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• S1P contributes to the development of several rheumatic disorders. 

• S1P could also be involved in vascular or cancer-derived ectopic calcifications. 

• Targeting S1P pathway might both reduce inflammation and restore bone homeostasis. 

• Fingolimod may be a promising drug candidate in this regard. 
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ABSTRACT 

Sphingolipids display important functions in various pathologies such as cancer, obesity, 

diabetes, cardiovascular or neurodegenerative diseases. Sphingosine, sphingosine 1-phosphate 

(S1P), and ceramide are the central molecules of sphingolipid metabolism. Sphingosine 

kinases 1 and 2 (SK1 and SK2) catalyze the conversion of the sphingolipid metabolite 

sphingosine into S1P. The balance between the levels of S1P and its metabolic precursors 

ceramide and sphingosine has been considered as a switch that could determine whether a cell 

proliferates or dies. This balance, also called « sphingolipid rheostat », is mainly under the 

control of SKs.  

Several studies have recently pointed out the contribution of SK/S1P metabolic pathway in 

skeletal development, mineralization and bone homeostasis. Indeed, SK/S1P metabolism 

participates in different diseases including rheumatoid arthritis, spondyloarthritis, 

osteoarthritis, osteoporosis, cancer-derived bone metastasis or calcification disorders as 

vascular calcification. In this review, we will summarize the most important data regarding 

the implication of SK/S1P axis in bone and joint diseases and ectopic calcification, and 

discuss the therapeutic potential of targeting SK/S1P metabolism for the treatment of these 

pathologies. 
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1. INSIGHT ON SPHINGOLIPIDS AND SPHINGOSINE 1-PHOSPHATE 

SIGNALING 

Sphingolipids have been classically considered as structural molecules, mainly membrane 

components. Nowadays sphingolipids are widely recognized as bioactive lipids that control 

pivotal biological functions such as proliferation, survival, differentiation, migration, 

inflammatory response, cellular cycle or apoptosis (1–3). Importantly, sphingolipids play key 

roles in skeletal development, mineralization, regulation of bone mass or osteoimmunology (4–

6). Moreover, this class of lipids has been involved in multiple pathologies including cancer, 

obesity, diabetes, cardiovascular diseases, and more recently associated with bone and joint 

pathologies (1–5,7).  

Ceramide, sphingosine and sphingosine 1-phosphate (S1P) are the central molecules of 

sphingolipid metabolism with often opposite roles in the cell. Ceramide and sphingosine are 

generally pro-apoptotic and anti-proliferative while S1P stimulates proliferation, migration 

and cell survival in vitro, in vivo, and ex vivo (8–10).  

 

1.1 Sphingolipid metabolism 

Several enzymes control the synthesis or the degradation of these metabolites. Ceramide is the 

key molecule of this network, at the crossroads between multiple signaling pathways (Figure 

1). It can be synthesized through de novo synthesis, with the condensation of serine with 

palmitoyl-CoA and subsequent actions of dihydroceramide synthases and dihydroceramide 

desaturase. Of note, other components for the first reaction of de novo pathway have been 

recently suggested such as alanine or glycine with stearate or myristate (2). Ceramide can also 

be directly produced from sphingomyelin (SM), the most abundant sphingolipid in 

mammalian cells, after stimulation of sphingomyelinases (SMases). Three categories of 
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SMases exist based on their optimal pH of action: acidic, alkaline and neutral SMases (11,12). 

Moreover, several sphingomyelin synthases (SMS) can catalyze the transfer of a 

phosphocholine head from phosphatidylcholine (PC) to ceramide, producing diacylglycerol 

(DAG) and SM (11) (Figure 1). Two isoforms of SMS exists with SMS1 localized in the trans-

Golgi apparatus and SMS2 mainly expressed in plasma membrane (13). Ceramide can then be 

hydrolyzed by ceramidases to yield sphingosine while ceramide synthases control the 

opposite reaction. Finally, sphingosine kinases 1 and 2 (SK1, SK2) catalyze the conversion of 

sphingosine into S1P.  

 

1.2 Sphingosine 1-phosphate and sphingosine kinases 

S1P is a pleiotropic phospholipid that regulates various biological activities such as 

proliferation, migration, inflammation, or angiogenesis (1). S1P is implicated in a number of 

pathophysiological conditions and diseases that affect almost every organ of the body 

including cancer, diabetes, atherosclerosis, neurodegenerative diseases, inflammatory 

disorders (asthma, rheumatoid arthritis, inflammatory bowel diseases, autoimmune 

diseases…) (1–3). 

S1P content in resting cells is low and controlled through a finely regulated equilibrium 

between its synthesis and its degradation. The balance between the intracellular levels of S1P 

and its metabolic precursors, ceramide and sphingosine, has been regarded as a switch 

determining whether a cell lives or dies (8). 

S1P is produced from sphingosine in a reaction catalyzed by two sphingosine kinase isoforms, 

SK1 and SK2 (Figure 1). Although differing in size, SK1 and SK2 do share a high degree of 

sequence similarity (14). They have different developmental expression, tissue distribution and 

subcellular localization profiles, suggesting that the two enzymes might have distinct 
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physiological functions (15). During mouse embryonic development for example, Sphk1 is 

highly expressed at day 7, while Sphk2 form is detected later, at day 11 (16). Regarding their 

tissue localization, SPHK1 is highly expressed in lung and spleen, and is also expressed in 

brain, heart, thymus, and kidney (17); whereas SPHK2 is highly expressed in liver and kidney 

(14). Both enzymes have multiple spliced variants of unknown functional significance and 

most studies are conducted on the shortest isoforms, which might not necessarily be the most 

physiologically relevant ones in a given cell model studied (18). If SK1 almost universally 

promotes proliferation and cell survival, the functions of SK2 appear to be much more 

complex (19). SK1 is activated by various stimuli, among which growth and survival factors 

are prominent, thus primarily promoting cell survival and proliferation (20,21). On the contrary, 

the role of SK2 appears by far more complex, generally displaying a pro-apoptotic role but 

anti-apoptotic effects have also been reported (21). The subcellular localization of both SK1 

and SK2, by impacting compartmentalization of generated S1P, is likely critical in dictating 

the biological effects of S1P (19,21). Activation of SK1 is mediated by its phosphorylation on 

Ser225 by ERK1/2, which markedly enhances its catalytic activity (22). This phosphorylation 

is crucial for SK1 to translocate from the cytosol to the inner leaflet of the plasma membrane 

(22). This translocation is essential for its enzymatic activity (23). Alike SK1, SK2 

phosphorylation on Ser351 and/or Thr578 by ERK1/2 leads to its activation (24). SK2 

distribution is more complex than SK1 because it exhibits nuclear localization and export 

signals in its sequence. Thus, it can be found in the cytosol and in the nucleus. Adding to that, 

SK2 can also be localized in the endoplasmic reticulum (ER) or in the mitochondria (25). 

S1P content is also controlled by its degradation by S1P phosphatases (SPP1 or SPP2) (26–28) 

that convert S1P into sphingosine, and S1P lyase (SPL) that irreversibly degrades S1P into 

phosphoethanolamine and hexadecenal (29,30) (Figure 1). Both SPPs are localized in the ER 

and catalyze reversible S1P dephosphorylation. However, they have different tissue 
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distribution: SPP1 is mainly expressed in placenta and kidney while SPP2 is present in brain, 

heart, colon, kidney, lung and small intestine (16,26). Of note, S1P can also be 

dephosphorylated by non-specific phosphatases such as lipid phosphate phosphatases 1, 2 and 

3 (31). On the other hand, the irreversible degradation of S1P by SPL is localized in the ER and 

in the mitochondrial inner membrane. SPL is highly expressed in small intestine, colon, 

thymus, spleen and moderately expressed in liver, kidney, lung, stomach and testis (32). S1P 

degradation products -phosphoethanolamine and hexadecenal - are substrates for the synthesis 

of fatty acids or phospholipids as phosphatidylethanolamine (32).  

Interestingly, SPL expression has been shown to be inversely correlated to SK1 expression in 

cancer (33) and Alzheimer’s disease (34), demonstrating its prominent role in regulating S1P 

content in cells. 

1.3 Intracellular and extracellular sphingosine 1-phosphate signaling 

With regard to the mode of action of S1P, many lines of evidence indicate an intracellular role 

of S1P affecting a number of intracellular targets including notably histone deacetylases (35), 

tumor necrosis factor (TNF-α) signaling (36), human telomerase reverse transcriptase (37) or 

peroxisome proliferator-activated receptor-γ (38) (Figure 2). However, most of the well-known 

actions of S1P are mediated through five specific high-affinity G protein-coupled receptors 

(S1P1-5) (Figure 2), with specific (sometimes antagonistic) effects dictated by the expression 

profile of S1P receptor subtypes, expressed in a particular tissue (39). As S1P is synthesized 

intracellularly, it has been proposed the model of inside-out signaling where S1P must be 

released to the extracellular environment to interact with its receptors in an autocrine or 

paracrine manner (40) (Figure 2). Finally, several transporters of S1P have been identified 

including ABC transporter family members and more recently Mfsd2b (41) or Spns2 (Spinster 
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Homologue 2). Spns2 is a member of the family of non-ATP-dependent organic ion 

transporters which has attracted a lot of attention as an S1P transporter (42,43) (Figure 2). 

 

2. ROLE OF SPHINGOSINE KINASES/SPHINGOSINE 1-PHOSPHATE 

METABOLIC PATHWAY IN BONE AND JOINT PATHOLOGIES AND ECTOPIC 

CALCIFICATION 

In the past ten years, an increasing number of studies have highlighted the importance of 

SK/S1P metabolic pathway in numerous diseases such as rheumatoid arthritis, 

spondyloarthritis, osteoarthritis, osteoporosis, and cancer-derived bone metastasis or 

calcification disorders like vascular calcification. Here we provide a “state of the art” of the 

involvement of SK/S1P metabolic axis for each disease. 

 

2.1 Rheumatoid arthritis  

Rheumatoid arthritis (RA) is a common autoimmune disease that is associated with 

progressive pain and disability, systemic complications and early death. RA is characterized 

by persistent synovial inflammation (synovitis), autoantibody production (rheumatoid factor 

and anti–citrullinated protein antibody) and cartilage and bone destruction (44). In the synovial 

membrane of the joint, adaptive and innate immune pathways integrate to promote tissue 

remodeling and damage. Leukocytes, fibroblast-like synoviocytes (FLS), chondrocytes and 

osteoclasts, interact together and with the molecular products of damage, to drive the chronic 

inflammation. Consequently, RA synovium experiments neoangiogenesis, local fibroblast 

activation and deep architectural reorganization (45).  



 10

Interestingly, SK/S1P metabolic pathway has been implicated in a wide variety of 

physiological processes that are deregulated in the context of RA (2,3). Studies on SKs and S1P 

in the context of RA can be divided in two groups focusing on immune cells or joint cells. 

This section will summarize the main studies involving S1P metabolism pathway in joint 

cells, i.e. FLS and osteoclasts. 

The formal evidence for the involvement of SKs in RA pathophysiology was provided by Lai 

and colleagues in the mouse model of collagen-induced arthritis (CIA). Inhibition of SKs and 

particularly SK1, was shown to diminish disease severity (46). First, the pharmacological 

inhibition of SKs by administration of DMS (N,N-dimethylsphingosine) significantly reduced 

articular inflammation and joint destruction. Second, the specific Sphk1 knock-down by 

siRNA decreased the incidence and activity of the disease (46). The role of SK1 isoform in 

RA-like disease was further confirmed in another in vivo model in which a TNFα-induced 

chronic inflammation causes the development of a spontaneous erosive arthritis (47). In this 

model, a reduction of joint inflammation and pathology was obtained by genetic deletion of 

Sphk1. COX-2 (cyclooxygenase 2) protein expression was downregulated in joint protein 

extracts from Sphk1-deleted mice. In addition, joint RNA extraction and analysis by 

microarray revealed that Socs3, a natural regulator of interleukin (IL)-6 signaling, was 

increased in the absence of Sphk1, thus probably decreasing the signaling of IL-6 (47). The 

lack of Sphk1 globally decreased the pro-inflammatory signaling in the joint, even if these 

whole tissue analyses did not allow discriminating the relative contribution of skeletal cells 

versus immune cells present in the joint. Noteworthy, the loss of Sphk1 led to diminished 

osteoclastogenesis. Multinucleated mature osteoclasts appeared less activated and bone 

resorbing was therefore decreased in transgenic hTNFα mice (47). Therefore, two SK1/S1P 

dependent mechanisms may be simultaneously implicated in RA development: inflammation 

and bone catabolism. Lastly, a Fas-deficient MRL/lpr mouse model, which spontaneously 
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develops autoimmune arthritis, was used to investigate the crosstalk occurring between the 

Fas and S1P/S1P1 signaling pathways via NF-κB (48). In the mandibular condyles of these 

arthritic mice, immunohistochemical assays showed that protein levels of SK1 and S1P1 were 

increased. Of note, S1P1 was also overexpressed in the inflamed synovium of RA patients (49). 

Moreover, the blockade of NF-κB signaling by a synthetic inhibitory peptide was sufficient to 

reduce osteoclastogenesis and joint bone loss (48). Meanwhile, a marked decrease in the 

number of SK1- and S1P1-positive cells was observed, whereas the expression of S1P3 

remained unaffected (48). This study confirms the implication of SK1/S1P pathway in the 

deregulation of osteoclast maturation in a context of autoimmune arthritis. Furthermore, 

previous data on the human RA synovial cell line MH7A suggested that FLS may be 

implicated in this S1P-mediated osteoclastogenesis (50). MH7A cells express RANKL 

(receptor activator of NF-κB ligand), which is the master inducer of osteoclast maturation. 

The authors showed that S1P increased its expression, probably via Gi/Go-dependent 

S1P/S1P1 signaling (50). In fact, S1P metabolic pathway seems dysregulated in FLS from RA 

patients (51). When compared to normal FLS, they have lower levels of intracellular S1P 

correlated with an increase in both S1P phosphatase 1 (SGPP1) and S1P lyase 1 (SGPL1) 

gene expression. Yet, S1P concentration is particularly elevated in synovial fluids of RA 

patients (17.5 µM), when compared to osteoarthritis patients (3.5 µM) (46). RA synovium is 

characterized by local FLS activation, migration and invasion. Actually, S1P addition on RA 

patients-derived FLS enhances cell migration (52) and conversely, knockdown of SPHK1 by 

siRNA significantly reduced spontaneous migration and invasion of RA patients-derived FLS 

(53). Various intracellular signaling pathways have been implicated in these processes, 

including p42/44 MAPK, p38 MAPK, Rho kinase and PI3K/Akt (52,53). In addition, 

production and secretion of the matrix metalloproteinases (MMP)-2 and MMP-9 were 

reduced by SPHK1 knockdown (53). Finally, S1P signaling has been shown to stimulate 
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migration and favor invasion of RA patients-derived FLS in the surrounding tissues by 

facilitating matrix degradation. On the other hand, it has been established that S1P mediate 

inflammation in FLS, which may contribute to the synovitis characteristic of RA. Indeed, S1P 

addition on human RA FLS triggered production of pro-inflammatory cytokines and 

chemokines, such as IL-6, IL-8, MCP-1 (monocyte chemotactic protein-1), RANTES 

(regulated on activation normal T cells expressed and secreted) and PGE2 (prostaglandin E2) 

(49,52). S1P-induced cytokine secretion was partly mediated by p42/44 MAPK, p38 MAPK, 

and Rho kinase particularly (52) and PGE2 upregulation was due to enhanced COX-2 

expression, probably via Gi/Go-dependent S1P/S1P1 signaling (49). Cell autocrine activation of 

S1P2 and S1P3 signaling also contributed to IL-8 and MCP-1 secretion (51). In fact, all of the 

three receptors seem to be involved in the response of FLS to exogenous addition of S1P; 

S1P1 and S1P3 stimulating FLS migration, S1P2 and S1P3 inducing cytokine and chemokine 

secretion and S1P1 protecting cells from apoptosis (52). Overall, the deregulation of the S1P 

metabolic pathway in FLS may cause the normally thin synovium to become inflamed and 

thickened in RA. Figure 3A details the most important actions of SK/S1P metabolic pathway 

in RA context. 

 

2.2 Spondyloarthritis 

Spondyloarthritis (SpA) is a group of chronic rheumatic inflammatory diseases, which is the 

second most common type of inflammatory arthritis after RA (54). This pathology is 

characterized by two clinical events primarily occurring in the enthesis: inflammation 

(enthesitis) and excessive bone formation (peripheral enthesophytes and/or vertebral 

syndesmophytes) (55). Entheses, where ligaments and tendon transmit mechanical forces to 

bone through fibrocartilaginous connections, are thus the primary targets of SpA. It is 
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noteworthy that little is known about the involvement of SK/S1P metabolism in SpA 

pathophysiology. 

We were the first group to report that S1P serum levels are significantly elevated in SpA 

patients compared to healthy donors (6.1 ± 4.2 versus 1.6 ± 0.9 μM) (56). Since then, others 

have confirmed our findings (57). Newly, we showed that cyclic stretch enhanced Sphk1 gene 

expression in cultured osteoblasts and chondrocytes (58). In chondrocytes, TNF-α or IL-17 

treatment (two cytokines involved in enthesitis) further increased the stretch-induced Sphk1 

upregulation (58). Thus, S1P production by chondrocytes could be stimulated in response to 

entheseal inflammation and/or mechanical stress, in SpA context. In vitro, differentiation into 

mineralizing cells was accompanied by increased gene expression and activity of both SK1 

and SK2, together with augmented gene expression of the S1P-specific transporter Spns2 and 

increased S1P secretion (56). Adding to that, we demonstrated that S1pr1 and S1pr3 gene 

expression rose during osteoblasts maturation and chondrocytes hypertrophy (58) (Figure 3B). 

Moreover, pharmacological inhibition of SKs decreased matrix mineralization, alkaline 

phosphatase activity and the mRNA expression of Runx2 (a bone master transcription factor) 

and of its transcriptional target osteocalcin (an osteoblast specific hormone) in primary 

murine osteoblasts and hypertrophic chondrocytes (56). Therefore, SK1 and SK2 enzymatic 

activity seem crucial in the cell mineralizing process. Despite the fact that the studies 

involving S1P in SpA are rather scarce, there is growing evidence that S1P metabolism is 

deregulated in SpA and that S1P could participate in enthesis pathological ossification. 

Consequently, the inhibition of S1P metabolism could be a novel therapeutic approach to treat 

abnormal ossification.  
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2.3 Osteoarthritis 

Osteoarthritis (OA) is a degenerative joint disease characterized by deterioration in the 

integrity of cartilage, reduced cartilage cellularity, subchondral sclerosis, and low-grade 

synovial inflammation. It is a leading cause of pain, disability, and shortening of adult 

working life around the world. Multiple factors are implicated in the etiology of OA. 

However, no approved treatment is available that can modify or arrest the disease progression 

(59,60). Chondrocyte is the only cell type present in mature cartilage, which dominates the 

degenerative process of cartilage in OA (61). Chondrocyte death by apoptosis is implicated in 

the initiation of articular cartilage degradation and appears to positively correlate with the 

severity of matrix depletion and destruction that are observed in cartilage of OA patients. 

Therefore, maintaining viability and proliferation, and inhibiting apoptosis of chondrocytes 

are essential for preserving the integrity of articular cartilage (62). Interestingly, S1P is present 

in the synovial fluid of OA patients (46) and SK/S1P metabolic pathway is also implicated in 

different aspects of OA disease. 

First, SK/S1P may be involved in the regulation of chondrocytes survival. In most cells, 

overexpression of the SK isoforms (SK1 and SK2) had opposing biological actions with 

regard to cellular proliferation and apoptosis. In contrast to pro-survival SK1, SK2 

overexpression was reported to inhibit cell growth and enhance apoptosis in NIH3T3 

fibroblasts and HEK 293 cells, for instance (25). In chondrocytes specifically, DANCR 

(differentiation antagonizing non-protein coding RNA) acted as a competitive endogenous 

RNA to sponge miR-577, which targeted the mRNA of SK2 to regulate the survival of 

chondrocytes in OA (63). Moreover, a selective SK2 inhibitor (e.g. ABC294640) was 

hypothesized to block the enhanced chondrocyte apoptosis in a rat model of MIA 

(monoiodoacetate)-induced OA. Treatment with ABC294640 during four weeks attenuated 

several parameters of knee joint histological damage and improved the weight bearing pain 
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response in OA rats (64). Moreover, cell motility and apoptosis in chondrocytes were in part 

regulated by the crosstalk between the TGF-β/Smad3 and S1P/S1P3 signaling pathways as 

shown in temporomandibular joint OA (65). Consequently, we can hypothesize that blocking 

SK2/S1P/S1P3 pathway could improve OA manifestations by promoting chondrocyte 

survival. 

Second, SK/S1P may modulate chondrocyte metabolism to favor degradation of the cartilage 

matrix. Importantly, S1P stimulated secretion of PGE2 via COX-2 and MAPK and regulated 

VEGF expression in human articular chondrocytes (66,67). Furthermore, S1P-produced PGE2, 

decreased proteoglycan aggrecan expression in human chondrocytes (68). As explained before, 

S1P can regulate several cell functions intracellularly activating directly various signaling 

pathways, including NF-κB (7,69). NF-κB is a central signaling pathway responsible for 

catabolic events in human articular chondrocytes during OA (70). NF-κB also influenced the 

accumulation and remodeling of extracellular matrix proteins and had indirect positive effects 

on downstream regulators of terminal chondrocyte differentiation (including β-catenin and 

Runx2) (70). Collectively, these data suggest that diminishing S1P secretion could lead to the 

downregulation of inflammatory and angiogenic factors, and NF-κB signaling, consequently 

reducing catabolic process in OA cartilage. However, this statement is somewhat in 

contradiction with two other studies. Indeed, on the other hand, the ankylosis protein ANK is 

a major regulator of SK1 activity. Interestingly, the ANK/SK1 interaction stimulated NF-κB 

activity and decreased expression of catabolic markers, including the aggrecanase ADAMTS-

5 and the collagenase MMP-13, and the inflammatory markers COX-2, IL-6, iNOS in IL-1β-

treated ank/ank human articular chondrocytes or femoral head explants (71). In parallel, S1P 

can also act extracellularly, via its specific receptors. S1P2 was identified as the most 

prevalent S1P receptor subtype in human OA cartilage (72). In human chondrocytes, S1P 

inhibited IL-1β-induced regulation of ADAMTS-4, MMP-13 and iNOS in particular via the 
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p38 MAPK pathway, downstream S1P2 receptor, but not S1P1 and S1P3 
(72). These two 

studies therefore suggest that the activation of SK1/S1P/S1P2 pathway could impede the 

vicious circle of inflammation, and diminish cartilage degradation in the specific context of 

IL-1β-mediated process. 

In conclusion, SK/S1P metabolic pathway involvement in the development of OA has been 

evidenced, but its role remains controversial (Figure 3C). Despite numerous studies on 

cultured chondrocytes, in vivo data are lacking to conclude about the possible beneficial effect 

of blocking S1P production in OA. S1P action seems dual because it can affect the survival of 

chondrocytes as well as their catabolic behavior. In addition, the SK1 and SK2 isoforms do 

not seem to have the same roles, and neither the receptors S1P2 and S1P3. Therefore, it 

appears likely that defining therapeutic targets very specifically would be needed. 

 

2.4 Osteoporosis 

Osteoporosis is a skeletal disease that occurs when the equilibrium between bone resorbing 

(via osteoclasts) and bone formation (via osteoblasts) is disrupted, leading to bone loss. It is 

characterized by a diminution in bone mass and architectural modifications; in consequence, 

bone becomes porous. In general, the disease is accelerated in post-menopausal woman due to 

the drop of oestrogen production. This hormonal deficiency promotes bone destruction. In 

addition, the lack of vitamin D and calcium also contributes to the onset of osteoporosis (73). 

Importantly, the sphingomyelin (SM) pathway (Figure 1) has been implicated in the 

development of osteoporosis. It has been recently shown that multiple variants of a particular 

SM synthase (SGMS2, gene coding for the isoform SMS2) exist in osteoporosis patients (74). 

Subjects with nonsense mutations, leading to a catalytically inactive SMS2, presented 

childhood-onset osteoporosis with or without cranial sclerosis. Moreover, subjects with 
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missenses mutations presented a more severe phenotype with neonatal fractures, severe short 

stature, and spondylometaphyseal dysplasia. In these cases, SMS2 was accumulated in ER 

and SM de novo synthesis was enhanced. Moreover, SGMS2 did not affect serum S1P 

concentration (74). It has been also reported that genetic deletion of one of the SMases (the 

neutral SMase 2, Smpd3-/-) induced dysproteostasis, skeletal growth inhibition, malformation, 

and chondrodysplasia in mice (75). Moreover, these mice presented unimpaired mineralization 

in primary and secondary endochondral ossification centers (75).  

Further, the role of S1P in osteoporosis was demonstrated in several clinical studies (76–78). 

One such study was conducted in postmenopausal woman, and showed that S1P plasma levels 

are high and correlate with the bone fracture risk (78). S1P is a master regulator of osteoblast-

osteoclast coupling, which is dysregulated in osteoporosis. On the one hand, the 

SK1/S1P/S1P1 axis stimulates osteoblast differentiation by activating Wnt/BMP pathways (79). 

This effect, which has been demonstrated in human mesenchymal stem cells, can be abolished 

by blocking S1P1 with a specific antagonist (79). S1P also stimulates osteoblast migration and 

survival (80). Recently, Weske and colleagues showed that S1P2 could also play an 

osteoanabolic role in the disease. S1P was able to stimulate osteoprotegerin secretion in 

MC3T3-E1 osteoblastic cells through activation of S1P2 
(81). More recently, the same authors 

demonstrated that the activation of S1P2 with a specific agonist (CYM5520) increased bone 

mass of long bone and vertebrae and the number of osteoblasts in ovariectomized mice (82).  

On the other hand, S1P controls osteoclasts precursors’ maturation and migration (80,83,84). In 

blood vessels, where S1P concentration is high, S1P1 is downregulated and S1P2 stimulates 

their migration towards the bone, where they attach and mature. Ishii and colleagues have 

shown in ovariectomized mice, a post-menopausal osteoporosis model, that a S1P1 agonist 

reduced the number of osteoclasts attached to bone (83). Moreover, the blockade of S1P2 by 

the specific antagonist JTE013, limited osteoclastic resorption (84). Activation of RANKL via 
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COX-2 and PGE2 is also part of the mechanisms leading to the S1P-mediated stimulation of 

osteoclastogenesis (80). Experiments using bone marrow-derived macrophages showed that the 

osteoclastogenic factor RANKL enhanced Sphk1 mRNA and thereby S1P production and 

secretion (80). Surprisingly, Sphk1 gene expression silencing by siRNA increased 

osteoclastogenesis indicating that S1P produced by SK1 would exert a negative feedback 

regulating osteoclast functions (80). One can assume that high concentrations of S1P in 

osteoporosis could downregulate osteoclasts precursors’ S1P1 expression and favor their 

migration to bone via activation of S1P2 signaling. 

In summary, these studies suggest that targeting S1P2 (either by activation in osteoblasts or by 

blockade in osteoclasts) could be a potential therapeutic approach in the treatment of 

osteoporosis (Figure 3D). 

 

2.5 Cancer-derived bone metastasis 

Bone is a preferential site for the establishment of cancer-derived metastasis; it represents the 

third most frequent site for metastasis, behind lung and liver. Bone metastasis (BM) is a 

common complication in multiple myeloma (70-95% of incidence), in prostate cancer (PCa) 

(65-90%) or in breast cancer (BCa) (65-75%). BM can appear in other cancers but to a lesser 

extent as in lung cancer (15-65%), melanoma (14-45%), renal cell carcinoma (25%) or 

colorectal cancer (10%). Globally, PCa and BCa-derived metastasis represent the large 

majority of the skeletal metastases (up to 70%) (85–87). Patients with BM often experience 

skeletal complications called skeletal-related events (SREs), including severe pain, increased 

risk of fracture, hypercalcemia or spinal cord compression and injury among others. SREs 

strongly increase morbidity in patients. Moreover, when BCa or PCa become metastatic, the 
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5-year overall survival is reduced to 20%. Therefore therapeutic options need to be developed 

to reduce or slow BM (88).  

SK/S1P signaling has been extensively studied because of its implication in tumorigenesis 

(2,3). It also drives complex physiological mechanisms like bone homeostasis (4). Interestingly, 

bone remodeling is dysregulated during BM (5), and few reports suggest a role of altered 

SK/S1P signaling as a cause for BM.  

BM can be divided in three subtypes: osteolytic, osteoblastic or mixed, according to the 

imbalance in osteoblast-osteoclast coupling: 

- Osteolytic BMs are characterized by destruction of normal bone, mainly caused by 

osteoclasts and they appear in multiple myeloma and particularly in BCa (89). BCa-

associated BMs are frequently osteolytic even if in 15-20% of the cases they can be 

osteoblastic or mixed. Noteworthy, SK1 expression was stimulated by TGF-β and 

correlated to the metastatic potential of MDA-MB-231 cultured cells derived from 

BCa (90). Moreover, in the MDA-MB-231 subline 1833, derived from a BM, S1P3 

receptor was strongly upregulated and correlated with increased S1P-induced 

intracellular calcium. Activation by S1P had pro-inflammatory and pro-metastatic 

potential by inducing COX-2 expression and PGE2 signal transduction (91). 

- Osteoblastic BMs are characterized by an abnormal formation of new bone by 

osteoblasts. This new bone is synthesized rapidly and is considered as a bone of “poor 

quality”, which is woven and prone to fractures. Osteoblastic BMs are present in lung 

cancer patients but they are typically found in advanced PCa patients. Unfortunately, 

the molecular mechanisms of PCa-derived BM remind poorly understood. To our 

knowledge, there is only one study implicating SK/S1P metabolism in PCa-derived 

BM. This study demonstrated that murine or human osteoblastic cells showed high 
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SK1 activity and stimulated proliferation of PCa cell lines in a S1P-dependent manner. 

In addition, osteoblastic-derived S1P induced resistance of PCa cells to standard 

chemotherapy and radiotherapy. Moreover, pharmacological inhibition or knock-down 

of SK1 abolished the proliferative and survival effects of osteoblasts on PCa models 

(92).  

- Mixed BMs are characterized by areas of osteolysis and areas of bone formation. In 

addition to BCa, squamous cancers or gastrointestinal cancers can present this type of 

lesions. With regard to gastrointestinal cancers, several studies confirmed the 

participation of SK/S1P signaling to the pathobiology of colorectal or colitis-

associated cancer (93). Recently, SK1 was implicated in the promotion of metastasis in 

colorectal cancer (94). Moreover, patients with aggressive colorectal cancer present an 

upregulated SK1 expression. In these patients, high SK1 was an independent predictor 

of distant metastasis (95).  

Collectively, these studies put forward the implication of the SK1/S1P signaling in the 

development of cancer-associated BM. 

 

2.6 Vascular calcification 

Given the involvement of S1P metabolism in bone formation, the putative role of SK/S1P 

metabolic axis in vascular calcification (VC) deserves particular investigation. VC appears in 

three common age-related diseases: chronic kidney disease (CKD), type 2 diabetes mellitus 

(T2DM), where it develops in the vascular media; and atherosclerosis, where it occurs in the 

intima. VC is a major pathological problem as it significantly decreases life expectancy in the 

general population (96), and more dramatically in patients with CKD, where it contributes to 

cardiovascular mortality (97–100).  
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In all three diseases and despite intense efforts, it still remains difficult to precisely evaluate 

the precise involvement of cell-mediated mineralization as compared with cell-independent 

calcium-phosphate precipitation. It can however be summarized that if cell-independent 

precipitation probably contributes to VC in the three diseases, endochondral and/or 

endomembranous ossification, and thus chondrocyte and osteoblast differentiation are also 

involved. To begin with, endochondral ossification governs the ossification of atherosclerosis 

plaques in apolipoprotein-E deficient mice (101,102). However, in the case of human 

atherosclerosis, the plaques show either ossifications or cell-independent calcifications, 

mainly depending of the arterial bed (103). VC associated with T2DM also shows evidence of 

endochondral ossification. Studies of human medial calcification in T2DM and aging showed 

that the expression of chondrocyte differentiation markers such as type II collagen in foci of 

cartilaginous metaplasia (104,105). Finally, VC in CKD also relies at least in part on 

endochondral ossification. Both calcified aortic sections from transplant donors with CKD, 

and calcified aortas from rats with chronic renal failure induced by adenine supplementation, 

showed immunohistological evidence of the chondrocyte markers Sox9, type II collagen, and 

Runx2 (106,107). To summarize, VC in atherosclerosis, T2DM and CKD involved at least to 

some extent arterial differentiation of chondrocyte- and osteoblast-like cells. Since S1P 

modulates bone cell behavior, it may therefore also impact VC.  

To our knowledge, only very few studies explored the effects of S1P metabolism on vascular 

cell trans-differentiation and calcification. In bovine vascular smooth muscle cells (VSMCs) 

allowed to transdifferentiate upon addition of β-glycerophosphate, mineralization was 

accompanied by increased SK1 and SK2 expression, SK activity and S1P release (108). 

Pharmacological inhibition of SMases, which contribute to ceramide and sphingosine 

formation, reduced mineralization, whereas exogenously added S1P accelerated 

mineralization (108). Mechanistically, S1P promoted the phosphorylation of ezrin-radixin-
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moesin (ERM) axis and on the opposite, inhibition of ezrin phosphorylation prevented 

mineralization. Another study investigated the role of S1P in trans-differentiation and 

calcification of valve interstitial cells, which are involved in valve calcification (109). Although 

valve calcification is a different disease, valve interstitial cell metaplasia into mineralizing 

cells appears to share similarities with that of VSMCs. In valve interstitial cells, S1P exerted 

pro-inflammatory effects that were accompanied by increased levels of bone morphogenetic 

protein 2 (BMP2), stimulation of alkaline phosphatase activity and calcification (109). 

Collectively, these rare studies seem to indicate that S1P accelerates VC. However, 

considerable work remains to be done to better characterize SK/S1P involvement in VC 

associated with atherosclerosis, CKD, and T2DM. 

 

3. POTENTIAL OF TARGETING SPHINGOSINE KINASES/SPHINGOSINE 1-

PHOSPHATE METABOLIC PATHWAY FOR THE TREATMENT OF BONE AND 

JOINT PATHOLOGIES AND ECTOPIC CALCIFICATION 

Considering its role in the pathogenesis of various diseases, SK/S1P signaling has been 

originally suggested to be targeted at the level of its production by using SK inhibitors (110). 

The targeting of SK is somewhat complicated by the fact that SK1 and SK2 may have 

opposite actions. To date, although a number of “specific” inhibitors have been reported 

(111,112), yet none of them have reached clinical drug development. Another valuable strategy 

is to target the ligand with antibodies preventing S1P binding to all cognate receptors. This 

approach has been developed with a highly specific mouse antibody (mAb) directed to S1P, 

SphingomabTM, which have demonstrated strong efficacy in several preclinical studies in 

cancer (113,114) and OA (O Cuvillier, personal data). Unfortunately, the clinical development of 

the humanized anti-S1P mAb was stopped due to lack of evidence of efficacy in renal cell 

carcinoma despite a good safety profile.  
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The effects of S1P are mostly mediated by the S1P receptors, thus the majority of drugs 

developed to target S1P signaling are directed against these receptors. Antagonists or agonists 

may display a specificity towards a given receptor subtype (111). Among them, FTY720 or 

Fingolimod, an analogue of sphingosine, is currently prescribed for the treatment of relapsing-

remitting multiple sclerosis (115,116). FTY720 can be phosphorylated in vivo mainly by SK2, 

and by SK1 to a lesser extent (117), to form FTY720-phosphate (FTY720-P), a mimetic of S1P, 

interacting with all S1P receptors excepted S1P2 and preferentially inducing internalization 

and degradation of S1P1 
(118)

 (Figure 4). This effect is mainly due to S1P1 polyubiquitination 

by FTY720-P (119). Some of its actions are also attributed to its unphosphorylated form, 

notably via inhibition of SK1 activity, as suggested by several independent studies (120–122). 

Overall, FTY720 is considered as a general inhibitor of S1P metabolism (123). 

Although systemic treatment with Fingolimod did not improve fracture healing in mice (124), 

many other studies have demonstrated a beneficial role of Fingolimod in different articular or 

bone-related diseases. In osteoporosis, it has been shown that Fingolimod was able to 

ameliorate bone loss both by reducing osteoclast activity and by stimulating osteoblast 

activity. In a murine model of postmenopausal osteoporosis, it prevented bone density loss 

after ovariectomy and restored osteoclast number to normal levels (83). Another study showed 

that Fingolimod suppresses bone resorption in female patients with multiple sclerosis (125). On 

the other hand, Fingolimod stimulated osteogenic differentiation of bone marrow 

mesenchymal stem cells in ovariectomized rats (126). It enhanced Runx2, Sp7, alkaline 

phosphatase and osteocalcin gene and protein expression in these cells (126). Similar results 

were obtained in the context of periodontitis, which is a common infection that damages the 

soft tissue and the bony periodontal structures supporting the tooth. In this case, Fingolimod 

was capable to inhibit osteoclast formation in rats with ligature-induced periodontitis (127). 
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Moreover, Fingolimod could facilitate re-migration of osteoclasts precursors from alveolar 

bone surface into blood vessels (127).  

The relevance of using Fingolimod as a therapeutic drug has also been shown in the context 

of inflammatory arthritis. It has been reported that Fingolimod reduced inflammation of ankle 

joints in animal models of induced-arthritis CIA (128,129). The drug had similar benefic effects 

in the model of SKG mice, which spontaneously develop chronic autoimmune arthritis, 

resembling to RA (130). In all these three studies, the immunosuppressive effect of Fingolimod 

seems to be the major factor improving arthritis. Fingolimod inhibited dendritic cell migration 

(129), reduced the number of autoimmune CD4(+) T cells in the inflamed synovium via their 

sequestration in the thymus (128,130), and certainly diminished the local production of IL-6, IL-

12, TNF-α and PGE2 
(129,130). By down-regulating the inflammation, Fingolimod reduced the 

incidence and severity of the arthritis, decreased joint damage and limited bone destruction 

(128–130).  

Finally, we recently showed that Fingolimod reduced S1PR-induced activation by SpA 

patient’s synovial fluids in cultured murine chondrocytes (58). On the other hand, Fingolimod 

decreased alkaline phosphatase activity, matrix mineralization, and bone formation markers in 

osteoblasts and hypertrophic chondrocytes (58). 

 

4. CONCLUSION 

Altogether, the studies described in this review suggest the potential of inhibiting/blocking 

SK/S1P metabolic pathway for the treatment or at least improvement of some articular and 

bone-related diseases, specially RA, SpA and osteoporosis. The analogue of sphingosine 

FTY720 or Fingolimod, accepted by US and European agencies for the treatment of 

relapsing-remitting multiple sclerosis appears to be a promising compound for drug 

repurposing. By targeting S1P metabolism at several levels, its mode of action is twofold. On 
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the one hand, it could promote the restoration of bone homeostasis. On the other hand, as an 

immunosupressive agent, it could reduce the deleterious inflammatory process. In conclusion, 

in vivo or pre-clinical studies need to be developed in order to validate SK/S1P as a target of 

reference for the treatment of bone and joint pathologies and ectopic calcification. 
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5. FIGURE LEGENDS 

Figure 1. View of sphingolipid pathway. Ceramide can be synthetized by de novo synthesis 

or obtained from sphingomyelin (SM) degradation. Ceramide is converted to sphingosine and 

sphingosine is phosphorylated by the action of sphingosine kinase 1 or 2 (SK1, SK2) to 

produce sphingosine 1-phosphate (S1P). S1P can be degraded reversibly by S1P phosphatases 

(SPP1, SPP2) or irreversibly by S1P lyase (SPL). PC: phosphatidylcholine, DAG: 

diacylglycerol. 

 

Figure 2. Intracellular and extracellular S1P signaling. S1P is produced nearby 

intracellular plasma membrane leaflet. S1P can act intracellularly targeting different proteins 

and metabolic pathways (ex: HADCs, histone deacetylases). S1P can either get out of the cell 

via ABC transporters or S1P-specific transporter, Spns2. S1P can act in an autocrine or 

paracrine way through its 5 surface receptors (S1P1-5), which are coupled to different G 

proteins.  

 

Figure 3. SK/S1P actions in bone and joint diseases. A) In RA, fibroblast-like synoviocytes 

(FLS) present elevated SK1 activity enhancing S1P production. S1P is secreted and has both 

autocrine and paracrine effect through S1P1-3. S1P stimulates FLS’ migration and invasion 

provoking synovium thickening. S1P can also enhance osteoclastogenesis and synovitis. B) In 

SpA, chondrocytes or osteoblasts from enthesis increase SK1 and SK2 activity, consequently 

augmenting S1P production and secretion. S1P can act intracellularly or locally in the enthesis 

through S1P1/3, favoring ectopic ossification. Its role in enthesitis is still unclear. C) In OA, 

S1P produced by chondrocytes via SK2 activity acts locally in the cartilage through S1P3, 

stimulating apoptosis. Whether the S1P generated from SK1 activity, which interacts with 

S1P2, lead to matrix catabolism is still controversial. D) In osteoporosis, S1P plays on the 



 27

balance between bone formation and bone loss. Its action on osteoblasts through S1P1/2 

stimulates mineralization, while its action on osteoclasts, mediated by the overexpressed 

S1P2, favors osteoclast precursor’s migration and maturation, thus bone resorption.  

 

Figure 4. FTY720 metabolism. FTY720 can enter in the cell and is converted to FTY720-

phosphate (FTY720-P) by the action of SKs, preferentially SK2. FTY720-P can go out of the 

cell through Spns2 transporter, and interact with all S1P receptors except S1P2. When 

FTY720-P binds to S1P1, it provokes its internalization, ubiquitinylation and degradation 

through the proteasome. 
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