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Surface tension for compressible fluids in ALE framework

. The surface tension force is discretized in order to exactly verify the Laplace law at the discrete level. We also provide a second-order spatial extension and a low-Mach correction, which do not break the wellbalanced property of the scheme. The Lagrangian scheme is assessed on several problems, particularly on a linear Richtmyer-Meshkov instability which is the targeted application. The second step is the rezoning and remapping done thanks to a swept-region method using exact intersections near the interface. We use a Volume Of Fluid (VOF) method to track the interface. We describe the treatment of mixed-cells, and in particular the thermodynamics closure and the curvature calculation. The new scheme is used to investigate the influence of surface tension on a non-linear Richtmyer-Meshkov instability.

Introduction

The Richtmyer-Meshkov instability [START_REF] Meshkov | Instability of the interface of two gases accelerated by a shock wave[END_REF][START_REF] Richtmyer | Taylor instability in shock acceleration of compressible fluids[END_REF] occurs when a shock wave interacts with a non-planar contact discontinuity. This is a key feature of many shockdriven phenomenon, as for example Inertial Confinement Fusion experiments (refer for instance to [START_REF] Bates | Numerical simulations of the ablative Rayleigh-Taylor instability in planar inertialconfinement-fusion targets using the FastRad3D code[END_REF]). In some cases, this can provoke the fragmentation of the contact discontinuity, leading to what is called microjetting [START_REF] Durand | Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method[END_REF]. Recently, it has been demonstrated that surface tension has a significant impact on the growth rate of Richtmyer-Meshkov instability, and on the distribution (size, velocity) of the particles produced [START_REF] Durand | Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension[END_REF]. Other areas in which shocks and surface tension play a major role are underwater explosions [START_REF] Cole | Underwater explosions[END_REF], fuel secondary atomization [START_REF] Lee | Challenges in fuel injection for high-speed propulsion systems[END_REF], aerobreakup of liquid drop (refer to [START_REF] Theofanous | Aerobreakup of newtonian and viscoelastic liquids[END_REF] for related applications),... Simulation of such phenomena requires the simultaneous ability to take into account, in a precise and robust manner, both strong shocks and surface tension. While a quite large amount of work has been devoted to model and simulate the surface tension in the past decades, it mainly focused on incompressible or low-Mach number flows. Only few recent works are dealing with compressible flows [START_REF] Chang | Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method[END_REF][START_REF] Fechter | Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension[END_REF][START_REF] Fuster | An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension[END_REF][START_REF] Garrick | A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension[END_REF][START_REF] Perigaud | A compressible flow model with capillary effects[END_REF][START_REF] Rohde | A relaxation Riemann solver for compressible twophase flow with phase transition and surface tension[END_REF][START_REF] Chauveheid | A new algorithm for surface tension forces in the framework of the FVCF-ENIP method[END_REF][START_REF] Schmidmayer | A model and numerical method for compressible flows with capillary effects[END_REF]. All these authors have made different choices to model the surface tension force. In [START_REF] Perigaud | A compressible flow model with capillary effects[END_REF][START_REF] Schmidmayer | A model and numerical method for compressible flows with capillary effects[END_REF], the interface is implicitly defined by the gradient of the concentration of one of the fluids. The main 1 advantage of theses approaches is to rely on a fully conservative formulation of the Euler system with surface tension. However, they suffer a severe drawback. Indeed, no anti-diffusive process exists to accurately capture the interface: it spreads over an increasing number of cells during the calculation (however refer to [START_REF] Després | An antidissipative transport scheme on unstructured meshes for multicomponent flows[END_REF][START_REF] Chiapolino | Sharpening diffuse interfaces with compressible fluids on unstructured meshes[END_REF][START_REF] Garrick | A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension[END_REF] for a possible remedy). In [START_REF] Chang | Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method[END_REF][START_REF] Fechter | Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension[END_REF], a Ghost-Fluid method [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[END_REF] is used to enforce the correct jump relations at the interface, together with a Level-Set approach to capture the interface. In [START_REF] Rohde | A relaxation Riemann solver for compressible twophase flow with phase transition and surface tension[END_REF], the interface is tracked, while in [START_REF] Fuster | An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension[END_REF], a VOF method is used.

It is admitted in the community that the more accurate methods rely on a Lagrangian description of the interface. It can be achieved using an ALE calculation with a Lagrangian description of the interface (refer for instance to [START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF][START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF]), or in discretizing the hypersurface of the interface with a Lagrangian submesh, immersed onto an Eulerian grid (front-tracking methods, refer for instance to [START_REF] Popinet | A front-tracking algorithm for accurate representation of surface tension[END_REF][START_REF] Shin | Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[END_REF][START_REF] Tryggvason | A front-tracking method for the computations of multiphase flow[END_REF][START_REF] Unverdi | A front-tracking method for viscous, incompressible, multi-fluid flows[END_REF]). The obvious drawback of this methodology, is that a change in the topology of the interface (for instance a breakup) or even a wide deformation, is not permitted. On the other hand, the VOF description allows modifications of the topology of the interface, and does not suffer from conservation issues as for Level Set methods. Consequently, in this paper, we propose an Arbitrary-Lagrangian-Eulerian (ALE) method, to take advantage of both fluid descriptions. The goal is to keep the interface between fluids Lagrangian, as long as possible, in order to take advantage of the accuracy of the Lagrangian description. Then, when the interface handles too strong deformation, allow the mesh to relax, and follow the fluids with a VOF methodology. The algorithm we propose is split into a Lagrangian step and a rezoning and remap step. This process eases the control of the interface status: it is sufficient to cancel the rezoning of the interface nodes to keep it Lagrangian.

The organisation of the paper is as follows: In Section 2, we recall the governing equations for the Euler system with surface tension, then we write this system in a convenient way for the design of ALE Finite Volume schemes. In Section 3, we describe a new Lagrangian scheme. It can handle interfaces which correspond to the edge of the mesh cells as well as interfaces immersed into the cells. We demonstrate that this scheme enforces the growth of the physical entropy and the Laplace law at the equilibrium. A second-order extension is provided. This scheme is assessed in Section 4 on several problems, including the oscillation of a bubble in the quasi-incompressible limit, and a linear Richtmyer-Meshkov instability. In section 5, we explain how we extend the Lagrangian scheme to a full ALE capability. We focus especially on the thermodynamical sub-scale closures, and on the curvature computation. Finally, in Section 6, we perform a bubble oscillation test problem and a non-linear Richtmyer-Meshkov instability problem to demonstrate the method capability.

Governing equations

In this paper, we consider two fluids in dimension 2 separated by an interface. Each fluid is characterized by its density ρ k and its internal energy e k , with k ∈ {0, 1}. The interface Σ of dimension 1 is implicitly defined by a, at least C 2 , function f (x, t) = 0, x ∈ R 2 . We assume that ∇f (x, t) = 0, at least for (x, t) s.t. f (x, t) = 0. Then, we can define the normal vector to Σ by n = ∇f |∇f | in any (x, t) s.t. f (x, t) = 0 (refer for instance to [START_REF] Goldman | Curvature formulas for implicit curves and surfaces[END_REF]), and t = n ⊥ the unit tangent vector. We use the following notations in the remaining of this paper: δ Σ = δ(f (x, t)) is the Dirac distribution [START_REF] Dirac | The principles of quantum mechanics[END_REF][START_REF] Schwartz | Institut de mathématique[END_REF] associated with Σ and H Σ = H(f (x, t)) is the Heaviside [START_REF] Schwartz | Institut de mathématique[END_REF] function associated with Σ, defined conventionally by H(x) = 0, if x < 0, H(x) = 1 otherwise. Using these notations and assuming no mass transfers across Σ, the compressible Euler system with capillary force can be written as a single field system of balance laws in the meaning of distribution as [START_REF] Kataoka | Local instant formulation of two-phase flow[END_REF] 

∂ ∂t ρ + ∇ • (ρu) = 0, ∂ ∂t (ρu) + ∇ • (ρu ⊗ u) + ∇p = σκnδ Σ , ∂ ∂t (ρE) + ∇ • (ρuE) + ∇ • (pu) = σκn • uδ Σ . ( 1 
)
where E = e + u 2 /2 is the fluid total energy, and single field quantities Q = (ρ, e, p) (ρ density, e internal energy and p the pressure) are defined by:

Q = H Σ Q 0 + (1 -H Σ )Q 1 . (2) 
σ is the surface tension coefficient, assumed constant in this work. The curvature

κ of Σ is defined by κ = t T H(f )t
|∇f | [START_REF] Goldman | Curvature formulas for implicit curves and surfaces[END_REF], where H(f ) accounts for the Hessian of f . Using nδ Σ = ∇H Σ [START_REF] Renardy | Prost: A parabolic reconstruction of surface tension for the Volume-of-Fluid method[END_REF][START_REF] Ghidaglia | Capillary forces: A volume formulation[END_REF] and

∇(H Σ σκ) = H Σ ∇(σκ) + σκ∇H Σ in the meaning of distribution we infer ∂ ∂t ρ + ∇ • (ρu) = 0, ∂ ∂t (ρu) + ∇ • (ρu ⊗ u) + ∇ (p -σκH Σ ) = -H Σ ∇ (σκ) , ∂ ∂t (ρE) + ∇ • (ρuE) + ∇ • ((p -σκH Σ )u) = -H Σ ∇ • (σκu) . (3) 
Integrating over a domain ω k (t), k = 0, 1 containing only the fluid k and moving at the arbitrary velocity u a yields (using the Reynolds transport theorem, refer for instance to [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF])

d dt ω k (t) ρ + ∂ω k (t) ρ (u -u a ) • n = 0, d dt ω k (t) (ρu) + ∂ω k (t) (ρ(u -u a ) ⊗ u) • n + ∂ω k (t) pn = 0, d dt ω k (t) (ρE) + ∂ω k (t) (ρ(u -u a )E) • n + ∂ω k (t) pu • n = 0. (4) 
The governing Lagrangian equations are recovered by setting u a = u. It is obviously equivalent to solve this system or to solve

d dt ω k (t) ρ + ∂ω k (t) ρ (u -u a ) • n = 0, d dt ω k (t) (ρu) + ∂ω k (t) (ρ(u -u a ) ⊗ u) • n + ∂ω k (t) (p -σκH Σ ) n = -∂ω k (t) σκH Σ n, d dt ω k (t) (ρE) + ∂ω k (t) (ρ(u -u a )E) • n + ∂ω k (t) (p -σκH Σ ) u • n = -∂ω k (t) σκH Σ u • n, (5) 
but this last formulation mimics the discrete scheme we build in the next section, if the interface coincides with a cell boundary. Now considering that Σ ⊂ ω, it can be divided into two parts ω = ω 0 ∪ ω 1 , with ω 0 (resp. ω 1 ) corresponding to the fluid 0 (H Σ (x ∈ ω 0 ) = 1) (resp. to the fluid 1). In each of these sub-domains, the classical Euler system holds, for which we can use the Green theorem (assuming the continuity of the unknowns)

d dt ω(t) ρ + ∂ω0∪∂ω1 ρ (u -u a ) • n = 0, d dt ω(t) ρu + ∂ω0∪∂ω1 ρ(u -u a ) ⊗ u n + ∂ω0∪∂ω1 (p -σκH Σ ) n = -ω H Σ ∇ (σκ) , d dt ω(t) ρE + ∂ω0∪∂ω1 ρ(u -u a )E • n + ∂ω0∪∂ω1 (p -σκH Σ ) u • n = -ω H Σ ∇ • (σκu) . ( 6 
) When the system is at equilibrium, κ is constant and the right hand side vanishes. It yields the jump relation across Σ,

[p] Σ = [σκH Σ ] Σ = σκ, (7) 
where [ϕ] Σ accounts for the jump of ϕ across Σ. This relation is known as the Laplace law, and most of the successful schemes for surface tension driven flows enforce this relation at the discrete level. This latter integral formulation mimics the discrete scheme we build in the next section, if the interface does not coincide with a cell boundary.

Our strategy to solve the system ( 6) is to split it in two steps. First step is called the Lagrangian step and consists in solving the system

d dt ω(t) ρ = 0, d dt ω(t) (ρu) + ω(t) ∇ (p -σκH Σ ) = -ω(t) H Σ ∇ (σκ) , d dt ω(t) (ρE) + ω(t) ∇ • ((p -σκH Σ )u) = -ω(t) H Σ ∇ • (σκu) . ( 8 
)
with ω(t) moving at the fluid velocity u. This step is done using the Lagrangian scheme introduced in the next section. Let us point out that this scheme works for sharp interfaces (interfaces matching the boundary of the cells) or for smooth interfaces (with mixed-cells). Only the closure law for the pressure is specific. This step is described in Section 3.

The second step, called the remap step, is the projection of the Lagrangian solution onto the rezoned grid. This kind of method is often used in ALE codes (refer for instance to [START_REF] Barlow | Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows[END_REF][START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF] for a review). This step, including the closure for the pressure, is described in Section 5.

Following the seminal work of Brackbill et al [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF], we choose f (x, t) to be an interpolation function with a support for the transition of the order of h (h being the characteristic length of the mesh), in the remaining of the paper. We now drop the index Σ to simplify notations.

Lagrangian step

As previously mentioned, this step solves the system (8). This section begins with a recall of the GLACE scheme [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF], which is the basis of our discretization. Then, in Subsection 3.2, we explain how to introduce the surface tension force while enforcing the Laplace law. We show that this new scheme is entropic. We propose a specific second-order in space extension in Subsection 3.3. The time integration is briefly described in Subsection 3.4.

Cell-centered Lagrangian scheme

In this subsection we summarize key details on the cell-centered Lagrangian schemes. For more information we invite the reader to consult [START_REF] Burton | A cell-centered Lagrangian Godunov-like method for solid dynamics[END_REF][START_REF] Després | Lagrangian gas dynamics in two dimensions and Lagrangian systems[END_REF] or [START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF]. For the sake of simplicity of the notations, we will use the GLACE formalism which can be found in [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] even if all results obtained in this article can be extended to other Finite-Volumes schemes with a nodal solver as for instance EUCCLHYD [START_REF] Maire | A cell-centered Lagrangian scheme for two-dimensional compressible flow problems[END_REF] or CCH [START_REF] Burton | A cell-centered Lagrangian Godunov-like method for solid dynamics[END_REF]. Besides, results presented in Sections 4 and 6 are obtained with the EUCCLHYD scheme as a basis.

Suppose that at time t we have a valid mesh M(t) of Ω(t). We consider that M(t) is valid if it is defined by a finite collection of zones that partition Ω(t). More precisely, we have

1.∀ω j ∈ M, ω j ⊂ Ω, 2.∀x ∈ Ω, ∃ω j ∈ M s. t. x ∈ ωj , 3.∀ω j , ω i ∈ M, ωj ∩ ωi = ∅ ⇐⇒ ω j = ω i , or ∂ω j ∩ ∂ω i = ∅ and ω j ∩ ω i = ∅.
The last relationship indicates that if two zones are intersecting each other, it can only be by a piece of their edge (possibly a vertex). Assuming regularity conditions in each cell, the system (8) implies for σ = 0 and for all ω j

d dt ωj (t) ρ = 0, d dt ωj (t) ρu + ∂ωj (t) pn = 0, d dt ωj (t) ρE + ∂ωj (t) pu • n = 0, d dt ωj (t) 1 -∂ωj (t) u • n = 0. ( 9 
)
where the last equation accounts for the volume conservation. Now, we assume that the geometry of each cell ω j depends only on the position of a finite number of vertices {x r } r∼j (where we define r ∼ j the set of vertices of the cell j). We define C j,r = ∇ xr |ω j | (refer to [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF] for more details about these vectors and their properties). Using these vectors for a spatial quadrature of the integrals yields the following semi-discrete and at most second-order accurate scheme

m j d dt τ j - r∼j u r • C j,r = 0, m j d dt u j + r∼j p j,r C j,r = 0, m j d dt E j + r∼j p j,r u r • C j,r = 0, (10) 
where we define m j = ωj ρ the mass of the zone ω j ,

τ j = |ω j | m j = 1 ρ j , u j = ωj ρu m j and E j = ωj ρE m j
. The nodal intermediate fluxes p j,r and u r are computed thanks to an acoustic Godunov solver in the direction n j,r = Cj,r |Cj,r|

p j,r -p j + z j (u r -u j ) • n j,r = 0, j∼r p j,r C j,r = 0. ( 11 
)
where j ∼ r is the set of cells sharing the vertex r and z = ρc is the acoustic impedance. Inserting the value of p j,r obtained with the first equation of ( 11) into the second one yields

A r u r = j∼r A j,r u j + j∼r p j C j,r , (12) 
where A j,r = z j C j,r ⊗ n j,r is a rank 1 symmetric non-negative matrix, and A r = j∼r A j,r is symmetric definite positive [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF]. It is shown in [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF], that this multidimensional Riemann solver allows the semi-discrete scheme to be entropic, but only first-order accurate. In [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF], Després demonstrates that the fluxes of the scheme [START_REF] Chang | Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method[END_REF] are weakly consistent, and in particular that r∼j p j,r C j,rωj ∇p = O(h 3 ), in the weak meaning. To close this system, we must provide a relation p j = p j (ρ j , ε j ). If there is no mixed cell, this relation is the equation of states of the fluid in the cell. Else, a mix law must be added, which is discussed in Subsection 5.1.

Surface tension

In this section we describe a numerical scheme which takes into account the surface tension. We want to develop a new scheme using cell-centered Lagrangian schemes described above. The goal is to keep the simplicity of these schemes and their entropic property. To this end, one directly discretizes the system (8) using the same approximation for ∇p and ∇(Hσκ). This is a key ingredient to enforce the Laplace law at the discrete level.

Numerical scheme

Following the ideas described above we propose the following semi-discrete scheme for the system (8)

m j d dt τ j = r∼j C j,r • u r , m j d dt u j = - r∼j q j,r C j,r -H j r∼j σκ r C j,r , m j d dt E j = - r∼j q j,r C j,r • u r -H j r∼j σκ r u r • C j,r , (13) 
where we note H j = ωj H Σ |ω j | and q = p -σκH. In order to compute q j,r and u r we modify the Riemann solver ( 11)

q j,r -q r j + z j (u r -u j ) • n j,r = 0, j∼r q j,r C j,r = 0, (14) 
with q r j = p j -σκ r H j since we will define the curvature at each node. Consequently, nodal velocities are computed with

A r u r = j∼r A j,r u j + j∼r q r j C j,r . (15) 
In the following section, we perform an analysis of the properties of the scheme, in terms of enforcement of the Laplace law and entropy. Before that, we focus on a very important feature of this kind of algorithm, which is the curvature calculation.

Curvature computation

In order to complete the definition of our scheme, we need to explain how we compute nodal curvatures. In this part, we limit ourselves to the case for which the interface coincides with the boundary of the cells (only one fluid per cell). The more difficult case with mixed cells is described in Section 5.3.

Let us denote r a node on the interface, r -and r + the two neighbours of r also located on this interface. Let R r be the radius of the circle passing through these three nodes (see Figure 1). Then we define

κ r = 1 R r (16) 
Remark 1. With this definition the computation of the curvature of a circle is exact.

Remark 2. It is also possible to use a parabolic fitting instead of a circular one. The steps needed to do this type of fitting is described in [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF]. We choose to use a parabolic fitting in our simulation. However results obtained with both methods are similar.

Interface

r - r + r • • • • x c R r
Figure 1: Nodal curvature definition.

Properties

Theorem 3. The numerical scheme defined by ( 13) and ( 14) is well-balanced.

Proof. Let us consider a bubble verifying the Laplace equilibrium

[p] = σκ,
where [p] is the pressure jump at the interface. The initial configuration is given on Figure 2. Since we assume that the bubble is initially at equilibrium

H = 1 p 0 = p 1 + σκ u 0 = u H = 0 p 1 u 1 = u n Figure 2: Bubble at equilibrium. ∀j, u j = u. Then j∼r A j,r u j = A r u. we have j∼r q r j C j,r = j∼r (p j -σκ r H j ) C j,r ,
Moreover, using the fact that

p j = p 1 + H j (p 0 -p 1 ),
we obtain:

j∼r q r j C j,r = (p 0 -p 1 ) n r -σκ r n r , = ([p] -σκ r ) n r ,
where n r = j∼r H j C j,r , and nr |nr| is a local approximation of the interface normal. Assuming κ r = κ is computed exactly (which is the case with a circular fit), we obtain j∼r q r j C j,r = 0.

Consequently, using [START_REF] Cole | Underwater explosions[END_REF], u r = u. Now, we only need to verify that

d dt ωj ρu = 0, d dt ωj ρE = 0.
We have

r∼j q j,r C j,r = r∼j q r j C j,r , = r∼j (p j -σκ r H j ) C j,r , = H j r∼j σκ r C j,r .
Inserting this in the right-hand-side of ( 13) concludes the proof.

Proposition 4. The semi-discrete scheme is entropic.

Proof. Gibbs relation gives us

T ds = de + pdτ ,
where T is the temperature and s the entropy. Then

m j T j d dt s j = m j d dt e j + p j m j d dt τ j , = m j d dt E j -u j • m j d dt u j + p j m j d dt τ j , = - r∼j q j,r C j,r • u r -H j r∼j σκ r u r • C j,r + u j • r∼j q j,r C j,r +u j • r∼j σκ r C j,r + p j r∼j u r • C j,r .
We define p j,r = q j,r + σκ r H j . Then

p j,r C j,r = p j C j,r + A j,r (u j -u r ) . Hence m j T j d dt s j = - r∼j p j,r C j,r • u r + u j • r∼j p j,r C j,r + p j r∼j u r • C j,r , = - r∼j p j,r C j,r • u r + u j • r∼j p j,r C j,r + r∼j u r • p j,r C r j , = r∼j (u j -u r ) • (p j,r C j,r -p j C j,r ) , = r∼j (u j -u r ) A j,r (u j -u r ) , ≥ 0, because A j,r is positive.
Remark 5. The entropy deposit of the scheme with surface tension is the same as the one without surface tension (refer for instance to [START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF]), meaning that the surface tension has an isentropic effect on the flow.

Low-Mach correction

In this section we describe a low-Mach correction using ideas developed in [START_REF] Labourasse | A low-Mach correction for multi-dimensional finite volume shock capturing schemes with application in Lagrangian frame[END_REF]. However this correction needs some modifications when considering surface tension in order to preserve a well-balanced scheme. Consequently we apply results of [START_REF] Labourasse | A low-Mach correction for multi-dimensional finite volume shock capturing schemes with application in Lagrangian frame[END_REF] to q = p -σκH. Hence we modify the fluxes in ( 13) by

d dt ωj 1 = r∼j C j,r • u r , d dt ωj ρu = - r∼j (λ r q j,r + (1 -λ r ) q r ) C j,r -H j r∼j σκ r C j,r , d dt ωj ρE = - r∼j (λ r q j,r + (1 -λ r ) q r ) C j,r • u r -H j r∼j σκ r u r • C j,r , (17) 
where q r is computed as the mean value of the q r j in the surrounding cells

q r = 1 j∼r 1 j∼r q r j ( 18 
)
and

λ r ∈ [0, 1]. If λ r = O (M r )
, where M r is a local Mach number, results in [START_REF] Labourasse | A low-Mach correction for multi-dimensional finite volume shock capturing schemes with application in Lagrangian frame[END_REF] can be applied and show that the modified scheme will have a good behavior in low-Mach regime.

Proposition 6. The modified scheme (17) ( 18) is well-balanced.

Proof. Using previous results, it is sufficient to prove that r∼j q r C j,r = -H j r∼j σκ r C j,r .

In the case of a bubble at equilibrium κ r = κ is constant and then is also q r = q. Hence p j = q + H j σκ, which conclude the proof.

In [START_REF] Labourasse | A low-Mach correction for multi-dimensional finite volume shock capturing schemes with application in Lagrangian frame[END_REF], a sufficient condition on λ r for the scheme to be entropic is provided. Unfortunately we found this choice for λ r is too restrictive in our quasi-static configurations. For example, on the numerical test of an oscillating bubble of Section 4.2, it always leads to a λ r close to 1 and does not prevent the numerical dissipation. Consequently, we do not use this even if this could mean that our scheme is not entropic anymore in the low-Mach regime. Instead, we take

λ r = max max j∼r |u j | c j , M , (19) 
where M = L T c ref is a global Mach number determined at the beginning of the computation, with L, T and c ref respectively the caracteristic length, time and soundspeed. For the tests we take for L the initial length of the interface, for T the theorical oscillation period and for c ref the initial soundspeed in the fluid 0. This global Mach number is required because it has been noticed, during our numerical experiments that if we do not fix a minimum threshold, we could experience loss of stability.

Second-order in space extension

Let us describe the second-order extension of the scheme. Usually it is done performing a linear reconstruction of pressure and velocity in cells [START_REF] Maire | A high-order cell-centered Lagrangian scheme for twodimensional compressible fluid flows on unstructured meshes[END_REF][START_REF] Carré | A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension[END_REF]. However, in the case of flow with surface tension, the pressure is no more continuous across the interface. Hence, reconstructing p leads to a first-order scheme along the interface, due to the limiter. This is why we find it relevant to reconstruct q = p -σκH, which has the advantage to be continuous across the interface, and is the quantity which appears in the fluxes. Unfortunately the curvature κ is only defined at the interface nodes, hence we chose to define ∇q around nodes.

∀i ∼ r, ∀j ∼ r, q r i + ∇q r • (x j -

x i ) = q r j . ( 20 
)
Using a least-square method, we have to find ∇q r such that ∇q r = arg min

G∈R 2 i∼r j∼r q r i -G • (x i -x j ) -q r j 2 . ( 21 
)
It is well known that the solution of this problem is obtained solving the linear system

  i∼r j∼r (x j -x i ) ⊗ (x j -x i )   ∇q r = i∼r j∼r q r j -q r i (x j -x i ) . ( 22 
)
The gradient is then limited thanks to Barth-Jespersen's algorithm [START_REF] Barth | The design and application of upwind schemes on unstructured meshes[END_REF]. Let us note q min r = min s∼r, j∼s {p j -κ r σH j } ,

q max r = max s∼r, j∼s {p j -κ r σH j } , ( 23 
)
where s ∼ r means that s define a mesh edge with r. Defining q r j (x r ) = q r j + ∇q r • (x r -x j ) we have

ζ r = min j∼r ζ j,r , ζ j,r =                  µ q max r -q r j q r j (x r ) -q r j , if q r j (x r ) -q r j > 0, µ q min r -q r j q r j (x r ) -q r j , if q r j (x r ) -q r j < 0, 1 , else. (24) 
In our code we took µ (x) = max 0, 2x x 2 + 1

. Then the gradient is updated as ∇q r = ζ r ∇q r . Velocities are reconstructed as usual and limited with Galilean invariance preserving VIP strategy [START_REF] Hoch | A frame invariant and maximum principle enforcing second-order extension for cell-centered ALE schemes based on local convex hull preservation[END_REF][START_REF] Luttwak | Slope limiting for vectors: A novel vector limiting algorithm[END_REF]. Finally, we use q r j (x r ) and u j (x r ) in the nodal solver ( 14) instead of the mean values q r j and u j .

Time integration

For the time integration, we use a forward Euler discretization. It results in the following discrete version of System (13) (refer also to [START_REF] Barlow | Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows[END_REF] page 631)

m j (τ n+1 j -τ n j ) = ∆t n r∼j C n j,r • u n r , m j (u n+1 j -u n j ) = -∆t n r∼j q n j,r C n j,r -∆t n H n j r∼j σκ n r C n j,r , m j (E n+1 j -E n j ) = -∆t n r∼j q n j,r C n j,r • u n r -∆t n H n j r∼j σκ n r u n r • C n j,r , (25) 
The nodal quantities u n r and q n j,r are preliminary computed using time n values in equations ( 14), the vertices position are updated following x n+1 r = x n r + ∆t n u n r , and p n+1 j is deduced from ρ n+1 j and e n+1 j thanks to the equations of states.

It has been proven, for instance in [START_REF] Maire | Contribution à la modélisation numérique de la fusion par confinement inertiel[END_REF][START_REF] Mazeran | Sur la structure mathématique et l'approximation numérique de l'hydrodynamique lagrangienne bidimensionnelle[END_REF], that the first-order in space forward Euler scheme without surface tension is entropy-stable under a CFL condition. In the numerical illustrations proposed hereafter, the time-step is computed as

∆t = min C min j l j c j , (∆t) κ , (26) 
where the length scale

l j = |ω j | r |C jr |
is the volume over the surface of the cell, and C = 1 2 is a safety coefficient. The time step (∆t) κ is computed following [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] (∆t) κ = min

j ρ 0j + ρ 1j 4πσ l 3 j . ( 27 
)
This condition ensures the stability of the scheme for surface tension driven flows.

4 Numerical results for the Lagrangian scheme with pure cells

All numerical tests are done using stiffened gas equation of state

p (ρ, e) = (γ -1) ρe -γπ, (28) 
where γ and π are fluid constants. First two tests (Subsections 4.1 and 4.2) are classical in the literature, and devoted to assess the good behaviour of our scheme. Last test (Subsection 4.3) shows the effect of surface tension on the linear phase of the Richtmyer-Meshkov instability.

Bubble at equilibrium

Let us consider the case of a bubble of radius R = 0.1 initially at equilibrium. This state is used to verify that our scheme is well-balanced and that our computation of the curvature is accurate enough to preserve this equilibrium. Let us consider the case of a bubble of a liquid (γ = 7.14, π = 300) in a gas (γ = 1.4, π = 0). The initial density of the liquid at rest is ρ l = 1 while the gas one is ρ g = 0.001, which gives an Atwood number ∼ 0.998. The pressure outside the bubble is fixed at p g = 1. while the pressure of the bubble is taken in order to satisfy Laplace equilibrium (we use σ = 1). We plot on Figure 3 the evolution of the total kinetic energy versus time for the first-and second-order schemes.

We can see that the equilibrium is preserved. 

Oscillating bubble

Now we consider the test of an oscillating ellipse (refer to [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF] for the incompressible reference). This case is initialised like the previous one but instead of having a disk we consider an ellipse of axis a = 0.105 and b = 0.1. It is known [START_REF] Fyfe | Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh[END_REF] that in an incompressible framework the period of oscillation is given by

T = 2π ν , ν 2 = σ(2 3 -2) (ρ l +ρg)R 3 0 . ( 29 
)
First let us study the importance of the low-Mach correction. We plot on Figure 4 the evolution of the kinetic energy obtained with our Lagrangian firstorder scheme with and without the low-Mach correction and the second-order extension on a mesh which has around 25 grid point per diameter. It shows that the oscillations of the kinetic energy are damped without the low-Mach correction or the second-order extension. Since no viscosity is considered in the model this should not happen. Hence, it is necessary to use either the secondorder extension or the low-Mach correction to avoid too much dissipation. Then we study the convergence of the frequency (displayed in Table 1). On the most refined mesh, the frequency error is less than one percent. The evolution of errors for the first order scheme with low-Mach correction and the second order scheme are similar which is expected since the same method of curvature computation is used for both schemes. We compute an order of convergence η with

η = ln k k+1 ln 2 , ( 30 
)
where k = ω k -ω k+1 is the difference between the frequency ω k computed on the (k) th and ω k+1 computed on the (k + 1) th mesh. The mean order obtained with the low-Mach correction is η = 1.3 and with the second order scheme is η = 1.7. The order of convergence of the second-order method is less than 2 due to the flux limiter which is activated in all the results provided.

Richtmyer-Meshkov instability

Here we study the influence of surface tension on the Richtmyer-Meshkov instability [START_REF] Richtmyer | Taylor instability in shock acceleration of compressible fluids[END_REF]. This instability occurs when a shock wave hits a perturbed interface. When the perturbation is small and without surface tension, one can derive an analytical solution for the growth rate with small perturbation theory [START_REF] Clarisse | A Godunov-type method in Lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics[END_REF][START_REF] Yang | Small amplitude theory of richtmyermeshkov instability[END_REF].

Here we use the initial data of [START_REF] Maire | A high-order cell-centered Lagrangian scheme for twodimensional compressible fluid flows on unstructured meshes[END_REF] presented Figure 5. The domain is initially a [-5, 4.2] × [0, 0.5] box where the perturbed interface is defined by

x(y) = a 0 cos 2π λ y , y ∈ - λ 2 , λ 2 , ( 31 
)
where λ = 1 is the wavelength and a 0 = 10 -4 the amplitude. Let us define the perturbation amplitude as

γ 0 = 1.5 ρ 0 = 1 p 0 = 1 γ 1 = 3 ρ 1 = 2 p 1 = 1 U piston = 0.603 Perturbed interface a 0 0 λ 2
a (t) = x per (t) -x unper (t) a 0 , (32) 
where x per (respectively x unper ) is the abscissa of a point located on the perturbed (respectively unperturbed) interface. Linear theory predicts a linear evolution of the perturbation amplitude. Here our interest is to look at the possible influence of surface tension on the behavior of the perturbation amplitude. Consequently we will consider the case without surface tension and with σ = 0.001, σ = 0.005 and σ = 0.1, leading to Weber numbers W e = ρ0U 2 piston λ σ of respectively W e ∼ ∞, W e ∼ 364, W e ∼ 72.7 and W e ∼ 3.64. The surface tension is activated at time t = 3.015 which is the time at which the shock impacts the interface. We plot on Figure 6 the evolution of the perturbation amplitude. Without surface tension, the usual behaviour is observed: the perturbation is first crushed by the shock impact, then grows linearly. With surface tension, energy is stored in the interface, leading to an oscillating behaviour (see in particular the cyan curve obtained with σ = 0.1).

ALE extension of the scheme

In this section we present the ALE extension of the scheme. This step consists in rezoning the cells that have undergone too much deformation, and in remapping the solution from the former Lagrangian mesh to this new mesh. The rezoning algorithm is beyond the scope of this paper, and the reader is invited to refer to [START_REF] Hoch | An arbitrary Lagrangian-Eulerian strategy to solve compressible flows[END_REF] for the details. Since the first step described in Section 3 is Lagrangian, no effort is required to maintain a steep interface. However, the rezoning step will produce mixed cells. Hence, the first part 5.1 of this section is dedicated to the thermodynamical closure of the Lagrangian step in mixed cells. The second part 5.2 describes the algorithm used to remap the unknowns from the Lagrangian mesh to the rezoned mesh. We pay special attention to the conservation, and to the accuracy at the vicinity of the interface. The third part 5.3 explains how we compute the curvature in the mixed cells. 

Thermodynamical closure in mixed cells

In this subsection we explain how we deal with the thermodynamics in mixed cells. The model used is the one described in [START_REF] Galera | A two-dimensional unstructured cellcentered multi-material ALE scheme using VOF interface reconstruction[END_REF]. We choose this somewhat quite crude model because we found it to be robust and deliver reasonable accuracy in the context of a Lagrange plus remap algorithm for highly compressible flows. More sophisticated models accounting for a velocity slip between fluids can be found in [START_REF] Baer | A two-phase mixture theory for the deflagrationto-detonation transition (DDT) in reactive granular materials[END_REF][START_REF] Saurel | A multiphase model with internal degrees of freedom: application to shock-bubble interaction[END_REF]. However, the use of such models creates additional difficulties, in particular for the Lagrangian and remap algorithms [START_REF] Del Pino | An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction[END_REF], and as such, it is beyond the scope of this paper. Let us recall that

H j = ωj H Σ |ω j | is
the volume fraction of the first fluid. In this subsection we will omit the index of the cell j in order to simplify notations. Let m 0 be the mass of the first fluid, then we note y = m 0 m (m = m 0 + m 1 ) its mass fraction. Using the equal strain rate assumption, during the Lagrangian step we have

H n+1 = H n , y n+1 = y n . ( 33 
)
Since we assume there is one unique velocity for both fluids, we only have to explain how to update partial energies and how to compute global pressure and sound speed from these energies. The effective pressure is defined as

p = Hp 0 + (1 -H) p 1 , ( 34 
)
where p k is the partial pressure associated with fluid k. Theorem 7. The numerical scheme is still well-balanced and entropic.

Proof. We first focus on the Laplace law. The proof is very similar to the one of Theorem 3, but requires the definition of the mean pressure [START_REF] Ito | A high-precision calculation method for interface normal and curvature on an unstructured grid[END_REF]. Let us consider a bubble verifying the Laplace equilibrium

[p] = p 0 -p 1 = σκ,
The initial configuration is still given on Figure 2. Since we assume that the bubble is initially at equilibrium ∀j, u j = u.

Then j∼r A j,r u j = A r u.

We have

j∼r q r j C j,r = j∼r (p j -σκ r H j ) C j,r ,
Moreover, pressures are constant in both fluids and using ( 34)

p j = p 1 + H j (p 0 -p 1 ),
we obtain:

j∼r q r j C j,r = (p 0 -p 1 ) n r -σκ r n r , = ([p] -σκ r ) n r ,
where n r = j∼r H j C j,r , and nr |nr| is a local approximation of the normal interface. Assuming κ r = κ is computed exactly, we obtain j∼r q r j C j,r = 0.

Consequently, using [START_REF] Cole | Underwater explosions[END_REF], u r = u. Now, we only need to verify that

d dt ωj ρu = 0, d dt ωj ρE = 0.
We have

r∼j q j,r C j,r = r∼j q r j C j,r , = r∼j (p j -σκ r H j ) C j,r , = H j r∼j σκ r C j,r .
Inserting this in the right-hand-side of ( 13) concludes the proof for the Laplace law. The proof for the entropy is the same as the one for the scheme with pure cells (Theorem 4). It relies on the fact that the thermodynamical closure has no impact on the global entropy condition for the Lagrangian scheme, which only depends on the solver. However, we show in the following how we gather this entropy deposit onto both fluids.

The sound speed is defined as

c = yc 2 0 + (1 -y)c 2 1 1 2 , ( 35 
)
where c k is the partial sound speed associated with the fluid k. To compute the pressure and sound speed we need to explain the evolution of partial internal energies. We call δQ = m t+∆t t T d t S, the heat deposit induced by the scheme during the time-step. We enforce the entropy increase of both fluids by scattering this deposit to each fluid based on their respective volume fractions. Hence, the fluid internal energies are updated with

δQ = m e n+1 -e n + p n V n+1 -V n , m 0 e n+1 0 -e n 0 + p n 0 H V n+1 -V n = HδQ, m 1 e n+1 1 -e n 1 + p n 1 (1 -H) V n+1 -V n = (1 -H) δQ. ( 36 
)
Noticing that the first equation is the sum of the second and the third equation, it corresponds to a volume-fraction weighted gathering of the entropy deposit (V n stands for the volume of the generic mixed cell at time t n ).

Remark 8. It is not necessary to update the two partial internal energies with these formulas. Indeed, δQ is given by the balance of total energy at the mean level, and then, the update of one of the partial energies implies the update of the other one.

Remap

The remap step can be viewed as an advection step. The velocity w is implicitly defined by the rezoning method. To enforce the conservation of mass, momentum and total energy, we use a flux based method known as swept (refer for instance to [START_REF] Benson | Computational methods in Lagrangian and Eulerian hydrocodes[END_REF]). We also have two peculiar requirements specific to surface tension flows: 1-the interface should remain steep, and 2-high accuracy is required in the vicinity of the interface, because of the sensitivity of the curvature. As explained in the introduction, we use a Volume Of Fluid method to keep sharp interfaces. The reconstruction uses the Young's method [START_REF] Youngs | Time-dependent multi-material flow with large fluid distortion[END_REF]. Consequently, in the following we will assume that a Young's interface is given in every mixed cell. Concerning the accuracy of the remap at the vicinity of the interface, we use the method described in [START_REF] Berndt | Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods[END_REF][START_REF] Kucharik | One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods[END_REF] which relies on an exact calculation of the intersection of the Lagrangian mesh with the rezoned mesh.

Swept regions method

The rezoning step consists in moving the vertices of the mesh, in order to enhance the geometrical quality of the cells. Since it does not change either the topology of the mesh, or the nature of the cells (polygons remain polygons with same connectivity), the associated velocity field can be considered as linear on each cells edge, and constant over a time step. The volume's change in a cell j is given by

|ω j | n+1 -|ω j | lag = - e∼j t+∆t t e w • n, (37) 
where we note e the edges and e ∼ j the set of edges of cell j, and where the superscript lag accounts for the value at the end of the Lagrangian step. The integral in the Right-Hand-Side, is exactly the algebraic volume of ω e depicted in Figure 7. Noting this algebraic volume δω e Equation ( 37) can be written

|ω j | n+1 -|ω j | lag = - e∼j δω e . (38) 
Note that δω e can be either positive or negative. Obviously ω e can be divided into several subsets, corresponding to several positive or negative sub-volumes contributions. This degree of freedom has been recently used to increase the accuracy of the remap [START_REF] Hoch | An arbitrary Lagrangian-Eulerian strategy to solve compressible flows[END_REF][START_REF] Kucharik | One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods[END_REF]. One of this decomposition is illustrated on the right part of Figure 7. Since this method is not used in the mixed cells, we consider only one fluid in the following. The fluxes of ϕ = ρ, ρu or ρE are computed using

ϕ n+1 j |ω j | n+1 -ϕ lag j |ω j | lag = - e∼j ϕ e δω e . (39) 
For stability purpose, the value of ϕ e is chosen depending on the sign of δω e . For a first-order scheme, the upwind choice is

ϕ e = ϕ lag j if δω e > 0, ϕ lag j else, (40) 
with the notations of Figure 7. If now ω e = ∪ s∼e ω s is divided into subsets, as in the right part of Figure 7, a similar formula holds

ϕ n+1 j |ω j | n+1 -ϕ lag j |ω j | lag = - e∼j s∼e ϕ s δω s = 0, (41) 
with the same convention for ϕ s . In this paper, we use the decomposition depicted in Figure 7: no decomposition if the edge e of the rezoned cells ω n+1 j does not intersect the same edge e of the cell ω lag j , and a decomposition into negative and positive flux volumes else. The first-order version of this algorithm enforces the maximum principle on ρ, u (in the Convex-Hull sense [START_REF] Hoch | A frame invariant and maximum principle enforcing second-order extension for cell-centered ALE schemes based on local convex hull preservation[END_REF]) and E. In this paper, we use a MUSCL reconstruction to achieve the second-order accuracy in smooth region, together with the Barth-Jespersen limiter [START_REF] Barth | The design and application of upwind schemes on unstructured meshes[END_REF] to handle discontinuities.

x r x s xs xr • • • • j j ω e x r x s xs xr • • • • j j • ω 1 e ω 2 e

Multi-material swept regions method

The procedure in multi-material cells is very similar to the one of the previous section. The two major differences are that: 1-the cell is now divided into two pure sub-cells thanks to the Youngs reconstruction and 2-the fluxing volume ω e is divided into as many subset as ω e intersects sub-cells of the Lagrangian mesh (see Figure 8). Except these two differences, which increases a lot the number of intersections and the CPU consumption of the algorithm, it is very similar to the one described previously, and shares the same properties. Denoting k = 0, 1 the fluid considered, a remapping step with this algorithm writes

ϕ n+1 j,k |ω j,k | n+1 -ϕ lag j,k |ω j,k | lag = - e∼j,k s∼e ϕ s,k δω s,k , (42) 
where ϕ j,k can be either ρ k , ρ k u k or ρ k E k , ω j,k is the sub-cell of ω j containing the fluid k, and e ∼ j, k corresponds to the set of edges of ω j,k . As mentioned before, the exact intersection is only used with multi-material edges. When the edge isn't considered multi-material we use a classical sweptregion method without exact intersections which is less expensive. A node is considered multi-material if it is on the interface or belong to a cell which is multi-material. All the edges containing a multi-material node are considered multi-material.

Curvature computation

In this section, we describe the method used to compute the curvature in mixed cells. Let us recall that our aim is to keep the interface Lagrangian as long as possible. Consequently, we want a method that smoothly transitions from calculating the curvature of a Lagrangian interface (Section 3.2.2) to calculating the curvature in mixed cells.

Several methods to compute the curvature of mixed cells are available in the literature, here we make a brief recall of these methods, for a more detailed description we refer the reader to [START_REF] Popinet | Numerical models of surface tension[END_REF]. Height function method is probably the most widely used on cartesian meshes and has been extended to unstructured meshes [START_REF] Ito | A high-precision calculation method for interface normal and curvature on an unstructured grid[END_REF]. However, the transition from the Lagrangian method to this one is not clear. Another method consists in smoothing the volume fraction and computing the curvature as κ

= -∇ •   ∇ H ∇ H  
where H is the smoothed volume fraction [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF]. This method is not considered here since we want to keep sharp interfaces. Level set framework [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF][START_REF] Coquerelle | A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces[END_REF] is also a possibility. It gives a simple way to compute the curvature; the drawback is, that it can have volume conservation issues (refer however to [START_REF] Sussman | A coupled level set and volume-offluid method for computing 3d and axisymmetric incompressible two-phase flows[END_REF][START_REF] Morgan | A new liquid-vapor phase transition technique for the level set method[END_REF] and the CLSVOF method for a possible correction). Other methods rely on an explicit discretisation of the interface. Since we already reconstruct the interface for the remap step we decided to use this type of method. Once the interface is reconstructed, it is sufficient to locally fit a polynomial function to interface points to estimate the curvature [START_REF] Renardy | Prost: A parabolic reconstruction of surface tension for the Volume-of-Fluid method[END_REF][START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF].

Since we want to keep a simple method, as the one used in the Lagrangian framework, we simply define the curvature of a mixed cell j as the one of the circle passing through the mid points of the interfaces located in j and the surrounding cells (see Figure 9). Remark 9. It is possible to end up in situation where a mixed cell does not have exactly two neighbour which are also mixed cells. In this situation we use a least square method to define the curvature.

Interface • • • • x c R j
It may happen that a mixed cell has a neighbour which is pure but has at least one edge on the interface. Then, in this pure cell the interface is not reconstructed and we define the middle of the interface edges as the interface points which are used to compute the curvature.

The curvature computation method described in this article is at most first order in mixed cells. Indeed, it is limited by the interface reconstruction technique used. However it has been proven to be robust and easy to implement, moreover it is a natural extension of the method used in the Lagrangian framework.

In our numerical results we use a parabolic fitting based on a local coordinate system aligned with ∇H as described in [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF]. Methods to fit higher order polynomial function using larger stencils to compute the curvature has been described in [START_REF] Owkes | Importance of curvature evaluation scale for predictive simulations of dynamic gas-liquid interfaces[END_REF]. However, on the test cases studied in this paper, we have not seen much improvements of the results using these methods. Now, we have defined some curvature in mixed cells. However, we need to define them at each node. Let us note N r = # {j ∼ r, 0 < H j < 1}. We define

κ r =    0 if N r = 0, 1 N r j∼r κ j else. ( 43 
)
Remark 10. If a node is located on the interface and has no neighbour which are mixed cells, the method of Section 3.2.2 is used to compute the curvature.

Numerical results

The two first tests of this section are intended to validate the method. First problem (Subsection 6.1) is an equilibrium preservation test. The second one (Subsection 6.2) is an oscillating problem. Even if these tests are useful to check the good properties of the method, it does not correspond to the use we want to make of it. Indeed, these problems induce small deformations of the mesh, and in that case, we would like to use a fully Lagrangian method with pure cells, which is more accurate. The last problem is a non-linear Richtmyer-Meshkov instability (Subsection 6.3), and is more representative of our purpose.

Bubble at equilibrium

We perform the test of Section 4.1 on the unstructured mesh of Figure 10. The remap step is performed on the initial mesh so that the calculation is globally Eulerian. We define the volume error

V err = V -V ini V ini
where V ini is the initial volume of the bubble and V the volume obtained with our scheme. We plot on Figure 11 the evolution of the kinetic energy, the volume error and the distance of the centre of the bubble with respect to its initial position versus time for two refinements of the mesh. The kinetic energy produced can not be neglected here. However let us recall [START_REF] Lafaurie | Modelling merging and fragmentation in multiphase flows with SURFER[END_REF] that usually the stoppage time of parasitic currents is of the order of the Laplace number L a = ρσ µ 2 where µ is the viscosity. Since we assumed there is no viscosity, µ = 0. Consequently there is nothing except numerical dissipation to cancel the parasitic currents. Since this simulation runs for a long time, there are a lot of reflected acoustic waves from the symmetry boundary conditions that affect the results. It leads to a slow pressure increase in the gas due to kinetic energy dissipation by the scheme. As a consequence, to preserve Laplace law, the volume also increases slowly. This spurious phenomenon enlightens the conservation defect of the total energy (fluids plus interface energies). Despite that, we can see on figures 11 and 12 that the bubble has not moved much and the equilibrium is well preserved.

Figure 12: Bubble at equilibrium. Interface at time t = 0 and t = 5 (zoom).

Oscillating bubble

Let us consider the test of the oscillating bubble (Section 4.2) using our ALE scheme on Cartesian meshes. We plot on Figure 13 and 14 the evolution of the kinetic energy for the first-and second-order schemes for different mesh refinements. The poor results obtained on the coarsest grid (10 points per diameter) suggest that parasitic currents competes with the physical oscillation on this coarse mesh. However, very satisfactory results are obtained with the second-order scheme on the finer grid. The evolution of the error made on the frequency, given We compute a convergence order using [START_REF] Ghidaglia | Capillary forces: A volume formulation[END_REF]. We obtain η = 0.8 with the low-Mach correction and η = 1.3 for the second order extension. The orders obtained are not as satisfying as the Lagrangian ones, which can be explained by the less accurate evaluation of the curvature in mixed cells. It shows that surface tension accelerates the saturation process. This observation is reinforced by the plot of the amplitude versus time for the three values of σ (see Figure 18). We also performed another study, setting the value of σ to 0.001 and varying the amplitude from a 0 = 0.2 to a 0 = 0.02 (Figure 19). Since surface tension force is higher for high amplitudes, the saturation process is also faster when the amplitude increases. 

Richtmyer-Meshkov instability

Strong shock

To underline the ability of our scheme to deal with topology changes we perform a test problem involving a stronger shock. The test is similar as the previous one but the initial density of the preshock fluid is changed, in order to increase The value of σ is set to 0, 10 -4 and 5 × 10 -3 . We use a 350 × 50 discretisation of the domain and results are shown at time t = 5 on Figure 20. We emphasize the fact that, since we have no physical model for the breakup, it is controlled by the size of the cells. It demonstrates the ability of our scheme to deal with topology changes.

As expected, the surface tension tends to prevent the breakup of the interface, and damps the growth of the perturbation as observed in the previous test problem.

Conclusion

We presented an ALE method for compressible Euler system with capillary forces. The ALE framework consists in two steps: a Lagrangian step, in which the mesh moves with the flow, and a remap step on a regularized mesh, to avoid wide deformation of the mesh. It allows us to keep the interface between fluids Lagrangian as long as possible, which benefits to the accuracy of the method. The scheme dedicated to the Lagrangian step is well-balanced, in the sense that it preserves the Laplace equilibrium. We extend this scheme to the second-order in space and the low-Mach regime. The remap step is performed using swept region method and exact intersection near the interface, which is tracked thanks to a VOF method. It has been tested on several cases and shown to be robust and precise. We have been able to evaluate the influence of surface tension on the Richtmyer-Meshkov instability in both linear and non-linear regime, for varius value of the Weber number. The 3D extension of the scheme does not rise theoretical issues, and could be done in the future. Another prospect would be to design a fully conservative ALE scheme in the spirit of [START_REF] Perigaud | A compressible flow model with capillary effects[END_REF][START_REF] Schmidmayer | A model and numerical method for compressible flows with capillary effects[END_REF] and compare the both methods.
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 3 Figure 3: Bubble at equilibrium. Kinetic energy versus time for first-order scheme with a low-Mach correction ( ) and the second-order extension (•).
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 5 Figure 5: Initial configuration for the shock-contact interaction test.
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 6 Figure 6: Richtmyer-Meshkov test. Perturbation amplitude versus time for σ = 0 ( ), σ = 0.001 (•), σ = 0.005 ( ), σ = 0.1 ( ) and linear theory (-).
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 7 Figure 7: Swept region method. Left part: single flux configuration. Right part: two fluxes configuration.
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 8 Figure 8: Swept region method for multi-material edges. The volume δω 1 corresponds to a flux of the fluid 0 from cell j to cell k, δω 2 to a flux of the fluid 1 from cell j to cell k, δω 3 to a flux of the fluid 1 from cell j to cell l, and δω 3 to a flux of the fluid 0 from cell j to cell l.

Figure 9 :

 9 Figure 9: Curvature of a mixed cell.

Figure 10 :

 10 Figure 10: Bubble at equilibrium. Mesh and initial interface.

Figure 11 :

 11 Figure 11: Bubble at equilibrium. Kinetic energy, volume error and distance of the centre w.r.t. its initial position versus time for the initial mesh (•) and the mesh refined one time.

Figure 14 :

 14 Figure 14: Oscillating ellipse. Kinetic energy versus time for the second-order scheme on 10 (•), 20 ( ) and 40 ( ) points per diameter.

6. 3 . 1 Figure 15 :

 3115 Figure 15: Initial configuration for the Richtmyer-Meshkov test.

Figure 16 :

 16 Figure 16: Richtmyer-Meshkov instabily. Density profile for σ = 0 (top), σ = 0.001 (middle) and σ = 0.005 (bottom) at time t = 5.5 (left) and t = 8.25 (right).

Figure 17 :

 17 Figure 17: Richtmyer-Meshkov instability. Interfaces at time t = 4.125, 5.5, 6.875 and 8.25 with σ = 0, σ = 0.001 and σ = 0.005.

Figure 18 :

 18 Figure 18: Richtmyer-Meshkov instability. Perturbation amplitude versus time for σ = 0 (-), σ = 0.001 (•) and σ = 0.005 ( ).

Figure 19 :

 19 Figure 19: Richtmyer-Meshkov instability. Perturbation amplitude versus time for a 0 = 0.2 (-), a 0 = 0.1 (•) and a 0 = 0.02 ( ).

Figure 20 :

 20 Figure 20: Strong shock Richtmyer-Meshkov instabily. Density profile (left) and interface (right) for σ = 0 (top), σ = 0.0001 (middle) and σ = 0.005 (bottom) at time t = 5.

Table 1 :

 1 Frequency error (%) for the oscillating ellipse.

	Adimensional kinetic energy	10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0							
		0.00	0.05	0.10	0.15	t	0.20	0.25	0.30	0.35
	Figure 4: Oscillating ellipse. Dimensionless kinetic energy versus time for the
	first-order scheme ( ) with a low-Mach correction ( ) and the second-order
	extension (•).							
		Grid points per diameter Low-Mach Second order
			9				4.22		3.95
			18				1.07		1.3
			36				0.66		0.51
			72				0.14		0.27

Table 2

 2 , shows the period seems to converge toward the theoretical one.

	Grid points per diameter Low-Mach Second order
	10	5.61	5.22
	20	3.36	2.27
	40	1.18	1.12

Table 2 :

 2 Frequency error (%) for the oscillating ellipse.