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The literature on inconsistency measures has ignored a distinction, that is, differentiating absolute measures and relative measures. An absolute measure gives the total amount of inconsistency in the knowledge base but a relative measure computes, by some criteria, the proportion of the base that is inconsistent. To compare the inconsistency measures, researchers have proposed postulates for such measures. We split these postulates into three groups: ones (including two new postulates) that relative measures should satisfy, ones inappropriate for relative measures, and ones that relative measures may satisfy. We obtain some new results upon the relationships between these groups of postulates. On these grounds, we introduce a formal definition for relative inconsistency measures. We consider some relative measures previously proposed and define several new ones that serve as examples. We show that all of these measures satisfy the new formal definition.

Introduction

The field of inconsistency measures is blossoming as shown by a recent special issue of a prominent journal [START_REF]Special Issue on Theories of Inconsistency Measures and their Applications[END_REF] and even a book devoted to it [START_REF]Measuring Inconsistency in Information[END_REF]. Researchers have proposed numerous different inconsistency measures (see the recent survey [START_REF] Thimm | On the evaluation of inconsistency measures[END_REF]), but hardly any attention has been paid to the difference between two kinds of inconsistency measures, 5 that is, absolute measures and relative measures -although this distinction was already made in the paper that originally introduced the concept of measuring inconsistency [START_REF] Grant | Classifications for inconsistent theories[END_REF].

An absolute inconsistency measure gives the amount of inconsistency in a knowledge base without regard to the size of the knowledge base. It is thus an answer to the question "How much inconsistency is in the knowledge base?" A relative inconsistency measure with numerous inconsistencies and a much smaller knowledge base K that has almost as many inconsistencies as K. The absolute inconsistency of K is greater than the absolute inconsistency of K just because it has more inconsistencies. But we can consider K to be more inconsistent than K since relative to its size it has more inconsistencies than K. An application of a relative inconsistency measure can be found in [START_REF] Mcareavey | Measuring inconsistency in a network intrusion detection rule set based on Snort[END_REF], that deals with measuring inconsistencies in a set of intrusion detection rules.

Among existing inconsistency measures, most appear to be absolute measures and others appear to be relative measures but in both cases the distinction between being absolute or relative is missing from their definition. To compare inconsistency measures, researchers have proposed postulates, representing possible properties for such measures.

Since an absolute measure is doomed to have different properties than a relative measure, postulates are a perspicuous way to make explicit features that help distinguish relative measures from other inconsistency measures. We sort these postulates in three groups: postulates that relatives measures are expected to satisfy (including two new postulates specific to relative measures), postulates inadequate for relative measures, and postulates that an inconsistency measure can satisfy regardless of whether it is absolute or relative. This note studies the lesser investigated class, i.e., the relative inconsistency measures, to highlight distinctive features of these measures, and to propose a formal definition of relative inconsistency measures. We do it by a careful study of postulates, a couple of them new and some already well-known. The new postulates are instrumental in discriminating relative measures. A few postulates are also significant as they capture properties that can be satisfied by some absolute and relative measures alike. Thus arise concepts neutral to the purported absolute/relative nature of inconsistency measures. We prove new formal relationships between postulates, relationships that have a meaning about relative inconsistency measures. Illustrating the idea of a relative inconsistency measure, we present various such measures by "relativizing" absolute inconsistency measures found in the literature, we check whether they satisfy the postulates discussed and we show that they do, in fact, conform to the definition we offer for relative inconsistency measures. Not all inconsistency measures fit neatly into one of the two groups, absolute measures and relative measures. Consider the drastic measure [START_REF] Hunter | Measuring inconsistency through minimal inconsistent sets[END_REF]. It assigns 0 to every consistent knowledge base and 1 to every inconsistent knowledge base. It is not a relative measure since no dimension of the knowledge base plays a role in the calculation. Nor is it an absolute measure as 1 is returned no matter how many further inconsistencies are added. The η-measure [START_REF] Knight | Measuring inconsistency[END_REF] is another example of a measure that fails to fall into either group.

Here is the plan of this note. Basic concepts and notations are in Section 2. Section 3 gives the definition of seven relative inconsistency measures, some new and some existing in the literature. Section 4 sorts postulates for inconsistency measures. Section 5 offers results on relationships between postulates, inducing a definition for the notion of relative inconsistency measure in Section 6. Section 7 indicates which new postulate of Section 4 is satisfied by which measure from Section 3. Section 8 is a summary with conclusions.

Preliminaries

We assume a propositional language of formulas built from a countable set of propositional atoms, At, and the logical connectives ∧, ∨, and ¬. We use lower case Greek letters for formulas. We write Atoms(ϕ) for the atoms in ϕ. A knowledge base K is a finite set of formulas. The classical consequence relation is denoted by and K denotes that K is inconsistent. MI(K) denotes the set of minimal inconsistent subsets of K. A formula ϕ is free for K if and only if X ∪ {ϕ} ⊥ for all consistent subsets X of K. So a formula need not be in K to be free for K. A formula ϕ is safe for K if and only if Atoms(ϕ) ∩ Atoms(K) = ∅. Thus, a safe formula for K is a free formula for K. Logical equivalence is defined as usual: ϕ ≡ ψ if and only if ϕ ψ and ψ ϕ. Also, bijection equivalence ≡ b is defined for sets of equal numbers of formulas: K ≡ b K where K = {ϕ 1 , . . . , ϕ n } and K = {ψ 1 , . . . , ψ n } if and only if there is some permutation of (1, . . . , n), say (i 1 , . . . , i n ), such that ϕ j ≡ ψ ij for all 1 ≤ j ≤ n. An atomic injective substitution for K is an injection σ : Atoms(K) → At. Then, σ(ϕ) is the formula resulting from ϕ by replacing each atom a ∈ Atoms(K) by σ(a) simultaneously and σ is extended to an injective substitution for K = {ϕ 1 , . . . , ϕ m } with σ(K) = {σ(ϕ 1 ), . . . , σ(ϕ m )}.
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The inconsistency measure I C requires further material. I C uses Priest's three valued logic LP [START_REF] Priest | The logic of paradox[END_REF] that augments the classical semantics by a third truth value denoting inconsistency. The truth values for the connectives are given in Figure 1. An interpretation i is a function that assigns to each atom appearing in K one of three truth values, i : Atoms(K) → {F, B, T }. An interpretation i whose range is a (possibly improper) subset of {F, T } is classical. For an interpretation i,

Conflict(i) = {a ∈ At | i(a) = B}
is the set of atoms that are assigned the non-classical truth value B. For a knowledge base K, we define its models as the set of interpretations such that no formula in K is assigned the truth value F , i.e., Models(K) = {i | for all ϕ ∈ K, i(ϕ) = T or i(ϕ) = B}. I C counts the minimal number of atoms that need to be assigned B in order to get at least one model of K in LP, the definition is

I C (K) = min{|Conflict(i)| | i ∈ Models(K)}.

Examples of Relative Inconsistency Measures

Intuitively, a relative inconsistency measure gives the amount of inconsistency in the knowledge base with respect to the size of the knowledge base. We expect a relative inconsistency measure to be a ratio obtained by dividing the amount of inconsistency in the knowledge base by the maximal amount of inconsistency a knowledge base of the same size could hold, such a ratio thus returning a value between 0 (inclusive to accommodate for a null amount of inconsistency) and 1. We give several inconsistency measures that seem to satisfy these criteria for being relative (in a later section, we show that they indeed conform to the formal definition we provide for relative inconsistency measures). Also, 1 fails to be inclusive when the value chosen for the denominator in the ratio is not really the maximum inconsistency (in some cases, it does not exist) but a proper upper bound thereof; I pr M I and I f r M I below differ by just such a distinction in the denominator.

The literature shows few relative inconsistency measures. We found only three relative measures in the literature. We introduce by "relativization" four others that are of special interest either with respect to the new postulates (see Propositions 4 to 6) devoted to 95 relative measures or with respect to using a non-maximal denominator as just mentioned. Lastly, the definitions typically yield 0 0 for K = ∅ (this issue is unclear in the literature, too). Here, the definitions do not apply for K being empty as we always enforce I(∅) = 0.

Previously published intuitively relative measures

I mv This measure [START_REF] Xiao | Inconsistency measurement based on variables in minimal unsatisfiable subsets[END_REF] is the ratio of the number of atoms in the minimal inconsistent subsets to the total number of atoms:

I mv (K) = |Atoms( MI(K))| |Atoms(K)| .
I D f This measure [START_REF] Mu | A syntax-based approach to measuring the degree of inconsistency for belief bases[END_REF] comes as a calculation with MI i (K) the set of minimal inconsistent subsets of K of size i and CO i (K) the set of consistent subsets of K of size i: [START_REF] Konieczny | Quantifying information and contradiction in propositional logic through epistemic tests[END_REF] is the number of atoms that must be given the B truth value in a model of K, i.e., I C (K) as defined in Section 2, divided by the number of atoms:

I D f (K) = 1 - |K| i=1 1 - 1 i |MI i (K)| |CO i (K)| + |MI i (K)| I LPm This measure
I LPm (K) = I C (K) |Atoms(K)|
.

We now present relative measures obtained by relativizing some well-known (absolute) 100 inconsistency measures from the literature, adding a superscript 'r' to the original name.

Relativized absolute measures

I r P The absolute measure I P [START_REF] Grant | Measuring consistency gain and information loss in stepwise inconsistency resolution[END_REF] counts the number of formulas occurring in at least one minimal inconsistent subset of the knowledge base. We relativize it to obtain

I r P (K) = | MI(K)| |K| .
I pr M I The absolute measure I M I [START_REF] Hunter | Measuring inconsistency through minimal inconsistent sets[END_REF] counts the number of minimal inconsistent subsets. Using a trivial upper bound to the number of minimal inconsistent subsets of K,

I pr M I (K) = |MI(K)| 2 |K| -1 . I f r M I The number of minimal inconsistent subsets of a knowledge base K is [3] at most |K| |K|/2 .
This value is obtained when each element of K is in as many subsets as possible provided that once such a set is chosen no proper superset can be. The maximum occurs when each subset has the same size. The number of subsets of K of size i is

|K| i .
The largest such value occurs when i = |K|/2 . With such a choice, for |K| > 1, [START_REF] Grant | Analysing inconsistent information using distance-based measures[END_REF] gives the minimal number of formulas that must be removed to get the knowledge base consistent,

I f r M I (K) = |MI(K)| |K| |K|/2 . For |K| = 1, we let I f r M I (K) = |MI(K)|. I r R An inconsistency measure in
I R (K) = min{|S| | K \ S ⊥}.
Then, we define the relativized version as

I r R (K) = I R (K) |K| .

Postulates for Inconsistency Measures

We consider postulates that have been proposed for inconsistency measures (as initiated in [START_REF] Hunter | Measuring inconsistency through minimal inconsistent sets[END_REF], for a recent survey see [START_REF] Thimm | On the evaluation of inconsistency measures[END_REF]). In previous work, no explicit distinction was made between absolute and relative measures. So our preliminary goal is to determine what postulates are appropriate, or at least admissible, for relative measures. We sort most of the previously proposed postulates into three groups: the ones that relative measures should satisfy; the ones that no relative measure should satisfy; and the ones that fall into neither of the two groups. Hence this section consists of a long list, of the definition of each postulate followed by an intuitive reason for its inclusion in that group. We start with postulates that relative measures should satisfy. From the literature, we could find only three such postulates, the first two from [START_REF] Hunter | Measuring inconsistency through minimal inconsistent sets[END_REF] and the third from [START_REF] Ph | Revisiting postulates for inconsistency measures[END_REF].

Required Postulates for Relative Measures

Consistency Null I(K) = 0 iff K ⊥.
Relative measures, like absolute measures, make a clear distinction between consistent and inconsistent knowledge bases.

Normalization 0 ≤ I(K) ≤ 1.
As a ratio, whose numerator cannot exceed its denominator, a relative measure cannot have value greater than 1.

Variant Equality If σ is an injective substitution then I(K) = I(σ(K)).

Whether an inconsistency measure is absolute or relative, it should be invariant under change of alphabet.

The above postulates form what we call Group A, see Table 1.

Group A =    Consistency Null Normalization Variant Equality    Group X =                           

Monotony

Weak Dominance Free-Formula Independence Safe-Formula Independence Free-Formula Dilution Super-Additivity MI-Separability Exchange Tautology Independence 

                          

Postulates Not Appropriate for Relative Measures

The next postulates draw a line between absolute and relative inconsistency measures as follows. If an inconsistency measure satisfies at least one of these postulates, then it fails to be a relative measure (this will be formally proven, in Section 5, by Theorem 1).

Free-Formula Independence If α is free for K then I(K ∪ {α}) = I(K).

When we add a free formula we expect the relative inconsistency to decrease.

The same reason can be applied with respect to the following postulates.

Monotony I(K ∪ K ) ≥ I(K).
Weak Dominance1 For α ∈ K, if α β and α ⊥ then I(K ∪ {α}) ≥ I(K ∪ {β}).

Free-Formula Dilution If α is free for K then I(K ∪ {α}) ≥ I(K).

Safe-Formula Independence If α is safe for K then I(K ∪ {α}) = I(K).

Super-Additivity

If K ∩ K = ∅ then I(K ∪ K ) ≥ I(K) + I(K ).
The problem is that the sum may exceed 1 and that is not allowed by Normalization.

MI-Separability

If MI(K ∪ K ) = MI(K) ∪ MI(K ) and MI(K) ∩ MI(K ) = ∅ then I(K ∪ K ) = I(K) + I(K ).
As for Super-Additivity, the sum may exceed 1.

Exchange If K is consistent and logically equivalent to K then I(K∪K ) = I(K∪K ). The problem is that K and K may add different amounts to the size of the knowledge base, and hence the denominator of the fraction.

Tautology Independence If α is a tautology then

I(K ∪ {α}) = I(K).
This is a special case of Exchange (degenerate case where K is empty).

These postulates form Group X (for eXcluded), see Table 1. Each of them is incompatible with either Group A or any of the founding postulates for relative inconsistency measures (see below). These incompatibilities are proven formally in Section 5.

Next we list existing postulates that are appropriate to consider for relative measures but that some relative measures may not satisfy.

Other Postulates

Penalty If α ∈ K is not free for K then I(K) > I(K \ {α}).

We may wish relative inconsistency to decrease when a non-free formula is removed.

MI-Normalization If K is a minimal inconsistent set then I(K) = 1.
We may wish to give minimal inconsistent sets the maximum relative inconsistency.

For the next three postulates, the aim is that we may wish to measure the relative inconsistency of a minimal inconsistent set according to its size.

Equal Conflict For K, K minimal inconsistent sets, if |K| = |K | then I(K) = I(K ). Attenuation For K, K minimal inconsistent sets, if |K| > |K | then I(K) < I(K ). Almost Consistency If K 1 , K 2 , . . . is a sequence of minimal inconsistent sets with lim i→∞ |K i | = ∞ then lim i→∞ I(K i ) = 0. Contradiction I(K) = 1 iff every nonempty subset of K is inconsistent.
The maximum relative inconsistency is reached as each formula is self-contradictory.

Irrelevance of Syntax If K and K are bijection equivalent then I(K) = I(K ).

Two knowledge bases with logically equivalent formulas should get the same inconsistency degree.

Adjunction Invariance I(K ∪ {α, β}) = I(K ∪ {α ∧ β}), Adding a conjunction may make the same change in the measure as adding the conjuncts separately.

-Conjunct Independence If α is a tautology then I(K ∪ {α ∧ β}) = I(K ∪ {β}). This is a special case of replacing a single formula with the conjunction of the same formula with a tautology.

Swap If for each i = 1, . . . , n, α i is consistent and logically equivalent to β i , then

I(K ∪ {α 1 , . . . , α n }) = I(K ∪ {β 1 , . . . , β n }).
This generalizes Irrelevance of Syntax to the case of two knowledge bases with a (possibly inconsistent!) common part.

Finally we add two new postulates that we think are reasonable for relative measures.

New Postulates Formulated for Relative Measures

Free-Formula Reduction For α ∈ K, if α is free for K and I(K) = 0 then I(K ∪ {α}) < I(K).

Adding a formula to an inconsistent knowledge base that does not introduce a new conflict reduces the relative inconsistency.

Relative Separability If I(K) I(K ) and Atoms(K) ∩ Atoms(K ) = ∅ then I(K)

I(K ∪ K ) I(K )
where either is < in every instance or is = in every instance. Intuitively, a ratio provides a shared value, making the whole homogeneous for this value. This suggests that a ratio ascribes a trait preserved under splitting for instance. If the knowledge base can be split into two language-disjoint parts that do not exhibit the same ratio, then the ratio for the whole knowledge base must exceed the weaker ratio and be less than the greater ratio.

These two postulates are independent: I mv satisfies Relative Separability but not Free-Formula Reduction (see Proposition 4) while I pr M I satisfies Free-Formula Reduction but not Relative Separability (see Proposition 6). These two postulates are not exclusive of one another: both are satisfied (as proven in Proposition 5) by I r P .

Relationships Between Groups of Postulates

We prove a series of results about incompatibilities among postulates. These results are not isolated one from another, they form a complementary set culminating in Theorem 1, as to underly both the classification of postulates in groups (above, Section 4) and our definition of relative inconsistency measures (below, Section 6).

Intuitively, a relative measure should satisfy the Group A postulates. Our first result states that such measures do not satisfy Super-Additivity and MI-Separability. Proposition 1. If I satisfies all postulates in Group A, then I violates Super-Additivity and MI-Separability.

Proof. Let K 0 , K 1 , K 2 , . . . be an infinite sequence of knowledge bases where K i = {p i , ¬p i } for all i. Clearly, K i ∩ K j = ∅ for i = j. Thus, i≤n+1 K i = i≤n K i ∪ K n+1 and i≤n K i ∩K n+1 = ∅. Therefore, Super-Additivity applies to give

I i≤n+1 K i = I i≤n K i ∪K n+1 ≥ • • • ≥ n+1 i=1 I(K i ).
Due to Variant Equality, I(K i ) = I(K j ) for all i, j. Then, I i≤n+1 K i ≥ (n + 1)I(K 0 ). Applying Consistency Null, I(K 0 ) > 0. In view of Normalization, 1/I(K 0 ) thus exists. For n > 1/I(K 0 ), Normalization is contradicted as

I i≤n+1 K i ≥ (n + 1)I(K 0 ) > 1.
As regards MI-Separability, it is enough to notice that a minimal inconsistent subset of i≤n+1 K i is either a minimal inconsistent subset of i≤n K i or a minimal inconsistent subset of K n+1 but not both. MI-Separability gives

I i≤n+1 K i = I i≤n K i ∪ K n+1 = • • • = n+1 i=1 I(K i ). Using Variant Equality, I i≤n+1 K i = (n + 1)I(K 0 ). By Consistency Null, I(K 0 ) > 0 hence I i≤n+1 K i > 1 for n > 1/I(K 0 ).
When presenting the postulates of Group X, we explained why none of them is to be satisfied by a relative measure. For our next two results, we omit from Group X Super-Additivity and MI-Separability as they are incompatible with fundamental postulates for relative inconsistency measures and call this Group X . That is, Group X consist of: Monotony, Weak Dominance, Free-Formula Independence, Safe-Formula Independence, Free-Formula Dilution, Tautology Independence, and Exchange. Proposition 2. If I satisfies Free-Formula Reduction, then I violates every postulate in Group X .

Proof. There exist K and α such that α is safe for K (e.g., K = {p ∧ ¬p} and α = q). Clearly, α is both safe and free for K. Free-Formula Reduction gives I(K ∪ {α}) < I(K). Applying Free-Formula Independence or Safe-Formula Independence gives I(K ∪ {α}) = I(K) thus contradicting I(K ∪{α}) < I(K). Alternatively, applying either Free-Formula Dilution or Monotony gives I(K ∪{α}) ≥ I(K), again contradicting I(K ∪{α}) < I(K).

Let us now deal with Weak Dominance. There exist K and β such that β ∈ K and β is free for K (e.g., K = {p ∧ ¬p, q} and β = q). Since K is finite, there exists α ≡ β such that α ∈ K. Of course, α β and α is free for K. Applying Weak Dominance gives

I(K ∪ {α}) ≥ I(K ∪ {β}) = I(K), contradicting I(K ∪ {α}) < I(K).
For Tautology Independence, consider that there exist a tautologous α and K ⊥ such that Atoms(α) ∩ Atoms(K) = ∅. Obviously, α is free for K and α ∈ K. Applying Tautology Independence gives I(K ∪ {α}) = I(K), contradicting I(K ∪ {α}) < I(K).

Regarding Exchange, K can be assumed to contain a tautology β, i.e., {α} is logically equivalent to {β}. As K ∪ {β} = K, we get I(K ∪ {α}) = I(K ∪ {β}) = I(K) by Exchange, which contradicts I(K ∪ {α}) < I(K).

Having just dealt with Free-Formula Reduction, now we consider the second new postulate for relative inconsistency measures, namely Relative Separability. Proposition 3. If I satisfies Relative Separability and all postulates from Group A then I violates every postulate in Group X .

Proof. We start with Monotony. For I to satisfy Consistency Null, there must exist K and K such that I(K) < I(K ). In view of Variant Equality, we can choose K to be such that Atoms(K)∩Atoms(K ) = ∅. Relative Separability gives I(K) < I(K ∪K ) < I(K ). On the other hand, by Monotony I(K ) ≤ I(K ∪ K ) and a contradiction arises.

We deal with Free-Formula Independence, Safe-Formula Independence, and Free-Formula Dilution together. Consider the case where K ⊥. Then there exists α ⊥ such that Atoms(K) ∩ Atoms(α) = ∅. In view of Consistency Null and Normalization, I({α}) < I(K). By Relative Separability, I(K ∪ {α}) < I(K). Since α is both safe and free for K, each of Free Formula Independence and Safe Formula Independence gives I(K ∪ {α}) = I(K). Free Formula Dilution then implies I(K ∪ {α}) ≥ I(K) (because α is free for K). That is, a contradiction arises for all these cases.

Next, we deal with Weak Dominance. There exists K ⊥ such that β ∈ K for some tautologous β. Also, there exists α ⊥ such that Atoms(K) ∩ Atoms({α}) = ∅.

Applying Consistency Null and Normalization, I({α}) < I(K). By Relative Separability, I(K ∪ {α}) < I(K). On the other hand, α β. According to Weak Dominance, I(K ∪ {α}) ≥ I(K ∪ {β}) = I(K) leading to a contradiction. Now, we consider Tautology Independence. There exist a tautologous α and K ⊥ such that Atoms(α) ∩ Atoms(K ) = ∅. Due to Consistency Null and Normalization, I({α}) < I(K ). Applying Relative Separability to the case that K = {α} thus gives I(K ∪ {α}) < I(K ). However, Tautology Independence requires I(K ∪ {α}) = I(K ) and a contradiction arises. Finally, we deal with Exchange. We extend the case of Tautology Independence as we may assume that K contains a tautology β, so that {α} is logically equivalent to {β}. As above, we obtain I(K ∪ {α}) < I(K ∪ {β}) which contradicts Exchange.

Our main result follows from these propositions, showing a complementary relationship between Free-Formula Reduction and Relative Separability. It is enough for just one of them to be satisfied for a measure to be incompatible with the Group X postulates. Theorem 1. If I satisfies all postulates from Group A and either Free-Formula Reduction or Relative Separability (or both) then I violates all the postulates in Group X.

Proof. Let I satisfy all postulates from Group A. By Proposition 1, I violates Super-Additivity and MI-Separability. If I satisfies Free-Formula Reduction, then Proposition 2 gives the result. If I satisfies Relative Separability, the result follows from Proposition 3.

Formal Definition for Relative Inconsistency Measures

Exploiting these results, we are ready to provide a formal definition for the intuitive concept of an inconsistency measure. We have attempted to come up with a definition strong enough so that it excludes cases that do not seem in line with the intuitive concept (example of the drastic measure) but not so strong that it would exclude borderline cases.

We start with a fundamental definition for an inconsistency measure, writing K for the set of all knowledge bases in the language at hand and IR for the set of real numbers.

Definition 1. A function I : K → IR ∞
≥0 is an inconsistency measure if it satisfies the postulates Consistency Null and Variant Equality. This is a rather weak definition but there is no general consensus in the literature about any of the other axioms. Although Variant Equality was introduced fairly recently it is crucial in keeping up with free interpretation of propositional atoms. Definition 2. An inconsistency measure is called relative if it satisfies Normalization and either Free-Formula Reduction or Relative Separability (or both).

Later, we show that all the measures we introduced as satisfying intuitively the criteria for a relative measure do in fact conform to this definition. Moreover, considering the inconsistency measures examined in [START_REF] Thimm | On the evaluation of inconsistency measures[END_REF], all those that are not intuitively relative measures satisfy at least one of the postulates from Group X as shown in Tables 2-3 there. By Theorem 1, this means that these measures are not relative according to our definition.

In contrast to relative measures, we have called absolute measures those measures that quantify the totality of the inconsistencies in the knowledge base, the type mostly considered in the literature. Intuitively, satisfying the Monotony postulate is a necessary condition for such a measure because the amount of inconsistencies can never decrease as the knowledge base grows. As per Theorem 1, the postulates involved in Definition 2 are incompatible with Monotony. On these grounds, we find that an inconsistency measure cannot be both absolute and relative; these are actually two disjoint types of measures. We end this section by discussing the role of postulates, or groups of postulates, with respect to the notion of relative inconsistency measure.

Group X conveys three ideas opposing a relative account of inconsistency measuring:

• Adding certain kinds 2 of formulas cannot change the amount of inconsistencies.

This is conveyed by Tautology Independence, Exchange, Safe-Formula Independence, and Free-Formula Independence.

• Adding certain kinds2 of formulas cannot decrease the amount of inconsistencies. This is conveyed by Free-Formula Dilution, Weak Dominance, and Monotony.

• Under conditions of partition, amounts of inconsistencies may sum.

This is conveyed by Super-Additivity and MI-Separability.

Each of these three ideas (each obtained from a common consequence of the corresponding subgoup of postulates) is incompatible with the view of amount of inconsistencies as a ratio involving the size of the knowledge base. The first two preclude a decrease while the knowledge base grows and the third implies in fine that arbitrarily large knowledge bases are assigned an arbitrarily large sum instead of a ratio (roughly speaking).

Penalty is paradigmatic for a notion of a postulate neutral to the type of an inconsistency measure. Indeed, Penalty says that any non-free formula is to impinge on the amount of inconsistencies and it is clear that this can be achieved whether the calculation is a ratio or not. Clearly, this also holds for Equal Conflict and Attenuation (as well as Almost Consistency) that imposes the correlation of the amount of inconsistencies with the number of minimal inconsistent subsets of the knowledge base.

Adjunction Invariance and -Conjunct Independence are similar, capturing the idea that replacing a formula or two by a conjunction of these two (or just one with a tautological conjunct) does not alter the amount of inconsistencies. The idea can be implemented whether the amount of inconsistency is a ratio or not: these postulates are neutral.

Swap and Irrelevance of Syntax can be analyzed similarly to Adjunction Invariance.

Satisfaction of New Postulates for Relative Inconsistency Measures

It is clear that the inconsistency measures introduced in Section 3 all satisfy Definition 1 and Normalization. We now take care of Free-Formula Reduction and Relative Separability, through three representative cases: the cases of an inconsistency measure satisfying exactly one of these two postulates and the case where both are satisfied. Proposition 4. I mv satisfies Relative Separability but fails Free-Formula Reduction.

Proof. We deal with Free-Formula Reduction first. Let K = {p, ¬p, q}. Then q ∨ q is free for K but I(K ∪ {q ∨ q}) = 1 2 = I(K). 

As to

I mv (K) = k n = k(n + n ) n(n + n ) = kn + kn n(n + n ) = kn + k n n(n + n ) = k + k n + n = I mv (K ∪ K )
Second, assume I mv (K) < I mv (K ), i.e., k/n < k /n hence kn < k n.

I mv (K ∪ K ) = k + k n + n = kn + k n n (n + n ) < k n + k n n (n + n ) = k (n + n ) n (n + n ) = k n = I mv (K )
while I mv (K) < I mv (K ∪ K ) can be proven similarly. Relative Separability Table 2: Postulates satisfaction for some relative inconsistency measures ( reads "holds" and "fails").

also shows that there is no other postulate in the long list of postulates under consideration that all these relative inconsistency measures satisfy. There is also no postulate in the list that all these relative inconsistency measures violate.

In the existing postulates, the only structural operation over knowledge bases is settheoretic union. A consequence is that, from the existing postulates, the notion of the size of the knowledge base can only be cast in terms of the cardinality of sets of formulas. However, the notion of the size of the knowledge base may appeal for more generality. This is an avenue for further research.

  Relative Separability, consider K and K where Atoms(K) ∩ Atoms(K) = ∅. Let |Atoms(K)| = n, |Atoms(K )| = n , |Atoms( MI(K))| = k, |Atoms( MI(K ))| = k . Thus, |Atoms(K ∪ K )| = n + n . Also, |Atoms( MI(K ∪ K ))| = k + k as Atoms(K) ∩ Atoms(K ) = ∅. Assume first I mv (K) = I mv (K ), i.e., k/n = k /n hence kn = k n.

I

  mv I D f I LPm I r P

  Figure 1: Truth table for Priest's three valued logic (LP). This semantics extends the classical semantics with a third truth value B denoting "contradictory". Columns 1, 3, 7, and 9, give the classical semantics.

Table 1 :

 1 Groups of postulates for relative inconsistency measures.

The first formulation[START_REF] Hunter | Measuring inconsistency through minimal inconsistent sets[END_REF] of the postulate, Dominance, omits the proviso α ∈ K. This was problematic[START_REF] Mu | A syntax-based approach to measuring the degree of inconsistency for belief bases[END_REF][START_REF] Ammoura | On an MCS-based inconsistency measure[END_REF][START_REF] Ph | Basic postulates for inconsistency measures[END_REF]. The amended version appears in[START_REF] Ammoura | On an MCS-based inconsistency measure[END_REF] as "Weak Dominance", in[START_REF] Ph | Basic postulates for inconsistency measures[END_REF] as "Guarded Dominance" and in[START_REF] Bona | Localising iceberg inconsistencies[END_REF] by its initial name. We consider the amended version, calling it "Weak Dominance".

The word "kinds" is crucial here: Given a knowledge base, we can always figure out specific formulas that can be added without altering the relative amount of inconsistencies.
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Proposition 5. I r P satisfies Free-Formula Reduction and Relative Separability.

Proof. As to Free-Formula Reduction, assume α ∈ K, α free for K, and I r P (K) = 0,

Regarding Relative Separability, the proof is as for I mv except that here k and k stand for the number of non-free formulas and n and n stand for the total number of formulas.

Proposition 6. I pr M I satisfies Free-Formula Reduction but fails Relative Separability.

Proof. Clearly, the addition of a free formula does not change the numerator but increases the denominator hence Free-Formula Reduction is satisfied.

Let us now deal with Relative Separability. Let K = {p, ¬p} and K = {q, ¬q}. Then

Table 2 gives a more general picture. It duplicates results from [START_REF] Thimm | On the evaluation of inconsistency measures[END_REF] and extends them through easy proofs and the following observations. I mv and I LPm fail -Conjunct Independence: Let K = {p, ¬p}. 

Summary and Conclusion

We explore in this note what it means to distinguish between inconsistency measures that quantify the total amount of inconsistency in the knowledge base, the ones most common in the literature, and relative inconsistency measures, that give the proportion of the knowledge base that is inconsistent. Our work is based on postulates that these different types of measures may satisfy. Our main theorem shows a key incompatibility between groups of postulates. In view of examples of inconsistency measures that are intuitively relative, we take advantage of the theorem to propose a formal definition for the concept of relative inconsistency measure. For the examples, we used a few measures previously given in the literature and introduced new ones by "relativizing" some wellknown inconsistency measures. Table 2 is very reassuring concerning our definition of relative inconsistency measure.

It shows that all our examples of intuitively relative inconsistency measures satisfy the conditions required by Definition 2 for being a relative inconsistency measure. The table