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The aim of this work is to derive an accurate model of two-dimensional switched control heating system from data generated by a Finite Element solver. The nonintrusive approach should be able to capture both temperature fields, dynamics and the underlying switching control rule. To achieve this goal, the algorithm proposed in this paper will make use of three main ingredients: proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and artificial neural networks (ANN). Some numerical results will be presented and compared to the high-fidelity numerical solutions to demonstrate the capability of the method to reproduce the dynamics.

Introduction

Switched control systems are commonly used in engineering applications such as in the automotive ( [START_REF] Ahmad | Switching controller design for hybrid electric vehicles[END_REF], [START_REF] Ferrara | Application of switching control for automatic precrash collision avoidance in cars[END_REF]) or network management. The discrete control is built from a small set of control modes indexed by some integers, and the state of the system evolves according to the heat equation with a partic-5 ular heat source for each control mode. The system is closed by a switching control rule that selects the right mode during time evolution. Generally, the rule is defined in order to provide stability of the global system with states lying into an invariant domain. The flexibility in the definition of the switching rule makes switched control systems interesting for many applications and in different situations.

Theoretical questions of stability or reachability have been deeply studied in the literature, especially for switched linear systems in both discrete form (when differential equations are discretized) or continuous form ( [START_REF] Liberzon | Switching in systems and control[END_REF], [START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results[END_REF]). An important aspect of these switched linear systems is that they show a global nonlinear behaviour (with a local linear behaviour for each fixed mode).

The accurate learning of nonlinear dynamical systems is still nowadays a difficult task, and there is no definitive way to achieve it. Recent works about Dynamic Mode Decomposition (DMD) and Extended DMD (EDMD, [START_REF] Williams | A data-driven approximation of the koopman operator: Extending dynamic mode decomposition[END_REF]) added with Koopman theory to approximate nonlinear dynamical systems by transforming them into (quasi)linear dynamical systems are a promising research direction.

However, the methodology requires the definition of an a priori dictionary of functions such that the space spanned by these functions correctly approximates the Koopman eigenfunctions, and so far there is unfortunately no general rule to construct it in an optimal way. Some authors have proposed the use of artificial neural networks (ANN, [START_REF] Li | Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the koopman operator[END_REF]) or recurrent neural network (RNN, [START_REF] Pearlmutter | Learning state space trajectories in recurrent neural networks[END_REF]), but generally this requires big data in the training process, which is not suitable in our context because of the prohibitive computational time of simulation data. Specific issues of ANN like the phenomenon of vanishing gradient and exploding gradient possibly make the network training phase low or even nonconvergent ( [START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF]). Another difficulty arises since we are looking for spatial PDE-based problems, and thus once the spatial discretization have been done, the state of the semi-discretized system of ODEs lives in a high-dimensional vector space (the size of the state is the number of degrees of freedoms, which can be of order one million or more). Some dimensionality reduction strategies (POD, EIM, PGD etc.) have to be included into the global methodology.

Related work

The machine learning of switched systems has been recently addressed in the context of robotics ( [START_REF] Lee | Unsupervised learning for nonlinear piecewise smooth hybrid systems[END_REF]), and follows some works where the action of the robot onto its environment is learned for better performance purposes. In Lee et al. [START_REF] Lee | Unsupervised learning for nonlinear piecewise smooth hybrid systems[END_REF], the dynamics of the system is nonlinear but the state space is lowdimensional. Learning phase was done by means of a Gaussian process. The mode transition is learned by the use of piecewise smooth transition functions.

For the present work, the temperature field is globally smooth, so it seems hard to directly detect the phase transition since jumps or sharp changes do not really occur in the solution. Still in [START_REF] Lee | Unsupervised learning for nonlinear piecewise smooth hybrid systems[END_REF] the authors use numerous trajectories to classify the dynamic modes and to learn them. In contrast, in our case it is preferable to learn the dynamics with only one spatiotemporal full-order simulation (still because of heavy computational costs). From the full order model we have access to the state of controller during time (heating is activated or not), but we do not know the heating rule and we want to retrieve the correlation between the controller mode and the temperature field. In PDE's context, Peitz et al. ( [START_REF] Peitz | Koopman operator-based model reduction for switchedsystem control of pdes[END_REF]) accelerate the search of an optimal controller, by first transforming the control problem into a switched control problem, and then by using the Koopman operator theory of dynamical system and pointwise evaluations of the solution in order to derive a reduce order model for each autonomous system. In Proctor et al. [START_REF] Proctor | Dynamic mode decomposition with control[END_REF], the learning of a control system is managed by separating the action of the dynamic system onto the state and the action of the control. By this way it is easier to understand how the control acts. This work is done in the context of real data, moreover it requires to perform two singular value decompositions (SVD) on the measured states. In the present work we use simulation data that include Element temperature fields at different sample times samples and the history of heating states (array of boolean values). For the temperature fields, we will also make use of a suitable reduced basis (classical POD-based approach) for dimensionality reduction.

In the next section, the problem of heating control is introduced and formulated. It will be then implemented into a FE code used as a data generator.

The switching rule of interest is a hysteresis controller (also known as bangbang controller). This kind of controller is commonly used in mechanical and electrical engineering.

Organization of the paper

As mentioned above the main goal of this article is to achieve a nonintrusive learning of this switching control heating system from data generated by a fullorder FE solver. For the sake of clarity and for reproducibility purposes, we have decided to detail all the steps of the process, i.e. from the FE solver and data generation to the learning process itself. Section 1 will present the switched control heat problem and the Finite Element scheme in use for data generation.

In Section 2 we give some clarification on the simulation results used as data in the learning process. Section 4 is devoted the identification of the dynamical system for each control mode; we will make use of DMD for that. The section 5 is dedicated to the machine learning of the switching rule. Because it is highly nonlinear, it seems suitable to use ANNs. The ANN structure used for this application will be justified. We will finally end up with the section 6 dedicated to the numerical experiments. Some numerical results will be presented and compared to the high-fidelity numerical solutions to demonstrate the capability of the method to reproduce the complex dynamics. Concluding remarks and perspectives are given into Section 7.

Problem setting and high-fidelity solver

Let us consider the case of a two-dimensional medium heated by an electrical resistance. A sensor S is used to measure the temperature on a particular point of the plate, denoted by x S . The objective is to control the temperature in such a way that such that it stays between the bounds T min and T max . The heat loss through the domain boundary is expressed by a heat flux φ out . Both temperatures T min and T max are calibrated in such a way that they can be attained in the presence or absence of heating. This control is composed of two for the disable mode. The switching rule will depend on sensor temperature T (x S ). We have a boolean heating state denoted by H(t) at current time t. Schematic 1 briefly summarizes the above switching problem. Mathematically, the problem can be formulated as a coupled system made of a partial differential heat problem and a heating state rule governed by an algebraic equation. The heat problem can be written

         ∂ t u -∇ • (κ(.)∇u) = f in Ω × (0, T ), κ∂ n u = -φ out on ∂Ω × (0, T ), u(x, 0) = T min in Ω (1) 
where Ω denotes the plate, κ is the thermal conductivity in the plate domain, equal to κ R in the resistance zone Ω R ⊂ Ω and κ P otherwise, and f is the control term. Usually, in the switched control community, the notation f σ(t)

stands for the control term, where σ(t) denoted the selected control index at time t. However in our application there is only one control term since if the plate is not activated, the source term is switched to zero, so it is simpler to denote it by f = f (., t) only. The source term f is designed as follows:

f (x, t) = q(x)H(t), (2) 
with the heat source function

q(x) = q R χ Ω R (x) (3) 
for a given constant q R > 0, the initial heating state H(0) = H 0 ∈ {0, 1} and the transition rule

H(t) ← 0 if (u(x S , t) = T max ) and (H(t) = 1) , (4) 
H(t) ← 1 if (u(x S , t) = T min ) and (H(t) = 0) . (5) 
The function q(x) is the heat flux emitted by the electrical resistance which is constant over Ω R and is zero otherwise.

It is known that solutions of heat problems have good regularity properties even for weakly regular boundary conditions or source terms (at least continuity by Sobolev embedding in R 2 ). So we can expect that the switching rule activates transitions only at sparse times.

Remark 1. The switched control system's study belongs to the class of the repetitive control (RC), where the desired action onto the system is the same over time. The learning of an optimal control for repetitive control has been investigated intensively, especially in the robotics context (iterative learning control ILC, see [START_REF] Tharayil | A survey of iterative learning control: A learning-based method for highperformance tracking control[END_REF], [START_REF] Owens | Parameter optimization in iterative learning control[END_REF], [START_REF] Arimoto | Bettering operation of robots by learning[END_REF]).

High fidelity finite element solver

In this small section we present the high fidelity Finite Element solver used to discretize the heat equation presented in the latter section. The nature of the heat equation ( 1) is parabolic. For that reason a backward Euler scheme is used in order to achieve unconditional stability with a time step δt that does not depend on the spatial mesh size. The semi-discrete problem in time thus reads:

given a discrete solution u n ∈ H 1 (Ω) at time t n = nδt, find u n+1 ∈ H 1 (Ω) at time t n+1 = (n + 1)δt solution of the problem      u n+1 δt -∇ • κ(.)∇u n+1 = u n δt + q R χ Ω R H(u n ) in Ω, κ ∂ n u n+1 = -φ out on ∂Ω. (6) 
At initial time, one can use for example a uniformly constant temperature field u 0 = T min and assume that the system is in heating mode (H 0 = 1). Hence, we have to solve a Poisson-type equation for each time step. The finite element method is suitable for this kind of problem, and allow us to deal with different geometries, moreover the problem ( 6) is classical and require no special finite element spaces. Therefore we choose the classical P 1 Lagrange finite elements with FE hat basis functions φi (x) to achieve spatial discretization, and we denote by u n h the spatial approximation of u n . A discrete variational formulation of the problem ( 6) is set in the FE discrete space. We will denote by u n the vector containing all the degrees of freedom (in our case it is nothing else but the nodal values of u n h (.)), and by N x its size. Starting from u 0 , the successive fields u n will be computed for each n ∈ {1, ..., N t } with N t = T ∆t . At discrete time t n , for a known vector u n , we search for a vector u n+1 at time t n+1 solution of the system of equations

Mu n+1 + δtKu n+1 = δtH(u n )Q -δtΦ out + Mu n i.e. u n+1 = (M + δt K) -1 Mu n + δt H(u n )(M + δt K) -1 Q -δt (M + δt K) -1 Φ out (7)
where M is the FE mass matrix, K is the regular FE stiffness matrix, the vector Q has components Q i = q R Ω R φi (x)dx, and the discrete boundary heat flux vector Φ out is such that Φ out i = ∂Ω φ out φi (x)dx. The second term in the RHS in [START_REF] Pearlmutter | Learning state space trajectories in recurrent neural networks[END_REF] depends on the heating state H(u n ), which makes equation [START_REF] Pearlmutter | Learning state space trajectories in recurrent neural networks[END_REF] nonlinear. However, since the heating state is constant during a time step δt, the mapping that transforms u n into u n+1 is linear. Actually since there are only two discrete states in this system (H(t) ∈ {0, 1}), the whole dynamics can be described by two independent linear dynamics plus a nonlinear controller that switches from a linear dynamics to the other. The equation ( 7) can be written in a more condensed form

u n+1 = Au n + B ν , (8) 
where A = (M+δt K) -1 M and B ν is the source term that includes heats source and boundary heat flux terms, with dependency on the heating states H(u n ) represented by a boolean variable ν ∈ {0, 1} .

To summarize, the Full Order Model (FOM) ( 8) is used to generate some data (details will be given in the next section). The following section will be 105 devoted to the construction of a Reduced Order Model (ROM) from this data.

Data generation

Once the time-dependent problem (1) has been solved by the full-order solver, we save the spatio-temporal data and store them in a matrix U. The columns of U are the different vectors u n , n = 0, ..., N t . Each vector u n has a large size, thus it will be necessary to construct a reduced basis (RB) for dimensionality reduction, then project the snapshots and compute the reduced order projection coefficients. In order to achieve it, we will apply a Principal Component Analysis (PCA) on these data: first we need to compute the correlation matrix S of elements

S n,m = Ω u n h (x) u m h (x) dx
by the use of full-order model and save this matrix. Next, to learn the switching rule, the heating state of the system has to be known during time. Thus, we collect the states H n = H(t n ) at each discrete time t n and store them in a 110 column vector H.

The two matrices U, S and the vector H will compose the dataset used for the learning of the ROM.

Construction of a low dimensional space for model order reduction

The discrete vector u n lives in the high-dimensional finite element space.

The need of a reduced basis is motivated by the following observations:

1. The identification of the mapping that transforms each u n into u n+1 would be hard to determine because of too many unknowns and because of a limited dataset;

2. Usually, N x is big compared to the number of time steps N t , this makes the learning problem ill-posed as we will see later.

3.

A low-dimensional model of ( 7) is preferable for computational performance reasons.

The standard way to achieve this, is to use an offline procedure in order to find a low-dimensional vector space W K of dimension K from a snapshots solutions u n computed by the finite element solver during the time. For example, we can search to minimize the distance between each vectors u n and its projection Π K u n over W K , i.e. by solving the least-squares problem min

(K,W K ) 1 2 Nt n=0 u n -Π K u n 2
subject to the accuracy criterion

Nt n=0 u n -Π K u n 2 Nt n=0 u n 2 ≤ ε for a certain tolerance ε > 0, ε 1.
In other word, we will look for an orthonormal set φ k 1≤k≤K of R Nx , with K N t , such that for each u n there exists a linear combination of φ k that approximates the vector u n in an accurate way. The vector made of the projection coefficients will then be the low-order representation of the initial vector.

A well-known common method is the Proper Orthogonal Decomposition (POD, [START_REF] Volkwein | Proper orthogonal decomposition: Theory and reduced-order modelling[END_REF]), also known as Principal Component Analysis (PCA, [START_REF] Jolliffe | Principal Component Analysis[END_REF]) in Statistics or Karhunen-Loève (KL, [START_REF] Alexanderian | A brief note on the karhunen-loeve expansion[END_REF]) in probability theory. The idea is to consider a set of snapshots (here the discrete solutions u n at each time step t n ), and perform an eigenvalue decomposition onto the correlation matrix S, whose elements are

S n,m = Ω u n h (x)u m h (x)dx = u n T Mu m = u n , u m M .
Consider the diagonal decomposition of S, S = VΛV T , where Λ is a diagonal matrix of some real eigenvalues λ k and V the orthogonal matrix of eigenvectors

v k ∈ R Nt .
Assuming that the eigenvalues λ k of S are arranged in decreasing order, we keep only the K first dominating eigenvalues with their eigenvectors by setting

V r = V •,1•••K and Λ r = Λ 1•••K,1•••K
The matrix Φ r formed by the orthormal set φ k 1≤k≤K is then obtained by the formula

Φ r = UV r Λ -1 2 r
Finally, noting that

Φ T r MU = Λ -1 2 r V T r U T MU = Λ -1 2 r V T r S = Σ r V T r where Σ r = Λ 1 2
r , we found the low-dimensional representations of U

Ξ 1 • • • Ξ Nt = Σ r V T r
In the literature, this coefficients vectors are usually called the POD coefficients.

The projection of each vector u n onto W K reads

Π K u n = K k=1 Ξ n k φ k . (9) 
The Eckart-Young-Mirsky theorem gives us the following estimate

Nt n=0 u n -Π K u n 2 Nt n=0 u n 2 = k>K λ k 1 2 Nt k=1 λ k 1 2
and the optimality criterium

1 2 Nt n=0 u n -Π K u n 2 ≤ min rank(V)=K 1 2 Nt n=0 u n -v n 2
The more redundant information will be contained in U, the smaller will be K.

In our case the spatial operator -∇ • (κ∇.) has a regularizing effect on the solution, thus we could expect that the information in the matrix U is poor.

However the switching process during time evolution adds some information entropy.

Dynamics identification procedure

This section is devoted to the identification of the dynamics. We would like to find a simple (linear) model of the form

u n+1 = A u n ∀n ∈ {1, • • • , N t }
The Dynamic Mode Decomposition (DMD) method was originally proposed for such kind of problems using Krylov spaces ( [START_REF] Schmid | Dynamic mode decomposition of numerical and experimental data[END_REF]), and a new definition of the DMD method was given using the Penrose-Moore pseudo-inverse ( [START_REF] Tu | On dynamic mode decomposition: theory and applications[END_REF]). Below we will present a slightly different approach of the DMD method that will be more suitable to our problem.

The standard DMD method

As an introduction, let us search the matrix A as a solution of a least-squares problem. We define the two learning sets

X = [u 1 • • • u Nt-1 ] and Y = [u 2 • • • u Nt ],
where X is the input learning data set and Y the output data set. Since the equivalence

u n+1 = A u n , ∀n ∈ {1, • • • , N t -1} ⇐⇒ A X = Y
holds, we look for the matrix A * defined by

A * = arg min A J(A) := 1 2 Nt n=1 AX -Y n 2
The functional J is quadratic (w.r.t. A), hence the optimality conditions implicitly define the matrix A * as the solution of the following matrix equation

A * X X T = YX T .
If the matrix X X T were invertible, we would have an explicit expression for A * .

Actually it is not the case, because X is a N x × N t rectangular matrix, and thus the rank of X X T is less or equal to N t . In fact, there is non-uniqueness of the solution of this minimization problem. Consequently, we temporarily add a Tykhonov regularization term to the functional J, and we define the matrix

A * α by A * α = arg min A J α (A) := 1 2 Nt n=1 AX -Y n 2 + α 2 A 2 F
This minimization problem has a unique solution, which is given by

A * α = YX T X X T + αI -1
Passing to the limit when α → 0, we recover the Moore-Penrose pseudo-inverse definition, which is

X † := lim α→0 X T X X T + αI -1 = lim α→0 X T X + αI -1 X T
And finally, since the matrix X T X is invertible we get

A * = YX † .
Adding a Tykhonov regularization term to the functional J settled the nonuniqueness of the learning problem. However, it gives us the matrix with the lowest 2-norm spectrum.

Another convenient way to settle non-uniqueness is to work in a low-dimensional POD space, then to identify the dynamics from the POD coefficients. Roughly speaking, we will not look for a mapping that transforms u n into u n+1 , but for a mapping that transforms Ξ n into Ξ n+1 . Hence, we consider the new learning sets

X = [Ξ 1 • • • Ξ Nt-1 ] and Y = [Ξ 2 • • • Ξ Nt ].
As soon as K < N t -1, the matrix XX T is invertible, and we get the matrix

A = Y X †
and we refer to this method as the Standard DMD method.

A more suitable variant DMD approach

The DMD approach could be used to identify the dynamics of the switched control system. However, we can derive a more accurate and suitable DMD model according to the following remarks. As shown in section 1 (equation 8), the FOM is of the form

u n+1 = A u n + B ν , (10) 
with a source term B ν that depends on the heating state ν = ν(u n ). As explained in the previous section, the standard DMD method is a linear model of the form

a n+1 r = A r a n r . (11) 
Hence the surrogate model ( 11) cannot handle the RHS in an optimal way, and has a poor description of the switching feature as well as the non-linearity. In order to derive a more accurate ROM, we proceed as follows :

• The RHS is captured by increasing the dimension of the input learning set X (in the same spirit that the one used in Extended DMD, EDMD)

• The switch dependency into the RHS is handled by clustering the learning data sets according to the values of the vector H (ν = 0 and ν = 1)

• The non-linearity hidden in the index ν is approximated by using an Artificial Neural Network (ANN).

Thus, we define the two sets of integers

N 1 := {n such that H n = 1} and N 0 := {m such that H m = 0}.
We then build two training data sets

X 1 =   Ξ n1 • • • Ξ n #(N 1 ) 1 • • • 1   , Y 1 = [Ξ n1+1 • • • Ξ n #(N 1 ) +1 ] X 0 =   Ξ m1 • • • Ξ m #(N 0 ) 1 • • • 1   , Y 0 = [Ξ m1+1 • • • Ξ m #(N 0 ) +1 ]
Finally, we get the two augmented matrices

A ν B ν = Y ν X † ν with ν = {0, 1}
The ROM will be then in the form

a n+1 r = A ν B ν   a n r 1   = A ν a n r + B ν (12) 
for each controlled mode ν.

Remark 2. Even if we expect that A 0 = A 1 (same low-order heating operator), it is not imposed in this method.

The ROM [START_REF] Tharayil | A survey of iterative learning control: A learning-based method for highperformance tracking control[END_REF] allows us to quickly predict the behavior of the temperature on the plate during time evolution. However we still need to identify the 160 switching control rule. This issue will be treated in the next section.

The DMD method as a Neural Network

The DMD method presented in section 4 can also be viewed as a feedforward artificial neural network (ANN) with a single layer and no rectifier (a linear activation function) for the output. Indeed, the weights correspond to 165 the coefficients of the matrices A ν and the biases to the vectors B ν . The figure 2 shows the neural network architecture corresponding to the DMD method.

. . . . . . where the predictor features are the previous state and the temperature sensor, and the label the current state of the electrical resistance.

Ξ n 1 Ξ n 2 Ξ n 3 Ξ n K Ξ n+1 1 Ξ n+1 2 Ξ n+1 3 Ξ n+1 K B ν 1 B ν 2 B ν 3 B ν K

Input Layer Linear activation function

Several classifiers are commonly used, among them we can cite the Decision Tree ( [START_REF] Murthy | Automatic construction of decision trees from data: A multidisciplinary survey[END_REF]), the Support-Vector Machines (SVM, [START_REF] Burges | A tutorial on support vector machines for pattern recognition[END_REF]), the k-Nearest Neighbors (kNN, [START_REF] Cunningham | k-nearest neighbour classifiers[END_REF]), or the Artificial Neural Networks (ANN, [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF]).

However, since the controller here performs some simple tests to select the switching mode, it seems more natural to use ANNs. It is supported by the proposition below.

Proposition 1. The switching control rule H could be written as a feedforward 185 neural network with a 3-2-1 structure.

Proof. We first recall the definition of the function H H(t) ← 0 if (u(x S , t) > T max ) and (H(t) = 1) ,

H(t) ← 1 if (u(x S , t) < T min ) and (H(t) = 0)
The test u(x S , t) < T min could be done by the function below

b = T min H u(x S , t) σ T min -u(x S , t) w 1,1 = 0 w 1,2 = -1 Input Output
Extending this basic test, the switching control rule H could be written with the following feedforward neural network

H u(x S , t) H Input

Current state

Hidden Layer 1

Boolean tests

Hidden Layer 2

Boolean operator "AND"

Softmax

Probability of next switch state

where the operations at each neuron are :

190 Input : The input will be the temperature at the sensor (u(x S , t)) and the previous switching rule (H).

First Hidden Layer : Three tests are done :

• u(x S , t) < T min • u(x S , t) > T max
• Is the electrical resistance activated ?

Second Hidden Layer : Intersection of the hyperplans (boolean operation "AND")

Output : The probability of switch state at the next discrete time Remark 3. This result ensures that we could write the switching control rule as a "minimal" feedforward neural network. Hence, it justifies the use of an ANN, as long as we use sigmoid activation functions for the hidden layers, and a softmax function for the output layer. Some comparisons with other Machine

Learning classifiers for the switching control rule learning are presented in [START_REF] Fahlaoui | Réduction de modèles et apprentissage de solutions spatiotemporelles paramétrées[END_REF].

For the computation, we use a feedforward neural network with only one hidden layer, and with 5 neurons in the hidden layer. The output activation function will be still a softmax function. It could be noted that this architecture does not require any knowledge about the switching control rule.

Numerical results

We now present some numerical results in order to demonstrate both accuracy and stability of the approach, for both short-range and long-range time behavior of the model. We will first detail the computational aspects of data generation. Then, we will show the identifying each subsystem dynamics, and the learning of the switching rule. Some numerical comments will be discussed, especially for the neural network. Finally, a numerical spectral analysis of the ROM structure will be achieved.

Data generation

All this work deals with synthetic data generated by the high-fidelity FE solver. The physical and numerical parameters used, and the geometry of the problem are depicted in the figure 3. The numerical computations will be done thanks to the flexible software FreeFem++ ( [START_REF] Hecht | New development in freefem++[END_REF]). Once the FE solver has computed the temperature and the correlation matrix S, the data will be sent to the ROM software platform (namely Matlab in our experiments).

Parameter Value

Thermal conductivity (κ) 0.2 W • m -1 • K -1
Minimal temperature (Tmin) 20 To quantify the accuracy of the ROM prediction, we use the 400 first time steps for the learning and the 400 last time steps will be used for the validation. In this paragraph, we will quantify the quality of the ROM first for the learning process and then for the prediction. First, we measure the accuracy of the ROM from the training data set using the following error estimate :

E learn L 2 := N t,learn n=0 Φ r a n r -u n 2 M N t,learn n=0 u n 2 M .
Second, the prediction capability of the ROM is evaluated from the validation data set using the second error estimate :

E pred L 2 := N t,pred n=N t,learn +1 Φ r a n r -u n 2 M N t,pred n=N t,learn +1 u n 2 M .
where a n r are the POD coefficients provided by the ROM, which is

a n+1 r = A ν B ν   a n r 1   = A ν a n r + B ν , ũn+1 = Φ r a n r , ũn+1 (x S ) = K k=1 φ k (x S ) a n+1 r k , ν ← ν(ũ n+1 (x s ), ν n )
The matrices A ν and B ν are computed by the DMD method [START_REF] Peitz | Koopman operator-based model reduction for switchedsystem control of pdes[END_REF], whereas the nonlinear function ν is learned by the use of the ANN discussed above. Thus we will consider the case where we use the analytic expression of the control (cf H expression) and the case where we use the ANN in order to analyze independently the performance of these two methods. In the table below, will be also depicted the estimator E DM D defined by

E DM D := 1 Y F 2 ν=1 A ν B ν X ν -Y ν 2 F 1 2
, which is the least-squares error, and quantify the correlation learned from the DMD approach. Finally, we will then take different values of K. The results shown in table 1 confirms the good accuracy of the ROM for a reasonable number of POD modes (K > 10), we even obtain the full-order model accuracy. Moreover, the ROM has a same accuracy onto the validation data set, which is not obvious since the learning was done without this data and furthermore, the POD coefficients are computed by an iterative process, thus if a small error is committed, the temperature obtained by the ROM will explode ad infinitum. When the number of POD coefficients is small, the relative POD error is important which cause a poor quality of the learning data. However from the DMD formula, we get two matrices which minimize the least-squares error between the input and the output learning set. And the fact that the estimator E DM D is small, mean that we learn non-physical correlations.

E learn L 2 E pred L 2 Relative #POD
Since the dimension of the learning set is small, we train our neural network using a quasi-Newton method, moreover the initialization of the weights and the biases has an important influence on the optimization process. In order to avoid some local minima and to increase the score of the neural network on unknown data set, we do cross-validation. Switching control rule learning will be done in Python by using the library Scikit-learn ( [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF]). As depicted in table 1, the ROM+ANN gives temperature with the same accuracy as the one obtained with the knowledge of the rule. We have thus derived a high accurate nonintrusive ROM. Moreover the ROM seems to be asymptotically stable, as it is shown in figure 5 where we plot the sensor temperature given by the ROM+ ANN. A last attention could be given to the computational time since the main goal of this work is to derive an inexpensive surrogate model. The table below presents the computational time between the FOM, the ROM with the rule and the ROM with the ANN. So we get a speed-up of order 500 between the FOM and the DMD+ANN ROM. The more data available for the learning stage the more accurate will be our ROM, thus it is natural that the error decreases with the increasing rate of data used. Furthermore, table 3 indicates that the need of data is more important for the neural network training than for DMD.

Model

Spectral properties of the ROM

We finally close this section with a spectral analysis of the ROM. As soon as we have computed a linear mapping from the input training data set to the output training data set, we could perform an eigendecomposition of this mapping for spectral property analysis. Checking the spectrum property can also inform us about a correct learning of the Physics or not. The model ( 1) is the heat equation which is inherently dissipative. This implies that the temperature profile will converge to zero without external excitation or non-homogeneous boundary condition. This property is fundamental, and we expect that our ROM can capture it. The figure below show the spectrum of the two mapping A 0 (which corresponds to the OFF state) and A 1 (for the ON state) in the complex plane.

From the ROM form [START_REF] Tharayil | A survey of iterative learning control: A learning-based method for highperformance tracking control[END_REF], we could remark that if the eigenvalues are in the unit circle it mean that certain quantities are conserved during time evolution, if at least one eigenvalue is outside of the unit disk the temperature will explode, and finally if all the eigenvalues are inside of the unit disk the temperature goes 285 to zero. In order to be coherent with the model (1), we expect that all the eigenvalues are inside of the unit disk. This is the case, we have thus correctly captured the physical nature of the problem. It could be noted that the imaginary part is not zero for all eigenvalues which denotes a lack of symmetry.

Concluding remarks

The identification of a switching control system from data has been made

possible by a combination of POD, DMD and ANN.

We have been able to achieve an inexpensive, asymptotically stable, and high accurate reduced order model from simulation data. Furthermore, the use of DMD-type method allows for an easy interpretation of the ROM with available spectral properties. This method could be applied to a broad range of switching control systems.
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 1 Figure 1: Schematic of the switching control heat problem
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 2 Figure 2: The DMD model as a one-layer ANN
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 3 Figure 3: Geometry and parameters used for the data generation
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 a Temperature on the plate at different times (b) Sensor temperature and electrical resistance states during time evolution
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 4 Figure 4: High-fidelity FEM solver outputs
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 5 Figure 5: Long-time behavior of the sensor temperature provided by the ROM+ANN (in black) and High-fidelity solver sensor temperature (in red)

Figure 6 :

 6 Figure 6: Eigenvalues of the matrices A 0 (in blue), for the electrical resistance OFF mode, and A 1 (in red), for the ON mode, on the unit circle (in black)

Table 1 :

 1 Learning and prediction errors for the temperature provided by the ROM

		modes DMD+rule	DMD+ANN	DMD+rule	DMD+ANN	POD error	E DMD
	K = 1	0.3422	0.3426	0.3447	0.3442	0.1431	6.7989e -04
	K = 5	0.0885	0.0644	0.0719	0.0719	0.0031	1.6289e -04
	K = 10	2.5696e -04 2.5696e -04 2.1409e -04 2.1409e -04 2.8840e -04 5.0326e -04
	K = 20	2.1581e -04 2.1581e -04 1.7340e -04 1.7341e -04 2.5607e -04	0.0011
	K = 30	2.0798e -04 2.0797e -04 1.6542e -04 1.6541e -04 2.4951e -04	0.0014
	K = 60	2.1021e -04 2.1021e -04 1.3723e -04 1.3723e -04 2.2921e -04	0.0018

Table 2 :

 2 Computational time7.3. Influence of the training data set sizeIn all the previous computation, we have used 50% of the data for the learning. However we can wonder what happen if we use less data. To answer to this question, we consider different numbers of time steps for the learning step, and then give the results in the table below. All the computations were done with K = 20.

		CPU time (in sec)
	FOM	57.077
	ROM+rule	0.060
	ROM+ANN	0.119

Table 3 :

 3 ROM accuracy according to the rate of learning data used