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We present here a new class of staggered schemes for solving the compressible 1D Euler equations in internal energy formulation on uniform grids. The schemes are applicable to arbitrary equation of states and can be extended to high order of accuracy in both time and space on smooth flows. High order accurracy in time is reached thanks to Cauchy-Kowalevskaya procedure. Modifications on the initial schemes are performed to give sufficient conditions for stability on 1D wave equations. Results obtained for wave equations are extended to 1D Euler equations and then to 2D compressible Navier-Stokes equations using directional splitting methods. Results on the conservation of total energy are given, proper shock capturing is observed experimentally. Numerical results are provided up to 4th-order accuracy in 1D and 2D.

Introduction

Staggered grids schemes are usually used for CFD application in industrial context because they require less degrees of freedom than colocated ones for acoustic propagation [START_REF] Arakawa | Computational design of the basic dynamical processes of the ucla general circulation model[END_REF], they are also known to be more robust and more stable [START_REF] Ferziger | Computational methods for fluid dynamics[END_REF]. It is acknowledged that staggered schemes for compressible hydrodynamics originate in the late 1940's with the work of Richtmyer and VonNeumann (3; 4). They proposed the first shock capturing hydrodynamic scheme. This scheme is a 1D Lagrange explicit scheme, formulated in internal energy and 2nd order accuracy in time and space. Truglio and Trigger [START_REF] Trulio | Numerical solution of the one-dimensional lagrangian hydrodynamic equations[END_REF] modified the original scheme to make it conservative in total energy retaining spatial staggering of the variables. From the 1970's, pionnered by DeBar, several multifluid hydrodynamics code for compressible non viscous flow (6; 7) relied on Trulio-Trigger implicit Lagrangian scheme using a Lagrange-remap approach with dimensional splitting. Lagrange-remap schemes are known to be less dissipative and capture better both contact discontinuities and shocks. A strictly explicit version of Trulio's code was also reported in [START_REF] Woodward | The numerical simulation of two-dimensional fluid flow with strong shocks[END_REF]. In 2018, Abgrall et al. [START_REF] Abgrall | Staggered grid residual distribution scheme for lagrangian hydrodynamics[END_REF] used staggered grid residual distribution scheme to solve Euler equations ensuring conservation of total energy. On the other hand, high order CFD solver are now required to improve the accuracy of complex simulation scenarios. For instance, Dakin and al. (10;[START_REF] Dakin | Couplage fluide-structure d'ordre (très) élevé pour des schémas volumes finis 2d lagrange-projection[END_REF][START_REF] Dakin | High-order staggered schemes for compressible hydrodynamics. weak consistency and numerical validation[END_REF] gave an extension path of schemes described before to high order accuracy using Runge-Kutta sequences. In this article, we also search to obtain high order accuracy in time but thanks to Cauchy-Kowalevskaya procedure. The first one-step scheme using Cauchy-Kowalevskaya procedure was proposed in 1960 by Lax and Wendroff [START_REF] Lax | Systems of conservation laws[END_REF]. The Lax-Wendroff scheme is 2nd order accuracy in time and space; its variables are centered in both time and space. It is commonly used for systems of conservation laws for correct shock capturing. Daru and Tenaud (14) proposed later an high order scheme relying on Cauchy-Kovalevskaya procedure to solve the 1D advection equation. Del Pino and Jourdren gave [START_REF] Del Pino | Arbitrary high-order schemes for the linear advection and wave equations: application to hydrodynamics and aeroacoustics[END_REF] an extension to any order of accurary for these schemes. See also (16; 17) for related work on collocated grids for Euler equations formulated in total energy and for magnetohydrodynamics system. In the context of high performance computing, Cauchy-Kowalevskaya procedure offers the advantage of requiring fewer communications, compared with Runge-Kutta sequences, which are expensive in CPU time. The other advantages are a smaller number of calls to the equation of state and a smaller memory footprint. The aim of this article is to propose a class of Cauchy Kovalevskaya scheme based on staggered grids and formulated in internal energy.

This article proposes a new class of high order one-step staggered schemes for solving the 1D Euler equations in internal energy formulation on uniform grids. The integration in time in the Lagrange step is based on a Cauchy-Kovalevskaya procedure leading to high-order accuracy in time.

Section 2 is devoted to the construction of the finite volume schemes for wave equations with results on stability for orders until 4. Section 3 de-tails the extension of the schemes to Euler equations and 2D Navier-Stokes equations and gives conservation results. Section 4 presents numerical results illustrating the accuracy, the convergence and the robustness of the schemes. Eventually a comparison of performance with the Runge-Kutta based schemes is done.

1D wave equation with constant coefficients

We consider the 1D acoustic wave equation with constant coefficients ρ 0 and c 0

ρ 0 ∂ t u + ∂ x p = 0, ∂ t p + c 2 0 ∂ x u = 0, (2.1) 
where ρ 0 ∈ R * + designs the initial mass density and c 0 ∈ R * + is the sound velocity. From now, we set ρ 0 = 1 to make formal computations easier. However, it does not affect the linear stability study.

High-order finite volume schemes on staggered grid

We define two uniform Cartesian grids: a primal grid {x j-1
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} and a dual grid {x j }. p is cell-centered (values on each elements center of the primal grid) when u is staggered (values on each elements center of the dual grid). In the following, φ and φ will respectively denote space averaged value of φ and its pointwise value

           φ n j = 1 ∆X x j+ 1 2 x j-1 2 φ(x, t n )dx, and φ n j = φ(x j , t n ), φ n j-1 2 = 1 ∆X x j x j-1 φ(x, t n )dx, and φ n j-1 2 = φ(x j-1 2 , t n ).
We also define

∆ j φ = φ j+ 1 2 -φ j-1 2 and ∆ j-1 2 φ = φ j -φ j-1 such that ∆X = ∆ j x = ∆ j-1 2
x. To get the semi-discrete formulation of the scheme, system depicted in equation (2.1) is integrated in time between t n and t n+1 over a cell [x j-1 2 , x j+ 1 2 ] for p and over a cell [x j-1 , x j ] for u. It yields

         ∆X(u n+1 j-1 2 -u n j-1 2 ) = - t n+1 t n p j (θ) -p j-1 (θ)dθ, ∆X(p n+1 j -p n j ) = -c 2 0 t n+1 t n u j+ 1 2 (θ) -u j-1 2 (θ)dθ.
The high-order approximation in time is obtained thanks to the Cauchy-Kovalevskaya procedure. In [START_REF] Del Pino | Arbitrary high-order schemes for the linear advection and wave equations: application to hydrodynamics and aeroacoustics[END_REF], Cauchy-Kovalevskaya procedure is applied to Riemann invariants associated to (u, p). Here, this procedure is directly applied to (2.1). For any positive integer k, the procedure gives for u

∂ 2k+1 t u = -c 2k 0 ∂ 2k+1 x p, ∂ 2k t u = c 2k 0 ∂ 2k x u, (2.2) 
and for p

∂ 2k+1 t p = -c 2(k+1) 0 ∂ 2k+1 x u, ∂ 2k t p = c 2k 0 ∂ 2k x p.
(2.3)

Then Taylor expansion of u and p at respectively point (x j-1 2 , t n ) and (x j , t n ) leads to

         t n+1 t n u j-1 2 (θ)dθ = N -1 k=0 (∆t) k+1 (k+1)! ∂ k t u n j-1 2 + O(∆t N +1 ), t n+1 t n p n j (θ)dθ = N -1 k=0 (∆t) k+1 (k+1)! ∂ k t p n j + O(∆t N +1 ).
For 1 ≤ k ≤ N -1, we replace ∂ k t u and ∂ k t p by their expression given in (2.2) and (2.3) so only spatial derivatives appear on the right member of the equations. Building an order N scheme requires to discretize ∂ k

x at least at order N -k for k ∈ {1, ..., N }. We set δ k a discretisation of ∂ k

x at the expected order and ν = ∆t/∆X. We define u * j-1 2 and p * j with

         u * j-1 2 = N -1 2 k=0 ν 2k (2k+1)! c 2k 0 δ 2k u n j-1 2 - N 2 -1 k=0 ν 2k+1 2(k+1)! c 2k 0 δ 2k+1 p n j-1 2 , p * j = N -1 2 k=0 ν 2k (2k+1)! c 2k 0 δ 2k p n j - N 2 -1 k=0 ν 2k+1 2(k+1)! c 2(k+1) 0 δ 2k+1 u n j .
(2.4)

Then we have

         t n+1 t n u j-1 2 (θ)dθ = ∆tu * j-1 2 + O(∆t N +1 ) + O(∆X N +1 ), t n+1 t n p j (θ)dθ = ∆tp * j + O(∆t N +1 ) + O(∆X N +1 ).
And the schemes at order N writes

u n+1 j-1 2 -u n j-1 2 = -ν∆ j-1 2 p * , p n+1 j -p n j = -νc 2 0 ∆ j u * .
Building an order N scheme also requires to compute the point-wise (resp average) values from the average (resp. pointwise) at least at order N. Although other reconstructions are possible, centered and symmetric ones are chosen like in [START_REF] Dakin | High-order accurate lagrange-remap hydrodynamic schemes on staggered cartesian grids[END_REF] because they are sufficient for uniform Cartesian grids.

                     φ ξ(j) = k C k φ ξ(j)+k , φ ξ(j) = k Ĉk φ ξ(j)+k , φ ξ(j) = (ρ 0 φ) ξ(j) (ρ 0 ) ξ(j) , δ 2m φ ξ(j) = k≥0 d 2m k (φ ξ(j)+k+ 1 2 -φ ξ(j)-k-1 2
),

δ 2m+1 φ ξ(j) = d 2m+1 0 φ ξ(0) + k≥1 d 2m+1 k (φ ξ(j)+k + φ ξ(j)-k ),
with ξ(j) = j on primal grid and ξ(j) = j + 1 2 on dual grid. The values of C k , Ĉk and d 0 k are given in Table 1 and Table 2. They are given by solving a linear system based on Taylor Lagrange expansion. The order is the order of the scheme and not the order of the derivative. The choice for the order of the derivative is explained below.

Order

C 0 C ±1 C 0 C ±1 1 and 2 1 0 1 0 3 

Stability's study

However, the discretisation of ∂ k x at order N -k turns out to be not sufficient for the stability of the schemes. To gain stability, it is necessary to add extra terms in the initial scheme or to discretize the space partial derivatives at orders higher than the initial discretisation. The stability under study is the Von Neumann's stability [START_REF] Allaire | Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation[END_REF]. Von Neumann's stability is based We define the sequences φ,k (x, t) = e α φ t e ikπx and n φ,k,j = φ,k (j∆x, n∆t). If we define λ φ = e α φ ∆t we obtain the following properties on n φ,k,j :

n+1 φ,k,j = λ φ n k,j , n φ,k,j+m = e imθ n φ,k,j .
The amplification factor is introduced as a function of θ = kπ∆x, ∆x and ∆t as :

G(θ, ∆x, ∆t) = n+1 φ,k,j n φ,k,j = e α φ t .
The stability condition yields

|G(θ, ∆x, ∆t)| ≤ 1.

Order 1 et 2

At order 1, the scheme writes

u n+1 j-1 2 -u n j-1 2 = -ν[(p n j -p n j-1 )], p n+1 j -p n j = -νc 2 0 [(u n j+ 1 2 -u n j-1 2 )]. (2.5)
Considering that at order 1, p j = p j and u j-

1 2 = u j-1 2
the system (2.5) rewrites

u n+1 j-1 2 -u n j-1 2 = -ν[(p n j -p n j-1 )], (2.6) 
p n+1 j -p n j = -νc 2 0 [(u n j+ 1 2 -u n j-1 2 )]. (2.7)
To study the stability of the scheme, we need to get separate equations on u and p. To obtain the equation on u, we write (2.6) at time n + 2,

u n+2 j-1 2 -u n+1 j-1 2 = -ν[(p n+1 j -p n+1 j-1 )]. (2.8)
Then we replace p n+1 j and p n+1 j-1 in (2.8) thanks to (2.7),

u n+2 j-1 2 -u n+1 j-1 2 = -ν[p n j -p n j-1 -νc 2 0 (u n j+ 1 2 + u n j-3 2 -2u n j-1 2 ].
Eventually, we replace (p n j -p n j-1 ) using (2.6),

u n+2 j-1 2 -u n+1 j-1 2 = u n+1 j-1 2 -u n j-1 2 + ν 2 c 2 0 (u n j+ 1 2 + u n j-3 2 -2u n j- 1 2 
).

(2.9)

We replace u n j+ 1 2 by u,k,j+ 1 2 in (2.9) and mutliply by e i θ 2 ,

λ 2 u -2λ u + 1 + 4ν 2 c 2 0 sin 2 ( θ 2 ) = 0. Then λ ± u = 1 ± 2ic 0 ν sin( θ 2 ) and λ ± u 2 = 1 + 4ν 2 c 2 0 sin 2 ( θ 2 ) > 1.
We can check by symetry that λ p = λ u . So the initial scheme at order 1 is not stable. Using the same procedure, we obtain at order 2,

λ ± = 1-2c 2 0 ν 2 sin 2 ( θ 2 )±2iνc 0 sin( θ 2 ) and λ ± 2 = 1 + 4ν 4 c 2 0 sin 4 ( θ 2 ) > 1.
So the initial scheme at order 2 is not stable either.

Order 3 and 4

If we discretize the scheme at order 3 or 4 accordingly to the description above, the scheme is not stable either. However, by discretizing all the partial derivatives ∂ k

x and the average values at chosen order, we can obtain CFL conditions for stability (see Fig. 1). Indeed, if we discretize δ and δ 2 at order 3 according to the table 2, the 3rd order scheme is stable for c 0 ν ≤ 0.726. For the 4th order, we choose to discretize δ and δ 3 at order 4 and δ 2 at order 6. The scheme at order 4 is then stable for c 0 ν ≤ 1.073. Another solution to obtain stability conditions is to discretize the operator δ at order N and to iterate to obtain the operators δ n at order N where

δ n = δ • δ n-1 .
The main drawback of this method is the use of larger stencils. However, it gives straight forwardly the implementation for the 1D Euler equations in the non linear case. We obtain a 3rd order stable scheme for c 0 ν ≤ 0.742 and a 4th order stable scheme for c 0 ν ≤ 1.138. In the following, this solution is retained for the non linear case.

Remark : The high-order schemes presented here may be extended to order higher than 4.

Stabilization of order 1 and 2

We are motivated in getting stable schemes for order 1 and 2. For that purpose, we modify the schemes by adding the term of superior order but multiplied by a coefficient ζ. Our goals are to conserve the initial order of the scheme and to obtain stable schemes with a standard CFL condition, depending on ζ. The stability condition is determined by the sign of a seconddegree polynomial. At order 1, the scheme writes

u n+1 j-1 2 -u n j-1 2 = -ν[∆ j-1 2 p n -ζc 2 0 ν∆ j-1 2 (δu) n ], p n+1 j -p n j = -νc 2 0 [∆ j u n -ζ ν ρ 0 ∆ j (δp) n ].
We obtain the following sufficient and necessary condition of stability :

4ζ 2 c 2 0 ν 2 -2ζ + 1 ≤ 0. Let ζ = 1- √ 1-4α 2 4α 2
solution of 4ζ 2 α 2 -2ζ + 1 = 0, then the scheme is stable for c 0 ν ≤ α. Therefore maximising the CFL condition, one gets α = 1 2 and ζ = 1. At order 2, the scheme writes

u n+1 j-1 2 -u n j-1 2 = -ν[∆ j-1 2 p n -ν 2 c 2 0 ∆ j-1 2 (δu) n + ζν 2 ∆ j-1 2 (δ 2 p) n ], p n+1 j -p n j = -νc 2 0 [∆ j u n -ν 2 ∆ j (δp) n + ζν 2 c 2 0 ∆ j (δ 2 u) n ].
We obtain the following sufficient and necessary condition of stability :

16ζ 2 c 2 0 ν 2 -8ζ + 1 ≤ 0. Let ζ = 1- √ 1-α 2 4α 2
solution of 16ζ 2 α 2 -8ζ + 1 = 0, then the scheme is stable for c 0 ν ≤ α. Therefore maximising the CFL condition, one gets α = 1 and ζ = 1 4 .

Euler equations

We consider now the 1D Euler equations :

   ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p) = 0, ∂ t (ρe) + ∂ x ((ρe + p)u) = 0, (3.1)
where ρ, u, p, e denote respectively the mass density, the velocity, the pressure and the total energy. Introducing the traditional Euler-Lagrange change of variables, (x, t) → (X, t) satisfying ρdx = ρ 0 dX, e kin = u 2 /2 the kinetic energy and the internal energy (e = + e kin ), one writes formally

       D t (ρ 0 τ ) -∂ X u = 0, D t (ρ 0 u) + ∂ X p = 0, D t (ρ 0 ) + p∂ X u = 0, D t (ρ 0 e kin ) + u∂ X p = 0. (3.2)
The system is closed by an equation of state linking the pressure, the internal energy and the specific volume p = EOS(τ, ). 1D Acoustic wave equation (2.1) can be interpreted as a linear approximation of 1D Euler equations with u = O( ) and p = p + O( ).

Lagrange step

The principle of Lagrange-remap approach selected here is to integrate the Lagrange system (3.2) and then to perform a conservative remap of the variables on the initial grid. The same uniform grids are used to integrate (3.2) and (2.1): ρ 0 τ and ρ 0 are cell-centered (primal grid) when ρ 0 u and ρ 0 e kin are staggered (dual grid). As for (2.1), system depicted in equation (3.2) is integrated in time between t n and t n+1 over a cell [x j-1 2 , x j+ 1 2 ] for the thermodynamics variables ρ 0 τ and ρ 0 and over a cell [x j-1 , x j ] for ρ 0 u and ρ 0 e kin :

                             ∆X(ρ 0 τ n+1 j -ρ 0 τ n j ) = t n+1 t n u j+ 1 2 (θ) -u j-1 2 (θ)dθ, ∆X(ρ 0 u n+1 j-1 2 -ρ 0 u n j-1 2 ) = t n+1 t n p j (θ) -p j-1 (θ)dθ, ∆X(ρ 0 n+1 j -ρ 0 n j ) = t n+1 t n x j+ 1 2 x j-1 2 p∂ X u(θ)dθ, ∆X(ρ 0 kin n+1 j-1 2 -ρ 0 kin n j-1 2 ) = t n+1 t n x j x j-1 u∂ X p(θ)dθ.
Using the fact that p = EOS(τ, ), we reach high-order approximation of the system (3.2) thanks to Cauchy-Kovalevskaya procedure applied on the system

D t (ρ 0 u) + ∂ x p = 0, D t (ρ 0 p) + (p∂ p -∂ τ p)∂ x u = 0.
In an isentropic case, the second equation is equivalent to

D t (ρ 0 p) + (ρc) 2 ∂ x u = 0.
In the acoustic regime (ρ 0 and c constant in time and space), using u * and p * defined in (2.4), the discrete scheme for Euler equations writes

         ρ 0 τ n+1 j -ρ 0 τ n j = ν∆ j u * , ρ 0 u n+1 j-1 2 -ρ 0 u n j-1 2 = -ν∆ j-1 2 p * , ρ 0 n+1 j -ρ 0 n j = -ν(pδu) * n j , ρ 0 kin n+1 j-1 2 -ρ 0 kin n j-1 2 = -ν(uδp) * n j-1 2 ,
where (pδu) * and (uδp) * write at order N

       (pδu) * = N -1 k=0 k l=0 σ l,k ∂ k t δu∂ k-l t p, (uδp) * = N -1 k=0 k l=0 σ l,k ∂ k t uδ∂ k-l t p, with σ l,k = ν k (k+1)! k! l!(k-l)! for k, l ∈ N and ∂ k t u, ∂ k t p are given by (2.
3) and (2.2). Remark : For orders 1 and 2, we can make the 2nd order accurate linear approximation :

ρ 0 n+1 j -ρ 0 n j = -νp * j ∆ j u * , ρ 0 kin n+1 j-1 2 -ρ 0 kin n j-1 2 = -νu * j-1 2 ∆ j-1 2 p * .
(3.3)

Non linear case

The linear approximation -ρ 0 and c locally constant for all x and t -is only first order accurate. Given that ρ 0 and c don't appear in 1rst order terms, this approximation is 2nd order accurate but is false for the 3rd and 4th order scheme. At order 3, the Cauchy-Kovalevskaya procedure rewrites for u

D t u = -1 ρ 0 ∂ x p, D tt u = -1 ρ 0 ∂ x (-(p∂ p-∂τ p) ρ 0 )∂ x u,
and for p

   D t p = -1 ρ 0 (p∂ p -∂ τ p)∂ x u, D tt p = -1 ρ 0 (p∂ p -∂ τ p)∂ x (-1 ρ 0 ∂ x p) + ( ∂xu ρ 0 ) 2 (∂ p(p∂ p -∂ τ p) +p∂ (p∂ p -∂ τ p) -∂ τ (p∂ p -∂ τ p))).
Therefore, it is more convenient to use the second discretization (where δ n is obtained by iterating δ n times) for orders higher than 3. Then u * and p * writes at order 3

         u * j-1 2 = u n j-1 2 -ν 2 1 ρ 0 (δp) n j-1 2 + ν 2 6 1 ρ 0 δ( p∂ p-∂τ p ρ 0 (δu)) n j-1 2 , p * j = p j -ν 2 (ρc) 2 ρ 0 (δu) n j + ν 2 6 (-1 ρ 0 (p∂ p -∂ τ p)δ(-1 ρ 0 δp) n j +( 1 ρ 0 ) 2 ((δu) n j ) 2 (∂ p(p∂ p -∂ τ p) + p∂ (p∂ p -∂ τ p) -∂ τ (p∂ p -∂ τ p)))).
We apply the same procedure for order 4.

Conservation of energy

Conservation of mass and momentum is immediate, we only prove the conservation of total energy. Here total energy at time t = t n is defined as

E n = i ρ 0 e n i = i ρ 0 n i + ρ 0 e kin n i+ 1 2 
. The demonstration is inspired by the demonstration made in [START_REF] Dakin | High-order accurate lagrange-remap hydrodynamic schemes on staggered cartesian grids[END_REF] in the case of Runge-Kutta integration. To make it easier to read, we note Π := p the pressure and

∂ := ∂ t the time derivative. ∆E = E n+1 -E n = i ρ 0 e n+1 i -ρ 0 e n i = i (ρ 0 n+1 i -ρ 0 n i ) + i (ρ 0 e kin n+1 i+ 1 2 -ρ 0 e kin n i+ 1 2 ) = -ν i Πδu n i + uδΠ n i+ 1 2 = -ν i,k 0≤m≤l≤N -1 Ĉk σ m,l [(∂ m Πδ∂ l-m u) i+k + (∂ m uδ∂ l-m Π) i+k+ 1 2 )] = -ν i,k,k 0≤m≤l≤N -1 d k Ĉk σ m,l [∂ m Π i+k ∂ l-m u i+k+k + 1 2 + ∂ m Π i+k+k +1 ∂ l-m u i+k+ 1 2 -∂ m Π i+k ∂ l-m u i+k-k -1 2 -∂ m Π i+k-k ∂ l-m u i+k+ 1 2 ]
Making the change of index i ← i + k in the first term and i ← i + k + 1 in the second term, we get the result for wall or periodic conditions.

∆E = -ν i,k,k 0≤m≤l≤N -1 d k Ĉk σ m,l [∂ m Π i+k-k ∂ l-m u i+k+ 1 2 + ∂ m Π i+k ∂ l-m u i+k-k -1 2 -∂ m Π i+k ∂ l-m u i+k-k -1 2 -∂ m Π i+k-k ∂ l-m u i+k+ 1 2
] = 0 By introducing the internal energy corrector defined in [START_REF] Dakin | High-order staggered schemes for compressible hydrodynamics. weak consistency and numerical validation[END_REF] we can prove the conservation of the quantity

E n = i ρ 0 n i + ρ 0 u 2 n i+ 1 2
while not affecting the conservation of the quantity E n . This internal energy corrector is defined as an a posteriori corrector

ρ 0 n+1, i = ρ 0 n+1 i + ∆K n+1 i , ρ 0 e kin n+1, i+ 1 2 = ρ 0 e kin n+1 i+ 1 2 -∆K n+1 i+ 1 2 , where ∆K n+1 i+ 1 2 = ρ 0 e kin n+1 i+ 1 2 -1 2 ρ 0 u 2 n+1 i+ 1 2 and ∆K n+1 i = 1 2 (∆K n+1 i-1 2 + ∆K n+1 i+ 1 2
).

Remap step

The remap step consists in projecting the Lagrangian quantities on the initial uniform Cartesian grids so that ones get a Cartesian Euler scheme. The projection is equal to the one proposed in (16; 10). Variables ρ and ρ are remapped on the primal grid while ρu and ρe kin are remapped on the dual grid. The remap step is conservative in mass, momentum, internal and kinetic energies.

2D extensions with dimensional splitting

2D Euler equations

As presented in (16; 10), the extension to the multidimensional case is realised thanks to dimensional splitting. The Euler equations in 2D write

       ∂ t ρ + ∂ x (ρu) + ∂ y (ρv) = 0, ∂ t ρu + ∂ x (ρu 2 + p) + ∂ y (ρuv) = 0, ∂ t ρv + ∂ x (ρuv) + ∂ y (ρv 2 + p) = 0, ∂ t ρe + ∂ x (ρue + pu) + ∂ y (ρve + pv) = 0.
This system can be split according to x-direction

       ∂ t ρ + ∂ x (ρu) = 0, ∂ t ρu + ∂ x (ρu 2 + p) = 0, ∂ t ρv + ∂ x (ρuv) = 0, ∂ t ρe + ∂ x (ρue + pu) = 0, and y-direction        ∂ t ρ + ∂ y (ρv) = 0, ∂ t ρu + ∂ y (ρuv) = 0, ∂ t ρv + ∂ y (ρv 2 + p) = 0, ∂ t ρe + ∂ y (ρve + pv) = 0.
Splitting techniques relies on solving alternatively first and second system with weighted time-steps in order to reach high order of accuracy as described in [START_REF] Duboc | High-order dimensionally split lagrange-remap schemes for compressible hydrodynamics[END_REF]. Each of the subsystem is solved using the 1D schemes proposed in this paper. Variables are distributed according to an Arakawa C-type distribution (see Fig. 2).

Extension to the 2D compressible Navier-Stokes equations with gravity

The compressible Navier-Stokes equations are quite similar to the Euler equations with an additive viscous term denoted Υ and a constant gravity source term g. The system of equation in 2D writes in conservative form as

   ∂ t ρ + ∇ • ρu = 0, ∂ t ρu + ∇ • (ρu ⊗ u + pI -Υ) = g, ∂ t ρe + ∇ • (((ρe + p)I -Υ) • u) = gu,
where Υ = µ(∇u + (∇u) t ) + λ(∇ • u)I, µ and λ being two parameters which describe the viscous properties of the considered fluid. The 2D staggered hydrodynamic schemes are based on directional splitting. We take the same splitting as described in [START_REF] Dakin | Couplage fluide-structure d'ordre (très) élevé pour des schémas volumes finis 2d lagrange-projection[END_REF]. In the x-direction, the Lagrangian formulation is

       D t (ρ 0 τ ) -∂ x (ρu) = 0, D t (ρ 0 u) + ∂ x (p -Υ 1,1 ) = 0, D t (ρ 0 v) + ∂ x (-Υ 2,1 ) = 0, D t (ρ 0 e) + ∂ x ((p -Υ 1,1 )u -Υ 2,1 v) = 0, and in the y-direction        D t (ρ 0 τ ) -∂ y (ρv) = 0, D t (ρ 0 v) + ∂ y (p -Υ 2,2 ) = ρ 0 g, D t (ρ 0 u) + ∂ y (-Υ 1,2 ) = 0, D t (ρ 0 e) + ∂ y ((p -Υ 2,2 )v -Υ 1,2 u) = ρ 0 gv, where Υ 1,1 = (2µ + λ)∂ x u + ∂ y v, Υ 2,2 = (2µ + λ)∂ y v + ∂ x u and Υ 1,2 = Υ 2,1 = µ(∂ y u + ∂ x v).
Using the formulation in both kinetic and internal energies, it yields formally (in the y-direction)

               D t (ρ 0 τ ) -∂ y (ρv) = 0, D t (ρ 0 v) + ∂ y (p -Υ 1,1 ) = ρ 0 g, D t (ρ 0 u) + ∂ y (-Υ 1,2 ) = 0, D t (ρ 0 ) + (p -Υ 1,1 )∂ y v -Υ 1,2 ∂ y u = 0, D t (ρ 0 e kin,v ) + v∂ y (p -Υ 2,2 ) = ρ 0 gv, D t (ρ 0 e kin,u ) + u∂ y (-Υ 1,2 ) = 0. (4.1)
The Cauchy-Kowlalevski procedure can be performed in the x-direction thanks to the system

     D t u = -1 ρ 0 (∂ x p -(2µ + λ)∂ xx u + λ∂ xy v), D t p = -(ρc) 2 ρ 0 ∂ x u, D t v = µ(∂ xy u + ∂ xx v),
and in the y-direction

     D t v = -1 ρ 0 (∂ y p -(2µ + λ)∂ yy v + λ∂ xy u + ρ 0 g), D t p = -(ρc) 2 ρ 0 ∂ y v, D t u = µ(∂ xy v + ∂ yy u).
An Arakawa C-type (1; 11) like grid is chosen with a nodal distribution for the non-diagonal viscous terms. In addition, the values of the terms Υ 1,2 ∂ y u and Υ 2,1 ∂ x v on indices (i, j) (see equations 4.1) necessary to update i,j need to be computed from their values on the indices (i -1 2 , j -1 2 ) thanks to coefficients given in Table 1. 

r   p Υ 1,1 Υ 2,2   i,j r u i-1 2 ,j r v i,j-1 2 r v i,j+ 1 2 r u i+ 1 2 ,j r Υ 1,2 Υ 2,1 i+ 1 2 ,j+ 1 2 r Υ 1,2 Υ 2,1 i-1 2 ,j+ 1 2 r Υ 1,2 Υ 2,1 i-1 2 ,j-1 2 r Υ 1,2 Υ 2,1 i+ 1 2 ,j-1 2

Numerical results

Cook-Cabot Breaking Wave test case (19)

In the Cook-Cabot Breaking Wave test case, initial conditions are sinusoidal for density, pressure and velocity. The variables are smooths until a given time T shock when a discontinuity occurs. The breaking wave initial data are set as follows

       ρ = ρ 0 (1 + α sin(2πx)), p = p 0 ( ρ ρ 0 ) γ , c = c 0 ( ρ ρ 0 ) (γ-1)/2 , u = 2 γ-1 (c 0 -c).
for -0.5 ≤ x ≤ 0.5

An analytical solution is known before the shock which makes it possible to evaluate the order of the schemes until the time T shock . Computations are performed until T = 0.9 * T shock with CFL = 0.7. In Table 3 3: l 1 -error in momentum and order of convergence of the Lagrange-remap staggered scheme on the Cook-Cabot breaking wave test problem. † : corresponds to the 3rd order in space with linear approximation in time (3.3).

2D Isentropic vortex advection (20)

This case involves advection of an isentropic vortex in an inviscid flow. The initial data are given by (with

r 2 = x 2 + y 2 )          ρ 0 (x, y) = (1 -(γ-1)β 2 8γπ 2 e 1-r 2 ) 1 γ-1 , u 0 (x, y) = (2, 1) t + β 2π e (1-r 2 )/2 .(-y, x) t , p 0 (x, y) = ρ 0 (x, y) γ , γ = 1.4.
As the precedent test case, an analytical solution is known which corresponds to the pure advection of the vortex. Computations are performed until T = 20 with a CFL = 0.7 and periodic boundary conditions are imposed. In Table 4, convergence results on density in l 1 norm are proposed.

Sod test case (21)

The Sod shock tube is a common one dimension Riemann problem. The resolution of this test case leads to three characteristics describing the propagation speed of the various regions of the system : the rarefaction wave, the contact discontinuity and the shock discontinuity. It is useful to determine if a scheme recovers properly discrete Rankine-Hugoniot relations on the shock. The initial data are

N x Order 1
Order 2 Order 3 † Order 3 Order 4 50 7.6e-1 2.4e-1 1.1e-1 9.6e-2 5.7e-2 100 4.3e-1 0.802 7.1e-2 1.745 2.1e-2 2.372 1.7e-2 2.459 5.5e-3 3.361 200 2.4 e-1 0.885 1.9e-2 1.915 3.5e-3 2.577 2.4e-3 2.862 3.4e-4 4.021 400 1.2e-1 0.936 4.8e-3 1.975 6.4e-4 2.465 3.1e-4 2.969 2.1e-5 4.013 800 6.3e-2 0.966 1.2e-3 1.991 1.32e-4 2.282 3.8e-5 2.992 1.3e-6 4.000 Table 4: l 1 -error in density and order of convergence for the Lagrange-remap scheme taken on the isentropic vortex advection test problem. † : designs the 3rd order in space with linear approximation in time (3.3).

       ρ 0 (x) = 1.0χ {x<0.5} + 0.125χ {x>0.5} , p 0 (x) = 1.0χ {x<0.5} + 0.1χ {x>0.5} , u 0 (x) = 0, γ = 1.4.
Wall boundaries are imposed. Computations are performed until T=0.2 with CFL = 0.7. In Fig. 3, profiles of density and internal energy are depicted with the analytical solution in line for two meshes containing 100 cells and 200 cells. It can be seen that the three characteristics of the shock are correctly rendered. We observe a undershoot in the density and a peak in the internal energy that can be caused by the absence of artificial viscosity.

123 problem

The 123 problem is a Riemann problem resulting in two strong rarefaction waves and a stationnary contact discontinuity. It is useful to assess the performance of numerical methods on low-density flows . The initial data are

       ρ 0 (x) = 1, p 0 (x) = 0.4, u 0 (x) = -2χ {x<0.5} + 2χ {x>0.5} , γ = 1.4.
Wall conditions are imposed. Computations are performed until T = 0.15 with CFL = 0.7. In Fig. 4, profiles of density, pressure, internal energy and velocity are depicted with the analytical solution in line for a mesh containing 1000 cells. 

Shu-Osher test case (22)

The Shu-Osher test case is Mach 3 shock wave interacting with a sinusoidal density field. This test assesses the ability of numerical schemes to capture both small-scale smooth flow and shocks. The initial data are

       ρ 0 (x) = 27 7 χ {x<-4} + (1 + sin(5x) 5 )χ {x>-4} , p 0 (x) = 31 3 χ {x<-4} + 1χ {x>-4} , u 0 (x) = 4 √ 35 9 χ {x<-4} , γ = 1.4.
In Fig. 5, profiles of density are depicted with a reference solution in line for two meshes containing 200 and 400 cells. On the right, a 6th order remap is performed. It is possible to see the significant improvement in performance with the 6th order remap at a resolution of 200 cells, all of the short-wavelenght extrema are captured. However this also leads to a slight overevaluation of the extrema at a resolution of 400 cells. There is no analytical solution for this test case, so we compare the results with a reference solution computed thanks to the Godunov Anti-Diffusé (GAD) schemes [START_REF] Heuzé | Dissipative issue of high-order shock capturing schemes with non-convex equations of state[END_REF] with a mesh containing 10 5 cells

Woodward test case (8)

The Collela-Woodward blastwave test case is the interaction of two Riemann problems. It is a three states shock tube. This test case highlights the robustness of the scheme. We first assess the numerical scheme on the left half of the blast wave problem with the initial data

       ρ 0 = 1, u 0 = 0, γ = 1.4, p 0 (x) = 1000χ {x<0.5} + 0.01χ {x>0.5} .
Computations are performed until T = 0.012 with CFL = 0.7. In Fig. 6, profiles of density, pressure, internal energy and velocity are depicted with the analytical solution in line for a mesh containing 1000 cells. The initial data of the full problem are In Fig. 7, profiles of density are depicted with a reference solution in line for a mesh containing 300 cells. On the right, a 6th order remap is performed. There is no analytical solution for this test case, so we compare the results with a reference solution computed thanks to the Godunov Anti-Diffusé (GAD) schemes ( 23) with a mesh containing 10 

       ρ 0 = 1, u 0 = 0, γ = 1.

Sedov Test case (24)

With the Sedov test case, we assess the robustness of the staggered schemes as well as their ability to restitute correct cylindrical symmetry. Let where sedov = 0.851072. In Fig. 8, profile of density obtained with the 3rd order remap is depicted with a reference solution in blue line for a mesh containing 100 cells. A 6th order Lagrangian projection is performed during the remap procedure. In Fig. 8, the discontinuity is captured correctly, however, the maximum is slightly underevaluated.

r sedov = 1 √ 2 √ ∆X 2 + ∆Y 2 . Initial data are        ρ 0 (x, y) = 1, u 0 (x, y) = 0, p 0 (x, y) = (γ-

Taylor-Green Vortex (25)

The Taylor-Green vortex is used to assess the accuracy of the proposed schemes. It has an exact closed form of the incompressible Navier-Stokes equations in Cartesian coordinates. Here, enforcing a very high sound speed, the compressible Navier-Stokes equations are in near incompressible regime 

       ρ 0 (x, y) = 1, u 0 (x, y) = cos(x) sin(y), v 0 (x, y) = -sin(x) cos(y), p 0 (x, y) = p 0 +
       ρ 0 (x, y) = 2χ {y>0} + 1χ {y<0} , u 0 (x, y) = 0, v 0 (x, y) = 0.25a(1 + cos(4πx))(1 + cos(3πy))χ {-1 6 <y< 1 6 } , p 0 (x, y) = K 0 + ρ 0 (x, y)gy,
where g = -0.1, K 0 = 2.5 and a = 10 -2 . The viscous parameters are chosen very small µ = 10 -4 and λ = -2 3 µ. Computations are performed until T = 9.5 (left) and T = 12.75 (right) with 200 cells in the x-direction and 600 in the y-direction see Fig. 9. In the case of Euler equations, turbulent modes appear due to the numerical noise and increase with the order of the scheme. This modes are smoothed by viscosity in Navier-Stokes equations.

Performance

Most of the reconstruction procedures we use in this note are similar to the ones described in [START_REF] Dakin | High-order accurate lagrange-remap hydrodynamic schemes on staggered cartesian grids[END_REF]. The difference lays in the time integration, in [START_REF] Dakin | High-order accurate lagrange-remap hydrodynamic schemes on staggered cartesian grids[END_REF], the time integration is based on a Runge-Kutta integration including several integration steps at each time when the schemes described in this note are based on a one-step time integration procedure. Error rates and accuracy on standard test cases are quite similar in both situations. The performance tests are performed on the Sod test case described above. Only the integration time of the Lagrange step is taken into account here. The calculations are performed on a haswell partition. Each node is divided into four sockets of eight cores. We can see that results on one process are quite similar. Indeed, Runge-Kutta time integrations is based on an iterative procedure with a low computational cost, it requires less intel on the EOS and a narrower stencil, when Cauchy-Kowalevskaya procedure requires more calculations. However, Cauchy-Kovaleskaya procedure requires less communications and [START_REF] Dakin | High-order accurate lagrange-remap hydrodynamic schemes on staggered cartesian grids[END_REF] and integration in time based on Cauchy-Kowalevskaya procedure

Conclusion

In this article, we present one-step Lagrange-remap schemes with integration in time based on Cauchy-Kovalevskaya procedure for the resolution of the 1D Euler equations. We find sufficient conditions for stability at order 1 and 2 by adding higher order terms. At order 3 and 4, we adapt the stencil of spatial derivatives to stabilize the schemes. We also give a multidimensional extension using directional splitting as well as an extension to compressible Navier-Stokes equations. The proposed schemes were tested successfully in 1D and 2D both in linear and non linear formulation. We currently work on an implicit version of the schemes to withdraw the parabolic CFL condition for viscous flows.
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 71 Figure 1: Value of the squared module of the amplificator factor λ in function of θ with two different values of ν for the 3rd order scheme. On the left (ν = 0.8) |λ| exceeds 1 when on the right (ν = 0.7) it remains under 1.

Figure 2 :

 2 Figure 2: Arakawa C-type like grid for the compressible Navier-Stokes equation with a special distribution for the non-diagonal viscous terms[START_REF] Dakin | Couplage fluide-structure d'ordre (très) élevé pour des schémas volumes finis 2d lagrange-projection[END_REF] 
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 34 Figure 3: Density profiles on [0 : 1] for the Sod test case problem (21) at time T=0.2, CFL=0.7, 100 cells (top) and 200 cells (down) for the 3rd order staggered scheme with Cauchy-Kovalevskaya procedure.
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 5 Figure 5: Density profiles on [-5 : 5] for the ShuOsher test case problem (22) at time T=1.8, CFL=0.7, 200 cells (top) and 400 cells (down) for the 3rd staggered scheme with Cauchy-Kovalevskaya procedure. On the right, a 6th order Lagrangian projection is performed during the remap step.
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 6 Figure 6: Density, internal energy, velocity and pressure profiles on [0 : 1] for the left half of the Collela-Woodward blastwave test case problem at time T=0.012, CFL=0.7, 1000 cells for the 3rd order staggered scheme with Cauchy-Kovalevskaya procedure.
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 7 Figure 7: Density and pressure profiles on [0 : 1] for the Woodward test case problem (8) at time T=0.038, CFL=0.7, 300 cells, for the 3rd staggered scheme with Cauchy-Kovalevskaya procedure. On the right, a 6th order Lagrangian projection is performed during the remap step.
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 9 Figure 9: Density profiles on the Rayleigh-Taylor mono-mode instability for the Euler equations (top) and the compressible Navier-Stokes (bottom) using 2nd and 3rd order scheme at time T = 9.5 (left) and T=12.75 (right) with 200 cells in the x-direction and 600 in the y-direction (∆X = ∆Y green

Table 1 :

 1 Coefficients for the finite volume computation of point-wise values from cellaverage ones and vice versa.

	13	-1	11	1
	12	24	12	24

Table 2 :

 2 Coefficients for the δ m coefficient

	on the Fourier decomposition of the numerical error. It is often used for
	Cauchy problem with linear partial differential equations. For φ ∈ L 2 (R ×
	R + ), under boundary conditions, it yields
	φ(x, t) = e α φ t	ψ φ,k e ikπx with ψ φ ∈ l 2 (Z)
	k∈Z	

Table

  , convergence results on momentum in l 1 norm are proposed.

	N x	Order 1	Order 2	Order 3 †	Order 3	Order 4
	50 1.3e-1	3.2e-3	5.9e-4	1.1e-4	6.2e-6
	100 6.7e-2 0.968 7.9e-4 2.013 1.6e-4 1.904 1.4e-5 2.907 4.0e-7 3.947
	200 3.4e-2 0.966 2.0e-4 1.966 4.1e-5 1.921 1.8e-6 2.942 2.7e-8 3.891
	400 1.7e-2 0.983 5.1e-5 1.982 1.1e-5 1.961 2.4e-7 2.973 1.8e-9 3.942
	800 8.7e-3 0.991 1.3e-5 1.991 2.7e-5 1.981 3.0e-8 2.986 1.1e-10 3.969
	1600 4.4e-3 0.995 3.2e-6 1.995 6.7e-7 1.990 3.7e-9 2.993 1.1e-11 3.386

  1) sedov πr 2 sedov χ {x 2 +y 2 <r 2 sedov } + 10 -14 χ {x 2 +y 2 >r sedov } , γ = 1.4,

Table 5 :

 5 l 1 -error in momentum and order of convergence for the Lagrange-remap scheme taken on the Taylor-Green vortex test problem[START_REF] Taylor | The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. i[END_REF] 

Table 6 :

 6 Comparative table of the integration time of the Lagrangian phase with Runge-Kutta time integration

The analytical solution for incompressible flows writes

, v(x, y, t) = -sin(x) cos(y)e -2µt , p(x, y, t) = p 0 + 1 4 (sin(2x) + sin(2y))e -4µt , with p 0 = 10. The pressure is set such that the regime is nearly incompressible, using a stiffened gas EOS which writes p = (γ -1)ρ -γp * , γ = 1.4, p * = 10 8 .

In Table 5, convergence results on momentum in l 1 norm are proposed. Errors are taken as absolute errors. The convergence saturation observed is due to the fact that incompressibility hypothesis is not fully verified and that machine precision is reached rapidly.

Rayleigh Taylor test case

The Rayleigh Taylor instability is used to determine the ability of a scheme to handle instabilities, and if those instabilites are accentuated by the high-order accuracy. The initial data are