

(λ 2 I + A) -1 L(H) ≤ 1 λ 2 .
Let (u n ), (v n ) and (ϕ n ) be three sequences defined by induction as follow

       u 0 = (λ 2 I + A) -1 (λf + g) ∈ H 1 ⊂ H 1 2 , v 0 = -f ∈ H 1 2 ⊂ H, ϕ 0 (ξ) = h(ξ) |ξ| 2 + η + λ ∈ V, and          u n+1 = -γ(λ 2 I + A) -1 B R p(ξ)ϕ n (ξ) dξ, v n+1 = λu n , ϕ n+1 (ξ) = p(ξ) |ξ| 2 + η + λ B * v n .
We denote the constants C 1 , C 2 and C 3 by

C 1 = f H -1 2 + g H -1 2 , C 2 = f H -1 2 , C 3 = R (1 + |ξ|) 2 (|ξ| 2 + η + λ) 2 dξ 1 2 h V ,
and we set the constants K 1 and K 2 by

K 1 = B L(U,H -1 2 ) R p(ξ) 2 (1 + |ξ|) 2 dξ 1 2 , K 2 = γ B * L(H 1 2 ,U ) R p(ξ)(1 + |ξ|) |ξ| 2 + η + λ 2 dξ 1 2
, which it is clear that they are well defined.

We set the sequences

a n = u n H -1 2 , b n = v n H -1 2 and c n = (1 + |ξ|).ϕ n L 2 (R,U )
. It is clear using the Hölder inequality that

a 0 ≤ λ -1 C 1 , b 0 ≤ C 2 , c 0 ≤ C 3 , a 1 ≤ λ -2 C 3 K 1 , b 1 ≤ C 1 , c 1 ≤ C 2 K 2 , a 2 ≤ λ -2 C 2 K 1 K 2 , b 2 ≤ λ -1 C 3 K 1 , c 2 ≤ C 1 K 2 .
Using the same arguments we can prove by induction that for all n ∈ N we have

u n , v n ∈ H 1 2 , ϕ n , |ξ|ϕ n ∈ V and a 3n ≤ λ -(n+1) C 1 K n 1 K n 2 , b 3n ≤ λ -n C 2 K n 1 K n 2 , c 3n ≤ λ -n C 3 K n 1 K n 2 , a 3n+1 ≤ λ -(n+2) C 3 K n+1 1 K n 2 , b 3n+1 ≤ λ -n C 1 K n 1 K n 2 , c 3n+1 ≤ λ -n C 2 K n 1 K n+1 2 , a 3n+2 ≤ λ -(n+2) C 2 K n+1 1 K n+1 2 , b 3n+2 ≤ λ -(n+1) C 3 K n+1 1 K n 2 , c 3n+2 ≤ λ -n C 1 K n 1 K n+1 2 .
So that, for λ > 0 large enough the two sums u n and v n converge uniformly in H -1 2 and the sum ϕ n converges uniformly in V . Therefore, by setting u

= +∞ n=0 u n , v = +∞ n=0 v n and ϕ = +∞ n=0 ϕ n we find u = u 0 + +∞ n=1 u n = (λ 2 I + A) -1 (λf + g) -γ +∞ n=1 (λ 2 I + A) -1 B R p(ξ)ϕ n-1 (ξ) dξ = (λ 2 I + A) -1 (λf + g) -γB R p(ξ) +∞ n=0 ϕ n (ξ) dξ = (λ 2 I + A) -1 (λf + g) -γ(λ 2 I + A) -1 B R p(ξ)ϕ(ξ) dξ.
Since ϕ ∈ V we follow that u ∈ H 1 2 and we have (

λ 2 I + A)u = (λf + g) -γB R p(ξ)ϕ(ξ) dξ.
By the same way we have

v = +∞ n=0 v n = v 0 + +∞ n=1 v n = f + λ +∞ n=1 u n-1 = λu + f
and also

ϕ(ξ) = +∞ n=0 ϕ n (ξ) = ϕ 0 (ξ) + +∞ n=1 ϕ n (ξ) = h(ξ) |ξ| 2 + η + λ + p(ξ) |ξ| 2 + η + λ B * +∞ n=1 v n-1 = h(ξ) |ξ| 2 + η + λ + p(ξ) |ξ| 2 + η + λ B * v. This prove v ∈ H 1 2 and |ξ|ϕ, ϕ ∈ L 2 (R; U ). Finally, it is clear that Au + γB R p(ξ)ϕ(ξ) dξ ∈ H, -(|ξ| 2 + η)ϕ + p(ξ)B * v ∈ L 2 (R; U )
. Hence, we proved that the operator (A -λI) is onto. This completes the proof.

As a consequence of Theorem 3.1, the system (2.3)-(2.5) is well-posed in the energy space H and we have the following proposition. Proposition 3.1. For (u 0 , u 1 , 0) ∈ H, the problem (2.3)-(2.5) admits a unique solution

(u, ∂ t u, ϕ) ∈ C([0, +∞); H).
and for (u 0 , u 1 , 0) ∈ D(A), the problem (2.3)-(2.5) admits a unique solution

(u, ∂ t u, ϕ) ∈ C([0, +∞); D(A)) ∩ C 1 ([0, +∞); H).
Moreover, from the density of D(A) in H the energy of (u(t), ϕ(t)) at time t ≥ 0 given by

E(t) = 1 2 u(t) 2 H 1 2 + ∂ t u(t) 2 H + γ R ϕ(t, ξ) 2 U dξ .
decays as follow

(3.4) dE dt (t) = -γ R |ξ| 2 + η ϕ(t, ξ) 2 U dξ, ∀ t ≥ 0.
Proof. Noting that the regularity of the solution of the problem (2.3)-(2.5) is consequence of the semigroup properties. We have just to prove (3.4). We set 

E 1 (t) = 1 2 u(t) 2 H 1 2 + ∂ t u(t) 2 H and E 2 (t) = γ 2 R ϕ(t, ξ)

Strong stabilization

In this section, we prove that the solutions of system (3.1) converge asymptotically to zero.

To achieve this result,we shall make use the LaSalle's invariance principle extended to infinitedimensional systems [START_REF] Walter | Dynamical Systems and Evolution Equations, Theory and Applications[END_REF]. According to this principle, all solutions of (3.1) will asymptotically tend to the maximal invariant subset of the set

I = X 0 ∈ H : dE dt (t) = 0 .
Provided that these solutions are pre-compact in H.

Lemma 4.1. Let

E(t) = 1 2 ∂ t u 2 H 1 2 + ∂ 2 t u 2 H + γ R ∂ t ϕ(ξ) 2 U dξ .
Then the function t -→ E(t) is non-increasing along solutions of the system (3.1) with initial data are in D(A 2 ). In particular, we have

(4.1) dE dt (t) = -γ R (|ξ| 2 + η). ∂ t ϕ(t, ξ) 2 U dξ.
Proof. If X 0 ∈ D(A 2 ) then the X(t) = e tA X 0 is a solution of (3.1) with the following regularity

X(t) =   u(t) ∂ t u(t) ϕ(t)   ∈ C([0, +∞[, D(A 2 )) ∩ C 1 ([0, +∞[, D(A)). with Ẋ(t) =   ∂ t u(t) ∂ 2 t u(t) ∂ t ϕ(t, ξ)   = AX(t) = Ae tA X 0 = e tA AX 0 . And since AX 0 ∈ D(A) then Ẋ(t) ∈ C([0, +∞[, D(A)) ∩ C 1 ([0, +∞[, H),
then by setting

E 1 (t) = 1 2 ∂ t u 2 H 1 2 + ∂ 2 t u 2 H and E 2 (t) = γ 2 R ∂ t ϕ(ξ) 2 U dξ we have dE 1 dt (t) = -γRe R p(ξ)∂ t ϕ(t, ξ) dξ, B * ∂ 2 t u U , and dE 2 dt (t) = γRe R p(ξ)∂ t ϕ(t, ξ) dξ, B * ∂ 2 t u U -γ R (|ξ| 2 + η). ∂ t ϕ(t, ξ) 2 U dξ.
So that, by summing the two last expressions we obtain (4.1) and consequently the non-increasing property of E(t) holds. This complete the proof.

Lemma 4.2. We assume that the only classical solution u(t) (i.e. such that for all t ≥ 0 we have (u(t), ∂ t u(t)) ∈ H 1 2 × H 1 2 and Au(t) ∈ H) of the following system

(4.2) ∂ 2 t u(t) + Au(t) = 0 B * ∂ t u(t) = 0.
is the trivial one, then (3.1) admits a unique solution too given by the zero solution.

Proof. Let X = (u, v, ϕ) ∈ I be a classical solution of (3.1). Then from (3.4) we have

R |ξ| 2 + η ϕ(s, ξ) 2 U dξ = 0.
which imply that (4.3) ϕ(t, ξ) ≡ 0 in L 2 (R; U ).

By using (4.3), it is clear that system (3.1) reduces to the system (4.2). Then by the assumption made in this lemma we deduce that u(t) ≡ 0 for all t ≥ 0. This complete the proof.

Proposition 4.1. Let X 0 = (u 0 , v 0 , ϕ 0 ) ∈ D(A 2 ), then the trajectory of ϕ(t), the third component of the solution of (3.1), is pre-compact in L 2 (R; U ).

Proof. Since, for 

X 0 ∈ D(A 2 ), ϕ(t) is continuous mapping from [0, +∞[ into L 2 (R, U ), it is therefore sufficient to show that R ϕ(t, ξ)
ϕ(t, ξ) 2 U dξ = 0,
where B(0, 1) is the unit ball in R. Next, we prove (4.12) by using the dominated converges theorem whose conditions of applicability, in the case at hand, are established below: * ) By applying Fubini's theorem to both inequality (4.9) and (4.10) we have

+∞ 0 |ξ| 2 ϕ(ξ, t) 2 U dt < +∞ a.e ξ ∈ B(0, 1)
and

+∞ 0 |ξ| 2 ∂ t ϕ(ξ, t) 2 U dt < +∞ a.e ξ ∈ B(0, 1).
So that, by the same argument that led us to (4.11), we may conclude that

lim t→+∞ |ξ| 2 ϕ(t, ξ) 2 U = 0 a.e ξ ∈ B(0, 1).
Hence, we obtain (4.13) lim t→+∞ ϕ(t, ξ) 2 U = 0 a.e ξ ∈ B(0, 1). * ) Now solving (2.4), we have

(4.14) ϕ(t, ξ) = ϕ 0 (ξ)e -|ξ| 2 t + p(ξ)B * t 0 ∂ t u(s)e -|ξ| 2 (t-s) ds.
So that, by applying integration by parts, to the integral in the right hand side of (4.14), we get

ϕ(t, ξ) = ϕ 0 (ξ)e -|ξ| 2 t + p(ξ)B * [u(t) -u(0)e -|ξ| 2 t ] -|ξ| 2 p(ξ)B * t 0 ∂ t u(s)e -|ξ| 2 (t-s) ds.
Hence, one gets

ϕ(t, ξ) U ≤ ϕ 0 (ξ) U + p(ξ) B * L(H 1 2 ,U ) × u(t) H 1 2 + u(0) H 1 2 + |ξ| 2 t 0 ∂ t u(s) H 1 2 e -|ξ| 2 (t-s) ds .
Also by (3.4) we can bound u(t) 2

H 1 2 ≤ E(0) and we obtain (4.15) ϕ(t, ξ) 2 U ≤ ϕ 0 (ξ) 2 U + p(ξ) 2 B * 2 L(H 1 2 ,U ) 2E(0) + E(0)|ξ| 2 (1 -e -|ξ|t ) .
Since the right hand side of (4.15) is in L 1 ξ (B(0, 1)), therefore by combining (4.13) and (4.15) through the dominated convergence theorem, we get (4.12) the desired result. Proposition 4.2. We assume that the embedding

H 1 2 → H is a compact embedding. Let X 0 = (u 0 , v 0 , ϕ 0 ) ∈ D(A 2 ), then the trajectory of the pair (u(t), v(t)) of the solution of the system (3.1) is pre-compact in H 1 2 × H. Proof. Note that if X 0 = (u 0 , v 0 , ϕ 0 ) ∈ D(A 2 ) then (u(t), v(t)) ∈ H 1 × H 1 2 .
Since that, in view of the assumption made in this proposition it is clear that to prove this result we have just to prove that the quantity u(t

) 2 H1 + v(t) H 1 2
is bounded. We solve the differential equation (2.4), we get

ϕ(t, ξ) = ϕ 0 (ξ)e -(|ξ| 2 +η)t + p(ξ)B * t 0 ∂ t u(s)e -(|ξ| 2 +η)(t-s) ds = ϕ 0 (ξ)e -(|ξ| 2 +η)t + p(ξ)B * t 0 ∂ t u(t -s)e -(|ξ| 2 +η)s ds. (4.16)
Using the differential equation (2.3), Fubini's theorem and taking account of (4.16) and the fact that E(t) is bounded by E(0), we have

u(t) 2 H1 + v(t) 2 H 1 2 = Au 2 H + ∂ t u 2 H 1 2 ≤ C E(0) + B 2 L(U,H -1 2 ) R p(ξ)ϕ 0 (ξ)e -(|ξ| 2 +η)t dξ 2 U + BB * 2 L(H 1 2 ,H -1 2 ) R p(ξ) 2 t 0 ∂ t u(t -s)e -(|ξ| 2 +η)s ds dξ 2 H 1 2 ≤ C E(0) + B 2 L(U,H -1 2 ) +∞ 0 ρ 2α-1 (1 + ρ 2 ) dρ. R (1 + |ξ| 2 ) ϕ 0 (ξ) 2 U dξ + BB * 2 L(H 1 2 ,H -1 2 ) t 0 +∞ 0 ρ 2α-1 ∂ t u(t -s)e -(ρ 2 +η)s dρ ds 2 H 1 2 . (4.17) 
Now we set

I = t 0 +∞ 0 ρ 2α-1 ∂ t u(t -s)e -(ρ 2 +η)s dρ ds 2 H 1 2 ,
and to establish our result, it is clear that we have just to prove that I is bounded. To do so we distinguish two cases.

Case 1: η = 0. Using again Fubini's theorem and the fact that E(t) is non-increasing function, we obtain

I ≤ 2E(0) +∞ 0 t 0 ρ 2α-1 e -(ρ 2 +η)s ds dρ 2 = 2E(0) +∞ 0 ρ 2α-1 ρ 2 + η 1 -e -(ρ 2 +η)t dρ 2 ≤ 4E(0) +∞ 0 ρ 2α-1 ρ 2 + η dρ 2 < +∞.
which prove that I bounded.

Case 2: η = 0. It is clear that according to the first case that the problem of the boundedness of I is reduces to the boundedness of the following integral

I 0 = t 1 1 0 ρ 2α-1 ∂ t u(t -s)e -ρ 2 s dρ ds 2 H 1 2 ,
where we can suppose that t ≥ 1. Integrating by parts with respect to the s variable and using again the fact that E(t) is non-increasing function, we have

I 0 ≤ 2 1 0 ρ 2α-1 e -tρ 2 u(0) -e -ρ 2 u(t -1) dρ 2 H 1 2 + 1 0 ρ 2α+1 t 1 e -sρ 2 u(t -s) ds dρ 2 H 1 2 ≤ C E(0) 1 0 ρ 2α-1 dρ 2 + E(0) 1 0 ρ 2α-1 (e -ρ 2 -e -tρ 2 ) dρ 2 ≤ CE(0).
This prove the expected estimate and end the proof.

Theorem 4.1. We assume that the embedding H 1 2 → H is compact and that the unique classical solution of system (4.2) is the trivial one, then the semigroup e tA is strongly stable, it means that for any initial data X 0 ∈ H,

e tA X 0 H -→ 0 as t -→ +∞.
Proof. For X 0 ∈ D(A 2 ), the theorem is a direct consequence of Lemma 4.2, Propositions 4.1 and 4.1 and the LaSalle's invariance principle. Finally, since D(A 2 ) is dense in H this result carries over all X 0 ∈ H.

Lack of uniform stabilization

In this section we shall prove that system is not uniformly exponentially stable. Lemma 5.1. Let ω ∈ R * then for any fixed η > 0 and 0 < α < 1 we have

(5.1) +∞ 0 ρ 2α-1 ρ 2 + η + iω dρ =        -π(1 + e -2iαπ ) 2(η 2 + ω 2 ) 1-α 2 sin(2απ) e 2i(α-1)θ if α = 1 2 π 2(η 2 + ω 2 ) 1 4 e iθ if α = 1 2 ,
where we have denoted by θ = arccos

  - √ η 2 +ω 2 -η 2 (η 2 + ω 2 ) 1 4   .
Proof. The two case are proven as follow:

Case 1: η = 1 2
. In this case the integral can be evaluated using the method of residues.

Integrating along the positive oriented contour depicted in Figure 1. We set the function

f (z) = z 2α-1 z 2 + η + iω , ∀ z ∈ C \ R -, whose poles are z 1 = (η 2 + ω 2 ) 1 4 e iθ , z 2 = (η 2 + ω 2 )
1 4 e i(θ-π) and eventually z 0 = 0 (see Figure 1). Clearly, we have

(5.2) |zf (z)| ≤ |z| 2α |z| 2 -(η 2 + ω 2 ) 1 2
which imply that lim

z→0 zf (z) = 0, lim |z|→+∞ zf (z) = 0. D B A C R r θ π -ε z 1 • • z 2 Figure 1. Contour for evaluating the integral +∞ 0 ρ 2α-1 ρ 2 + η + iω dρ.
Then by Jordon's lemmas we follow where γ r = re -it and γ R = re it for t ∈ [-π + ε, π -ε] (see Figure 1). 1), whence by Lebegue dominated convergence theorem we have (5.5)

On the segment [AB] one has

z = γ AB (t) = [(1 -t)R + rt] e i(π-ε) for t ∈ [0, 1] (see Figure
γ AB f (z) dz = e i(ε+2απ) R r ρ 2α-1 ρ 2 + η + iω dρ -→ -e 2iαπ R r ρ 2α-1 ρ 2 + η + iω dρ as ε 0.
On the segment [CD] one has z = γ CD (t) = te i(-π+ε) for t ∈ [r, R] (see Figure 1), whence again by Lebegue dominated convergence theorem we have (5.6)

γ CD f (z) dz = R r ρ 2α-1 e 2iα(ε-π) ρ 2 e 2i(ε-π) + η + iω dρ -→ e -2iαπ R r ρ 2α-1 ρ 2 + η + iω dρ as ε 0.
By summing (5.3)-(5.6) and taking the limits as r 0 and R +∞, the method of residues leads to e -2iαπ -e 2iαπ 2iπ +∞ 0

ρ 2α-1 ρ 2 + η + iω dρ = Res z=z1,z2 [f (z)] = z 2α-2 1 + z 2α-2 2 2 = e 2i(α-1)θ [1 + e -2iαπ ] 2(η 2 + ω 2 ) 1-α 2
which leads to the second line of (5.1).

Case 2: η = 1 2 . Since z 1 and z 2 are the unique poles of f then we can write

+∞ 0 dρ ρ 2 + η + iω = 1 2z 1 +∞ 0 ρ -z 1 ρ 2 -2Re(z 1 )ρ + |z 1 | 2 - ρ -z 2 ρ 2 -2Re(z 2 )ρ + |z 2 | 2 dρ = 1 2z 1 +∞ 0 ρ -z 1 (ρ 2 -Re(z 1 )) 2 + Im(z 1 ) 2 - ρ -z 2 (ρ 2 -Re(z 2 )) 2 + Im(z 2 ) 2 dρ.
A straightforward calculation leads to

+∞ 0 dρ ρ 2 + η + iω = π 2z 1 ,
which leads to the first line of (5.1). And this finish the proof.

Let assume that H is an infinite dimensional Hilbert space such that the imbedding H 1 2 → H is compact. Since A is a strictly positive operator with compact resolvent then there exist a sequence of eigenvalues iω n corresponding to the orthonormal base of the eigenfunctions

φ n = un iωn u n of the operator A 0 = 0 I -A 0 such that lim n→+∞ |ω n | = +∞ where u n ∈ H 1 2 .
Theorem 5.1. Under the above assumptions we have

(1) If B ∈ L(U, H)
the semigroup e tA is not exponentially stable in the Hilbert space H.

(

) If B ∈ L(U, H -1 2 ) 2 
the semigroup e tA is not exponentially stable in the Hilbert space H provided one of the following statements holds i) For some n ∈ N, B * u n = 0 (in this case the semigroup e tA is not even strongly stable and the energy is conserved for some data). ii) For all n ∈ N, B * u n = 0 and there exists a sub-sequence of (u n ) verifying BB * u n ∈ H and BB * u n H ≤ C for some C > 0 and for every n ∈ N.

Proof. To prove this theorem we shall use the frequency theorem method. We recall that a bounded C 0 semigroup generated by an operator A is exponentially stable if and only if iR ∩ σ(A) = ∅ and it satisfies the following identity lim sup ω∈R,|ω|→+∞

(iωI -A) -1 L(H) < +∞.
We distinguish now two cases.

Case 1: B * u n = 0 for some n ∈ N. It is clear in this case that for such a n ∈ N we have

X n =   un iωn u n 0   ∈ D(A)
and (iω n I -A)X n = 0 which proves that X n is an eigenfunction corresponding to the eigenvalue iω n . Thus, the semigroup e tA is not uniformly stable.

Case 2: B * u n = 0 for all n ∈ N. In this part we shall prove a more general result than given in the theorem. In fact, we will show that the following resolvent estimate

(5.7) lim sup ω∈R,|ω|→+∞ ω α-1+ε (iωI -A) -1 L(H) < +∞ is not even satisfied, for ε > 0 small. Let ϕ n (ξ) = p(ξ) |ξ| 2 + η + iω n B * u n and X n =   un iωn u n ϕ n   . It is clear that the integrals R p(ξ) 2 |ξ| 2 + η + iω n dξ and R |ξ| 2 p(ξ) 2 (|ξ| 2 + η) 2 + ω 2 n dξ
are well defined then |ξ|ϕ n ∈ L 2 (R; U ) and by the assumption made in this theorem we have

u n + γ B R p(ξ)ϕ n (ξ) dξ ∈ H. Besides, since we have R p(ξ)B * u n -(|ξ| 2 + η)ϕ n 2 U dξ = ω 2 n B * u n 2 U R p(ξ) 2 (|ξ| 2 + η) 2 + ω 2 n dξ, then p(ξ)B * u n -(|ξ| 2 + η)ϕ n ∈ L 2 (R; U ) and this shows that X n ∈ D(A).
We set now

Y n =   f n g n h n   ∈ H such that (iω n I -A)X n = Y n .
Since we have f n = h n = 0 and

g n = γ BB * u n R p(ξ) 2 |ξ| 2 + η + iω n dξ
We set now

κ n =      e -iθn if α = 1 2 - (1 + e -2iαπ ) 2 cos(απ) e 2i(α-1)θn if α = 1 2 ,
where

θ n = arccos   - √ η 2 +ω 2 n -η 2 (η 2 + ω 2 n ) 1 4
  . According to Lemma 5.1, the function g n can be written as follow

g n = κ n (η 2 n + ω 2 n ) 1-α 2 BB * u n .
then using the assumption made on the boundedness of the sequence ( BB * u n H ) we follow that

ω 1-α-ε n g n H ≤ Cω 1-α-ε n (η 2 + ω 2 n ) 1-α 2 BB * u n H -→ 0 as n +∞.
Hence, by assuming that the imaginary axis is a subset of the resolvent set , we follow lim sup

ω∈R,|ω|→+∞ ω α-1+ε (iωI -A) -1 L(H) ≥ sup n∈N ω α-1+ε n (iω n I -A) -1 L(H) ≥ sup n∈N ω α-1+ε n (iω n I -A) -1 (Y n ) H Y n H ≥ lim n→+∞ ω α-1+ε n X n H Y n H ≥ lim n→+∞ ω α-1+ε n g n H = +∞.
Thus, (5.7) is not satisfied. So that, the semigroup e tA is not exponentially stable.

Remark 5.1. In the infinite dimensional case, provided the compactness of the embedding H 1 2 → H and the assumptions made in Theorem 5.1 hold true, the prove of the previous theorem shows thanks to [START_REF] Borichev | Optimal polynomial decay of function and operator semigroups[END_REF] that the semigroup e tA is at least dissipating over the time as t -1 1-α . In the following section we will show that under some assumptions that the semigroup e tA is decreasing over the time as t -1 1-α . Hence, a sharp decay rate of the energy of system (1.1) holds.

Non-uniform stabilization

This section is devoted to study the non uniform stabilization of system (1.1)-(2.4). Under some assumptions on the behavior of an auxiliary dissipative operator whose dissipation is generated by the classical BB * operator we prove a polynomial decay result for the system (1.1)- (2.4). For this purpose we will use a frequency domain approach.

Proposition 6.1. Assume that η = 0, then the operator -A is not onto and consequently 0 ∈ σ(A).

Proof. Let Y = (0, 0, h(ξ)) ∈ H and assume that there exists

X = (u, v, ϕ) ∈ D(A) such that -AX = Y. It follows that v = 0, ϕ(ξ) = h(ξ) |ξ| 2 and Au + γB R p(ξ)h(ξ) |ξ| 2 dξ = 0. Let ψ ∈ U such that ψ = 0 and we set h(ξ) = 1 (1 + |ξ|) ψ. It is clear that h ∈ L 2 (R; U ). However, ϕ / ∈ L 2 (R; U )
. Thus, the operator -A is not onto. This complete the proof.

Lemma 6.1. Let ω ∈ R * then for any fixed η > 0 and 0 < α < 1 we have

(6.1) +∞ 0 ρ 2α-1 (ρ 2 + η) 2 + ω 2 dρ =        sin(2(α -1)(π -φ)) -sin(2(α -1)φ) sin(2απ) sin(2φ)(η 2 + ω 2 ) 1-α 2 if α = 1 2 3(2π -φ) 8(η 2 + ω 2 ) 3 4 if α = 1 2 ,
where we have denoted by φ = arccos

  √ η 2 +ω 2 -η 2 (η 2 + ω 2 ) 1 4   .
Proof. This prove is the same as the one of Lemma 5.1. By Keeping the same notations here we just sketch the proof.

Case 1: η = 1 2 . We set the complex function

f (z) = z 2α-1 (z 2 + η) 2 + ω 2 , ∀ z ∈ C \ R -, whose poles are z ± 1 = (η 2 + ω 2 ) 1 4 e ±iφ , z ± 2 = (η 2 + ω 2 )
1 4 e ±i(φ-π) and eventually z 3 = 0. Using the same arguments as Lemma 5.1 we can show that γr f (z) dz -→ 0 as r 0, and

γ R f (z) dz -→ 0 as R +∞.
where on the segments [AB] and [CD] we have

γ AB f (z) dz = R r -e 2iα(π-) ρ 2α-1 (ρ 2 e 2i + η) 2 + ω 2 dρ -→ R r -e 2iαπ ρ 2α-1 (ρ 2 + η) 2 + ω 2 dρ as ε 0,
and

γ CD f (z) dz = R r e 2iα( -π) ρ 2α-1 (ρ 2 e 2i( -π) + η) 2 + ω 2 dρ -→ R r e -2iαπ ρ 2α-1 (ρ 2 + η) 2 + ω 2 dρ as ε 0,
Summing all these integrals and applying the residues theorem we obtain

+∞ 0 -sin(2απ)ρ 2α-1 (ρ 2 + η) 2 + ω 2 dρ = Res z=z ± 1 ,z ± 2 [f (z)] = (η + ω 2 ) α 2 (sin(2(α -1)(π -φ)) -sin(2(α -1)φ)) 2 cos(φ)
which leads obviously to the first line of (6.1).

Case 2: η = 1 2 . In this case we have just to remark that 1 (ρ

2 + η) 2 + ω 2 = 1 8τ 3 cos(φ) ρ + τ cos(φ) ρ 2 + 2τ cos(φ)ρ + τ 2 -[ ρ -τ cos(φ) ρ 2 -2τ cos(φ)ρ + τ 2 + 6τ cos(φ) 1 ρ 2 + 2τ cos(φ)ρ + τ 2 + 1 ρ 2 -2τ cos(φ)ρ + τ 2
where we have denoted by τ = (η 2 + ω 2 )

1 4 .
Let's define now H 0 = H 1 2 × H and let's consider the operator A 0 : D(A 0 ) ⊂ H 0 -→ H 0 defined by

A 0 = 0 I -A -BB * with domain D(A 0 ) = (w, v) ∈ H 0 : v ∈ H 1 2 , Aw + BB * v ∈ H . Proposition 6.2.
The operator A 0 generates a C 0 semigroup of contractions in the Hilbert space H 0 . Moreover, the following auxiliary problem

(6.2) ∂ 2 t w(t) + Aw + BB * ∂ t w(t) = 0 w(0) = w 0 , ∂ t w(0) = w 1 .
admits a unique solution w(t, x) in such a way that if (w 0 , w 1 ) ∈ D(A 0 ) the solution w(t, x) of (6.2) verifying the following regularity

(w, ∂ t w) ∈ C([0, +∞); D(A 0 )) ∩ C 1 ([0, +∞); H 0 ).
and when (w 0 , w 1 ) ∈ H 0 , we have

(w, ∂ t w) ∈ C([0, +∞); H 0 ).
The energy of the system (6.2) defined as follow

E 0 (t) = 1 2 ∂ t w(t) 2 H + w(t) 2 H 1 2 ,
is decreasing over the time in particular we have

(6.3) dE 0 dt (t) = -B * ∂ t w(t) 2 U .
Proof. To show that A 0 generates a C 0 semigroup of contractions we have to prove according to Lumer-Phillips' theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Theorem 4

.3]) that A 0 is m-dissipative. First, let (w, v) ∈ D(A 0 ) then we have Re A 0 w v , w v H0 = -B * v 2 U ≤ 0,
which proves that A 0 is dissipative. It remind now to prove that the range of I -A 0 is H 0 . For this purpose we let (f, g) ∈ H 0 and we look for a couple (w, v) ∈ D(A 0 ) such that

(I -A 0 ) w v = f g , or equivalently, (6.4) v = w + f Aw + w + BB * w = g -f -BB * f.
We consider now the following bilinear form on

H 1 2 × H 1 2 defined by L(w, ψ) = w, ψ H 1 2 + w, ψ H + B * w, B * ψ U .
It is clear that L is continuous and coercive form on H 1 2 ×H 1 2 therefore according to Lax-Migram theorem's there exist a unique w ∈ H

1 2 such that L(w, ψ) = g -f, ψ H -B * f, B * ψ U , ∀ ψ ∈ H 1 2 .
Equivalently, this can be written as follows

Aw + BB * (w + f ), ψ H -1 2 ×H 1 2 = g -f -w, ψ H , ∀ ψ ∈ H 1 2 .
In another words Aw + BB * (w + f ) ∈ H and we have Aw + w + BB * w = g -f -BB * f . Since v = w + f then v ∈ H 1 2 . Hence, system (6.4) admits a unique solution (w, v) ∈ D(A 0 ). Thus, the operator A 0 is m-dissipative and consequently the existence and the uniqueness of the solution of problem (6.2) holds with regularity as described above. Finally, a straightforward calculations gives (6.3).

Let M be an increasing function in R + . We assume that iR ⊂ ρ(A 0 ) and the following growth on the resolvent (6.5) lim sup ω∈R,|ω|→+∞

M (|ω|) -1 (iωI -A 0 ) -1 L(H0) < +∞.
This means according in particular to Huang-Prüss [START_REF] Huang | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert space[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF] and Batty and Duyckaerts [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF] (see also Borichev and Tomilov theorem [7, Theorem 2.4]) respectively that the semigroup e tA0 is exponentially stable if M (|ω|) = 1 and polynomially stable if M (|ω|) = |ω| for some > 0, namely we have e tA0 L(H0) ≤ Ce -δt , ∀ t ≥ 0 for some δ > 0 when M (|ω|) = 1 and e tA0 (w 0 , w 1 ) H0 ≤ C

(1 + t)

1 (w 0 , w 1 ) D(A0) , ∀ t ≥ 0,
for all (w 0 , w 1 ) ∈ D(A 0 ) when M (|ω|) = |ω| . However, when M (|ω|) = e K0|ω| for some K 0 > 0 imply from Burq [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] that the semigroup e tA0 is logarithmically stable, namely we have e tA0 (w 0 , w 1 )

H0 ≤ C log k (2 + t) (w 0 , w 1 ) D(A k 0 ) , ∀ t ≥ 0,
for every (w 0 , w 1 ) ∈ D(A k 0 ) and k ∈ N * . Theorem 6.1. We assume that iR ⊂ ρ(A) and the condition (6.5) holds. Let η > 0, there exists a constant C > 0 such that

(iωI -A) -1 L(H) ≤ C|ω| 1-α M (|ω|), ∀ ω ≥ 1.
Since iR ⊂ ρ(A), then according to Borichev and Tomilov theorem [7, Theorem 2.4], we obtain the following corollary. Corollary 6.1. We assume that condition (6.5) holds with M (|ω|) = |ω| for ≥ 0. Then the semigroup e tA is polynomially stable, namely there exists a constant C > 0 such that e tA (u 0 , u 1 , ϕ 0 ) H ≤ C

(1 + t)

1 1-α+ (u 0 , u 1 , ϕ 0 ) D(A) , ∀ t ≥ 0,
for every initial data (u 0 , u 1 , ϕ 0 ) ∈ D(A). In particular, the energy of the strong solution of (1.1)-(2.4) satisfy the following estimate

E(t) ≤ C (1 + t) 2 1-α+ (u 0 , u 1 , 0) 2 D(A) .
From Batty and Duyckaerts [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF], see also Burq [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] for similar result, we obtain the following corollary. Corollary 6.2. We assume the condition (6.5) holds with M (|ω|) = e K0|ω| for some K 0 > 0. Then the semigroup e tA is logarithmically stable, there exists a constant C > 0 such that

e tA (u 0 , u 1 , ϕ 0 ) H ≤ C ln 2 (1 + t) (u 0 , u 1 , ϕ 0 ) D(A) , ∀ t ≥ 0,
for every initial data (u 0 , u 1 , ϕ 0 ) ∈ D(A). In particular, the energy of the strong solution of (1.1)-(2.4) satisfy the following estimate

E(t) ≤ C ln 2 (1 + t) (u 0 , u 1 , 0) 2 D(A) .
Proof. We need just to prove that (6.6) lim sup ω∈R,|ω|→+∞

|ω| α-1 M (|ω|) -1 (iωI -A) -1 L(H) < +∞
is satisfied. For this purpose, we will use an argument of contradiction. We suppose that (6.6) is false, then there exist a real sequence (ω n ), with ω n -→ +∞ and a sequence (u n , v n , ϕ n ) ∈ D(A), verifying the following condition

(6.7) (u n , v n , ϕ n ) H = 1 and (6.8) ω 1-α n M (ω n )(iω n I -A)   u n v n ϕ n   =   f n g n h n   -→ 0 in H. Multiplying (6.8) by   f n g n h n
  and taking the real part of the inner product, we obtain (6.9) Re

  f n g n h n   ,   u n v n ϕ n   H = ω 1-α n M (ω n )γ R (|ξ| 2 + η) ϕ n (ξ) 2 U dξ -→ n→+∞ 0.
Detailing equation (6.8), we get

ω 1-α n M (ω n )(iω n u n -v n ) = f n -→ 0 in H 1 2 , (6.10) ω 1-α n M (ω n ) iω n v n + Au n + γB R p(ξ)ϕ n (ξ) dξ = g n -→ 0 in H, (6.11) ω 1-α n M (ω n )(iω n ϕ n + (|ξ| 2 + η)ϕ n -p(ξ)B * v n ) = h n -→ 0 in V. (6.12)
We draw immediately from (6.10) that (6.13)

ω n u n H = O(1).
Taking the inner product of (6.11) with u n in H and using (6.10), one has

u n 2 H 1 2 -ω 2 n u n 2 H = -γ R p(ξ)ϕ n (ξ) dξ, B * u n U + ω α-1 n M (ω n ) -1 ( g n , u n H + iω n f n , u n H ) .
Using Cauchy-Schwarz inequality, we obtain

| u n 2 H 1 2 -ω 2 n u n 2 H | ≤ ω α-1 n M (ω n ) -1 u n H (|ω n |. f n H + g n H ) +γ B * u n U R p(ξ) 2 |ξ| 2 + η dξ 1 2 R (|ξ| 2 + η) ϕ n (ξ) 2 U dξ 1 2
.

Then (6.7)-(6.9) and (6.13) leads to (6.14)

u n H 1 2 -ω n u n H -→ n→+∞ 0.
Following to (6.10) equations (6.11) and (6.12) can be recast as follow

ϕ n (ξ) = iω n p(ξ) |ξ| 2 + η + iω n B * u n -ω α-1 n M (ω n ) -1 p(ξ) |ξ| 2 + η + iω n B * f n + ω α-1 n M (ω n ) -1 h n (ξ) |ξ| 2 + η + iω n . (6.15)
and

-ω 2 n u n + Au n + iω n γ R p(ξ) 2 |ξ| 2 + η + iω n dξBB * u n = ω α-1 n M (ω n ) -1 (g n + iω n f n ) +γω α-1 n M (ω n ) -1 R p(ξ) 2 |ξ| 2 + η + iω n dξBB * f n -ω α-1 n M (ω n ) -1 γ R p(ξ)Bh n (ξ) |ξ| 2 + η + iω n dξ (6.16)
Multiplying (6.15) by |ξ| (2-d)/2 then integrating over R with respect to the ξ variable and using Cauchy-Schwarz inequality, we obtain

ω n R |ξ| α+1-d |ξ| 2 + η + iω n dξ B * u n U ≤ ω α-1 n M (ω n ) -1 R |ξ| 2-d (|ξ| 2 + η) 2 + ω 2 n dξ 1 2 h n V + ω α-1 n M (ω n ) -1 R |ξ| α+1-d |ξ| 2 + η + iω n dξ B * f n U + R |ξ| 2-d |ξ| 2 + η dξ 1 2 R (|ξ| 2 + η) ϕ n (ξ) 2 U dξ 1 2 
.

Using Lemma 5.1 and Lemma 6.1 we follow

ω n (ω n + η) (α-1)/2 B * u n U ≤ C R |ξ| 2-d |ξ| 2 + η dξ 1 2 R (|ξ| 2 + η) ϕ n (ξ) 2 U dξ 1 2 +ω α-1 n M (ω n ) -1 (ω n + η) -1 2 h n V + ω α-1 n M (ω n ) -1 (ω n + η) (α-1)/2 B * f n U ,
which imply from (6.9) that (6.17)

ω 2 n M (ω n ) B * u n 2 U -→ n→+∞ 0.
Now we recall that the semigroup generated by the operator A 0 is stable (in the sense of condition (6.5)) in the Hilbert space H 0 then there exist a unique couple (w n , z n ) ∈ D(A 0 ) such that (6.18) -ω 2 n w n + Aw n + iω n BB * w n = u n z n = iω n w n satisfying the following estimate (6. [START_REF] Machado | Analysis of natural and artificial phenomena using signal processing and fractional calculus[END_REF])

ω n w n H + w n H 1 2 ≤ CM (ω n ) u n H ,
since the resolvent of A 0 satisfies condition (6.5). Next, we take the inner product in H of the first line of (6.18) with ω n w n , one gets (6.20)

-ω n ω n w n 2 H + ω n w n 2 H 1 2 + iω 2 n B * w n 2 U = ω n u n , w n H .
Taking the imaginary part of (6.20), using Cauchy-Schwarz inequality, and (6.19), one gets (6.21)

ω 2 n B * w n 2 U ≤ ω n u n H w n H ≤ CM (ω n ) u n 2 H
Taking the inner product of (6.16) with ω 2 n w n in the Hilbert space H, we have

ω 2 n u n 2 H = ω α+1 n M (ω n ) -1 g n , w n H + iω α+2 n M (ω n ) -1 f n , w n H (6.22) -iω 3 n γ R p(ξ) 2 |ξ| 2 + η + iω n dξ B * u n , B * w n U + iω 3 n B * u n , B * w n U + ω α+1 n M (ω n ) -1 γ R p(ξ) 2 |ξ| 2 + η + iω n dξ B * f n , B * w n U -ω α+1 n M (ω n ) -1 γ R p(ξ) h n (ξ), B * w n U |ξ| 2 + η + iω n dξ.
Using Lemma 5.1, Lemma 6.1 and estimates (6.7), (6.8), (6.13), (6.17), (6. [START_REF] Machado | Analysis of natural and artificial phenomena using signal processing and fractional calculus[END_REF]) and (6.21), we obtain

|ω 3 n B * u n , B * w n U | ≤ ω 3 n B * u n U B * w n U ≤ Cω 2 n M (ω n ) 1/2 B * u n U u n H (6.23) ≤ Cω n M (ω n ) 1/2 B * u n U .ω n u n H -→ n→+∞ 0, ω 3 n R p(ξ) 2 |ξ| 2 + η + iω n dξ B * u n , B * w n U ≤ Cω 2+α n B * u n U B * w n U (6.24) ≤ Cω α n M (ω n ) 1/2 B * u n U .ω n u n H -→ n→+∞ 0, ω α+1 n M (ω n ) -1 R p(ξ) 2 |ξ| 2 + η + iω n dξ B * f n , B * w n U (6.25) ≤ Cω 2α-2 n M (ω n ) -1/2 f n H 1 2 .ω n u n H -→ n→+∞ 0, ω α+1 n M (ω n ) -1 R p(ξ) h n (ξ), B * w n U |ξ| 2 + η + iω n dξ (6.26) ≤ ω α-1 n M (ω n ) -1 R p(ξ) 2 (|ξ| 2 + η) 2 + ω 2 n dξ 1 2 h n V .ω n u n H ≤ Cω α-1 n ω α/2-1 n M (ω n ) -1 h n V .ω n u n H -→ n→+∞ 0, and (6.27) ω α+1 n M (ω n ) -1 | g n , w n H | ≤ Cω α-1 n g n H .ω n u n H -→ n→+∞ 0.
Taking the inner product of the first equation of (6.18) with f n , we obtain

-ω 2 n w n , f n H + A 1 2 w n , A 1 2 f n H + iω n B * w n , B * f n U = u n , f n H .
This with (6.7), (6.8), (6.13), (6.19) and (6.21) give

ω α+2 n M (ω n ) -1 | w n , f n H | (6.28) ≤ ω α n M (ω n ) -1 ( w n H 1 2 f n H 1 2 + u n H f n H ) + ω α+1 n M (ω n ) -1 B * w n U B * f n U ≤ Cω α-1 n (1 + M (ω n ) -1 + M (ω n ) -1 2 ) f n H 1 2 .ω n u n H -→ n→+∞ 0.
It follows from the combination of (6.22) and (6.23)-(6.28) that ω n u n H -→ n→+∞ 0. Thus, by (6.14) we have u n H 1

2

-→ n→+∞ 0. Together with (6.10) and (6.9) imply that (u n , v n , ϕ n ) -→ n→+∞ 0 which contradicts (6.7). This completes the proof.

Remark 6.1. In the case where for all δ > 0, sup

Reλ=δ λB * (λ 2 I + A) -1 B L(U ) < ∞, according
to [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF] (see also [START_REF] Ammari | Stabilization of elastic systems by collocated feedback[END_REF]), we can replace the hypothesis (6.5) by the following observability inequalities and we obtain the same results:

• for = 0, the assumption (6.5) is equivalent to the following exact observability inequality: there exists T, C > 0 such that

T 0 (0 B * )e t   0 I -A 0   u 0 u 1 2 U dt ≥ C (u 0 , u 1 ) 2 H0 , ∀ (u 0 , u 1 ) ∈ H 1 × H,

and

• for > 0, the assumption (6.5) can be provided form the following weak observability inequality: there exists T, C > 0 such that

T 0 (0 B * )e t   0 I -A 0   u 0 u 1 2 U dt ≥ C (u 0 , u 1 ) 2 H --α+ 2 ×H -1-α+ 2 , ∀ (u 0 , u 1 ) ∈ H 1 × H.
7. Applications to the fractional-damped wave equation 

   ∂ 2 t u(x, t) -∆u(x, t) + a(x)∂ α,η t u(x, t) = 0 in Ω × R + u(x, t) = 0 on Γ × R + u(x, 0) = u 0 (x), ∂ t u(x, 0) = u 1 (x) (7.1) 
in Ω, where a(x) is a positive function in Ω with support ω 0 = supp(a) verifying that there exist a non empty open subset ω 0 ⊂ Ω and a strictly positive constant a 0 such that

a(x) ≥ a 0 ∀ x ∈ ω 0 .
System (7.1) can be recast as follow

(7.2)            ∂ 2 t u(x, t) -∆u(x, t) + γ a(x) R p(ξ)ϕ(x, t, ξ) dξ = 0 (x, t) ∈ Ω × R + ∂ t ϕ(x, t, ξ) + (|ξ| 2 + η) ϕ(x, t, ξ) = p(ξ) a(x)∂ t u(x, t) (x, t, ξ) ∈ Ω × R + × R u(x, t) = 0 (x, t) ∈ Γ × R + u(x, 0) = u 0 (x), ∂ t u(x, 0) = u 1 (x), ϕ(x, 0, ξ) = 0 x ∈ Ω, ξ ∈ R.
The energy of the system is given by

E(t) = 1 2 ∂ t u(t) 2 L 2 (Ω) + ∇u(t) 2 L 2 (Ω) + γ R ϕ(t, ξ) 2 L 2 (Ω) dξ .
The operator A = -∆ is strictly positive and self-adjoint operator in H = L 2 (Ω) and with domain

D(A) = H 1 0 (Ω) ∩ H 2 (Ω).
The operator A corresponding to the Cauchy problem of system (7.2) is given by

A   u v ϕ   =     v ∆u -γ √ a R p(ξ)ϕ(ξ) dξ -(|ξ| 2 + η)ϕ(ξ) + p(ξ) √ av    
with domain in the Hilbert space

H = H 1 0 (Ω) × L 2 (Ω) × L 2 (R; L 2 (Ω))
given by

D(A) = (u, v, ϕ) ∈ H : v ∈ H 1 0 (Ω), ∆u -γ √ a R p(ξ)ϕ(ξ) dξ ∈ L 2 (Ω), |ξ|ϕ ∈ L 2 (R; L 2 (Ω)), (|ξ| 2 + η)ϕ(ξ) -p(ξ) √ av ∈ L 2 (R; L 2 (Ω)) .
Since the embedding H 1 0 (Ω) → L 2 (Ω) is compact and the only solution of the following problem

   ∂ 2 t u(x, t) -∆u(x, t) = 0 (x, t) ∈ Ω × R + a(x)∂ t u(x, t) = 0 (x, t) ∈ Ω × R + u(x, t) = 0 (x, t) ∈ Γ × R + ,
is the trivial solution (see proof of Proposition 7.2), then according to section 4 the semigroup e tA is strongly stable. Moreover, we have the following lemma (for proof look at those of Lemma 7.2 and Lemma 7.4).

Lemma 7.1. Let η > 0 and for all ω ∈ R the operator (iωI -A) is injective and surjective.

We assume that the semigroup of the operator A 0 : D(A) ⊂ H 0 -→ H 0 defined by

A 0 u v = v ∆u -av where H 0 = H 1 0 (Ω) × L 2 (Ω) with domain D(A 0 ) = {(u, v) ∈ H 0 : ∆u -av ∈ L 2 (Ω), v ∈ H 1 0 (Ω)},
is uniformly stable in the energy space H 0 , which means that the energy of the following system

   ∂ 2 t w(x, t) -∆w(x, t) + a(x)∂ t w(x, t) = 0 in Ω × R + w(x, t) = 0 on Γ × R + w(x, 0) = w 0 (x), ∂ t w(x, 0) = w 1 (x)
in Ω.

is exponentially stable. Noting that this can be held if the so called geometric control condition (GCC) is satisfied (see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]).

Proposition 7.1. Under the above assumption and for η > 0 the operator A generates a contraction semigroup satisfying

e tA X H ≤ C (1 + t) 1 1-α X D(A) , ∀ X ∈ D(A), t ≥ 0,
for some constant C > 0. This means that the energy of system (7.1) is decreasing to zero as t goes to +∞ as t -2

1-α .
Proof. Following to Lemma 7.1 the operator (iωI -A) is bijective for every ω ∈ R, then using the closed graph theorem we follow that iR ⊂ ρ(A). The result follow now from Corollary 6.1.

Remark 7.1. In the case where Ω = (0, 1) × (0, 1) and

a(x) = 1, ∀ x ∈ (0, ε) × (0, 1), 0, elsewhere, ,
where ε > 0 is a constant, we have according to [START_REF] Stahn | Optimal decay rate for the wave equation on a square with constant damping on a strip[END_REF] that the semigroup generated by the operator A 0 decays as t -3 2 (which is optimal). We obtain in this case from Corollary 6.1 that the polynomial decay rate for the semigroup e tA is given by t -2 5-2α .

However, we obtain a logarithm decay rate of the semigroup e tA as given in Corollary 6.2 without any geometrical condition since according to [START_REF] Lebeau | Equation des ondes amorties, Algebraic and geometric methods in mathematical physics[END_REF] the resolvent of the operator A 0 satisfies the condition (6.5) with M (|ω|) = e K0|ω| for some K 0 > 0. 7.2. Fractional-Kelvin-Voigt damped wave equation. We consider the following damped wave system

   ∂ 2 t u(x, t) -∆u(x, t) -div (a(x)∇∂ α,η t u(x, t)) = 0 (x, t) ∈ Ω × R + u(x, t) = 0 (x, t) ∈ Γ × R + u(x, 0) = u 0 (x), ∂ t u(x, 0) = u 1 (x)
x ∈ Ω, where we have made the same notations as the previous subsection. Equivalently, we have

(7.3)            ∂ 2 t u(x, t) -∆u(x, t) -γdiv a(x) R p(ξ)ϕ(x, t, ξ) dξ = 0 (x, t) ∈ Ω × R + ∂ t ϕ(x, t, ξ) + (|ξ| 2 + η) ϕ(x, t, ξ) = p(ξ) a(x)∇∂ t u(x, t) (x, t, ξ) ∈ Ω × R + × R u(x, t) = 0 (x, t) ∈ Γ × R + u(x, 0) = u 0 (x), ∂ t u(x, 0) = u 1 (x), ϕ(x, 0, ξ) = 0 x ∈ Ω, ξ ∈ R.
The energy of the system is given by

E(t) = 1 2 ∂ t u(t) 2 L 2 (Ω) + ∇u(t) 2 L 2 (Ω) + γ R ϕ(t, ξ) 2 (L 2 (Ω)) n dξ .
The operator A = -∆ is strictly positive and auto-adjoint operator in H = L 2 (Ω) and with domain D(A) = H 1 0 (Ω) ∩ H 2 (Ω). The operator A corresponding to the Cauchy problem of system (7.3) is given by

A   u v ϕ   =     v ∆u + γdiv √ a R p(ξ)ϕ(ξ) dξ -(|ξ| 2 + η)ϕ(ξ) + p(ξ) √ a∇v    
with domain in the Hilbert space

H = H 1 0 (Ω) × L 2 (Ω) × L 2 (R; (L 2 (Ω)) n ) is given by D(A) = (u, v, ϕ) ∈ H : v ∈ H 1 0 (Ω), ∆u + γdiv √ a R p(ξ)ϕ(ξ) dξ ∈ L 2 (Ω), |ξ|ϕ ∈ L 2 (R; (L 2 (Ω)) n ), (|ξ| 2 + η)ϕ(ξ) -p(ξ) √ a∇v ∈ L 2 (R; (L 2 (Ω)) n ) .
Proposition 7.2. The operator A generates a C 0 -semigroup of contraction therefore, system (7.3) is well posed in the energy space H. Moreover, if we assume that the intersection of the boundary of Ω with any connected component of ω 0 = supp(a) is nonempty subset with a non-zero measure then the semigroup is strongly stable.

Proof. The well-posedness follows from Theorem 3.1. Since H 1 0 (Ω) → L 2 (Ω) is compact embedding, then thanks to Theorem 4.1 strong stabilization will be guarantee if we prove that the only solution of the problem (7.4)

   ∂ 2 t u(x, t) -∆u(x, t) = 0 (x, t) ∈ Ω × R + a(x)∇∂ t u(x, t) = 0 (x, t) ∈ Ω × R + u(x, t) = 0 (x, t) ∈ Γ × R + ,
such that ∆u(x, t) ∈ L 2 (Ω), ∂ t u(x, t) ∈ H 1 0 (Ω) for all t ≥ 0, is the zero solution. Without lost of generality we can assume that ω 0 is connected. Using the second line of (7.4) we can see easily that ∇u(x, t) it does not depend on the time variable and ∂ t u(x, t) is independent of the space variable in ω 0 , say that ∇u(x, t) = f (x) and ∂ t u(x, t) = g(t) in ω 0 . Putting these two equalities into the first equation of (7.4) then we follow that ∂ 2 t u is constant in ω 0 . The Combination of all these properties of u imply that the solution of (7.4) is written in ω 0 as follow u(x, t) = βt 2 + δt + φ(x), where β and δ are two real numbers. Since, u ≡ 0 on ∂ω 0 ∩ Γ then u does not depend on the time variable and we get u = φ in ω 0 . We set now v(x, t) = ∂ t u(x, t), then v satisfies the following system

   ∂ 2 t v(x, t) -∆v(x, t) = 0 (x, t) ∈ Ω × R + v(x, t) = 0 (x, t) ∈ ω 0 × R + v(x, t) = 0 (x, t) ∈ Γ × R + .
Since v(t) ∈ H 1 0 (Ω) for all t ≥ 0 then using the unique continuation theorem (see [START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF][START_REF] Zuazua | Controllability and observability of PDE: Some results and open problems Handbook of Differential Equations: Evolutionary Equations[END_REF]) we find that v ≡ 0 in Ω. This means that u is only depends on the x variable and verifying the following system of equations

-∆u(x) = 0 x ∈ Ω u(x) = 0 x ∈ Γ.
Since the Dirichlet Laplacian operator is invertible we follow that u ≡ 0 in Ω. And this completes the proof.

Lemma 7.2. For all ω ∈ R the operator (iωI -A) is injective.

Proof. Let X =   u v ϕ   ∈ D(A) such that (7.5) AX = iωX
Then the dissipation property of the operator A imply that

Re AX, X = -γ R (|ξ| 2 + η) ϕ(ξ) 2 (L 2 (Ω)) n dξ = 0.
Then we deduce that ϕ(ξ) = 0 in (L 2 (Ω)) n a.e ξ ∈ R.

Since that problem (7.5) becomes

       v = iωu in Ω ω 2 u + ∆u = 0 in Ω a(x)∇u = 0 in supp(a) u = 0 on Γ.
We denote by w j = ∂ xj u and we derive the second and the third equation, one gets ω 2 w j + ∆w j = 0 in Ω w j = 0 in supp(a), By unique continuation theorem we find that w j = 0 in Ω therefore u = 0 in Ω since u |Γ = 0 and consequently U = 0. Thus, the injection of the operator (iωI -A) is proven.

Lemma 7.3. Assume that η > 0 and ω ∈ R then for any f ∈ H -1 (Ω) the following problem

(7.6) ω 2 u + ∆u + (ω 2 c 1 + iωc 2 )div(a∇u) = f in Ω u = 0 on Γ where c 1 = γ R p(ξ) 2 (|ξ| 2 + η) 2 + ω 2 dξ and c 2 = γ R p(ξ) 2 (|ξ| 2 + η) (|ξ| 2 + η) 2 + ω 2 dξ
admits a unique solution u ∈ H 1 0 (Ω).

Proof. First we note that the coefficients c 1 and c 2 are well defined. We distinguish two cases:

Case 1: ω = 0. In this case we use the Lax-Milgram's theorem to prove the unique solution u ∈ H 1 0 (Ω) of (7.6).

Case 2: ω ∈ R * . Separating the real and the imaginary parts of u and f by writing u = u 1 + iu 2 and f = f 1 + if 2 and we consider the following mixed system (7.7)

   -∆u 1 -c 1 ω 2 div(a∇u 1 ) + c 2 ωdiv(a∇u 2 ) = f 1 in Ω -∆u 2 -c 1 ω 2 div(a∇u 2 ) -c 2 ωdiv(a∇u 1 ) = f 2 in Ω u 1 = u 2 = 0 on Γ.
Consider the following bilinear form in (H 1 0 (Ω) × H 1 0 (Ω)) 2 defined by

L((u 1 , u 2 ); (w 1 , w 2 )) = Ω ∇u 1 ∇w 1 dx + Ω ∇u 2 ∇w 2 dx + c 1 ω 2 Ω ∇u 1 ∇w 1 a dx + c 1 ω 2 Ω ∇u 2 ∇w 2 a dx -c 2 ω Ω ∇u 2 ∇w 1 a dx + c 2 ω Ω ∇u 1 ∇w 2 a dx.
It is clear that L is continuous and coercive in (H 1 0 (Ω)×H 1 0 (Ω)) 2 then by Lax-Milgram's theorem there exists a unique couple (u 1 , u

2 ) ∈ H 1 0 (Ω) × H 1 0 (Ω) such that L((u 1 , u 2 ); (w 1 , w 2 )) = f 1 , w 1 H -1 ×H 1 0 + f 2 , w 2 H -1 ×H 1 0 , ∀ (w 1 , w 2 ) ∈ H 1 0 (Ω) × H 1 0 (Ω)
. This leads to the existence and the uniqueness of a solution of the problem (7.7) in H 1 0 (Ω) × H 1 0 (Ω). This proves in particular that the operator

A ω = -∆ -(ω 2 c 1 + iωc 2 )div(a∇ . ) is invertible from H 1 0 (Ω) into H -1
(Ω) then the first line of (7.6) is equivalent to the following equation

(7.8) (ω 2 A -1 ω -I)u = A -1 ω f. It follows from the compactness of the embedding H 1 0 (Ω) → H -1 (Ω) that the inverse operator A -1
ω is compact in H -1 (Ω). Let's consider the following problem (7.9)

ω 2 u + ∆u + (ω 2 c 1 + iωc 2 )div(a∇u) = 0 in Ω u = 0 in Γ,
we multiplying the first line of (7.9) by u and integrating over Ω, one gets (7.10)

ω 2 u 2 L 2 (Ω) -∇u 2 L 2 (Ω) -(ω 2 c 1 + iωc 2 )
√ a∇u 2 L 2 (Ω) = 0, then by taking the imaginary part of (7.10) we obtain ∇u = 0 in supp(a). Proceeding as the proof of the previous lemma one gets u = 0 in Ω. This prove that the operator (ω 2 A -1 ω -I) is injective. Then following to Fredhom's alternative theorem [8, Théoreme 6.6], equation (7.8) admits a unique solution and therefore equation (7.6) admits a unique solution.

Lemma 7.4. Let η > 0 and a smooth enough then for all ω ∈ R the operator (iωI -A) is surjective.

Proof. Let Y = (f, g, h) ∈ H and we look for an X = (u, v, ϕ) ∈ D(A) such that (7.11) (iωI -A)X = Y.

Equivalently, we have (7.12)

           v = iωu -f in Ω ω 2 u + ∆u + (ω 2 c 1 + iωc 2 )div(a∇u) = F in Ω ϕ(ξ) = iω p(ξ) |ξ| 2 + η + iω √ a∇u - p(ξ) |ξ| 2 + η + iω √ a∇f + h(ξ) |ξ| 2 + η + iω in Ω u = 0 on Γ,
where c 1 and c 2 are defined in Lemma 7.3 and F ∈ L 2 (Ω) is given by

F = (c 2 -iωc 1 )div(a∇f ) -iωf -g -γdiv √ a R p(ξ) h(x, ξ) |ξ| 2 + η + iω dξ .
Since for a smooth enough F ∈ H -1 (Ω) then using Lemma 7.3, problem (7.12) has a unique solution u ∈ H 1 0 (Ω) and therefore problem (7.11) has a unique solution X ∈ D(A).

We consider now the following auxiliary problem (7.13)

   ∂ 2 t w(x, t) -∆w(x, t) + div(a(x)∇∂ t w(x, t)) = 0 in Ω × R + w(x, t) = 0 on Γ × R + w(x, 0) = w 0 (x), ∂ t w(x, 0) = w 1 (x)
in Ω.

The equation (7.13) is well posed in the Hilbert space H 0 = H 1 0 (Ω) × L 2 (Ω) and its solution is a semigroup generated by the operator A 0 : D(A) ⊂ H 0 -→ H 0 defined by

A 0 w v = v ∆w -div(a∇v) with domain D(A 0 ) = {(w, v) ∈ H 0 : ∆w -div(a∇v) ∈ L 2 (Ω), v ∈ H 1 0 (Ω)}.
We suppose now that there exist Ω j ⊂ Ω with piecewise smooth boundary and x j 0 ∈ R n , j = 1, 2, . . . , J s.t. Ω i ∩ Ω j = ∅ for any 1 ≤ i < j ≤ J and for some δ > 0,

Ω ∩ N δ     J j=1 Γ j     Ω \ J j=1 Ω j     ⊂ ω 0 , where for S ⊂ R n , N δ (S) = x∈S {y ∈ R n ; |x -y| < δ} and Γ j = x ∈ ∂Ω j ; (x -x j 0 ).ν j (x) > 0
with ν j being the unit normal vector pointing into the exterior of Ω j . Under the above assumptions Tebou in [29, Theorem 1.1] shows a non-uniform stabilization result in such a way that the energy of the system (7.13) decreases to zero as t -1 as t goes to the infinity for regular initial data. Consequently, according to Corollary 6.1 we have the following Proposition 7.3. Under the above assumptions and for η > 0 the operator A generates a C 0 semigroup of contractions satisfying

e tA X H ≤ C (1 + t) 1 2-α X D(A) , ∀ X ∈ D(A), t ≥ 0,
for some constant C > 0. This means that the energy of system (7.3) is decreasing to zero as t goes to +∞ as t -2 2-α .

If in addition to the above geometric condition above we have the following regularity of the damping coefficient a ∈ W 1,∞ (Ω), |∇a(x)| 2 M 0 a(x) a.e. in Ω, a(x) ≥ a 0 a.e. in Ω, Tebou in [29, Theorem 1.2] (see also [START_REF] Tébou | Stabilisation of some elastic systems with localized Kelvin-Voigt damping[END_REF]Theorem 1.2]) shows that the semigroup generated by the operator A 0 is uniformly stable that is the energy of the system (7.13) is exponentially stable. Then by combining this with Corollary 6.1 we get the following Proposition 7.4. Under the above additional assumptions and for η > 0 the operator A generates a C 0 semigroup of contractions satisfying

e tA X H ≤ C (1 + t) 1 1-α X D(A) , ∀ X ∈ D(A), t ≥ 0,
for some constant C > 0. This means that the energy of system (7.3) is decreasing to zero as t goes to +∞ as t -2 1-α .

However without any geometric conditions namely a equal to a constant d in ω 0 and equal to zero elsewhere, using Carleman estimate Ammari, Hassine and Robbinao [START_REF] Ammari | Stabilization for the wave equation with singular Kelvin-Voigt damping[END_REF]Theorem 1.1] show that the energy of the system (7.3) decreases to zero as ln -2 (t) as t goes to +∞ for regular initial data. In particular, it is proven that the resolvent estimate of the operator A 0 satisfies for some constant C > 0 large enough,

(iωI -A 0 ) -1 L(H0) ≤ Ce C|ω| , ∀ |ω| 1.
Hence, by combining this resolvent estimate with Corollary 6.2 we obtain the following Proposition 7.5. Under the above assumption and for η > 0 the operator A generates a C 0 semigroup of contractions satisfying e tA X H ≤ C ln(1 + t) X D(A) , ∀ X ∈ D(A), t ≥ 0, for some constant C > 0. This means that the energy of system (7.3) is decreasing to zero as t goes to +∞ as ln -2 (t). where the prime denotes the space derivative and δ ζ is the Dirac mass concentrated in the point ζ of (0, 1) (See [START_REF] Hassine | Remark on the pointwise stabilization of an elastic string equation[END_REF][START_REF] Tucsnak | On the pointwise stabilization of a string, Control and Estimation of Distributed Parameter Systems[END_REF] 

, t, ξ) ∈ (0, 1) × R + × R u(0, t) = u(1, t) = 0 t ∈ R + u(x, 0) = u 0 (x), ∂ t u(x, 0) = u 1 (x), ∂ t ϕ(0, ξ) = ϕ 0 (ξ) (x, ξ) ∈ (0, 1) × R, where we recall here that U = C, H = L 2 (0, 1), H 1 2 = H 1 0 (0, 1), H - The energy of the solution of system (7.14) is given by

E(t) = 1 2 ∂ t u(t) 2 L 2 (0,1) + u (t) 2 L 2 (0,1) + γ R |ϕ(t, ξ)| 2 dξ .
Proposition 7.6. The semigroup generated by the operator A is strongly stable, i.e lim t→+∞ e At (u 0 , v 0 , ϕ 0 ) H = 0, ∀(u 0 , u 1 , ϕ 0 ) ∈ H, if and only if ζ / ∈ Q.

Proof. The prove is done in two stages:

• We consider the following problem The uniqueness of the Fourier series implies that k u 0 , sin(kπ . ) L 2 (0,1) sin(kπζ) = 0 and u 1 , sin(kπ . ) L 2 (0,1) sin(kπζ) = 0 for all k ∈ N * . Since ζ / ∈ Q then sin(kπζ) = 0 for all k ∈ N * . Therefore, u 0 , sin(kπ . ) L 2 (0,1) = 0 and u 1 , sin(kπ . ) L 2 (0,1) = 0 for all k ∈ N * . Following to (7.16) we obtain u = 0. Thus, the first implication follows from Theorem 4.1.

• We recall that the sequence of eigenfunctions of the Dirichlet Lapacian operator in (0, 1) are given by u k (x) = sin(kπx) ∀ x ∈ (0, 1) formed an orthonormal base of L 2 (0, 1) with the corresponding eigenvalues -µ k = -k 2 for all k ∈ Z. Since ζ ∈ Q then B * u k = sin(kπζ) = 0 for some k ∈ N. Following to the second item of Theorem 5.1 ik is an eigenvalue of the operator A. Therefore σ(A) ∩ iR = ∅. This prove the second implication.

This completes the proof.

We consider now the following auxiliary problem (7.17)    ∂ 2 t w(x, t) -w (x, t) + ∂ t w(ζ, t)δ ζ = 0 (x, t) ∈ (0, 1) × R + w(0, t) = w(1, t) = 0 t ∈ R + w(x, 0) = w 0 (x), ∂ t w(x, 0) = w 1 (x) x ∈ (0, 1). System (7.17) is well posed in the Hilbert space H 0 = H 1 0 (0, 1) × L 2 (0, 1) and its solution is a semigroup generated by the operator A 0 : D(A) ⊂ H 0 -→ H 0 defined by According to [14, Theorem 1.1], if ζ ∈ M the energy of the system (7.17) is deceasing as ln -2 (t) as t goes to +∞ in particular it is proven that the resolvent estimate of the operator A 0 satisfies for some constant C > 0 large enough, (iωI -A 0 ) -1 L(H0) ≤ Ce C|ω| , ∀ |ω| 1.

A 0 w v = v w -v(ζ)δ ζ
Therefore, by combining this estimation with Corollary 6.2 we obtain the following Proposition 7.7. Under the above assumption on ζ and for η > 0 the operator A generates a C 0 semigroup of contractions satisfying e tA X H ≤ C ln(1 + t) X D(A) , ∀ X ∈ D(A), t ≥ 0, for some constant C > 0. This means that the energy of system (7.3) is decreasing to zero as t goes to +∞ as ln -2 (t).

Proposition 2 . 1 .

 21 We set the constantγ = sin(απ) π ,and we define the functionp(ξ) = |ξ| 2α-1 2

Theorem 3 . 1 .

 31 The operator A defined by (3.2) and (3.3), generates a C 0 semigroup of contractions e tA in the Hilbert space H.

  f (z) dz = 0

7. 1 .

 1 Internal fractional-damped wave equation. We consider a wave equation with an internal fractional-damping in a bounded and connected domain Ω of R n with smooth boundary Γ = ∂Ω

7. 3 .

 3 Pointwise fractional-damped string equation. We consider the equation of the vibration of a string of length equal to 1 with a pointwise fractional damping modeled by the following equation   ∂ 2 t u(x, t) -u (x, t) + ∂ α,η t u(ζ, t)δ ζ = 0 (x, t) ∈ (0, 1) × R + u(0, t) = u(1, t) = 0 t ∈ R + u(x, 0) = u 0 (x), ∂ t u(x, 0) = u 1 (x)x ∈ (0, 1),

1 2 =

 2 H -1 (0, 1), Bz = zδ ζ for all z ∈ C and B * u = u(ζ) for all u ∈ H 1 0 (0, 1). We consider now the operator A : D(A) ⊂ H -→ H defined byA )ϕ(ξ) dξ δ ζ -(|ξ| 2 + η)ϕ(ξ) + p(ξ)v(ζ) space H = H 1 0 (0, 1) × L 2 (0, 1) × L 2 (C; R) with domain D(A) = (u, v, ϕ) ∈ H : v ∈ H 1 0 (0, 1), u + γ R p(ξ)ϕ(ζ, ξ) dξ δ ζ ∈ L 2 (0, 1), |ξ|ϕ ∈ L 2 (R; C), -(|ξ| 2 + η)ϕ(ξ) + p(ξ)v(ζ) ∈ L 2 (R; C) .

( 7 2 2 +∞ k=1 u 1 , 2 +∞ k=1 u 1 ,

 722121 t u -u (x, t) = 0 (x, t) ∈ (0, 1) × R + ∂ t u(ζ, t) = 0 u(0, t) = u(1, t) = 0,Then the solution of (7.15) is given byu(x, t) = 2 +∞ k=1 u 0 , sin(kπ . ) L 2 (0,1) cos(kπt) sin(kπx) + sin(kπ . ) L 2 (0,1) sin(kπt) sin(kπx) kπ , ∀ x ∈ (0, 1), ∀ t ∈ R + ,(7.16)where u 0 and u 1 are the initial data. In particular, we have∂ t u(ζ, t) = -2π +∞ k=1k u 0 , sin(kπ . ) L 2 (0,1) sin(kπt) sin(kπζ) + sin(kπ . ) L 2 (0,1) cos(kπt) sin(kπζ) = 0, ∀ t ∈ R + .

  0 ) = {(w, v) ∈ H 1 0 (0, 1) 2 : w ∈ H 2 (0, ζ) ∩ H 2 (ζ, 1), w (ζ + ) -w (ζ -) = v(ζ)}.Considering the following subsetM = ζ ∈ (0, 1) : ∃ K 1 , K 2 > 0, sin 2 (µ) + sin 2 (ζµ). sin 2 ((1 -ζ)µ) e K1µ ≥ K 2 , ∀µ1 .

  for the classical derivative).

		Equivalently we have
	(7.14)	
	    	∂ 2
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t u(x, t) -u (x, t) + γ R p(ξ)ϕ(t, ξ) dξ δ ζ = 0 (x, t) ∈ (0, 1) × R + ∂ t ϕ(t, ξ) + (|ξ| 2 + η)ϕ(t, ξ) = p(ξ)∂ t u(ζ, t) (