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Abstract 

Glyphosate-based herbicides, such as Roundup®, are the most widely used non-selective, broad-

spectrum herbicides. The release of these compounds in large amounts into the environment is 

susceptible to affect soil quality and health, especially because of the non-target effects on a large 

range of organisms including soil microorganisms. The soil filamentous fungus Aspergillus nidulans, 

a well-characterized experimental model organism that can be used as a bio-indicator for agricultural 

soil health, has been previously shown to be highly affected by Roundup GT Plus (R450: 450 g/L of 

glyphosate) at concentrations far below recommended agricultural application rate, including at a 

dose that does not cause any macroscopic effect. In this study, we determined alterations in the 

transcriptome of A. nidulans when exposed to R450 at a dose corresponding to the no-observed-

adverse-effect level (NOAEL) for macroscopic parameters. A total of 1,816 distinct genes had their 

expression altered. The most affected biological functions were protein synthesis, amino acids and 

secondary metabolisms, stress response, as well as detoxification pathways through cytochromes 

P450, glutathione-S-transferases, and ABC transporters. These results partly explain the molecular 

mechanisms underlying alterations in growth parameters detected at higher concentrations for this 

ascomycete fungus. In conclusion, our results highlight molecular disturbances in a soil fungus under 

conditions of apparent tolerance to the herbicide, and thus confirm the need to question the principle 

of “substantial equivalence” when applied to plants made tolerant to herbicides. 

 

Keywords 

Glyphosate-based herbicide; Aspergillus nidulans; Transcriptomics; Apparent herbicide tolerance; 
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1. Introduction 

 

 Glyphosate-based-herbicides (GBH)1  are the most globally used herbicides in the world. 

Glyphosate (GLY) was patented as an herbicide active ingredient in 1971 (U.S. Patent No 

3,799,758), and the first GBH were rapidly introduced onto the pesticides market in 1974 under the 

well-known trade name "Roundup®". In 2014, the amount of GBH sprayed by farmers was 

equivalent to 0.53 kg of GLY per ha on all cropland worldwide (Benbrook, 2016). 

 Intensive use of GBH has been shown to undermine soil quality by increasing leaching of 

banned remnant pesticides (Sabatier et al., 2014). GBH application resulted in a substantial decrease 

in the abundance of soil microorganisms (Santos et al., 2006; Weaver et al., 2007), and especially in 

toxic effects on symbiotic mycorrhizal fungi (Zaller at al., 2014) as well as on fungi from the genus 

Aspergillus (Carranza et al., 2014; Nicolas et al., 2016) or Mucor (Mandl et al., 2018). 

In plants, GLY disrupts the shikimate pathway by inhibiting the binding of 

phosphoenolpyruvate on the active site of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase 

(EPSPS). This causes a shortage in essential aromatic amino acids, and consequently a blockage of 

protein synthesis. Since many microorganisms such as bacteria and fungi also rely on the shikimate 

pathway, and thus on EPSPS enzyme function, they represent other potential GBH targets.  The 

inhibition of EPSPS by glyphosate in microorganisms is also considered to be a possible mode of 

action for the therapy of pathogenic infections provoked by Toxoplasma gondii, Plasmodium 

falciparum (the parasite that causes malaria) and Cryptosporidium parvumb (U.S. Patent No 

7771736 B2). Glyphosate also proved to be an effective fungicide. The application of GBH on 

Roundup-tolerant soybeans and wheat suppresses rust diseases caused by Phakopsora pachyrhizi and 

Puccinia spp., respectively (Feng et al., 2005). This was attributed to an inhibition of fungal EPSPS 

                                                           

1
 Abbreviations : GBH, Glyphosate-based herbicide; GLY, Glyphosate; R450, Roundup® “GT Plus” 



 5 

based on the observation that rust control was proportional to GLY tissue concentrations (Feng et al., 

2005), and because shikimate levels were increased with GBH treatments (Nandula, 2010).  

However, the existence of the shikimate pathway in microorganisms does not necessarily 

imply that GBH toxicity would be due to EPSPS inhibition. Although all plant EPSPS are GLY-

sensitive (class I), those from microorganisms belong either to class I or to class II (GLY-tolerant) 

(Funke et al., 2009). In the latter case, toxic effects can only be explained by other targets of GLY 

and/or surfactants present in the commercial formulations. GBH generally include co-formulants, 

which are added to increase GLY penetration in plant tissues (Mesnage et al., 2019). These additives 

are considered as inert although GBH formulations have been shown to be much more toxic than 

GLY alone in different models (Mesnage et al., 2014; Mesnage et al., 2015), including in 

microorganisms (Braconi et al., 2006; Clair et al., 2012; Lipok et al., 2010; Nicolas et al., 2016; Qiu 

et al., 2013). Some of the co-formulants alone are sometimes more toxic than GLY itself (Defarge et 

al., 2016; Mesnage et al., 2013). The multiplicity of targets for the active principle and/or its co-

formulants is reflected by the diversity of the reported GBH toxic effects, which can vary from one 

organism or cell type to another (Mesnage et al., 2015; Nicolas et al., 2016). 

 Soil microbes are responsible for many soil processes, including transformation of organic 

matter and nutrient release, and microbial activity is expected to be one of the most efficient 

biological parameters to assess soil quality and health as affected by agricultural practices 

(Anderson, 2003; Beneditti and Dilly, 2006). The well-characterized soil ascomycete fungus 

Aspergillus nidulans, used for decades as an experimental model organism in basic and industrial 

microbiology research (Martinelli and Kinghorn, 1994), provides a relevant marker for agricultural 

soil health. We found that the GBH commercial formulation “Roundup GT Plus” containing 450 g/L 

of GLY (R450) provokes multiple toxic effects affecting various biological processes at doses far 

below the recommended agricultural application rates, including a dose corresponding to the no-

observed-adverse-effect level (NOAEL) for macroscopic parameters (Nicolas et al., 2016).  
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 To get further insights into the molecular processes of these toxicological effects, we 

supplemented our previous proteomic analysis (Poirier et al., 2017) by a global transcriptome 

profiling of the fungus Aspergillus nidulans exposed to R450 at above-mentioned NOAEL (0.007%, 

i.e. containing 31.54 mg/L GLY among adjuvants), using a custom microarray (Deloménie et al., 

2016). Transcriptome profiles carry the molecular signature of toxic effects, which can be used as 

biomarkers to study the impacts of pesticides on soil microbiology (Oh et al., 2008; Yu et al., 2006).  

 GLY is frequently found in agricultural topsoils of the European Union at median values 

ranging from 0.05 to 1.14 mg/kg among 11 EU countries (Silva et al., 2018). Both glyphosate and its 

major breakdown product, aminomethylphosphonic acid (AMPA), had a maximum concentration of 

2 mg/kg. Glyphosate concentrations were comparable in different US regions with median and 

maximum concentrations of 9.6 and 476 µg/kg, respectively (Battaglin et al., 2014). In agro-

productive areas of the pampas region in Argentina, glyphosate was found at concentrations ranging 

from 102 to 323  μg/kg (Alonso et al., 2018). However, concentrations may vary considerably 

depending on many factors (Aparicio et al. 2013; Lupi et al. 2015), including climate (especially 

rains occurring after application), soil quality and structure, and agricultural management practices. 

Thus, another Argentinean study carried out in the Mesopotamic Pampas agro-ecosystem reported 

higher glyphosate concentrations (2,3 ± 0.48 mg/kg), with a maximum concentration reaching 8.1 

mg/kg (Primost et al., 2017). Moreover, mainly GLY and AMPA are generally investigated in GBH-

treated soils. However, it should be borne in mind that GLY is never used alone but in formulation 

with surfactants which can also be found in environmental samples. In a study performed by the U.S. 

Geological Survey, a type of POEA (polyoxyethylene (15) tallow amine) was found in all 21 field 

samples analyzed which indicates that the potential problems associated with the occurrence of 

surfactant included in pesticide formulations should not be neglected (Tush et al., 2016). So, it is 

crucial here to test the effects of a commercial GBH formulation and not of GLY alone. Admittedly, 

our study uses doses substantially higher than those mentioned above. However, A. nidulans is not 
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from the rhizosphere but is a surface fungus. Therefore, it is exposed to the sprayed doses (between 

4.5 and 9 g/L of GLY, among adjuvants), which are much higher than those found in the soil because 

the latter result from dispersion and dilution effects (Perruzo et al. 2008). 

Thus, although the objective of the present work was primarily to better appreciate the extent 

of the R450 exposure impacts in A. nidulans under conditions of apparent herbicide tolerance, (i.e. at 

a dose that does not cause any macroscopic effect), our findings could be used in environmental 

studies aimed to better understand the adverse effects of GBH in soil microorganisms as a whole. For 

instance, future studies could use meta-transcriptomics approaches to ensure that the gene networks 

having their expression altered in our study are also altered in the context of agricultural soils. 

 

 

2. Materials and Methods  

 

2.1. A. nidulans strain and growth conditions 

  

 Two independent sets of the A. nidulans CV125 (pabaA1) strain (Nicolas et al., 2016) liquid 

cultures were carried out in 400 ml minimal medium (Cove, 1966) with fructose (0.1%) as the 

carbon source and urea (5 mM) as the nitrogen source, in the absence (“Control”) or presence 

(“Roundup”) of the herbicide commercial formulation called “GT plus” (available on the market: 

homologation 2020448, Monsanto, Anvers, Belgium). “GT Plus” (R450) contains 450g/L of GLY 

(corresponding to 100%), and the dose used in the “Roundup“ samples was 0,007% (i.e. containing 

31.5 mg/L of GLY among adjuvants), corresponding to the no-observed-adverse-effect level 

(NOAEL) associated to macroscopic parameters in A. nidulans (Nicolas et al., 2016; Poirier et al., 

2017). Liquid cultures were incubated at 30°C for 15 h in an orbital shaker at 150 rpm. For each set 

and each condition (absence or presence of Roundup), cultures were carried out in quadruplicate.  
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2.2. Extraction and purification of total RNA 

 

 Mycelium from each A. nidulans liquid culture was harvested by filtration through sterile 

Blutex nylon tissue, washed with water, wrung dry, and ground with a pestle in a mortar under liquid 

nitrogen to a fine powder. First, proteins were denatured in presence of guanidine 6 M, sodium 

acetate 20 mM (pH 5) and dithiotreitol 1 mM. After a 15 min centrifugation at 10000 rpm at 4°C, 

supernatant was filtered to remove cell debris, and RNA was precipitated by 2-hours incubation in 

2,5 volumes of ethanol 95% at -20°C. After a 10 min centrifugation, the pellet was dissolved in 

guanidine 6 M, sodium acetate 20 mM (pH 7) and dithiotreitol 1 mM, then precipitated as above. 

Finally, after another 10 min centrifugation at 10 000 rpm at 4°C, the RNA was dissolved in 500 µL 

of DEPC-treated sterile water. RNA extract was stored at -20°C (until use) in 1.5 ml of ethanol 70% 

containing sodium acetate 100 mM. Further purification was carried out from 25% (volume) of each 

alcoholic RNA extract, by centrifugation followed by three washes of the pellet with 75% ethanol 

before solubilization in 250 µL RNase-free water. Finally, RNA samples were treated with 900 µL 

TRIzol® (Life Technologies), according to the manufacturer's instructions, to eliminate possible 

remaining impurities. After precipitation in 500 µL isopropanol at room temperature, RNA was 

pelleted by centrifugation, the pellet washed twice with 75% ethanol, then solubilized in 100 µL 

RNase-free water and stored at -80°C until molecular analyses. RNA purity and quantity was 

assessed by UV measurement using a BioMate 3S UV-Visible (Thermo Scientific™) 

spectrophotometer. To quantify the genomic DNA fraction in purified RNA, a qPCR assay using 

GAPDH gene-targeted primers (Forward: CGACAACGAGTGGGGTTACT; Reverse: 

GGCATCAACCTTGGAGATGT) was carried out. DNA contaminant was lower than 5x10-4 in total 

RNA and lower than 2x10-5 in labelled cRNA prepared for microarray hybridization. RNA integrity 

evaluated by capillary electrophoresis using RNA 6000 Nano chips and the 2100 Bioanalyzer 
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(Agilent Technologies) revealed RIN (RNA Integrity Number) value of 6,13 ± 0.26. Such a value 

was lower than the RIN threshold usually considered as acceptable (Imbeaud et al., 2005). RNA 

integrity was confirmed by a further evaluation based on two metrics, i.e. 28S/18S ratio (1,63 ± 0.13) 

and ∆∆Cq 5' vs 3' ratio (<1). The latter was measured upon oligo-dT primed reverse-transcribed 

RNA with ACTIN 3' (Forward: GTACGATGAGAGCGGTCCTT; Reverse: 

CAGAAAATACGCGACAACGA) and ACTN 5' (Forward: TCCTCCTCCCTTCCTTACCTG; 

Reverse: ACATACCCGAACCATTGTCGA) primers (Imbeaud et al., 2005; Vermeulen et al., 2011). 

 

2.3. Gene expression profile analysis 

  

2.3.1. Hybridization of microarrays 

 A global gene expression analysis was performed from 2 biological replicates of 4 Roundup-

treated or -untreated cultures, using custom 8 x15k A. nidulans whole genome oligo microarrays 

(AMADID, Agilent Technologies) designed with eArray (Delomenie et al., 2016). Target preparation 

and hybridization were carried out according to the manufacturer’s instructions. Briefly, 200 ng of 

total RNA was labelled using the Low Input Quick Amp Labeling Kit, 2 colors (Agilent 

Technologies): Cy5-CTP for the reference RNA (consisting of a mixture of all samples), and Cy3-CTP 

for individual samples. Internal standards were derived from the Two-Color RNA Spike-in Kit 

(Agilent Technologies). The labelled targets were purified using the RNeasy® Mini Kit (Qiagen) and 

their quality and quantity were confirmed by spectrophotometry and the Bioanalyzer 2100 technology 

(Agilent Technologies). Equal quantities (325 ng) of Cy3- and Cy5-labeled cRNA targets were mixed 

and incubated on microarray slides at 65°C for 17 h. After washing, slides were scanned using the 

Microarray Scanner (G2565CA, Agilent Technologies) at 5-µm resolution and at high and low 

photomultiplier voltages to optimize the dynamic range of image quantification. The data were 

extracted from these images using the Agilent Feature Extraction 10.7.3.1. software. 
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2.3.2. Data processing and statistical analysis of microarray data 

 Data were computed using the Genespring GX version 12.6 (Agilent Technologies), a web-

based tool that allows integrated analysis of two-colour microarrays. Arrays were background 

corrected using minimum method (any intensity which is zero or negative after background 

subtraction is set equal to half the minimum of the positive corrected intensities for that array), and a 

within-array loess normalization was performed. Finally, microarray data were normalized using 

quantile normalization. Log intensity ratios for each spot were obtained with background subtraction. 

Systematic biases were corrected by applying successively an intensity dependent print–tip loess 

normalization (Smyth and Speed, 2003) and a scale between-array normalization (Yang et al., 2001; 

Yang et al., 2002). A filtering procedure excluded data points that were considered unreliable as they 

corresponded to probe sets associated with low signal intensities or bad quality features. For the 

differential analysis, empirical Bayes moderated t-statistics were computed on the log intensity ratios 

for each gene. Duplicate spots printed on the arrays were considered as repeated measures. All p-

values obtained were adjusted by the Benjamini and Hochberg false discovery rate step-up method 

(Benjamini and Hochberg, 1995) to account for multiple testing. Differentially expressed genes were 

defined as those whose p-value was statistically significant at a level of p<0.01, with absolute fold-

change at least >1.5, and for which the mean intensity of the two channels was higher than 5.5 on the 

log2 scale. The dye effect was included in the analysis. 

 

2.3.3. Functional analysis 

 Gene lists obtained from microarrays were included in an enrichment analysis in order to find 

functional groups highly represented within modulated genes. Fisher's exact test was used in DAVID 

bioinformatics resources 6.7 tool (http://david.abcc.ncifcrf.gov/) from Entrez Gene IDs to detect a 

significant over-representation or enrichment of a given group, with α=0.05 (Dennis et al., 2003). 
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Hierarchical clustering was carried out to cluster among the gene signal intensities and among the 

samples with Omics Explorer 3.0 (Qlucore) from selected enriched gene clusters. Results leading to 

“hypothetical proteins” were submitted to the Broad Institute database 

(http://www.broadinstitute.org) as well as to the Aspergillus genome database 

(http://www.aspergillusgenome.org; Cerqueira et al., 2014). The data discussed in this publication 

have been deposited in NCBI’s Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and 

are accessible through GEO Series accession number GSE95241. 

 

2.3.4. Comparison between transcript and protein levels  

 Fold changes for transcripts and their corresponding proteins measured in our previous study 

(Poirier et al., 2017) were analysed using R version 3.6.1. The correlation between the changes in the 

proteome and the transcriptome were studied using a Pearson correlation with R in-house functions. 

These changes were visualised using the packages ggplot2 and ggrepel.  

 

2.4. RT-qPCR analysis 

 

 For quantification of mRNA expression, first strand cDNA was synthesized by reverse- 

transcription from 1 µg of total RNA, with random hexamers and oligo-dT priming using the 

iSCRIPT enzyme (Bio-Rad), according to the manufacturer's instructions. PCR primer pairs specific 

to 28 target and 6 reference genes (Supplemental Table S1) were designed using Primer3Plus 

software (http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) (Untergasser et al., 2007) or Primer-

BLAST  (Ye et al., 2012) tools. The cDNA synthesized from 4 ng of total RNA was amplified in a 

CFX96 real time thermal cycler (Bio-Rad) using the SSoADV Univer SYBR® Green Supermix (Bio-

Rad) reagent according to manufacturer’s instructions, with 500 nM (final concentration) of each 

primer. Reactions (10 µl) were carried out in duplicate, by 45 two-step cycles (95°C 5 s; 61°C 10 s). 
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Samples that did not stand the reverse transcription step (“No RT” controls) were amplified on all 

genes to control for genomic DNA contamination, and melting curve analysis was performed to 

assess the purity of the PCR products. PCR efficiencies calculated for each gene, from the slopes of 

calibration curves generated from the pool of all cDNA samples, were above 90%. GeNorm in qBase 

PLUS tool (Vandesompele et al., 2002) was used to select actA and gpdA genes as references for 

normalization of mRNA expression results. The normalized relative expression of target genes in 

samples was determined using the Cq method with correction for PCR efficiencies (Pfaffl, 2001), 

where NRQ = ETarget 
ΔCq Target / E Ref 

ΔCqRef and Cq = Cqsample -
 Cqcalibrator (Hellemans et al., 2007). 

Final results were expressed as the n-fold differences in target gene expression in treated 

(“Roundup”) vs untreated (“Control”) mycelia. Mean values ± SD were obtained from three 

independent experiments.  

 

2.5. Statistical analysis for RNA and RT-qPCR data 

 

 Roundup-treated and control groups were compared for relative transcripts levels with 

GraphPad Prism® by Student’s t-test with a Fischer’s test for variance comparison and Welch’s 

correction if unequal variances were found between groups. P<0.05 was considered significant. 

Fieller's theorem was used to calculate the 95% confidence interval (error bars) of the fold changes. 

Statistics of correlation between fold-changes obtained by RT-qPCR and microarrays were analyzed 

(http://vassarstats.net/). 

 

 

3. Results and discussion 
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 In a previous study on the toxicity of Roundup “GT-Plus” in A. nidulans (Nicolas et al., 

2016), we determined the lowest- and no-observed-adverse effect levels (LOAEL and NOAEL). The 

determination of these specific doses was done in regard to growth characteristics (growth rate, 

germination lag time and ratio) and morphology (mycelial organization, pigmentation), both in solid 

and liquid media. Consistently with our previous proteomic study (Poirier et al., 2017), all the 

transcriptomic analyses described in the present investigation were performed at the NOAEL dose 

(0.007%, i.e. containing 31.54 mg/L GLY among adjuvants) for macroscopic parameters. 

 

3.1. Wide-scale transcriptomic analysis 

 

 In order to evaluate the molecular effects of Roundup at a dose causing no visible effect, 

RNA extracted from R450-treated and -untreated A. nidulans cultures were subjected to a global 

gene expression profiling using a custom agilent microarray (8 × 15 K format), for which the 

reproducibility, specificity and sensitivity was described previously (Deloménie et al., 2016). The 

effects of R450 were first visualized by plotting each sample as a point in the Cartesian space defined 

by the three principal components from a principal component analysis (PCA) of gene expression 

data (Fig. 1A) to reduce the 15,124-dimensional state space (variations in the expression levels of the 

15,124 A. nidulans genes). The first component explained 43% of data dispersion and separated the 

group of R450-treated samples from the control group. Statistical comparisons made using p-values 

obtained by t-tests and adjusted by the Benjamini and Hochberg procedure identified an alteration in 

gene expression (p<0.01, fold-changes>1.5) under R450 treatment for 2,395 probes, corresponding 

to 1,816 distinct transcripts (since one gene can be represented by multiple probes). They included a 

comparable number of down-regulated (894; 49%) and up-regulated (922; 51%) genes. All the 2,395 

p-values were plotted along with their respective fold changes in the form of a volcano plot (Fig. 

1B). The 20 most highly up- and down-regulated genes are listed in Table 1. 
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 In order to ensure confidence in these results, a set of 28 genes was selected among those 

differentially expressed according to microarray hybridization, and were subjected to RT-qPCR 

analysis. This allowed to confirm differential expression for 20 (i.e. 71%) of these genes (Fig. 2A). 

Only the catA gene displayed opposite results with the two methods. A highly significant correlation 

(r = 0.96) between fold-changes measured by microarray analysis and RT-qPCR was observed (Fig. 

2B). Overall, the RT-qPCR experiment confirmed the results measured on the microarrays.  

 We next conducted an ontology analysis of the 1816 genes deregulated by the Roundup 

treatment using the DAVID gene functional classification tool. A total of 1547 genes were 

recognized. An enrichment analysis was performed in order to reveal the most affected biological 

functions using annotations from KEGG, InterPro and Gene Ontology (GO) databases. Fold 

enrichments (FE) and p-values (p) for the most affected pathways are presented in Fig. 3. 

 These data showed that the main cell metabolic processes affected by R450 were protein 

synthesis, amino acid metabolism, detoxification and stress response pathways, consistently with our 

previous proteomic analysis carried out at the same R450 dose exposure (Poirier et al., 2017). 

Another metabolic process proved to be affected here: the secondary metabolism especially through 

mycotoxin (sterigmatocystin/aflatoxin and penicillin) biosynthesis (Fig. 3 and Table 1). Maps for the 

top 9 KEGG pathways affected by the exposure to R450 are described in Supplemental Fig. S1.  

 We also compared the alteration in gene expression caused by R450 in this study to the 

alterations detected at the protein level in our previous investigation (Poirier et al., 2017). A total of 

62 genes had their expression altered both at the transcript and the protein level (Supplemental Table 

S2 and Supplemental Fig. S2). Their fold changes were significantly correlated (R2 = 0.29, p = 0.02) 

although a large number of genes had their expression altered (up or down) in a different way at the 

protein level. This is not surprising since post-transcriptional processes are known to play a critical 

role in regulating the protein level in Aspergillus spp, as shown in other studies comparing changes 

in protein profiles with corresponding transcript levels (Bai et al., 2015).  
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3.2. Roundup stimulates ribosomal functions 

 

 The most enriched biological process annotation was translation (GO:0006412, FE = 3.0; p = 

1.2E-14) (Fig. 3A). This is mainly due to the up-regulation of the expression of genes coding for 

ribosome components. A total of 57 genes associated to ribosome annotation (ani03010) were over-

expressed (Fig. 3B). Individual fold changes were moderate and ranged from 1.50 to 2.03. They were 

comparable to fold changes observed in proteomic analyses for some translation elongation factors 

and amino-acyl t-RNA synthetases (Poirier et al., 2017). A heatmap of the ribosome-associated genes 

whose expression was modulated under R450 treatment displayed an unambiguous distinction 

between the two groups of cultures, untreated (“control”) and R450-treated (“Roundup”), with a 

small intragroup variation (Fig. 4). Consistently with our previous proteomic analysis (Poirier et al., 

2017), these results suggest that A. nidulans exposure to the diluted preparation of the herbicide 

resulted in a significant protein synthesis enhancement. This reflects a mode of action of GBH on 

protein synthesis in A. nidulans which is quite different from what is observed in plants.  In plant 

cells, GLY inhibits EPSPS, causing a blockage of essential aromatic amino acids production and the 

subsequent stopping of protein synthesis (Duke et al., 2003). The shikimate pathway also exists in 

bacteria and fungi including A. nidulans. However, contrary to plant EPSPS which are GLY-sensitive 

(class I), some fungal and bacterial EPSPS are GLY-tolerant (class II). Whether A. nidulans EPSPS 

belongs to class I or class II remains unclear, but according to our previous data (Nicolas et al., 

2016), it is not inhibited (or only partially) by GLY, suggesting that multiple cellular effects of R450 

in this fungus are likely due to various targets of GLY and/or co-formulants present in the 

commercial mixture. The greater toxicity of the formulation when compared to GLY alone, 

independently of the exposed organism (including A. nidulans), indicates that the additives are not 
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inert (Braconi et al., 2006; Clair et al., 2012; Cuhra et al., 2013; Lipok et al., 2010; Mesnage et al., 

2014; Mottier et al., 2013; Nicolas et al., 2016; Piola et al., 2013; Qiu et al., 2013). 

 

3.3. Disturbance of secondary and amino acid metabolisms 

  

 One of the most significant effects of R450 exposure was a modulation of mycotoxins 

metabolism. Our microarray analysis revealed a down-regulation of genes involved in 

sterigmatocystin/aflatoxin biosynthesis (Fig. 3A, 3B and 5A) and an up-regulation of genes 

associated with penicillin and cephalosporin biosynthesis (Fig. 3A and 5B). Another striking effect of 

R450 was that it affected the metabolism of amino acids, especially tyrosine, phenylalanine, alanine, 

tryptophan, arginine, proline and lysine (Fig. 3B and Supplemental Table S3). 

 In A. nidulans, lysine metabolism and penicillin biosynthesis are closely interwoven (Busch 

et al., 2003) since penicillin is synthesized from alpha-aminoadipate, a key intermediate in lysine 

biosynthesis and degradation pathways (Fig. 5B). L-lysine has been shown to repress the expression 

of penicillin biosynthesis genes (Brakhage and Turner, 1992). In this study, the expression of several 

genes (ANID_00016, ANID_02545, ANID_ 03496, ANID_06961, ANID_08105, ANID_08412 and 

ANID_09129), identified as putative orthologs of the yeast S. cererevisiae LYS2 gene encoding alpha 

aminoadipate reductase, proved to be down-regulated under R450 treatment (Supplemental Table 

S2). This suggests an accumulation of alpha-aminoadipate, consistent with a stimulation of the 

penicillin biosynthesis pathway. 

 A differential expression of a variety of A. nidulans genes related mainly to secondary 

metabolism, stress signalling and amino acid metabolism was already reported in the context of 

transcriptomic analysis of G-protein coupled receptors (GPCR) mutants compared to the wild-type 

strain (de Souza et al, 2013). GPCR are known to possibly act as mediators of toxic compound 

effects, either directly or indirectly. The direct way occurs by aberrant ligand-induced GPCR 
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activation resulting in the disruption of various cellular processes (Eriksson and Nordberg, 1986; 

Thomas and Dong, 2006; Clark et al., 2012; Jayasinghe and Volz, 2012; Fitzgerald et al., 2015). The 

indirect way corresponds to induction of detoxifying processes that protect the host cells from 

collateral damage (such as oxidative stress) caused by their defence response (Miller et al., 2015). 

Altogether, these data suggest an intimate relationship between stress signalling and regulation of 

secondary and amino acid metabolisms, consistently with results described in this report.  

 Secondary metabolism has been shown to be modulated in response to oxidative stress in 

filamentous fungi (Lee et al., 2005; Aguirre et al., 2006; Fountain et al., 2016). Many recent studies 

have reported the ability of GLY or GBH to induce oxidative stress (Bali et al., 2019; Burchfield et 

al., 2019; de Aguiar et al., 2016; de Melo Tarouco et al., 2016; Gomes and Juneau, 2016; Gomes et 

al., 2017; Martini et al., 2016; Mesnage et al., 2017; Murussi et al., 2016; Salvio et al., 2016; Soares 

et al., 2019; Wu et al., 2016), likely because GLY acts as a protonophore increasing mitochondrial 

membrane permeability to protons and Ca2+ (Olorunsogo, 1990), the latter being one of the major 

stimulators of the mitochondrial reactive oxygen species (ROS) accumulation (Kowaltowski and 

Vercesi, 1999; de Liz Oliveira Cavalli et al., 2013). Surprisingly, while the production of aflatoxin by 

Aspergillus flavus was stimulated in response to ROS exposure (Fountain et al., 2016), we observed 

a down-regulation of this mycotoxin biosynthesis pathway in A. nidulans under R450 treatment. In 

other studies, benzoate and amino benzoate have been shown to reduce aflatoxin production (Chipley 

and Uraih, 1980). Consistently, while benzoate degradation was up-regulated under ROS exposure in 

A. flavus (Fountain et al., 2016), it was down-regulated in A. nidulans under R450 treatment 

(Supplemental Table S2). However, Reverberi et al. (2005) showed that antioxidant enzymes 

stimulation inhibits aflatoxin production in Aspergillus parasiticus (incubated in the presence of 

lyophilised filtrates from different Lentina edodes isolates). Among the A. parasiticus antioxidant 

enzymes stimulated by L. edodes lyophilised filtrates was catalase. Some of the A. nidulans catalases 

also proved to be up-regulated under 0.007% R450 treatment (Poirier et al., 2017; this study: see 
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below). On the other hand, catalase was not part of the antioxidant enzymes stimulated in A. flavus 

exposed to ROS (Fountain et al., 2016). Overall, aflatoxin biosynthesis might be associated to the 

antioxidant status in the fungal cell, which can be modulated by external oxidative stimulus. 

 Mycotoxin production has been recently shown to be co-regulated with cell wall biosynthesis 

in A. nidulans (Feng et al., 2017), suggesting that a modulation of secondary metabolism regulation 

would also result in a modification of cell wall composition. We previously demonstrated that 

exposure of A. nidulans to R450 (at doses higher than the NOAEL one) resulted in a slight increase 

of the spore diameter and the hyphae width, as well as in a disruption of hyphal polarity, suggesting a 

modification of the wall structure affecting osmoregulation. This was consistent with proteome 

changes in A. nidulans exposed to 0.007% R450 which revealed a possible glycerol accumulation 

(Poirier et al., 2017). Such an increase in glycerol production has been shown to be the main 

response to a hyperosmotic stress (Blomberg and Adler, 1989; Nevoigt and Stahl, 1997; Redkar et 

al., 1995). 

 

3.4. Detoxification pathways and stress response 

 

 Another major cluster of functional disturbances included genes involved in the response to 

toxic substances and cellular detoxification pathways. The annotation reflecting a response to stress 

(Fig. 3A) was highly enriched (GO:0006950, FE = 3.0, p = 0.001). Out of the 11 genes composing 

this cluster, 7 were homologs to the yeast S. cerevisiae RTA1 gene involved in the resistance to 7-

aminocholesterol, a strong inhibitor of yeast and Gram+ bacteria proliferation (Soustre et al., 1996). 

RTA1 expression proved to be under the control of pleiotropic drug resistance transcription factors, 

suggesting a more general role in cell resistance to xenobiotics exposure (Manente and Ghislain, 

2009; Kolaczkowska et al., 2012). Three other functional groups of genes involved in xenobiotic 

detoxification had their expression altered: cytochrome P450 (P450s) enzymes-, glutathione-S-
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transferases (GSTs)-, and ATP-Binding Cassette (ABC) transporters-encoding genes. P450s and 

GSTs play a central role in xenobiotic metabolism, which includes 3 phases leading to the 

elimination of these foreign substances (Guéguen et al., 2006). While the phase I involves P450s 

enzymes which catalyze oxidation-reduction reactions, GSTs are part of the phase II and act by 

catalyzing the conjugation of reduced glutathione, via its thiol group, to electrophilic moieties of 

xenobiotic substrates. Phase III then consists of export of the resulting conjugated derivatives 

through the membranes using ABC transporters.  

 Cytochrome P450 genes expression was markedly altered, as indicated by an heatmap (Fig. 

6) which displayed a clear segregation between the two groups of cultures, untreated (“control”) and 

R450-treated (“Roundup) with a small intragroup variation. Genes associated with the corresponding 

InterPro annotation (“IPR001128:Cytochrome P450”) displayed large fold-changes. Of 31 genes in 

this functional group, 18 were down-regulated (with a maximum fold change of -9.4) and 13 were 

up-regulated (with a maximum fold change of 5.5) (Supplemental Table S3). Most of these genes 

belonged to the CYPome (Cytochrome P450 complement) as identified by Kelly et al. (2009). Two 

of them (ANID_06320 and ANID_05028: ppoB and ppoC, respectively) encoded fatty acid 

oxygenases, which have been shown to contain a cytochrome P450 heme thiolate domain in the C-

terminal region (Tsitsigiannis et al., 2005; Brodhun et al., 2010). 

 At least two GSTs (ANID_05831 and ANID_04905) were up-regulated with large fold 

changes (7 and 4, respectively) and low p-values (3.4E-12 and 1.6E-13, respectively) (Supplemental 

Table S3). Consistently, ANID_05831 was also found to be up-regulated (with a fold change of 3.45) 

in our previous proteomic analysis (Poirier et al., 2017). In A. nidulans, the glutathione system has 

been shown to interplay with the defence mechanism against hydrogen peroxide (H2O2) (Sato et al., 

2009). Interestingly, two genes coding for putative catalases (ANID_05918 and ANID_08553), the 

key enzymes required to transform this harmful oxygen compound by reducing it to water, displayed 

a modulation of their expression under R450 treatment with a high level of statistical significance 
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(Supplemental Table S3). While ANID_05918 (catC) was up-regulated, ANID_08553 expression 

was decreased. Similarly, our previous proteomic data revealed that abundance of two catalases (A 

and B) was inversely regulated under R450 treatment (Poirier et al., 2017). Altogether, our results 

confirm the existence in A. nidulans of at least four differentially regulated catalases, giving this 

fungus a large capability for cellular antioxidant responses (Kawasaki and Aguirre, 2001). 

 The InterPro protein domain classification annotation analysis also revealed an enrichment in 

genes coding for characterized or putative ABC transporters (Figure 3D). They were among the most 

up-regulated of this study. The atrC gene (ANID_02349), encoding the characterized ABC 

transporter C (Andrade et al., 2000), was overexpressed with a fold change of 35.7, while the 

putative ABC transporter-encoding gene ANID_08344 had a fold change of 36.3 (Supplemental 

Table S3).  

 

3.5. Chromosome mapping of genes with altered expression 

 

 In filamentous fungi, many genes involved in certain types of metabolic or developmental 

pathways are closely linked (Keller and Hohn, 1997). Such a cluster organization of functionally 

related genes suggests that some of the genes whose expression is modulated in response to an 

external signal would not be randomly distributed over the entire genome but localized to specific 

chromosomal regions. Chromosome mapping of up- and down-regulated A. nidulans genes under 

R450 treatment (FC > 1.5) indicated that 18% of them (328/1816) were closely linked to at least two 

others whose expression was affected in the same direction. Although many of these "bunches" of 

linked genes did not have a known associated function, others corresponded to well-characterized 

clusters, especially secondary metabolites biosynthesis gene clusters (Table 2). Such a chromosomal 

distribution for a significant fraction of R450-modified expression genes reflects an accurate cellular 

response, i.e. specific and coordinated metabolic modulations required to overcome or to offset the 
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effects of the herbicide. In contrast, this excludes a random transcriptional response due, for instance, 

to nonspecific changes in chromatin compaction along the chromosomes. However, it cannot be 

ruled out that the expression modulation of some closely linked genes is not due to the fact they are 

functionally related and belong to a specific cluster. This could be a side-effect of a very high 

expression modulation for one of them (high FC). Indeed, such an alteration in transcriptional 

expression requires, for the corresponding locus, a significant change in chromatin compaction. This 

important de-condensation (or condensation) of the chromatin may extend to neighbouring genes, 

resulting in a subsequent modification of their own transcriptional expression. Of all the "bunches" 

of closely linked modulated genes we identified, two (up-regulated) could fit with this hypothesis: 

one on chromosome I (4 genes), including ANID_06869 (FC = +121,5) encoding a putative 

agmatinase (Table 1; Fig. 7A), and one on chromosome VIII (4 genes), including ANID_09344 (FC 

= +57,5) encoding an ABC multidrug transporter (Table 1; Fig. 7B). Such a hypothesis of chromatin 

de-condensation side-effect, causing an up-regulation of the three 3 neighbouring genes, is supported 

by a fold change gradient all along the group of genes (Fig. 7A and 7B). 

 

 

4. Conclusions 

 

 In this study, we performed a transcriptomic analysis of the soil filamentous fungus A. 

nidulans, using a low-density array that covers 100% of the targeted coding sequences (Deloménie et 

al., 2016), in order to determine the possible molecular and cellular disturbances resulting from an 

exposure to a commercial formulation of GBH at a dose causing no macroscopic effect. Consistent 

with our previous proteomic analysis carried out in the same conditions, we evidenced that this GBH 

(R450) affects protein synthesis, amino acid metabolism, stress response and detoxification 

pathways, but also secondary metabolism. 
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 Modulation of translation genes suggested a stimulation of protein synthesis. These results 

confirm that the cellular and metabolic effects — and thus the lode of action — of Roundup in A. 

nidulans are totally different from those observed in plants or other organisms with a Class I EPSPS 

enzyme, whose inhibition by glyphosate blocks essential aromatic amino acid biosynthesis. Such a 

multiplicity of molecular mechanisms involved in Roundup toxicity, depending on the organism or 

cell type, has been previously reported (Nicolas et al., 2016). This can be explained by various 

targets of glyphosate or/and co-formulants present in the commercial GBH formulations which are 

erroneously presumed to be inert (Mesnage et al., 2015; Nicolas et al., 2016). 

 The up-regulation of genes involved in stress response and detoxification pathways following 

R450 exposure is consistent with xenobiotics elimination, but also necessary to maintain the redox 

balance of the cell given the well-known oxidative stress induced by GBH. Similarly, the modulation 

of secondary metabolism regulation, which proves to be intimately related to that of amino acid 

metabolism, is also part of the response to oxidative stress, the antioxidant functions of certain 

secondary metabolites offering an additional mechanism to handle ROS in filamentous fungi 

(Aguirre et al., 2006). 

 In conclusion, this transcriptomic analysis confirmed the multiple molecular and metabolic 

effects of the commercial GBH Roundup GT Plus in A. nidulans, despite the fact that the dose used 

was sufficiently low to prevent any growth and morphology disturbance. As a consequence, for any 

organism exposed to herbicides, the absence of visible toxic effects cannot be interpreted as a lack of 

metabolic alterations. This has direct implications for herbicide-tolerant genetically-modified (GM) 

plants which have their assessment based on the principle of substantial equivalence (i.e. close 

nutritional and compositional similarity between two crop-derived foods) (Aumaitre et al., 2002). A 

major gap is that this principle does not take into account the presence and effects of possible 

pesticide residues that are accumulated in crops (Cuhra, 2015). The data reported here, although 

based on the model organism A. nidulans, suggest the need to conduct integrated “omics” (including 
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metabolomics) studies before it can be concluded that herbicide-tolerant GM plants and their 

conventional counterparts are substantially equivalent. 
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Fig. 1. Transcriptome profile alterations in Roundup-treated Aspergillus nidulans. Fungus grown in 

the presence of 0,007% Roundup (~31 mg/L glyphosate among adjuvants) for 15 h was subjected to 

a full transcriptome microarray analysis. A. Principal Component Analysis of the gene expression 

profiles shows a separation of treated (black) and control (grey) samples: First component (1) 

explains 43% of data dispersion. B. Volcano plots of the transcriptome profile showing the log2 fold 

changes and the –log10 p-values in gene expression induced by Roundup exposure compared to 

controls. Data were selected at the cut off value p < 0.01 and fold change > 1.5 (red). 
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Fig. 2. Microarray data is confirmed by RT-qPCR analysis. A total of 28 genes were chosen for 

validation by RT-qPCR. A. The RT-qPCR was performed by SYBR Green I assay in duplicate and 

standardized against 2 reference genes (actA and gpdA). Two-tailed Student’s t-tests were performed 

to compare the R450-treated groups to their respective controls (* p<0.05, ** p<0.01, ***p<0.001). 

Fieller's theorem was used to calculate the 95% confidence interval (error bars) of the fold changes. 

The corresponding current A. nidulans gene name, when available, is indicated between brackets. B. 

The fold-changes measured with the microarrays are very correlated with those from the RT-qPCR 

validation as shown by the calculation of the Spearman's rank correlation coefficient (r= 0.96, 

p<0.0001). 
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Fig. 3. Functional disturbances caused by 0.007 % R450 in Aspergillus nidulans. The 1,816 

differentially expressed genes revealed by 2395 probes with fold-change >1,5 (p<0,01) were used to 

perform a Gene Ontology (GO) term (A), a KEGG pathway (B), a GO Molecular Function term (C), 

and an InterPro (D) enrichment analysis. A total of 1,547 genes were recognized. The p-values 

calculated according to a modified Fisher’s exact test (EASE score) are presented for the most 

enriched terms. Fold enrichments are displayed as bar labels. 
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Fig. 4. Heatmaps of the major ontologically enriched ribosomal functions. Genes whose expression 

are displayed in this figure are part of the KEGG pathway  “ani03010:Ribosome”. A distinct 

separation based on direction (up- or down-regulation) of gene expression, between Roundup-treated 

and control A. nidulans cultures is discernible. 
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Fig. 5.  Alterations of transcriptome provoked by R450 reflect a decrease in aflatoxin synthesis 

concomitant to an increase in antibiotic synthesis. The list of 1,816 differentially expressed genes 

with fold-change >1,5 (p<0,01) was used to represent alterations (in green) in the KEGG pathways 

“ani00254:Aflatoxin biosynthesis” and “ani00311:Penicillin and cephalosporin biosynthesis”. Fold 

changes are indicated in bold characters. 
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Fig. 6. GBH exposure induced changes in cytochrome P450 gene expression. The heatmap 

displaying differences in cytochrome P450 genes expression was made by selecting InterPro terms 

associated with cytochrome P450. The information given in straight letters between brackets 

corresponds to the A. nidulans P450s nomenclature as described by Kelly et al. (2009); the 

information given in italics between brackets indicates the current A. nidulans gene name. 
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Fig. 7. Closely linked genes up-regulated by R450 treatment with a Fold Changes (FC) gradient. A. 

Group of genes located on Chromosome I. ANID with the highest FC (06869) encodes a putative 

agmatinase (Table 1). Metabolic functions of the three others remain unknown. B. Group of genes 

located on Chromosome VIII. ANID with the highest FC (09344) encodes an ABC multidrug 

transporter (Table I). Metabolic functions of the three others remain unknown. 
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Table 1 

List of the 20 most up- or down-regulated genes after R450 exposure. 

 

ANIDa 

 

 

Gene ID 

 

 

Encoded protein (EC number) 

 

 

FCb 

 

 

p valuec 

    

Up-regulated 

 

06869  

 

2870566 

 

Putative agmatinase (3.5.3.11) 

 

+121.5 

 

1.2E-10 

02622 (ipnA) 

09344 

2874542 

2867784 

Isopenicillin N-synthase (1.21.3.1) 

ABC multidrug transporter 

+58.9 

+57.6 

2.8E-11 

4.8E-11 

09345 2867937 12-oxophytodienoate reductase (1.3.1.42) +42.0 5.0E-11 

00992 

02349 (atrC) 

2876767 

2875142 

NmrA-like family protein 

ATP-binding cassette multidrug transport protein 

+40.6 

+35.7 

1.5E-13 

2.6E-13 

00197 2875975 Uncharacterized protein +33.6 1.2E-14 

08344 2868759 ABC multidrug transporter +33.2 5.9E-13 

02561 2874590 Uncharacterized protein +28.8 2.1E-09 

07055 

08964 

2870196 

2868217 

Cytochrome b2 

Uncharacterized protein 

+28.7 

+27.8 

1.6E-10 

5.8E-16 

08149 (afcA) 

05467 

2869274 

2871758 

Alpha-L-fucosidase A (3.2.1.51) 

Uncharacterized protein 

+25.3 

+20.3 

1.7E-10 

1.9E-11 

05940 2870829 Putative DUF636 domain-containing protein (C-S lyase activity) +20.1 8.0E-15 

08148 2869262 Uncharacterized protein +18.2 3.7E-14 

08345 2868822 Uncharacterized protein +17.3 7.3E-14 

08963 2868228 Uncharacterized protein +16.7 1.7E-11 

07792 

02684 

2869489 

2873817 

Putative lysophospholipase A (3.1.1.5) 

Putative Sterol C24(28) reductase (1.3.1.71) 

+15.7 

+15.2 

6.9E-16 

2.0E-13 

03264 (xtrB) 2874245 Putative MFS multidrug transporter +15.2 5.8E-10 

   
 

 

Down-regulated 

 

09273 

 

2867822 

 

Putative NlpC/P60-like cell-wall peptidase 

 

-51.6 

 

9.4E-12 

05046 2872848 Anisin-1 (secreted defensin-like protein) -41.3 9.7E-13 
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01567 2875642 Uncharacterized protein -27.2 2.7E-11 

01756 2875128 Uncharacterized protein -21.6 2.8E-11 

08422 (mrvB) 2868635 Uncharacterized protein -19.6 9.4E-11 

02538 2875721 Uncharacterized protein -18.6 1.3E-12 

07804 (stcW) 2869754 Monooxygenase (sterigmatocystin biosynthesis) (1.14.13.-)  -17.4 3.1E-09 

08093 2868894 Putative CCCH zinc finger DNA binding protein -17.1 1.4E-10 

07816 (stcI) 2869364 Lipase/esterase (sterigmatocystin biosynthesis) -15.7 2.7E-07 

08611 2868559 Uncharacterized protein -15.7 3.7E-12 

08775 2868319 Uncharacterized protein -15.7 3.4E-08 

06476 2871376 Uncharacterized protein -15.4 5.9E-11 

07806 (stcU) 2869435 Versicolorin reductase (sterigmatocystin biosynthesis) -13.8 4.4E-10 

09142 

07810 (stcQ) 

2868118 

2869633 

Uncharacterized protein 

Putative averufin oxydase A (sterigmatocystin biosynthesis) 

-12.3 

-12.2 

1.4E-11 

6.5E-07 

07058 2869936 Uncharacterized protein -12.0 5.7E-11 

07825 (stcA) 2869640 Putative sterigmatocystin biosynthesis polyketide synthase (PKS) -11.6 1.1E-09 

07812 (stcN) 2869564 Uncharacterized protein -11.5 6.0E-09 

07809  2869531 Possibly involved in aflatoxin biosynthesis (locus in stc cluster)  -11.1 3.1E-10 

06788 2870315 Putative Zn(II)2Cys6 transcription factor -10.8 1.8E-10 

 

 

aThe corresponding current A. nidulans gene name is indicated between brackets. 

bFold change ; “+” or “-” indicates that the gene is up- or down-regulated, respectively. For genes whose expression 

alteration was revealed by several probes, the indicated FC is the average value. 

c For genes whose expression alteration was revealed by several probes, the indicated p value is the highest one. 
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Table 2 

Secondary metabolism gene clusters with a positive or negative co-regulation under R450 treatment 

 

Secondary metabolite 

 

 

Cluster name (reference) 

 

Chromosome 

 

Regulated genesa 

(up or down)  

 

 

Sterigmatocystin 

 

stc   (Brown et al, 1996) 

 

IV 

 

22 (down) 

 

Oresellinic acid/F9775 

 

ors   (Sanchez et al, 2010) 

 

II 

 

5 (up) 

 

Aspernidine A 

 

pkf   (Yaegashi et al, 2013) 

 

VI 

 

5 (down) 

 

Penicillin 

 

pcb//pen   (Montenegro et al, 1992) 

 

VI 

 

3 (up) 

 

Terriquinone A 

 

tdi   (Bouhired et al, 2007) 

 

V 

 

4 (down) 

 

Emericellamide 

 

 

eas   (Chiang et al, 2008) 

 

VII 

 

3 (down) 

 

aNumber of genes, inside the cluster, co-regulated by R450 

 

 

 

 




