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ON THE DEFORMATION RIGIDITY OF

SMOOTH PROJECTIVE SYMMETRIC VARIETIES

WITH PICARD NUMBER ONE

SHIN-YOUNG KIM AND KYEONG-DONG PARK

Abstract. Symmetric varieties are normal equivariant open embeddings of symmetric homogeneous spaces

and they are interesting examples of spherical varieties. The principal goal of this article is to study the
rigidity under Kähler deformations of smooth projective symmetric varieties with Picard number one.

Résumé. Les variétés symétriques sont les plongements ouverts normaux équivariants des espaces homogènes
symétriques et ce sont des exemples intéressants de variétés sphériques. L’objectif principal de cet article est

d’étudier la rigidité sous les déformations kähleriennes des variétés projectives lisses symétriques de nombre

de Picard un.

1. Introduction

For a connected semisimple algebraic group G over C and an involution θ of G, the homogeneous space
G/H is called a symmetric homogeneous space, where H is a closed subgroup of G such that Gθ ⊂ H ⊂
NG(Gθ) (see Section 2.1 for details). A normal G-variety X together with an equivariant open embedding
G/H ↪→ X of a symmetric homogeneous space G/H is called a symmetric variety. Our interest in this paper
is the rigidity property under Kähler deformation of smooth projective symmetric varieties with Picard
number one.

From the Kodaira-Spencer deformation theory (cf. [15]), the vanishing of the first cohomology group
H1(G/P, TG/P ) of a rational homogeneous manifold G/P for a parabolic subgroup P ⊂ G implies the local
deformation rigidity of G/P . The global deformation rigidity of a rational homogeneous manifold G/P with
Picard number one was studied by Hwang and Mok in [8], [10], [11], [12], [13]: a rational homogeneous
manifold with Picard number one, different from the orthogonal isotropic Grassmannian Grq(2, 7), is glob-
ally rigid. This result can be generalized to some kinds of quasi-homogeneous varieties, for example, odd
Lagrangian Grassmannians [20] and odd symplectic Grassmannians [13] among smooth projective horospher-
ical varieties with Picard number one. It is then natural to ask the same questions about smooth projective
symmetric varieties. Recently, the local deformation rigidity has been proven for smooth projective sym-
metric varieties with Picard number one, whose restricted root system is of type A2 in [6, Proposition 8.4]
or [1, Theorem 1.1]. We obtain the global deformation rigidity of two smooth projective symmetric varieties
of type A2 under the assumption that the central fibers, of their defomation families, are not equivariant
compactifications of the vector group Cn, where n is the dimension of the symmetric varieties.

Theorem 1.1. Let π : X → ∆ be a smooth projective morphism from a complex manifold X to the unit
disc ∆ ⊂ C. Denote by S the smooth equivariant completion with Picard number one of the symmetric
homogeneous space SL(6,C)/Sp(6,C) or E6/F4. Suppose for any t ∈ ∆\{0}, the fiber Xt = π−1(t) is
biholomorphic to the smooth projective symmetric variety S. Then the central fiber X0 is biholomorphic to
either S or an equivariant compactification of the vector group Cn, n = dimS.

According to Theorem 2 of [21], when smooth projective symmetric varieties with Picard number one have
a restricted root system of type G2, they are the smooth equivariant completions of either G2/(SL(2,C) ×
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SL(2,C)) or (G2×G2)/G2. Recently, the smooth equivariant completion of G2/(SL(2,C)×SL(2,C)), which
is called the Cayley Grassmannian, has been studied by Manivel [18]. Combining geometric descriptions of
the Cayley Grassmannian in [18] with the normal exact sequence leads to the local deformation rigidity.

Theorem 1.2. The smooth equivariant completion S with Picard number one of the symmetric homogeneous
space G2/(SL(2,C)× SL(2,C)) is locally rigid.

In Section 2, we will review the classification results of smooth projective symmetric varieties with Picard
number one and some general results about the variety of minimal rational tangents (VMRT). Moreover,
we will prove the deformation rigidity of VMRT as a projective manifold under the assumption in Theorem
1.1. In Section 3, we relate the automorphism group of a projective variety with the prolongations of the Lie
algebra of infinitesimal automorphisms of the cone structure given by its VMRT. By considering the smooth
projective symmetric varieties with Picard number one of type A2 and the affine cone of the VMRT, we can
prove Theorem 1.1. In Section 4, we prove Theorem 1.2 using the Koszul complex associated to the Cayley
Grassmannian and the Borel-Weil-Bott theorem.

Acknowledgements. The authors would like to thank Michel Brion, Laurent Manivel, Nicolas Perrin,
Baohua Fu and Qifeng Li for discussions on this topic and useful comments. The first author is especially
appreciate to Michel Brion and Institut Fourier for her one year visiting during 2018/19. The second author
is also grateful to Institut Fourier in Grenoble for his visiting, where his part of the present work was mostly
completed in October 2018. We are grateful to the referee for his/her helpful comments that improves the
presentation of this paper.

2. Symmetric varieties and VMRT

2.1. Smooth projective symmetric varieties with Picard number one. LetG be a connected semisim-
ple algebraic group over C and θ be an involution of G, i.e., a nontrivial automorphism θ : G→ G such that
θ2 = id.

Definition 2.1. Let Gθ = {g ∈ G : θ(g) = g}.
(1) When H is a closed subgroup of G such that Gθ ⊂ H ⊂ NG(Gθ), we say that the homogeneous

space G/H is a symmetric (homogeneous) space. Here, NG(Gθ) means the normalizer of Gθ in G.
(2) A normal G-variety X together with an equivariant open embedding G/H ↪→ X of a symmetric

space G/H is called a symmetric variety.

Example. (1) For G = SL(n,C) × SL(n,C) and the involution θ(x, y) = (y, x), Gθ = {(x, x) ∈ SL(n,C) ×
SL(n,C)} ∼= SL(n,C). In particular, if n = 2 and H = Gθ, then the symmetric space G/H ∼= SL(2,C) is a
closed subvariety of Mat2×2(C) ∼= C4. Let’s consider an equivariant open embedding of G/H:

G/H ↪→ X := {[x : t] : det(x) = t2} ⊂ P(Mat2×2(C)⊕ C)

x 7→ [x : 1]

Thus, the symmetric variety X is the 3-dimensional hyperquadric Q3 ⊂ P4.
(2) For G = SL(3,C) and the involution θ(g) = (gt)−1, we get Gθ = SO(3,C). The irreducible repre-

sentation VSL(3,C)(2$1) = Sym2 C3 is decomposed into Sym2 C3 ∼= VSO(3,C)(4$1) ⊕ VSO(3,C)(0) = C5 ⊕ C
as SO(3,C)-modules. From this result, we have an equivariant open embedding SL(3,C)/NG(SO(3,C)) ↪→
P(Sym2 C3) ∼= P5 = X.

Vust [23, Theorem 1 in Section 1.3] proved that a symmetric space G/H is spherical, i.e., it has an open
orbit under the action of a Borel subgroup of G. By using the Luna-Vust theory on spherical varieties, Ruzzi
[22] classified the smooth projective symmetric varieties with Picard number one using colored fans.

Theorem 2.2 (Theorem 1 of [21]). Let X be a smooth equivariant completion of a symmetric space G/H
with Picard number one. Then X is nonhomogeneous if and only if

(1) the restricted root system {α− θ(α) : α ∈ RG}\{0} has type either A2 or G2, where RG denotes the
root system of G, and

(2) H = Gθ (the closed subgroup of invariants of θ).
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Given a symmetric space G/H, there is at most one embedding of G/H with these properties. Furthermore,
all these varieties are projective and Fano.

Moreover, Ruzzi gave a geometric description of smooth projective symmetric varieties with Picard num-
ber one whose restricted root system is of type A2 (Theorem 3 of [21]): these A2-type symmetric vari-
eties are smooth equivariant completions of symmetric homogeneous spaces SL(3,C)/ SO(3,C), (SL(3,C)×
SL(3,C))/ SL(3,C), SL(6,C)/ Sp(6,C), E6/F4, and are isomorphic to a general hyperplane section of ratio-
nal homogeneous manifolds which are in the third row of the geometric Freudenthal-Tits magic square (see
[3], [16], and Section 3.5 of [17]), respectively.

R C H O
R v4(P1) P(TP2) Grω(2, 6) OP2

0

C v2(P2) P2 × P2 Gr(2, 6) OP2

H LGr(3, 6) Gr(3, 6) S6 E7/P7

O F ad4 Ead6 Ead7 Ead8
The fourth row (O-row) of the square consists of the adjoint varieties for the exceptional simple Lie

groups except G2. Taking the varieties of lines through a point, one obtains the third row which are
Legendre varieties. The second row is deduced from the third row by the same process, which consists of
Severi varieties. Then by taking hyperplane sections we get the first row of the square.

2.2. Variety of minimal rational tangents. In 1990’s Hwang and Mok introduced the notion of the
variety of minimal rational tangents on uniruled projective manifolds (see [9] and [7]). For the study of Fano
manifolds, more generally uniruled manifolds, a basic tool is the deformation of rational curves. The study
of the deformation of minimal rational curves leads to their associated variety of minimal rational tangents
which is defined as the subvariety of the projectivized tangent bundle P(TX) consisting of tangent directions
of minimal rational curves immersed in an uniruled projective manifold X.

Let X be a projective manifold of dimension n. By a parameterized rational curve we mean a nonconstant
holomorphic map f : P1 → X from the projective line P1 into X. We say that a (parameterized) rational
curve f : P1 → X is free if the pullback f∗TX of the tangent bundle is nonnegative in the sense that f∗TX
splits into a direct sum O(a1) ⊕ · · · ⊕ O(an) of line bundles of degree ai ≥ 0 for all i = 1, · · · , n. For a
polarized uniruled projective manifold (X,L) with an ample line bundle L, a minimal rational curve on X
is a free rational curve of minimal degree among all free rational curves on X.

Let J be a connected component of the space of minimal rational curves and let K := J /Aut(P1) be the
quotient space of unparameterized minimal rational curves. We call K a minimal rational component. For a
point x ∈ X consider the subvariety Kx of K consisting of minimal rational curves belonging to K marked at
x. Define the (rational) tangent map τx : Kx 99K P(TxX) by τx([f(P1)]) = [df(ToP1)] sending a member of
Kx smooth at x to its tangent direction at x, where f : P1 → X is a minimal rational curve with f(o) = x.
For a general point x ∈ X, by Theorem 3.4 of [14], this tangent map induces a morphism τx : Kx → P(TxX)
which is finite over its image.

Definition 2.3. Let X be a polarized uniruled projective manifold with a minimal rational component K.
For a general point x ∈ X, the image Cx(X) := τx(Kx) ⊂ P(TxX) is called the variety of minimal rational
tangents (to be abbreviated as VMRT) of X at x. The union of Cx over general points x ∈ X gives the
fibered space C ⊂ P(TX)→ X of varieties of minimal rational tangents associated to K.

From now on, S denotes the smooth equivariant completion with Picard number one of the symmetric
homogeneous space SL(6,C)/ Sp(6,C) or E6/F4, respectively.

Proposition 2.4. For a general point s ∈ S, the VMRT Cs(S) of S is projectively equivalent to Grω(2, 6) ∼=
C3/P2 ⊂ P13 or OP2

0
∼= F4/P4 ⊂ P25, respectively. Here, Pk ⊂ G means the k-th maximal parabolic subgroup

of G following the Bourbaki ordering.

Proof. For a nonsingular projective variety X covered by lines and a general hyperplane section X ∩H, if
Cx ⊂ P(TxX) is the VMRT of X at a general point x ∈ X ∩ H and dim Cx is positive, then the VMRT
associated to a family of lines covering X ∩H is Cx ∩ P(TxH) ⊂ PTx(X ∩H) from Lemma 3.3 of [4].

From Theorem 3 of [21], the smooth equivariant completion S with Picard number one of the symmetric
space SL(6,C)/ Sp(6,C) is isomorphic to a general hyperplane section of the 15-dimensional spinor variety
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S6. It is known that the VMRT of a rational homogeneous manifold G/P associated to a long simple root
αi is isomorphic to the highest weight variety defined by the isotropy representation of a Levi factor of P
from Proposition 1 of [10]. Note that, in this case, the VMRT of G/P at the base point is the homogeneous
manifold associated to the marked Dynkin diagram having markings corresponding to the simple roots
which are adjacent to αi in the Dynkin diagram of the semisimple part of P . Thus, the VMRT of S6
is isomorphic to the Grassmannian Gr(2, 6). Since we have the Plücker embedding of the Grassmannian
Gr(2, 6) ↪→ P(∧2C6) ∼= P14 and a general hyperplane H in P(∧2C6) is given by the kernel of a nondegenerate
skew-symmetric 2-form ω ∈ (∧2C6)∗, the VMRT Cs(S) is projectively equivalent to the symplectic isotropic
Grassmannian Grω(2, 6) ⊂ P13.

Similarly, the smooth equivariant completion with Picard number one of E6/F4 is isomorphic to a general
hyperplane section of the 27-dimensional Hermitian symmetric space E7/P7 of compact type by Theorem 3
of [21]. Because the VMRT of E7/P7 is isomorphic to E6/P6

∼= OP2, the result follows from the standard
facts on the geometric Freudenthal-Tits square summarized in Section 2.1. �

Corollary 2.5. Let π : X → ∆ be a smooth projective morphism from a complex manifold X to the unit
disc ∆ ⊂ C. Suppose for any t ∈ ∆\{0}, the fiber Xt = π−1(t) is biholomorphic to the smooth projective
symmetric variety S. Then the VMRT of the central fiber X0 at a general point x is projectively equivalent
to Grω(2, 6) ⊂ P13 or OP2

0 ⊂ P25, respectively.

Proof. Choose a section σ : ∆→ X of π such that σ(0) = x and σ(t) passes through a general point in S for
t 6= 0. Let Kσ(t) be the normalized Chow space of minimal rational curves passing through σ(t) in Xt. Then
the canonical map µ : Kσ → ∆ given by the family {Kσ(t)} is smooth and projective by the same proof as
that of Proposition 4 of [8]. The main theorem of [12] says that Kσ(t) is isomorphic to Ks(S) for all t ∈ ∆
because Ks(S) ∼= Cs(S) is a rational homogeneous manifold with Picard number one by Proposition 2.4.
Thus it suffices to show that the image of the tangent map for the central fiber is nondegenerate in P(TxX0),
that is, the image is not contained in any hyperplane of the projective space P(TxX0).

Since dim Grω(2, 6) = 7 > 1
2 dim(SL(6,C)/Sp(6,C)) − 1 = 6 and dimOP2

0 = 15 > 1
2 dim(E6/F4) −

1 = 12, the distribution spanned by the VMRTs is integrable by Zak’s theorem on tangencies ([25] and
Proposition 1.3.2 of [9]). Since the second Betti number b2(X0) = 1, the VMRT Cx(X0) at a general point x
is nondegenerate in P(TxX0) by Proposition 13 of [8]. �

3. Prolongations of cone structure defined by VMRT and proof of Theorem 1.1

3.1. Prolongations of a linear Lie algebra. Let M be a differentiable manifold. Fix a vector space V
with dimV = dimM . A frame at x ∈ M is a linear isomorphism σ : V → TxM . A frame bundle F(M)
on M is the set of all frames Fx(M) := Isom(V, TxM) at every point x ∈ M . Then F(M) is a principal
GL(V )-bundle on M . For a closed Lie subgroup G ⊂ GL(V ), a (geometric) G-structure on M is defined as a
G-subbundle G ⊂ F(M) of the frame bundle. The subbundle V ×G of the frame bundle F(V ) = V ×GL(V )
is called the flat G-structure on V and the G-structure on M is locally flat if it is locally equivalent to the
flat G-structure on V . The (algebraic) prolongations g(k) of a linear Lie algebra g ⊂ gl(V ) originate from
the higher order derivatives of the infinitesimal automorphisms of the flat G-structure on V .

Definition 3.1. Let V be a complex vector space and g ⊂ gl(V ) a linear Lie algebra. For an integer k ≥ 0,
the space g(k), called the k-th prolongation of g, is the vector space of symmetric multi-linear homomorphisms
A : Symk+1 V → V such that for any fixed vectors v1, · · · , vk ∈ V , the endomorphism

v ∈ V 7→ A(v1, · · · , vk, v) ∈ V
belongs to the Lie algebra g. That is, g(k) = Hom(Symk+1 V, V ) ∩Hom(Symk V, g).

We are interested in the case where a Lie algebra g is relevant to geometric contexts, in particular, the
Lie algebra of infinitesimal linear automorphisms of the affine cone of an irreducible projective subvariety.

Definition 3.2. Let Z ⊂ PV be an irreducible projective variety. The projective automorphism group of Z

is Aut(Z) = {g ∈ PGL(V ) : g(Z) = Z} and its Lie algebra is denoted by aut(Z). Denote by Ẑ ⊂ V the

affine cone of Z and by TαẐ ⊂ V the affine tangent space at a smooth point α ∈ Ẑ. The Lie algebra of

infinitesimal linear automorphisms of Ẑ is defined by

aut(Ẑ) = {A ∈ gl(V ) : exp(tA)(Ẑ) ⊂ Ẑ, t ∈ C},
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where exp(tA) denotes the one-parameter group of linear automorphisms of V . Its k-th prolongation

aut(Ẑ)(k) will be called the k-th prolongation of Z ⊂ PV .

In [12], Hwang and Mok studied the prolongations aut(Ẑ)(k) of a projective variety Z ⊂ PV using the
projective geometry of Z and the deformation theory of rational curves on Z. In particular, the vanishing of

the second prolongation aut(Ẑ)(2) for an irreducible smooth nondegenerate projective variety Z embedded
in the projective space PV was proven.

Proposition 3.3 (Theorem 1.1.2 of [12]). Let Z ⊂ PV be an irreducible smooth nondegenerate projective

variety. If Z 6= PV , then the second prolongation of Z vanishes, that is, aut(Ẑ)(2) = 0.

From the definition of prolongations, it is immediate that g(k) = 0 for some k ≥ 0 implies g(k+1) = 0.

Thus if Z & PV is an irreducible smooth nondegenerate projective variety, then aut(Ẑ)(k) = 0 for k ≥ 2.

3.2. Infinitesimal automorphisms of the cone structures. A cone structure C on a complex manifold
M is a closed analytic subvariety C ⊂ P(TM ) such that the natural projection π : C → M is proper, flat
and surjective with connected fibers. We denote the fiber π−1(x) by Cx for a point x ∈ M . Let C be
a cone structure on a complex manifold M . A germ of holomorphic vector field v at x ∈ M is said to
preserve the cone structure if the local one-parameter family of biholomorphisms integrating v lifts to local
biholomorphisms of P(TM ) preserving C.
Definition 3.4. The Lie algebra aut(C, x) of infinitesimal automorphisms of the cone structure C at x is the
set of all germs of holomorphic vector fields preserving the cone structure C at x.

The Lie algebra aut(C, x) is naturally filtered by the vanishing order of vector fields at x. More precisely,
for each integer k ≥ 0, let aut(C, x)k be the subalgebra of aut(C, x) consisting of vector fields that vanish at
x to the order ≥ k + 1 for each integer k ≥ 0. The Lie bracket gives the structure of filtration

aut(C, x) ⊃ aut(C, x)0 ⊃ aut(C, x)1 ⊃ aut(C, x)2 ⊃ · · · .
Let ξ be a germ of holomorphic vector field on M vanishing to order ≥ k + 1 at x. Then its (k + 1)-jet

Jk+1
x (ξ) defines an element of Symk+1(T ∗xM) ⊗ TxM . Because Jk+1

x (ζ) = 0 for a vector field ζ vanishing

to order ≥ k + 2 at x, this defines the inclusion aut(C, x)k/aut(C, x)k+1 ⊂ Hom(Symk+1(TxM), TxM). The
following result follows from Proposition 1.2.1 of [12].

Proposition 3.5. Let C ⊂ P(TM ) be a cone structure on a complex manifold M and x ∈M a point. For each

k ≥ 0, if the quotient space aut(C, x)k/aut(C, x)k+1 is regarded as a subspace of Hom(Symk+1(TxM), TxM),
then we have the inclusion

aut(C, x)k/aut(C, x)k+1 ⊂ aut(Ĉx)(k).

From Proposition 3.5, we have the natural inequalities

dim aut(C, x)0 ≤ dim aut(Ĉx) + dim aut(C, x)1

≤ dim aut(Ĉx) + dim aut(Ĉx)(1) + dim aut(C, x)2 ≤ · · · .
Because the codimension of aut(C, x)0 in aut(C, x) is at most dimM , we obtain the following direct conse-
quence (see Proposition 5.10 of [4]).

Corollary 3.6. Let C ⊂ P(TM ) be a cone structure on a complex manifold M and x ∈M . If aut(Ĉx)(k+1) = 0
for some k ≥ 0, then

dim aut(C, x) ≤ dimM + dim aut(Ĉx) + dim aut(Ĉx)(1) + · · ·+ dim aut(Ĉx)(k).

3.3. Cone structure defined by VMRT. Let Z ⊂ PV be a (fixed) projective variety with dimV =
dimM . A cone structure C ⊂ P(TM ) is Z-isotrivial if for a general point x ∈ M , the fiber Cx ⊂ P(TxM) is
isomorphic to Z ⊂ PV as a projective variety, i.e., there exists a linear isomorphism V → TxM sending Z
to Cx.

For the affine cone Ẑ ⊂ V of Z, let G = Aut(Ẑ) = {g ∈ GL(V ) : g(Ẑ) = Ẑ} be the automorphism group

of Ẑ ⊂ V . A Z-isotrivial cone structure C on M induces the G-structure G of cone type of which a fiber at
general point x is

Gx = {σ ∈ Isom(V, TxM) : σ(Ẑ) = Ĉx}.
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An isotrivial cone structure C on M is locally flat if its associated G-structure G is locally flat. We know

that if C is a locally flat cone structure on M with aut(Ĉx) = g and k is a nonnegative integer such that

aut(Ĉx)(k+1) = 0, then aut(C, x) is isomorphic to the graded Lie algebra V ⊕ g⊕ g(1)⊕ · · ·⊕ g(k). Conversely,
if the equality in Corollay 3.6 holds, then the cone structure C is locally flat by Corollary 5.13 of [4].

Now, we are ready to prove Theorem 1.1 by considering the cone structure defined by VMRT which is
Z-isotrivial.

3.4. Proof of Theorem 1.1. (i) If S is the smooth equivariant completion with Picard number one of
the symmetric homogeneous space SL(6,C)/ Sp(6,C), then its automorphism group Aut(S) is generated by
PSL(6,C) and the involution θ with SL(6,C)θ = Sp(6,C) by Proposition 3 of [21].

From Corollary 2.5, we can compute the Lie algebra of infinitesimal automorphisms of the affine cone of

VMRT: aut(Ĉx(X0)) = aut(Ĉs(S)) ∼= sp(6,C)⊕C. Since the variety Cs(S) of minimal rational tangents of S is

irreducible smooth nondegenerate and not linear, aut(Ĉs)(k) = 0 for k ≥ 2 by Proposition 3.3. Furthermore,

the classification of projective varieties with non-zero prolongation in [5] implies that aut(Ĉs)(k) = 0 for all
k ≥ 1. Thus, for the cone structure C on the fibers given by VMRTs we have the equalities

dim aut(S) + 1 = dimS + dim aut(Ĉs) = dimX0 + dim aut(Ĉx).

Because the Lie algebra aut(X0) is isomorphic to the space H0(X0, TX0) of global sections of the tangent
bundle TX0 , we know h0(X0, TX0) = dim aut(X0). Since the action of Aut(X0) preserves the VMRT-structure
C on X0, we have an inclusion aut(X0) ⊂ aut(C, x), Hence, from Corollary 3.6 we have the inequality

h0(X0, TX0
) = dim aut(X0) ≤ dim aut(C, x)

≤ dimX0 + dim aut(Ĉx)

= dim aut(S) + 1 = h0(S, TS) + 1,

Now, recall the standard fact that the Euler-Poincaré characteristic of the holomorphic tangent bundle
TX on a Fano manifold X is given by χ(X,TX) = h0(X,TX) − h1(X,TX). In fact, the Serre duality and
Kodaira-Nakano vanishing theorem imply that Hi(X,TX) = Hn−i(X,T ∗X ⊗ KX)∗ = 0 for i ≥ 2. Since
the Euler-Poincaré characteristic is constant in a smooth family and we already know h1(S, TS) = 0 by
Proposition 8.4 of [6], h1(X0, TX0) = h0(X0, TX0)− h0(S, TS) ≤ 1.

Now, it suffices to consider two possible cases. Suppose that the above equality holds. Then we have

dim aut(C, x) = dimX0 + dim aut(Ĉx), which implies that the isotrivial cone structure C given by VMRT on
the central fiber X0 should be locally flat by Corollary 5.13 of [4]. Thus X0 is an equivariant compactification
of the vector group C14 from Theorem 1.2 of [6]. Next, if h1(X0, TX0

) = 0, then the central fiber X0 is also
biholomorphic to the general fiber S.

(ii) If S is the smooth equivariant completion with Picard number one of the symmetric homogeneous
space E6/F4, then its automorphism group Aut(S) is generated by E6 and the involution θ with Eθ6 = F4

by Proposition 3 of [21]. From Corollary 2.5, aut(Ĉx(X0)) = aut(Ĉs(S)) ∼= f4 ⊕C. Because aut(Ĉs)(k) = 0 for
all k ≥ 1 by [5], we also have the same equality as before:

dim aut(S) + 1 = dimS + dim aut(Ĉs).

By Proposition 8.4 of [6], a general hyperplane section of E7/P7 is locally rigid, so we see that h1(S, TS) = 0.
Therefore, the same argument as (i) works immediately. �

4. Local rigidity of smooth projective symmetric varieties of type G2

The smooth equivariant completion S with Picard number one of the symmetric space G2/(SL(2,C) ×
SL(2,C)), called the Cayley Grassmannian, has been studied by Manivel [18]. The Cayley Grassmannian is
a smooth projective variety parametrizing four-dimensional subalgebras of the complexified octonions OC.
Because all subalgebras contain the unit element, the Cayley Grassmannian is a closed subvariety of the
Grassmannian Gr(3, 7) by considering only the imaginary parts. It can be also described as a subvariety of
the Grassmannian Gr(4, 7) by mapping a subalgebra to its orthogonal complement contained in the imaginary
part of OC. From now, we will consider the Cayley Grassmannian as a subvariety of Gr(4, 7).
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Proposition 4.1 (Proposition 3.2 of [18]). The Cayley Grassmannian S is projectively equivalent to the
zero locus of a general global section of the rank four vector bundle ∧3U∗ on the Grassmannian Gr(4, 7),
where U denotes the universal subbundle of rank four on Gr(4, 7).

Remark 4.2. The symmetric variety S is a Fano eightfold of index 4 by the adjunction formula. Indeed,
KS = KGr(4,7) ⊗ det(∧3U∗) = O(−7)⊗O(3) = O(−4). This implies that the VMRT of S at a general point

is isomorphic to a surface embedded in P7.

From the Kodaira-Spencer deformation theory, it suffices to prove H1(S, TS) = 0 for Theorem 1.2. Now,
we recall Borel-Weil-Bott theorem to compute the cohomology groups of equivariant vector bundles on a
rational homogeneous variety G/P . Let G be a simply connected complex semisimple algebraic group and
P ⊂ G a parabolic subgroup. For an integral dominant weight ω with respect to P , we have an irre-
ducible representation V (ω) of P with the highest weight ω, and denote by Eω the corresponding irreducible
equivariant vector bundle G×P V (ω) on G/P :

Eω := G×P V (ω) = (G× V (ω))/P,

where the equivalence relation is given by (g, v) ∼ (gp, p−1.v) for p ∈ P .

Theorem 4.3 (Borel-Weil-Bott theorem [2]). Let ρ denote the sum of fundamental weights of G.

• If a weight ω+ρ is singular, that is, it is orthogonal to some (positive) root of G, then all cohomology
groups Hi(G/P, Eω) vanish for all i.
• Otherwise, ω+ρ is regular, that is, it lies in the interior of some Weyl chamber, then H`(w)(G/P, Eω) =
VG(w(ω + ρ) − ρ)∗ and any other cohomology vanishes. Here, w ∈ W is a unique element of the
Weyl group of G such that w(ω+ ρ) is strictly dominant, and `(w) means the length of w ∈W , that
is, the minimal integer `(w) such that w can be expressed as a product of `(w) simple reflections.

Proof of Theorem 1.2. Since S is the zero locus of a generic global section of ∧3U∗ on Gr(4, 7), we have the
normal exact sequence on S

0→ TS → TGr(4,7)|S → ∧3U∗|S → 0

and the Koszul complex of the structure sheaf OS
0→ ∧4(∧3U)→ ∧3(∧3U)→ ∧2(∧3U)→ ∧3U → OGr(4,7) → OS → 0.

Using the isomorphisms ∧4U ∼= O(−1) and ∧3U ∼= U∗(−1) on Gr(4, 7), we get an exact sequence

0→ OGr(4,7)(−3)→ U(−2)→ ∧2U(−1)→ ∧3U → OGr(4,7) → OS → 0.

Indeed, ∧3(∧3U) ∼= ∧3(U∗(−1)) = ∧3U∗ ⊗ O(−3) ∼= U(1) ⊗ O(−3) = U(−2). Taking the tensor product of
the Koszul complex with ∧3U∗, we have

0→ ∧3U∗(−3)→ U(−2)⊗ ∧3U∗ → ∧2U(−1)⊗ ∧3U∗ → ∧3U ⊗ ∧3U∗ → ∧3U∗ → ∧3U∗|S → 0.

Let ω1, · · · , ω6 be the fundamental weights of SL(7,C). Since ∧3U∗(−3) is the irreducible equivariant
vector bundle associated with the weight ω3−3ω4 and the weight ω3−3ω4+ρ is singular, as a straightforward
application of the Borel-Weil-Bott theorem, we see that Hi(Gr(4, 7),∧3U∗(−3)) = 0 for all i. Also, because

U(−2)⊗ ∧3U∗ ∼= U(−2)⊗ U(1) ∼= (∧2U ⊕ Sym2 U)⊗O(−1) = Eω2−2ω4 ⊕ E2ω3−3ω4

and both ω2− 2ω4 + ρ and 2ω3− 3ω4 + ρ are singular weights, we have that Hi(Gr(4, 7),U(−2)⊗∧3U∗) = 0
for all i. From the Littlewood-Richardson rule (see [24] for details), we can check that ∧2U(−1) ⊗ ∧3U∗ ∼=
Eω1−ω4

⊕ Eω2+ω3−2ω4
which implies that Hi(Gr(4, 7),∧2U(−1) ⊗ ∧3U∗) = 0 for all i. Since we know that

∧3U ⊗ ∧3U∗ ∼= Eω1+ω3
(−1) ⊕ O by the Littlewood-Richardson rule, Hi(Gr(4, 7),∧3U ⊗ ∧3U∗) = 0 for

i > 0 and H0(Gr(4, 7),∧3U ⊗ ∧3U∗) = H0(Gr(4, 7),O) = C. Again, the Borel-Weil theorem says that
H0(Gr(4, 7),∧3U∗) = ∧3C7. Therefore, we conclude H0(S,∧3U∗|S) = ∧3C7/C.

Using the Littlewood-Richardson rule, we get the Koszul complex of the structure sheaf OS tensored with
the tangent bundle TGr(4,7) = U ⊗Q = Eω1+ω6

:

0 → Eω1−3ω4+ω6 → Eω1+ω3−3ω4+ω6 ⊕ E−2ω4+ω6 → Eω1+ω2−2ω4+ω6 ⊕ Eω3−2ω4+ω6

→ E2ω1−ω4+ω6 ⊕ Eω2−ω4+ω6 → TGr(4,7) → TGr(4,7)|S → 0.
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Since all bundles except the last two terms are acyclic, using the Borel-Weil-Bott theorem again, we obtain
H0(S, TGr(4,7)|S) = H0(Gr(4, 7), TGr(4,7)) = sl7 and H1(S, TGr(4,7)|S) = H1(Gr(4, 7), TGr(4,7)) = 0.

Then, from the normal exact sequence on S, we deduce an exact sequence

0→ H0(S, TS)→ sl7 → ∧3C7/C→ H1(S, TS)→ 0.

Hence, H0(S, TS) = aut(S) = g2 (Lemma 16 of [21]) implies H1(S, TS) = 0 from which the local rigidity of
S follows by the Kodaira-Spencer deformation theory. �

Remark 4.4. By Theorem 2 of [21], the smooth projective symmetric varieties with Picard number one whose
restricted root system is of type G2 are either the Cayley Grassmannian or the smooth equivariant completion
of (G2 × G2)/G2. Recently, Manivel also studied the latter, called the double Cayley Grassmannian, and
proved that it is locally rigid in [19]. The double Cayley Grassmannian is projectively equivalent to the
zero locus of a general global section of the rank seven vector bundle U ⊗ L on the 21-dimensional spinor
variety S14 = Spin(14,C)/P7, where U denotes the tautological bundle of rank seven on S14 and L is the
very ample line bundle defining the minimal embedding S14 ↪→ P63. Consequently, we conclude that all
smooth projective symmetric varieties with Picard number one are locally rigid. On the other hand, the
global deformation rigidity problem on smooth projective symmetric varieties of type G2 remains open.
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