
HAL Id: hal-03489391
https://hal.science/hal-03489391v1

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Electrochemistry of CueO-like multicopper oxidases
involved in copper homeostasis

I. Mazurenko, T. Adachi, B. Ezraty, M. Ilbert, K. Sowa, E. Lojou

To cite this version:
I. Mazurenko, T. Adachi, B. Ezraty, M. Ilbert, K. Sowa, et al.. Electrochemistry of CueO-like mul-
ticopper oxidases involved in copper homeostasis. Current Opinion in Electrochemistry, 2022, 32,
pp.100919. �10.1016/j.coelec.2021.100919�. �hal-03489391�

https://hal.science/hal-03489391v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Electrochemistry of CueO-like multicopper oxidases involved in copper 

homeostasis 

I. Mazurenko1, T. Adachi2, B. Ezraty3, M. Ilbert1, K. Sowa2, E. Lojou1* 

1 Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, 

Institut de Microbiologie de la Méditerranée, 31 chemin Aiguier, 13402 Marseille, France 

2 Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, 

Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan 

3 Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de 

la Méditerranée, Marseille, France, 31 chemin Aiguier, 13402 Marseille, France 

 

Abstract 

Multicopper oxidases are widely studied enzymes catalyzing the oxygen reduction reaction. 

Among this family, one class belongs to the copper efflux oxidases (CueOs). They are far less 

studied in bioelectrochemistry mainly because of the low potential at which they reduce O2. 

However, the presence of a specific domain rich in methionine residues covering the first 

copper electron acceptor induces fundamental issues regarding the electron transfer pathway. 

In addition, as they are involved in copper homeostasis, the understanding of their catalytic 

mechanism may have important consequences in therapeutic applications. We present here the 

last findings reported on CueOs based on electrochemical tools. We focus on the proposed roles 

of the methionine rich domain on the electron transfer process. Especially, copper binding to 

this domain and consequences on the interfacial electron transfer process appears to be two 

fundamental aspects to discuss.  
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Introduction 

Copper is an essential micronutrient in living systems, acting as a cofactor of enzymes involved 

in many biological processes from photosynthesis and electron transfer (ET) to oxidative stress 

protection [1,2]. Copper in excess is however toxic for the cell, the different routes for toxicity 

being dependent on many factors such as oxygen availability, copper redox state, concentration, 

localization and complexation in the cell. Actually, like iron, copper is known to produce 

Reactive Oxygen Species (ROS) via Fenton chemistry in vitro, potentially occurring in vivo in 

Gram-negative bacteria and inducing copper toxicity in aerobic conditions [3]. On the other 

hand, copper toxicity for cells is at the origin of attractive strategies to develop novel 

antibacterial solutions in therapeutic approaches or in agriculture [4]. Among the different 

systems involved in copper tolerance in bacteria, the copper efflux oxidase (CueO) couples in 

vivo the oxidation of toxic Cu+ to the reduction of O2 into water [1,3,5]. 

CueOs belong to the multicopper oxidase (MCO) family which is widely distributed in all 

kingdoms of life and many environments. MCOs transform a variety of substrates including 

phenols, and share the presence of 4 copper centers. Substrate oxidation occurs at CuT1, and 

electrons flow intramolecularly to the trinuclear copper cluster (TNC, consisting of one CuT2 

and a dinuclear CuT3) where oxygen is reduced into water [6,7]. MCOs are arranged in 3 

cupredoxin-like -barrel domains, the domain 3 hosting CuT1, while TNC lies at the interface 

between domains 1 and 3. E. coli CueO, the most widely studied CueO-enzyme, contains an 

additional domain covering the CuT1 and rich in Met residues. This particular feature, although 

with different structural properties [8], seems to be shared by other CueO-like MCOs. It would 

induce a low phenol oxidase activity but offers an ET pathway for cuprous oxidase activity. 

 



Figure 1. CueO-like enzyme main properties and challenges 

 

Although electrochemists have widely used MCOs during the last years for their efficiency to 

reduce oxygen with low overpotentials and have defined some parameters that control their 

efficient wiring on electrodes [9-11], CueOs were much less studied. Indeed, the coordination 

sphere of CuT1 induces a much lower potential than in other MCO such as fungal laccases 

(LAC), making CueO less attractive for applications. On the other hand, bacterial MCOs are 

more stable than fungal LACs, especially at neutral pH and in the presence of classical 

inhibitors such as halides [12]. Furthermore, they are readily produced and purified in bacterial 

expression systems.  

With the concomitant need of copper homeostasis understanding and rationalization of enzyme-

based electrocatalysis, CueO-related studies have been increasingly reported in the last years 

(Figure 1). The current review discusses how electrochemistry participates to this improved 

knowledge. We will highlight the diversity of enzymes susceptible to be involved, with their 

main structural and biochemical properties. We will explore their electrochemical behavior, 

including the molecular basis that influences the direct electrochemical communication (DET) 

with the electrode, as well as the interfaces developed for DET. We will especially examine 

how Met-rich domains may interfere with the electrochemical behavior. We will conclude by 

fundamental challenges that need to be overcome for understanding and use of CueO based 

bioelectrocatalytic devices.  

 

Diversity of CueO-like MCOs 

In a recent Laccase and Multicopper Oxidase Engineering Database providing a systematic 

analysis and clustering of known MCO sequences, the bacterial CueO superfamily was shown 

to regroup almost 5000 proteins [13]. CueO-like proteins have been reported in non-pathogenic 

and pathogenic bacteria [14-21]. They can be found in a variety of environments, i.e. mesophilic 

(as E. coli CueO), thermophilic (cases of Thermus thermophilus laccase (Tt LAC), Aquifex 

aeolicus McoA and Purobaculum aeophilum McoP) or psychrophilic (case of 

Pseudoalteromonas haloplanktis), or acidophilic bacteria, allowing to tune their properties in 

terms of activity and stability in diverse conditions [14,17,22,23]. A CueO-like protein has even 

been identified in the anaerobic sulfate reducing bacterium Desulfovibrio sp. A2 raising the 

question of its role and function in low O2 availability conditions [24]. As far as this has been 



evaluated, they are all involved in copper tolerance, operate as cuprous oxidases and their 

phenol oxidase activity is most often increased in vitro by Cu2+ exogeneous addition. 

 

 

Figure 2. Structural features of CueO-like enzymes (a-g) compared to a non-CueO enzyme (h). (a-b) 

E.coli CueO (PDB 3OD3). The additional domain comprises Met and Asp ligands for a 5th copper atom 

(Cu5), a helical region with 6 Met that covers the CuT1 site and Cu5, and a loosely constrained loop 

lying across the Met-rich helix and carrying 5 Met and 5 His residues [25-29]. (b) Zoom on the Met-

rich domain of E.coli CueO (PDB 3OD3) showing an additional copper atom (Cu5) bound close to T1 

modelled after another structure (PDB 3NT0). (c) Ochrobactrum sp. CueO (PDB 6EVG). Additional 

helical domain is covering CuT1 with 12 Met [18]. A part of this domain (A350-A391) is disordered 

and not resolved in the structure. (d) Purobaculum aerophilum McoP (PDB 3AW5). A large Met-rich 

loop covers the CuT1 [21]. (e) Aquifex aeolicus McoA (PDB 6SYY). A 29-residues loop is close to the 

CuT1 comprising 12 Met [30]. A major part of this loop (G327-G354) is disordered and not resolved 

in the structure. (f) Thermus thermophilus LAC (PDB 2XU9). A Met-rich hairpin is located on the top 

of the substrate binding pocket near CuT1 which accommodates 6 Met among 16 residues [31,32]. (g) 

Campylobacter jejuni McoC (PDB 3ZX1). 5 Met residues can be found in a helix over CuT1. (h) Bacillus 

subtilis CotA (PDB 1W6L) is a non-CueO enzyme given for comparison. Copper atoms are depicted in 

blue spheres, methionine residues in orange sticks. 

All CueOs present an additional domain covering the CuT1 not found in other MCOs. This 

domain is rich in Met residues, but depending on the organism, it presents a variety of structural 

organization and a large range of number of Met residues engaged (Figure 2) [15,21,25,29-34]. 

The consequences of the presence of the Met-rich domain on CueO activity have been mostly 

discussed in terms of restricted organic substrate accessibility toward CuT1 and additional Cu 

binding [35]. The first assumption is highlighted by the following results. A thermodynamic 

study of the CuT1 redox potential of Tt LAC, revealed a negative reduction entropy change 

linked to inaccessibility of CuT1 [34]. Modeling of McoP suggested that CuT1 is less exposed 



than in classical MCOs (such as B. subtilis CotA), but not so buried as in E. coli CueO [33]. 

Last but not least, in McoA, the loop close to the CuT1 was demonstrated by molecular 

dynamics simulation and X-ray scattering to control substrate access [30]. As an almost general 

rule, restricted organic substrate accessibility leads to a 1-2 orders higher Michaelis constant 

(Km) for organic substrates such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid 

(ABTS) than in classical MCOs [15,26,36-40]. Accordingly, E. coli CueO mutant lacking the 

Met-rich region was capable of efficiently oxidizing ABTS [40]. Additional Cu binding is 

alternatively proposed to offer an ET pathway to the buried CuT1. Hence, the phenol oxidase 

activity of CueO proteins is greatly enhanced by Cu2+ addition in the medium [28]. However, 

this ET pathway permitted thanks to the Met-rich domain was clarified only in the case of E. 

coli CueO, where in addition to a 5th copper atom (Cu5) found in the insert, at least two other 

copper atoms were identified bound to the Met-rich helix, with Met residues acting as ligands. 

Cortes et al. proposed a specific role for these additional copper sites for Cu+ binding allowing 

cuprous oxidase activity [41]. They suggested that phenol oxidase activity could only occur 

upon full occupation of all copper sites, and concluded that this couldn’t be the physiological 

function of CueO in vivo, considering the low availability of copper inside the cell. The dual 

role of the Met-rich domain on the CueO activity was also highlighted in McoA. Shorter loops 

obtained by increasing truncation of the 29-residues loop close to the CuT1 were shown to 

induce higher catalytic constant (kcat) for ABTS whereas longer loops increased kcat for Cu+ 

[30]. Cuprous oxidase activity is an important research concept toward the understanding of Cu 

homeostasis. However, since free Cu+ is not stable under air, unnatural Cu+ complexes such as 

[Cu(MeCN)4]
+ and [Cu(bicinchoninate)2]

3− are to be used, which do not reflect the in vivo 

environment. Further considerations are required to propose a mechanism fully representative 

of copper interactions with cells.  

 

CueO electrochemistry : molecular basis for direct enzyme wiring at the electrode  

Unlike fungal LACs, electrochemical studies on CueO-like proteins other than E. coli CueO 

are still rare. Most of the works reported to date consider direct ET between the protein and the 

electrochemical interface with no redox mediators. Various materials were evaluated as 

electrode support for the enzyme (Figure 3). An early study in Kano’s group demonstrated that 

E. coli CueO could generate high current densities more than 10 mA/cm2 for O2 reduction when 

adsorbed on mesoporous carbon support, justifying the interest of CueO as a biocatalyst [42]. 

As another marked feature, addition of up to 400 mM Cl- at pH 6.5 did not change the current 

magnitude, showing the interest of using CueO as O2 reduction catalyst despite the lower redox 



potential when compared to fungal LACs [43]. Unlike homogeneous activity in solution, ET 

occurred at the electrode even in the absence of the Cu5 and proceeded through CuT1 with an 

onset potential around 0.4 V vs Ag/AgCl at pH 5. Although the reason for that difference was 

not elucidated, the mesopore size of the electrode was proposed to favor the direct wiring of the 

protein [44]. The electrochemical behavior of Tt LAC was first investigated by Gray’s group 

after adsorption on ketjen black electrodes functionalized by pyrenebutyric acid [45]. An onset 

potential of 340 mV vs Ag/AgCl (pH 5) and catalytic current densities in the range of 500 

µA/cm2 were observed, i.e. tenfold lower than those recorded for E. coli CueO on the same 

electrode material. The knowledge of the electroactive immobilized proteins allowed to 

calculate an interfacial rate constant of 1 s-1, which implies a large distance between CuT1 and 

the electrode, further estimated to fall in the range of 24-28 Ǻ. 

Attempts to control the orientation of CueO enzymes succeeded to enhance the interfacial ET 

rate. Tt LAC electrochemistry was revisited after immobilization on either SAM-modified gold 

electrodes [46,47] or CNT-modified graphite electrodes [22,46]. While no catalytic current for 

O2 reduction could be observed at negatively charged electrodes, a catalytic process was 

recorded at amino-terminated SAM electrodes or amino-functionalized CNT-based electrodes. 

The onset potential reflected a process passing through the CuT1. As surface plasmon resonance 

and ellipsometry proved the existence of a monolayer of enzyme whatever the electrode, the 

on-off catalytic current as a function of the electrode charge was proposed to be linked to a 

specific orientation controlled by electrostatic interaction between the electrode and the 

environment of the CuT1. Examination of the structure of the enzyme underlines that the CuT1 

is buried in the protein shell in a negatively charged environment, which explains the 

requirement of a positive surface to get a DET orientation of the enzyme. A clear negative 

charge was also highlighted in the surrounding of E. coli CueO CuT1 explaining the benefit of 

a positively charged electrode for DET orientation [36,43,48].  

Alfonta’group studied the electrochemistry of E. coli CueO chemically clicked to a glassy 

carbon electrode through non-canonical amino acids anchorage sites [49]. Different ET 

efficiency was found according to the anchoring point in the enzyme, although it is difficult to 

determine whether this is controlled by enzyme orientation or by flexibility of the linker. McoP 

was immobilized on modified CNTs through either metal affinity bonding with His-tag either 

positioned at C-ter or N-ter parts of the enzyme [50], or through a CNT-binding peptide 

introduced at the C-ter of the protein [51,52]. A preferential orientation inducing a shorter 



distance between CuT1 and the binding-tag or peptide at the C-ter was proposed to induce 

higher current densities for O2 reduction.  

 

Figure 3. Strategies developed for DET involving CueOs at electrochemical interfaces. (A) 

Immobilization through electrostatic interactions. First row: due to anisotropy of surface charges and 



the presence of a negative patch in the environment of CuT1 (colored in red), the CueO-like enzyme Tt 

LAC presents a dipole moment of more than 800 Debye pointing positive opposite to the CuT1 

(represented in yellow line). The consequence is the control of the enzyme orientation through 

electrostatic interactions (second row). DET can occur only on positively charged electrodes, either on 

amino-terminated self-assembled monolayers on gold or on amino functionalized carbon nanotubes. 

Cyclic voltamograms are run at 5 mV/s, under O2 (plain lines) or N2 (dotted lines). Adapted with 

permission from [46]; (B) Immobilization of CueO in a matrix with suitable pore size. O2 reduction 

catalyzed by E. coli CueO on (a) planar and (b) porous Au microelectrodes. Solid and dotted lines 

represent CV recorded under O2 and Ar respectively. In (b) the dashed line corresponds to the control 

with no enzyme under O2. The enhancement in catalytic current for O2 reduction suggests an enhanced 

enzyme loading as well as an enhanced proportion of enzyme correctly oriented. Adapted with 

permission from [44]; (C) Immobilization through CueO engineering. McoP was genetically engineered 

near CuT1 with a peptide able to bind to carbon nanotubes (CBP). DET on CNTs was only observed 

via this engineered CueO. Adapted with permission from [51]. 

 

CueO electrochemistry : how to enhance CuT1 redox potential  

In CueOs, CuT1 presents a four-coordinate trigonal pyramid with copper ion ligated by two 

His, one Cys and one Met. Generally speaking, a copper site with a strong axial ligand bond 

will present a low formal potential owing to stabilization of the oxidized state [7]. The Met 

axial ligand of CuT1 in CueOs, compared to Leu or Phe found in most MCOs from fungi, 

induces a redox potential 200-300 mV lower than recorded in fungal LACs. Redox potentials 

for CuT1 in CueO-like enzymes were reported to be 200-350 mV vs Ag/AgCl [34,53]. Many 

works reported various mutations in the CuT1 coordination spheres with the aim of increasing 

the operational voltage of CueOs [13,54-56]. Site directed mutagenesis was realized in Tt LAC 

and McoP by substitution of the Met CuT1 axial ligand to Leu or Phe. Direct electrochemistry 

experiments underlined a positive shift between 60 and 100 mV of the onset potential for O2 

reduction [22,57,58]. Poor stability of the mutants however precluded an enhancement of the 

activity. Random mutation and site-saturation mutagenesis libraries were generated on E. coli 

CueO. O2 bioelectroreduction was measured through an electrochemical platform based on 

CueO containing crude extracts dispatched in 96-well microtiter plates and adsorbed on a CNT-

modified electrode [59]. 1500 clones were tested, among which 4.8% exhibited increased redox 

potentials. A double mutant allowed a decrease of 140 mV in the overpotential. The amino 

acids involved (D439 and L502) are located in the CuT1 second coordination sphere and form 

hydrogen bonds with the coordinated ligands explaining the enhanced potential. The so-built 



electrode was stable for 1 week. The same electrochemical platform was used to evaluate site 

mutation of the ligands of Cu5 in E. coli CueO [60]. 11 variants were identified showing 

enhanced electroactivity for O2 reduction. In particular mutation of the residue D439 involved 

in the bonding with Cu5 showed 4-fold catalytic current enhancement because of a synergetic 

effect between CuT1 redox potential positive shift and distance between Cu5 and CuT1 

decrease. Search for CuT1 enhanced redox potential also induced side effects on the activity. 

A directed evolution strategy allowed to isolate a McoP mutant exhibiting an enhanced activity 

both in solution or at the electrode, although the CuT1 redox potential was only slightly 

enhanced [61]. The amino acid F290, not involved in CuT1 coordination, was shown to be 

essential. From a structural point of view, this mutation was found to increase the loop 

flexibility adjacent to the CuT1. A marked feature in the case of Tt LAC M455L mutant is the 

inhibition of the activity upon Cu2+ addition, suggesting that the Met-rich domain would not be 

the only actor in copper activation of CueO-like proteins [22]. Future research must definitely 

be directed towards the consideration of both thermodynamics and kinetics to understand the 

mechanisms under Cu2+-related activation/inhibition of the CueO activity. 

 

CueO electrochemistry : role of the Met-rich domain  

Additional Cu atoms binding to the Met-rich domain in CueOs and consecutive ET pathway to 

CuT1 is expected to play a crucial role in the interfacial ET. Nevertheless, as clearly highlighted 

in the previously described electrochemical studies, the potential influence of this Met-domain 

and even of Cu5 presence is rarely considered. The apparent discrepancy between Cu2+ 

activation of CueO-like enzymes in solution and the evidence of a CueO-related electrocatalytic 

current for O2 reduction with no requirement of Cu2+ is also largely neglected.  

Different roles of the Met-rich domain in the interfacial ET can be discussed (Figure 4). It could 

be first expected that the Met-rich domain would block the electrical wiring to the 

electrochemical interface. However, the heterogeneous ET at electrodes does not proceed 

through the same mechanism as in solution. Actually, ET can proceed at the electrochemical 

interface provided that the distance to CuT1 is short enough, with no restriction due to steric 

hindrance as in the case of organic substrates. Adachi et al. reported the electrochemical 

behavior of E. coli CueO variants lacking parts of the Met-rich helix on differently charged 

porous carbon electrodes [48]. DET was obtained no matter the mutation, and the 

heterogeneous ET rate was unchanged strongly suggesting that electrons were transferred from 



the electrode to the CuT1 not passing through the Met-rich helix. The same situation was found 

with Tt LAC either WT or hairpin-deletant immobilized on CNT bearing different charges [46]. 

However, it was shown that addition of Cu2+ in the electrolyte induces a new catalytic process 

at a lower potential than expected for catalysis passing through the CuT1. This new process 

illustrates a second role for the Met-rich domain in the interfacial ET induced by additional 

copper binding to the Met-rich domain. It was tentatively attributed to the cuprous oxidase 

activity of the Tt LAC immobilized on CNTs [22,46]. Potential role of occupancy of Cu5 in E. 

coli CueO-based bioelectrocatalysis was reported in one other work, where the increase in the 

catalytic current was linked to a specific orientation of the enzyme through the Met-rich domain 

(see next section) [60]. No cuprous oxidase activity could be however identified. Clearly, this 

topic is still in its infancy and further investigation are required to fully understand the involved 

mechanisms. The fact that the deletion of the Met-rich domain in Tt LAC did not suppress the 

Cu-induced electrocatalytic process, and that Met residues in the coordination sphere of CuT1 

were also involved in the Cu2+-activation process further support this conclusion [22,46].  

An alternative role for the Met-rich domain of CueOs, which is closely related, is linked to the 

flexibility of the Met-rich domain with an even enhanced flexibility upon Cu binding, as 

demonstrated in CueO enzymes [26,62-65]. However, this flexibility hasn’t been yet 

demonstrated to influence the electrochemical behavior. 

Finally, the Met-rich domain may serve to anchor the protein in a favorable orientation for DET. 

In agreement, Climent et al. explained the DET process they observed with E. coli CueO on 

bare gold by the formation of sulfur-gold bonds that place CuT1 at a short distance of the 

electrode [43]. The role of the Met-rich domain in E. coli CueO was recently rationalized by 

considering the adsorption and electrocatalytic properties of WT CueO and two mutants, one 

lacking the Met-rich domain and the other one in which Met in the helix was mutated to Ser 

residues [29]. Only WT CueO was electroactive towards O2 reduction on gold electrode, 

although both WT and mutants were proved by SPR measurements to be adsorbed. The 

involvement of the Met-rich domain for DET orientation was thus proposed. Upon adsorption 

on hydrophobic carbon materials, the ABTS-mediated catalytic current was largely enhanced 

with the helix mutant compared to the WT, but the direct electrocatalytic current was greatly 

decreased. Such results were explained based on an adsorption taking place through the Met-

rich helix and controlled by hydrophobic interactions.  



 

Figure 4. How Met-rich domain affects CueO electrochemistry? (A) Substrate pocket accessibility is 

regulated by the flexibility of the Met-rich domain. Top schemes: a very low mediated electron transfer 

process (blue chronoamperometric curve) can be measured after 1 mM ABTS addition when Tt LAC is 

immobilized on negatively charged CNTs in a non-efficient orientation for DET. Inaccessibility of CuT1 

is also reflected by the high value of Km for ABTS (2.9 mM) obtained by spectrophotometric 

homogeneous assays. Adapted with permission from [46]. Down schemes: the flexibility of the Met-loop 

in McoA is demonstrated by molecular dynamic simulation to switch from open-to-close transition, 

having a regulatory role for CueO activity. Adapted with permission from [30]; (B) Additional Cu 

binding to the Met-rich domain controls CueO activity. Top schemes: in the presence of Cu2+ in the 

electrolyte, the electrogenerated Cu+ binds to the Met-Rich domain of Tt LAC, inducing a new catalytic 

process at a potential 150 mV lower than the expected O2 reduction passing through the CuT1. This 

catalytic process is Cu2+ dependent and has been attributed to the cuprous oxidase activity of the 

enzyme. Adapted with permission from [46]. Down schemes: Mutations of the ligand of Cu5 in E. coli 

CueO allows to increase catalytic currents and to reduce the overvoltage for O2 reduction. Results have 

been attributed to synergetic effects of redox potential change of CuT1, increase in the hydrophobicity 

of Cu5 and decrease of the distance between Cu5 and CuT1 offering an effective ET pathway. The red 

CV curve is the WT CueO, while other coloured dotted lines are obtained for M355A, D360K, D439T, 

M441H. Adapted with permission from [60]; (C) The Met-domain controls CueO adsorption on gold 



and carbon nanotube-based electrodes. Top schemes: O2 reduction only occurs on gold electrode with 

the WT CueO (b), while the Met-rich domain (c) and Ser-rich domain (d) mutants are ineffective, 

although adsorbed as proved by SPR measurement (insert). Down schemes: comparative CVs for O2 

reduction by (a) CueO WT and (b) CueO Met-rich mutant suggesting a process controlled by fast enzyme 

adsorption through the Met-rich domain on hydrophobic carbon nanotubes. Such an assumption is 

further attested by MD simulation of (A) CueO WT adsorption and (B) Cueo Met-rich mutant. Adapted 

with permission from [29]. 

 

Conclusion and remaining challenges 

We have shown in this short review the particularity of CueOs compared to other classical 

MCOs, linked to the presence of a Met-rich domain covering Cu T1, decreasing the substrate 

accessibility but allowing new ET pathway by additional Cu binding. Although recent works 

have highlighted the role of this Met-rich domain, many questions are still open. The first 

question concerns the requirement of many copper binding sites, with a predominance of Met 

residues as ligands in CueOs. What is the exact role of these Met residues and do they all have 

the same role, are all the sites occupied sequentially or at the same time, is this dependent on 

the environment conditions, i.e. O2 availability and copper concentration? The other question 

that arises from the E. coli CueO structure is the way and state copper can be transferred to the 

Met-rich domain. The final question concerns the role of Met residues in the presence of ROS. 

Electrochemistry should provide clues by the in-situ generation of Cu+ at the electrode, hence 

elucidating the affinity and role of Cu2+/Cu+ binding, by studying the effect of ROS produced 

for example trough ring-disk electrode experiments, and by filling the gap between in vivo 

copper tolerance of CueO-containing bacteria and in vitro CueO activities. But most of all, it 

will be crucial in future works to consider thermodynamics and kinetics of the ET pathway 

through CuT1 for understanding the unique properties of CueOs. Such fundamental research 

will allow other proteins than CueOs also involved in copper homeostasis to be studied [62]. It 

will enlarge the applicative potential of CueO-like enzymes as biocatalysts for oxidative 

polymerization of phenols [28,36,66], or for O2 [44] or copper biosensor development. 
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