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In this paper, an algorithm for identifying equations of a continuous nonlinear dynamical system from noise-free state and time derivative state measurements is proposed. It is based on a variant of the extended dynamic mode decomposition. A particular attention is done to guarantee physical invariant quantities to stay constant along integral curves. The numerical methodology is validated on a two-dimensional Lotka-Volterra system. For this case, the differential equations are perfectly retrieved from data measurements. Perpectives of extension to more complex systems are discussed.

Introduction

By today's facilitated access to data in terms of quality, cost and quantity, the machine learning discipline appears to be a promising complementary solu-Email addresses: florian.de-vuyst@utc.fr (Florian De Vuyst), pierre.villon@utc.fr (Pierre Villon) tion for the derivation of mathematical models in the science and engineering domain. We can have different situations or conditions:

1. For a given physical system, we have neither information nor available model on the system. Then standard data analysis, knowledge/feature extraction or machine learning algorithms can be used in this case.

2. We still don't know any model, but we have partial knowledge on the system from physical considerations. For example, it is known that the system has an invariant quantity, or a decaying one during time (Lyapunov function). We then would like to derive a model from data that satisfies the invariance/decay property.

3. A model with a certain accuracy has already been derived from finer physical considerations or assumptions. In this case, one can try to improve the accuracy or reliability of current model by adding some corrections terms.

These correction terms can be identified and calibrated from data/measurements.

This paper more focuses on the second intermediate situation. We try to identify the equations of a continuous autonomous dynamical system from data/measurements and it is supposed that the systems preserves a known invariant quantity, denoted by η latter on. As a starting work in this field, we will only consider the case of noise-free data in this paper. Beyond this restriction, for wide applicability reasons we would like to get a global model (meaning being valid even in regions that have not been explored by the data) from only little data. This paper is organized as follows. Section 2 is devoted to the problem setting. Then section 3 will introduce dynamic mode decomposition (DMD) and deal with DMD under skew-symmetry constraints on the searched matrix. A step further a the search of both coefficients matrix and nonlinear functions; this will the object of section 4. Then section 5 presents the whole greedy algorithm.

The section 6 is dedicated to the numerical experiments and validation. We will end up with additional comments is section 7 and concluding remarks.

Notations. We will use the Frobenius matrix inner products ., . F . Given two real-valued m × n matrices A and B, the Frobenius inner product is defined by the following summation

A, B F,m,n = m i=1 n j=1 A ij B ij = tr(AB T ). The corresponding Frobenius norm . F,m,n is defined by A F,m,n = A, A F,m,n .
The usual vector Euclidean norm in R d will be simply denoted by . 2,d .

Setting of the problem

Consider a physical time-continuous autonomous dynamical system governed by the system of nonlinear differential equations

ẋ(t) = f (x(t)), t > 0, (1) 
where f : R d → R d is a locally Lipschitz continuous mapping. Added to this differential system, an initial condition x(0) = x 0 is given. It is assumed that, starting from any initial condition in an open set X ⊂ R d , maximal solutions are defined on the whole time domain [0, +∞) with all states x(t) in the admissible set X .

Data generation.. From the physical system, it is assumed that one can measure the full states x k (without noise in a first time) at N discrete times {t k } k=1,...,N , i.e., x k = x(t k ) but also the time derivatives

y k = dx dt (t k ), k = 1, ..., N . From the data matrices X = [x 1 , x 2 , ..., x N ] ∈ M dN (R), Y = [y 1 , y 2 , ..., y N ] ∈ M dN (R), (2) 
we would like to identify the equations (1) of the dynamical system. If not possible, at least we would like to find an accurate approximate differential model of (1) with some stability properties (large time stability, ...). In the sequel, we will assume N ≥ d.

Invariant quantity and structure hypotheses

Let us assume that there exists a differentiable function η : X → R being invariant along all integral curves, i.e;

d dt η(x(t)) = ∇η(x(t)) • ẋ(t) = ∇η(x(t)) • f (x(t)) = 0. (3) 
Then for integral curves of (1) we have the property

∇η(x) • f (x) = 0 ∀x ∈ X , (4) 
meaning that for any initial condition x 0 ∈ X , the quantity η(x) is kept constant on trajectories of (1).

As a consequence, there exists a skew-symmetric matrix A(x) such that

f (x) = A(x) ∇η(x) ∀x ∈ X . (5) 
This is a direct consequence of the follwing lemma:

Lemma 1. For any u, v ∈ R d , (u⊥v) ⇐⇒ (∀A, v = Au =⇒ A is skew symmetric)
Remark 1. In (5), the mapping x → A(x) is continuous as soon as both f 50 and ∇η are continuous too.

Example. Consider the time-continuous two-equation prey-predator Lotka-Volterra dynamical system (see [START_REF] Wangersky | Lotka-Volterra Population Models[END_REF]):

ẋ = (1 -y)x, (6) ẏ 
= (x -1)y, (7) 
with initial condition x(0) = x 0 > 0, y(0) = y 0 > 0. For this two-equation system, it can be shown that maximal solutions stay in the positive orthant X = (0, +∞) 2 . It is easy to check that the quantity

η(x) = log(xy) -x -y. (8) 
is invariant along integral curves of the system. Each equation η(x) = η(x 0 ) defines an orbit the the system. We have ∇η(x) = (1/x -1, 1/y -1) T . One can observe that f (x) can be written in the form

f (x) = A(x)∇η(x) with A(x) = xy   0 1 -1 0   ;
The figure 1 shows differents orbits or the Lotke-Volterra system. Since orbits are also levelsets of function η, we can check that f (x(t)) is orthogonal to ∇η(x(t)). and f (x(t)) for a point x(t) or the orbit. 

Truncated decomposition of skew-symmetric matrix-valued mappings

In this subsection, we give a particular expansion of skew-symmetric matrixvalued mappings. This will be useful for the structure of a search of equations in the identification procedure. Let us denote by E ij , 1 ≤ i < j ≤ d the matrices that form the canonical basis of the vector space of skew-symmetric matrices, i.e. E ij = e i e T j , where e i denotes the i-th vector of the canonical basis in R d . For any x ∈ X , we can write the decomposition into this canonical basis

A(x) = 1≤i<j≤d a ij (x) E ij with scalar coefficients a ij (x) ∈ R. Each function a ij : X → R is assumed to
have reasonable regularity, say at least of regularity L 2 ω (X ) (the weight function ω may be chosen fast-decaying at infinity in the case of unbounded domains). Then we consider a total orthonormal family {ϕ k } k of L 2 ω (X ). For each function a ij we have the decomposition

a ij (x) = k≥0 a k ij ϕ k (x),
giving the decomposition for A(x):

A(x) = 1≤i<j≤d k≥0 a k ij E ij ϕ k (x), (9) 
which can also be written

A(x) = k≥0 A k ϕ k (x) (10) 
(assuming that we can permute the two summation operators, see the remark 2 below) where the skew-symmetric matrices A k , k ≥ 0 are defined by

A k = 1≤i<j≤d a k ij E ij .
By truncating the expansion in [START_REF] Asch | Data Assimilation: Methods, Algorithms, and Applications, SIAM book, Fundamentals of Algorithms[END_REF] up to a rank (say K), we define an approximation of the matrix A(x). One can define a projection operator Π K acting on A(.) with projection on the K first functions ϕ k :

Π K A(x) = K k=1 A k ϕ k (x). (11) 
The projection error (A-Π K A) will decay fastly with K as soon as the coefficient functions a k ik (x) are smooth functions.

Remark 2. One can always choose a family {ϕ k } k≥0 such that the convergence when K → +∞ is uniform w.r.t. x. The uniform convergence justifies the 60 permutation of the two summation in [START_REF] Gonzales | Learning corrections for hyperelastic models from data[END_REF].

Expression (11) gives us a way to build an algorithm to identify A(x) in [START_REF] Bartels | Solution of the matrix equation AX +XB = C[END_REF] from the data within a greedy procedure. As a preliminary step, in section 3 we introduce the DMD method for identifying a first approximate skew-symmetric matrix A. In section 4, we define the first step of the greedy algorithm which involves both functions ϕ 1 (x) and matrix A 1 . In section 5, we define the main iteration and the whole greedy algorithm.

Dynamic Mode Decomposition approach under skew-symmetry constraints

First, we try to identify the dynamics of the system according to the (approximate) model

f (x) = A ∇η(x) (12) 
where A is a constant skew-symmetric matrix to be determined from the data.

For the sake of simplicity, in all the sequel we will denote g(x) := ∇η(x). From the data x k stored in matrix X, one can compute a new matrix with column

vectors g k = g(x k ), k = 1, ..., N : G = [g 1 , g 2 , ..., g N ] ∈ M dN (R).
In the sequel, we will assume that rank(G) = d. Then, following the same ideas from Dynamic Mode Decomposition (DMD, [START_REF] Schmid | Dynamic mode decomposition of numerical and experimental data[END_REF]), we look for matrix that minimizes the constraint least square problem min

A∈M d (R) J(A) = 1 2 N k=1 Ag k -y k 2 2,d (13) 
subject to A skew-symmetric matrix.

The cost function J can be rewritten in matrix form

J(A) = 1 2 AG -Y 2 F,d,N
using the Frobenius norm.

Solution of the problem (13). The originality in problem (13) in the skewsymmetry constraint on A. Remark that if matrix A is skew-symmetric, then

AG -Y F,d,N = A T G + Y | F,d,N = G T A + Y T F,N,d .
The minimal argument of (13) is the same than the minimal argument of min

A∈M d (R) 1 2 AG -Y 2 F,d,N + 1 2 G T A + Y T 2 F,N,d (14) 
subject to A skew-symmetric matrix.

Let us show that the unconstrained minimization problem min

A∈M d (R) J(A) := 1 2 AG -Y 2 F,d,N + 1 2 G T A + Y T 2 F,N,d
has a unique solution A which is skew-symmetric intrinsically, thus A will be also the solution of problem (13). Elementary differential calculus gives, for

any H ∈ M d (R), ∇J(A), H F,d,d = AG -Y, HG F,d,N + G T A + Y T , G T H F,N,d = AGG T -Y G T , H F,d,d + GG T A + GY T , H F,d,d .
The first order optimality conditions give

A (GG T ) + (GG T ) A = Y G T -GY T in the form AS + SA = Q (15) 
with S = GG T and Q = Y G T -GY T . We get a Lyapunov equation [START_REF] Bartels | Solution of the matrix equation AX +XB = C[END_REF]. We 

SA T + A T S = -Q.
Summing up with equation (15), we get

(A + A T )S + S(A + A T ) = 0
showing that by uniqueness A + A T = 0 and then A is skew-symmetric.
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A classical algorithm for the numerical solution of the Sylvester/Lyapunov equations is the Bartels-Stewart algorithm [START_REF] Bartels | Solution of the matrix equation AX +XB = C[END_REF], which consists of transforming the matrices into Schur form by a QR algorithm, and then solving the resulting triangular system via back-substitution.

Dynamic mode decomposition with both matrix and function identification

As next step, we now try to identify the dynamics of the system according to the more complex model

f (x) = ϕ(x)A∇η(x),
where the real-valued function ϕ(x) is searched as a linear combination of given functions (e.g. from a dictionary), i.e. in the form

ϕ(x) = a 1 b 1 (x) + a 2 b 2 (x) + ... + a M b M (x).
Let us denote a = (a 1 , a 2 , ..., a M ) T the vector of coefficient a i . Let us also write ϕ(x) in vector form 

ϕ(x) = a T b(x),
y k -(a • b(x k )) Ag(x k ) 2 2,d (16) 
Without any constraints on a, we can observe that if (A, a) is a minimizer of (16), then (µA, 1 µ a) for any µ = 0 is also a minimizer of (16). To prevent from nonuniqueness, one can add a constraint into the minimization problem, 

D m = diag(b m (x k ), k = 1, ..., N ), G = [g(x 1 ), g(x 2 ), ..., g(x N )],
and Z a the matrix

Z a = G (a 1 D 1 + a 2 D 2 + ... + a M D M )
it is easy to check that J(A, a) can also be written as

J(A, a) = 1 2 Y -AZ a 2 F,d,N
Just like in the previous section, it is convenient to symmetrize the cost function, considering skew-symmetric matrices A:

J(A, a) = 1 2 Y -AZ a 2 F,d,N + 1 2 [Z T a A + Y T 2 F,N,d
We have to solve the Euler equations ∇ A J(A, a) = 0 that lead to the following Lyapunov equations

AS a + S a A = Q a (18) with S a = Z a Z T a and Q a = Y Z T a -Z a Y T . ii) Let us now solve the minimization problem min a J A (a) := 1 2 N k=1 y k -(a • b(x k )) Ag(x k ) 2 2,d (19) 
at fixed matrix A. Using the notations b k = b(x k ) and g k = g(x k ), we have

J A (a) = 1 2 N k=1 y k -Ag k (b k ) T a 2 2,d .
We get a standard least square function to minimize. As soon as the rank of the matrix

C = N k=1 Ag k (b k ) T
is M , we get a unique solution. Otherwise, the least square problem should be regularized by a Tykhonov regularization term or proximal term to get a 95 well-posed problem.

Summary of the minimization algorithm

Finally, the alternating direction minimization algorithm is the following:

1. Choose an initial guess a 0 = 0, a 0 • e = 1; p = 0;

2. Loop on integer p 100 -p ← p + 1;

-Compute the skew-symmetric matrix

A (p) = arg min A J(A, a (p) )
by solving the Lyapunov equations (18) using a = a (p) ; -Normalize the matrix A (p) :

A (p) ← A (p) A (p) ∞ ;
-Then compute a (p+1) solution of

a (p+1) = arg min a, a•e=1 J(A (p) , a)
by solving the (possibly regularized) least square problem (19) using

A = A (p) .
3. Test convergence stop criterion. 

Greedy iterative procedure

The algorithm presented in the previous section can be advantageously used for the construction of a greedy enriching procedure. Assume that at a last iterate (k -1) we get a differential model ẋ = f (k-1) (x). Then one can add a correction term in the form ϕ k (x)A k ∇η(x), function ϕ k (x) and matrix A k to determine to get the enriched model

f (k) (x) = f (k-1) (x) + ϕ k (x)A k ∇η(x).
The identification of both matrix A k and function ϕ k (x) can be achieved following the same methodology as before. We need a stopping criterion to break the iterative loop. From a given accuracy threshold ε tol , one can use for example the natural accuracy estimate:

N k=1 y k -f (k) (x k ) 2 2,d N k=1 y k 2 2,d ≤ ε tol .
6. Numerical applications

Lotka-Volterra system

Let us recall that the two-dimensional Lotka-Volterra system (6),( 7) has an invariant quantity (8) being constant over each integral curve. The vector field f (x), x = (x, y) T can be exactly written as

f (x) = ϕ(x) E 12 ∇η(x) (20) 
with ϕ(x) = xy . This means that the use of the only observable ϕ(x) = xy is sufficient to perfectly retrieve the system, as soon as we only have two linearly independent data (x 1 , g 1 ) and (x 2 , g 2 ). For the numerical experiment, the function ϕ(x) is searched in the linear space of polynomials of degree not greater than two:

ϕ(x) = a 1 + a 2 x + a 3 y + a 4 x 2 + a 5 xy + a 6 y 2 .
The search vector a = (a 1 , ..., a 6 ) T is initialized with a random vector a (0) = 0.

We use the alternating variable method as presented before. After few iterates we get the expected pair (a, A) with a = (0, 0, 0, 0, 1, 0),

A =   0 1 -1 0  
(up to floating number round-off error precision) using 20 samples in the dataset. 

Closing comments

= y(x -z), (21) ẏ 
= z(x + y -2), (22) ż 
with initial data x 0 = (x 0 , y 0 , z 0 ) such that x 0 , y 0 , z 0 > 0). It is easy to check that the quantity

η(x) = log(xyz) -x -y -z
is an invariant of the dynamical system and we have ẋ = A(x)∇η(x) with

A(x) =      0 xy xz -xy 0 yz -xz -yz 0     
.

The skew-symmetrix matrix A(x) has the exact decomposition

A(x) = ϕ 1 (x)E 12 + ϕ 2 (x)E 13 + ϕ 3 (x)E 23
with ϕ 1 (x) = xy, ϕ 2 (x) = xz and ϕ 3 (x) = yz. We observe that the greedy procedure needs at least three iterations to identify the system. Using a search dictionary composed of the first monomials should allow for a perfect identification of this system. The identification method presented in this paper has close connections with the extended dynamic mode decomposition approach (EDMD). Indeed the search model in the form

f (x) = M k=1 ϕ k (x)A k ∇η(x)
can be written in stacked EDMD-like form

f (x) = T Ψ(x)
where T is a constant matrix and Ψ(x) is a vector of stacked nonlinear observables. We observe that is our approach, elements of Ψ(x) are made of products ϕ k (x)∂ η(x) that appear to be suitable observables of the system from the identification point of view. 120

Connections between invariants and Koopman theory

It is known that there are connections between EDMD and the Koopman theory of dynamical systems (see [START_REF] Williams | A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition[END_REF] and subsequent works). In this section, we would like to emphasize that is also a connection between invariant quantities like η and particular spectral properties of the Koopman operator. Let x t (u)

be the solution at time t of the initial value differential problem: ẋ = f (x(t)),

x(0) = u. The Koopman operator (or compositional operator) K t relative to the discrete mapping x t (u) if defined as

(K t g)(u) = g • x t (u).
The continuous Koopman operator is defined by

K c 0 (g)(u) = lim t→0 (K t g)(u) -g(u) t
For differentiable functions g we have K c 0 (g)(u) = ∇g(u) • f (u). So we see that an invariant η of the system if an eigenfunction of the continuous Koopman operator with eigenvalue 0. It seems important to include these eigenfunctions as nonlinear observables to achieve a good identification of the system. 

Concluding remarks and perspectives

In the paper, we have presented a computational approach for identifying equations of a continuous nonlinear dynamical system from data. The leading model is built in order to preserve a known invariant quantity of the system, thus providing large time stability behaviour as well as reinforced accuracy.
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The numerical methodology is validated on a two-dimensional Lotka-Volterra system.

Perpectives of extension to more complex systems could be interesting to study. In 1997, Grmela and Öttinger [START_REF] Grmela | Dynamics and thermodynamics of complex fluids. I. Development of a general formalism[END_REF] proposed a general framework to deal with thermodynamically-consistent dynamical models, the so-called GENERIC framework, standing for "General Equation for Non-Equilibrium Reversible-Irreversible Coupling". For a conservative thermodynamical system, the laws of dynamics are searched in the form ẋ = A(x) ∇E (x) + S(x)∇η(x)

where E denotes the total energy which is conserved and η is an entropy of the system. The entropy is supposed to decay during time, expressing the dissipative structure of the system:

d dt E (x(t)) = 0, d dt η(x(t)) ≤ 0.
For that, it is expected that matrices A(x) and S(x) in (24) are such that A(x) is skew-symmetric, and S(x) is symmetric, positive semi-definite with the ad-ditional constraints A(x)∇η(x) = 0, S(x)∇E (x) = 0.

It would be of interest to try to extend the work presented in this paper to the more complex case of GENERIC models.

Since the seminal work of 1997, the GENERIC formalism has been extensively used in the context of complex system modeling and simulation in Engineering Science. Recently, Moya et al. [START_REF] Moya | Learning slosh dynamics by means of data[END_REF] and Gonzales et al. [8,[START_REF] Gonzales | Learning corrections for hyperelastic models from data[END_REF] have already used GENERIC in the data context for the derivation of consistent data-driven computational Mechanics.

Another evident topic of interest is the more complex case of noisy data.

Robust identification algorithms are required in this case. There are three options: i) either the model is seen deterministic, and the parameters are set as deterministic (real) quantities; ii) or the model is chosen deterministic but the parameters are seen as random variables and we have to find the probabilistic laws; iii) or the model itself is seen as stochastic, involving for example stochastic differential equations, and parameters are seen either as deterministic or random variables. In the case fo stochastic differential equations, we do not deal with invariant quantities but with invariant measures. In the case of both deterministic models and parameters, one can adopt for example a "data assimilation" approach [START_REF] Asch | Data Assimilation: Methods, Algorithms, and Applications, SIAM book, Fundamentals of Algorithms[END_REF] where the problem is set under an optimization problem including Tykhonov-like regularization terms, with minimal a priori noise structure knowledge, for example a covariance matrix. This topic will be the object of future developments.
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