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Abstract 30 

T-cell acute leukemia is a hematologic malignancy that results from the progressive 31 

acquisition of genomic abnormalities in T-cell progenitors/precursors. T-ALL is commonly 32 

thought to originate from the thymus albeit recent literature describes the possible 33 

acquisition of first oncogenic hits in hematopoietic progenitor cells of the bone marrow 34 

(BM). The journey of T-ALL from its arising to full blown expansion meets different 35 

microenvironments, including the BM in which leukemic cells settle down early after the 36 

disease spreading. We take advantage of recent literature to give an overview of important 37 
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cells and factors that participate in T-ALL, especially in the BM, arguing in favor of a home 38 

marrow niche for this rare leukemia. 39 

 40 
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 43 

Introduction 44 

T-cell acute lymphoblastic leukaemia (T-ALL) constitutes a group of hematologic 45 

malignancies that result from the transformation of T cell progenitors. These pathologies 46 

concern children and adults. In the past twenty years, improvement in treatment protocols 47 

have contributed to a great amelioration of patient survival (Pui and Evans, 2013). 48 

Nevertheless, 15% of young patients and 45% of adults still relapse, which are of very bad 49 

prognosis (Litzow and Ferrando, 2015). Finding new ways to treat those patients is thus an 50 

important goal for ongoing research in the T-ALL field. 51 

The knowledge accumulated from DNA sequencing and from functional T-ALL mouse models 52 

indicates that this blood disorder arises from the collaborative action of several oncogenic 53 

hits. Around 10-20 genomic abnormalities are the basis of this T-cell precursors’ 54 

transformation (Girardi et al., 2017; Zhang et al., 2012). It is the accumulation of gain and 55 

loss of function of very diverse cell regulators that lead normal T cell precursors to lose their 56 

ability to fully differentiate into mature and functional T lymphocytes and to gain important 57 

survival and proliferative features, ultimately resulting in leukaemia (Belver and Ferrando, 58 

2016; Girardi et al., 2017) (Figure 1). It has long been admitted that T-ALL development 59 

occurs in the thymus where normal T cell differentiation takes place (Blom and Spits, 2006). 60 

Mouse models of early T-ALL development, using targeted oncogene expression in early T 61 

cells, such as in double negative (DN) CD4/CD8 thymocytes, have pointed these cells as 62 

putative cells of origin in certain T-ALL (McCormack et al., 2010; Tremblay et al., 2010). 63 

Experiments in which for instance LMO2 or LMO1 and TAL1 transcription factor expression 64 

was enforced in mouse DN3 T cell progenitors showed acquisition of self-renewal properties 65 

(Gerby et al., 2014; McCormack et al., 2010; Tremblay et al., 2010), and further 66 

transformation required additional genomic modifications, such as Notch1, KRAS or NRAS 67 

mutations, implicated in T cell engagement or in signal transduction pathways (García-68 

Ramírez et al., 2018). In humans, the question relative to T-ALL pre-leukemic/cell of origin 69 

has been challenged using two main strategies. In one hand, enforced expression of 70 
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oncoproteins, such as NOTCH1/3, TLX3, TAL1/LMO2, in cord blood or bone marrow (BM) 71 

CD34+ cells, forced to follow a T cell differentiation path using specific culture conditions or 72 

after transplantation in immune-deficient mice, was attempted as a way to dissect the early 73 

steps of T-ALL (De Smedt et al., 2002; García-Peydró et al., 2018; Pike-Overzet et al., 2007; 74 

Renou et al., 2017). Except for the work described in (García-Peydró et al., 2018), these 75 

attempts did not lead full blown leukaemia to develop, probably due to missing important 76 

secondary signals. However T cell progenitors accumulated as a result of a differentiation 77 

blockage and these progenitors were assimilated to pre-leukemic cells (De Smedt et al., 78 

2002; Pike-Overzet et al., 2007; Renou et al., 2017). The second strategy, recently published, 79 

consisted in targeted sequencing of RNA from single hematopoietic CD34+CD38- progenitor 80 

cells sorted from the BM of T-ALL patients. The results indicated that in half T-ALL tested, a 81 

few multipotent cells held a hand of mutations found in leukemic cells, outlining the fact 82 

that these BM stem/progenitors may be cells of origin in human T-ALL (De Bie et al., 2018). 83 

As a matter of fact, as T-ALL progresses from the first genomic hit to the full spectrum of 84 

mutations and further expands to invade the body, the leukemic cells are in close contact 85 

with different microenvironments - thymus and blood infiltrated organs, including BM - that 86 

may impact their intrinsic behaviour as well as their chemo-sensitivity to treatments (Figure 87 

2). 88 

Here we review the current knowledge of the relationships between the BM components 89 

and T-ALL. We especially focus our attention on late steps, when leukaemia has already 90 

spread in patient BM and blood. We question the current description of marrow niches of T-91 

ALL. 92 

 93 

BM : a place to go for T-ALL? 94 

The diagnosis of leukaemia in patients copes with high infiltration rate of blood and BM 95 

(>20%), by immature looking blood cells. In the case of T-ALL, the blast cells originate from 96 

the thymus where progressive genetic abnormalities, such as translocation, gene fusion and 97 

mutations, have gradually accumulated in T cell precursors leading to uncontrolled cell 98 

growth, proliferation, survival and differentiation arrest to a point where undifferentiated 99 

highly proliferating cells start invading the whole organism (Girardi et al., 2017). How 100 

leukemic cells quit the thymus to disseminate to other body sites and whether there is a 101 

specific migration to the BM, is still unclear (Passaro et al., 2016; Vadillo et al., 2018). What 102 
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is much well known is how normal T cells transit within the thymus, from cortex to medulla, 103 

as they mature and how they eventually exit towards the blood when they reach their final 104 

differentiation stage (James et al., 2018). Upregulation of surface receptors such as CC-105 

chemokine receptor 7 (CCR7) and expression of Semaphorin 3E receptor PlexinD1 are crucial 106 

to the T cell precursors from the thymic cortex to enter the medulla rich area following a 107 

gradient of CCR7-ligands CCL19 and CCL21 and thus further progress in the differentiation 108 

(Choi et al., 2008; Kwan and Killeen, 2004; Ueno et al., 2004). In later T cell differentiation 109 

stages, differential expression of CD69, CD62L and sphingosine-1-phosphate receptor 1 110 

(S1PR1) allows mature T cells to leave the thymus and reach the blood circulation. Finely 111 

tuned S1P levels, the ligand of S1PR1, are necessary to avoid intrathymic accumulation of 112 

newly produced mature T cells, that is orchestrated by different cells, such as thymic 113 

epithelial, stromal and endothelial cells, the latest being the gate keeper between the 114 

thymic microenvironment and the blood circulation (James et al., 2018). Because T-ALL cells 115 

are mostly restricted to pre-cortical or cortical precursors, i.e. that did not underwent 116 

sufficient differentiation to achieve the passage in the medulla, one can expect that 117 

mechanisms driving T-ALL emigration out of the thymus may involve molecules that are 118 

detected in the early steps of differentiation. CCR7 does not seem to be crucial in this 119 

phenomenon since deletion of CCR7 did not hamper Notch1-induced T-ALL migration, 120 

development and propagation. Only central nervous system invasion by T-ALL was modified 121 

in absence of CCR7 (Buonamici et al., 2009) albeit this result is debated (Jost et al., 2016). 122 

The chemokine receptor CXCR4 is widely expressed in newly diagnosed human T-ALL and in 123 

mouse models (Pitt et al., 2015) (and our own results) and its ligand CXCL12 is predominantly 124 

produced by the thymic cortex, and not by the medulla (Lucas et al., 2017). Albeit the role of 125 

CXCR4 in mature T cells exit from the thymus is debated (James et al., 2018), one may 126 

hypothesize that as leukaemia expands in the thymic cortex, a shortage in CXCL12 due to 127 

high consumption by pre-leukemic/leukemic cells may allow the “unfed” ones to start 128 

leaving the thymic environment and to find a lodgement in secondary CXCL12 producing 129 

niches, such as the BM. This “consumption” mechanism has been proposed to explain why 130 

the level of Interleukin 7 (IL7) is lower in the plasma of T-ALL patients compared to controls 131 

(Silva et al., 2011) as previous analyses showed IL7 circulating levels may be regulated by 132 

consumption (Park et al., 2004). Treatment of mice with the CXCR4 antagonist AMD3100 133 

redistributes leukocytes from primary immune organs, such as thymus and BM, to secondary 134 
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immune organs (Liu et al., 2015) indicating that preventing CXCR4 activation helps T cells to 135 

detach and recirculate. In the same idea, it is reported that T-ALL expansion perturbates the 136 

thymus architecture (García-Ramírez et al., 2018). In this context, cortical thymic epithelial 137 

cells (cTECs) may progressively be lost as a consequence of T-ALL intra-thymic development 138 

and because cTECs are CXCL12 producing cells (Lucas et al., 2017), their shortage during 139 

disease development may also lead to decreased levels of local consumable CXCL12 and help 140 

T-ALL cells to egress from the thymus. 141 

  142 

BM: a place to be for T-ALL? 143 

BM is a major site in which T-ALL leukemic cells are detected during the leukaemia process 144 

and after their intra-venous transplantation in mouse recipients (De Keersmaecker et al., 145 

2010; Hawkins et al., 2016; Passaro et al., 2015; Poglio et al., 2016). Getting into the BM 146 

microenvironment requires many steps such as adhesion on endothelial cells and 147 

extravasation from the blood circulation to enter the bone cavity. Albeit these mechanisms 148 

are well described for normal patrolling T cells that enter lymph nodes, precise information 149 

is missing for T-ALL when invading the BM (Vadillo et al., 2018). Once in the BM, leukemic 150 

cells need to find a proper niche among the very diverse BM microenvironment that would 151 

allow them to survive and proliferate (Morrison and Scadden, 2014). Recent studies have 152 

described the localization of T-ALL cells close to BM perivascular stromal and vascular cells 153 

shortly after leukemic cell injection (Pitt et al., 2015). Even though vascular endothelial cells 154 

(VEC) are not the main source of CXCL12 in the BM (Ding and Morrison, 2013; Greenbaum et 155 

al., 2013; Tikhonova et al., 2019), Pitt and colleagues demonstrated that CXCL12 specifically 156 

produced by VEC is necessary for the maintenance and progression of T-ALL in vivo (Pitt et 157 

al., 2015). These results remind the role of VEC-derived CXCL12 in maintaining 158 

hematopoietic stem cells (HSC) but were unexpected given that osteoblasts constitute a 159 

niche for lymphoid progenitors in BM (Ding and Morrison, 2013; Greenbaum et al., 2013). 160 

Conditional deletion of CXCL12 in VEC or treatment with a CXCR4 antagonist significantly 161 

decreased T-ALL propagation, indicating that VEC and production of CXCL12 are important 162 

for T-ALL development once BM is reached (Pitt et al., 2015). This observation fits with 163 

another study that showed an impact of CXCL12/CXCR4 in T-ALL migration, survival and 164 

expansion (Passaro et al., 2015). However, a more recent study that surveyed T-ALL 165 

localization close to osteoblasts, perivascular mesenchymal stem/progenitor cells and 166 
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vasculature using intra-vital microscopy, reported stochastic distribution of leukemic cells 167 

relative to these three cell BM components, rather than stable nichage, and a high motility 168 

rarely restricted to the vicinity of any specific cell types or structures (Hawkins et al., 2016). 169 

These controversial results are not explained by the leukemic models studied, as similar 170 

oncogenic activation was used to induce T-ALL from mouse progenitors and human T-ALL 171 

were as well studied in both works. One main difference is the mouse BM location in which 172 

T-ALL initiation was explored, tibia vs calvaria (Hawkins et al., 2016; Pitt et al., 2015), which 173 

may imprint different behaviour to leukemic cells. A previous report showed substantial 174 

heterogeneity between calvaria and epiphyses and diaphysis of long bones in terms of bone 175 

remodelling activity, blood volume fraction and hypoxia (Lassailly et al., 2013). T-ALL are also 176 

very much dependent on a specific cytokine, that is IL7 (Barata et al., 2004, 2001). IL7 is 177 

crucial for normal T cell development and the expression of its receptor, IL7Rα/CD127, 178 

varies in thymocytes according to the differentiation stages, being high in early T cells, lower 179 

in DP CD4+CD8+ and re-induced in late SP mature T cells in accordance with the production 180 

of IL7 by cTECs (Akashi et al., 1998; James et al., 2018; Plum et al., 1996). So it is not 181 

surprising that about 70% of T-ALL, that are precursor T cells, express IL7R and respond to 182 

IL7 (Barata et al., 2004; Karawajew et al., 2000). In vitro, IL7 is a major cytokine to add in 183 

culture medium to grow T-ALL from patients (Armstrong et al., 2009; Scupoli et al., 2003; 184 

Yost et al., 2013) and recent development of a human anti- IL7Rα antibody indicated 185 

efficient leukaemia cytotoxicity in vitro and delayed T-ALL development in vivo (Akkapeddi et 186 

al., 2019). Interestingly IL7/IL7R interaction does not similarly drive the activation of 187 

downstream STAT5, PI3K/Akt/mTOR and MEK/Erk pathways in normal and malignant states  188 

(Oliveira et al., 2019), indicating specific targeting of leukemic cells may be found. Notch 189 

activation, another important Receptor/ligand pathway in normal T cell differentiation 190 

(Radtke et al., 2010), is also implicated in T-ALL development, propagation and maintenance 191 

(Armstrong et al., 2009; Weng et al., 2004). It is expressed concomitantly to IL7/IL7R in the 192 

thymus compartments where they cooperate to induce proliferation of T cell progenitors 193 

while suppressing their non-T cell fates (García-Peydró et al., 2006), in relation with the fact 194 

that Notch1 signalling drives IL7Rα expression in early T cells and leukaemia (González-195 

García et al., 2009). Importantly, both Notch1 and IL7Rα genes are targeted by gain of 196 

function mutations in T-ALL patients (Weng et al., 2004; Zenatti et al., 2011) further outlining 197 

the importance of both signalling pathways in supporting leukemia survival/expansion. Of 198 
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note, Notch1 mutations appear late during the oncogenic process, indicating only 199 

cooperative effect with other premium genomic abnormalities (De Bie et al., 2018). Notch 200 

ligands Delta-like 1 and Delta-like 4 (DLL1, DLL4) that are the major ligands of Notch1 201 

implicated in thymic T cell development, and IL7 are produced by different cells of the BM 202 

microenvironment. Indeed, single cell RNA sequencing analyses identified VE-cadherin 203 

positive endothelial cells as the exclusive DLL1/DLL4 expressing BM non-hematopoietic cells 204 

whereas IL7 is detected in Leptin receptor positive (LepR+) mesenchymal stromal/stem cells 205 

(MSC) (Baryawno et al., 2019; Tikhonova et al., 2019). DLL4 that has also been detected in 206 

osteoblastic cells (Yu et al., 2015) induces T-ALL expansion in vitro and in vivo (Minuzzo et al., 207 

2015). Interestingly, CXCL12 is much more broadly expressed than the Notch ligands 208 

DLL4/DLL1 and IL7, but its highest expression is detected in LepR+ cells that also produce IL7 209 

(Tikhonova et al., 2019). This observation is supported by a recent paper describing the 210 

coincident production of IL7 and CXCL12 by unique peri-sinusoidal stromal cells, that 211 

aggregate pro-B cells and HSC at very close spots, representing another potential cellular 212 

niche for T-ALL (Balzano et al., 2019). Other growth factors/cytokines have been shown to 213 

help T-ALL to propagate. Insulin-growth factor 1 (IGF1) is one of them and its receptor is 214 

broadly expressed in T-ALL as a result of Notch1 activation (Medyouf et al., 2011) whereas 215 

transcripts of IGF1 are detected almost exclusively in osteoblastic cells (Tikhonova et al., 216 

2019). Blocking or deleting IGF1 receptor in mouse T-ALL has major effects in the 217 

progression of leukemia in vivo with low leukemia-initiating activity being observed in such 218 

conditions (Medyouf et al., 2011). Interestingly, T-ALL can also contribute to its own growth 219 

through education of dendritic cells to secrete high IGF1 levels (Triplett et al., 2016). 220 

Speaking about cross-talks between the BM and T-ALL, an interesting finding concerns the 221 

implication of the pro-inflammatory cytokine, IL18, in T-ALL propagation. Indeed, a recent 222 

study described the presence of enhanced IL18 levels in the circulation of T-ALL patients 223 

(Uzan et al., 2014). IL18 receptor is expressed in T-ALL cells and interfering with its 224 

expression using a shRNA approach as well as blocking IL18 with a neutralizing antibody or 225 

using knock-out mice, greatly limits leukemia expansion in mouse and human T-ALL models 226 

(Uzan et al., 2014). IL18 is not produced by leukemic cells but rather by endogenous BM 227 

cells, including stromal cells (Uzan et al., 2014). Single cell RNA seq identified few IL18 228 

expressing cells among LepR+ stromal cells, indicating potential overlap with IL7 and CXCL12 229 

producing cells (http://aifantislab.com/niche from (Tikhonova et al., 2019). As a sum up, T-ALL 230 
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cells that home to BM can count on many different local interactions to help their growth 231 

and propagation, providing mechanistic clues on why the BM is a “warm nest” for this 232 

leukaemia (Figure 3). 233 

 234 

BM, BM… which BM are you talking about? 235 

BM niches are numerous and very diverse in the human body, partly due to the architecture 236 

of the different bones. With aging, the BM composition changes and marrow niches become 237 

more and more infiltrated with adipose tissue; in the neonate, the BM is entirely 238 

hematopoietic and during the first year of life the conversion from hematopoietic, or red, to 239 

fatty, or yellow, marrow begins (Vogler and Murphy, 1988). The completion time of 240 

hematopoietic to adipocytic conversion is different if one considers the appendicular and 241 

the axial skeleton, the latest proceeds throughout life whereas the first one is over by the 242 

time of skeletal maturity (Laor and Jaramillo, 2009). Moreover the red to yellow marrow 243 

conversion follows a very specific pattern starting distally at the phalanges and moving 244 

centrally towards the axial skeleton. In bones such as humerus, sternum and clavicle, fatty 245 

transformation starts in the epiphysis, proceeds through the diaphysis and ends in the 246 

metaphysis (Zawin and Jaramillo, 1993). Thus looking at BM niches in a given (long) bone, at 247 

young adult time, in mouse, may only provide a limited, even though very informative, 248 

portray of the BM microenvironment at steady state or upon stressful conditions, such as 249 

after chemical myeloablation or after leukaemia development (Baryawno et al., 2019; 250 

Tikhonova et al., 2019; Zhou et al., 2017), and not taking into account the evident man to 251 

mouse bone architecture differences. With this caveats in mind, one may question whether 252 

the leukemic cells behave similarly in different bones, where for instance the BM red to 253 

yellow conversion state is not at the same levels. This question is important because BM 254 

adipocytes are known as modulators of BM cell components, such as osteoblastic and 255 

hematopoietic cells (Ambrosi et al., 2017). Interestingly a recent study investigated the 256 

metabolic and cell cycle state of T-ALL recovered from two different fat-containing mouse 257 

BM sites, i.e. thoracic and tail vertebrae, in mouse and xenograft models. Compared to 258 

thoracic/red BM, T-ALL cells from tail vertebrae/yellow BM were in a lower metabolic and 259 

quiescent state that correlated with higher T-ALL intrinsic chemoresistance to cell cycle-260 

targeting drugs (Cahu et al., 2017). This state was reversible upon cultures in permissive 261 

conditions and after secondary transplants, as leukemic cells reached long bones/red BM 262 
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areas (Cahu et al., 2017). Albeit the exact mechanisms depicting the effect of the adipocyte-263 

rich BM on T-ALL are currently unknown, these results are in line with recent analyses 264 

showing that BM adipocytes are negative regulators of the hematopoietic 265 

microenvironment (Naveiras et al., 2009). However, more recent studies showed that 266 

hematopoietic recovery after myeloablation is supported by BM adipocytes from long bones 267 

but not from caudal vertebrae that seem to influence not only hematopoiesis but also BM 268 

vascularization (Zhou et al., 2017). These last results indicate an even higher degree of 269 

variability between the BM cell content, even for well-known adipocyte lineage, of different 270 

bones, outlining the difficulties of understanding the exact relationship between leukaemia 271 

and its microenvironment in bones. The study of leukaemia development in tail and thorax 272 

vertebrae also pinpoints the fact that when leukaemia treatment efficiency is assessed by 273 

BM aspiration in a defined bone spot, one may not forget that other infiltrated bones may 274 

provide another reality. 275 

 276 

BM and T-ALL marriage: not yet concluded?  277 

Considering the signals available in the BM, it is thus expected that T-ALL are to go and stay 278 

in the medullary niches, some of them supporting chemoresistance during treatments. Ex-279 

vivo experiments have shown that T-ALL in contact with MSC have low reactive oxygen 280 

species (ROS), in relation with enhanced mitochondrial fragmentation. Low ROS levels 281 

participate in MSC-mediated T-ALL resistance to aracytin and methotrexate (Cai et al., 2016). 282 

It has also been observed that leukemic cells may transfer mitochondria to MSC in presence 283 

of these drugs through intercellular nanotube formation, and this phenomenon decreases 284 

ROS levels in leukemic cells, similarly contributing to chemo resistance (Wang et al., 2018). 285 

Nevertheless, as mentioned earlier in the text, T-ALL cells, like grasshoppers in a fertile field, 286 

can devastate and reduce cell diversity. Studies have shown that in T-ALL invaded BM, 287 

osteoblasts disappear as a consequence of aberrant activation of Notch1 in osteoblastic 288 

progenitors, and this coincides with HSC/progenitor functional loss (Hawkins et al., 2016; 289 

Wang et al., 2016). Moreover, MSC isolated from the BM of T-ALL patients become 290 

senescent and are unable to differentiate into adipocytes, osteocytes and chondrocytes (Lim 291 

et al., 2016), a state that may be linked to massive mitochondrial transfer from leukemic 292 

cells to MSC (Wang et al., 2018). Interestingly, a similar mechanism was described to explain 293 
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HSC protection from senescence in the BM niche, e.g. a direct transfer of ROS mediated by 294 

Connexin-43 from HSC to BM stromal cells (Taniguchi Ishikawa et al., 2012). 295 

The remaining burning question is whether the “grasshopper effect” of T-ALL, that may not 296 

be restricted to this leukemia type, is totally reversible. Indeed, elimination of leukemic cells 297 

from the BM by chemotherapeutic agents may not fully restore the normal BM 298 

microenvironment supporting properties, leading to dysfunctional long term production of 299 

hematopoietic cells. 300 

 301 

That’s all folks! 302 

Much efforts have been produced to understand the reciprocal relations between BM 303 

microenvironment and T-ALL in the recent years. The current results provide a still 304 

preliminary picture of the cell/factors exchanges that may be refined with the recent 305 

development of single cell analyses and of very precise intra-vital microscopy. Questions 306 

relative to the chemoprotection of leukemic cells by the diverse BM microenvironments are 307 

still pending but will undoubtedly be resolved in a near future. This may open to 308 

complementary strategies to target resistant cells in their home marrow nest. 309 
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Figure 1: Classification and frequencies of the main molecular targets of oncogenic abnormalities in T-ALL.
Shown are the different factors distributed in categories being more or less frequently affected in leukemic cells
.
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Figure 2: Simplified model of T-ALL development starting in the BM, proceeding in the thymus and further invading
BM again (adapted from Garcia Ramirez I. et al, Embo J., 2018).
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Figure 3: Overview of extrinsinc factors and non-hematopoietic BM cells known to regulate T-ALL (from Pitt et al., 2015, Passaro et
al., 2015; Armstrong et al., 2009; Tikhonova et al, 2019; Cahu et al., 2017; Balzano et al, 2019; Medyouf et al, 2011; Passaro et al.,
2015; Silva et al., 2011; Uzan et al., 2014; Baryoawno et al, 2019)
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