Impact of tobacco smoking upon disease risk, activity and therapeutic response in systemic lupus erythematosus: A systematic review and meta-analysis

Dorian Parisis, Charlie Bernier, François Chasset, Laurent Arnaud

To cite this version:

HAL Id: hal-03489087
https://hal.science/hal-03489087
Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Impact of tobacco smoking upon disease risk, activity and therapeutic response in Systemic Lupus Erythematosus: a systematic review and meta-analysis

AUTHORS AND AUTHORS’ AFFILIATIONS
Dorian PARISIS¹, Charlie BERNIER², François CHASSET³, Laurent ARNAUD²
¹Service de rhumatologie et de médecine physique, CUB Erasme (ULB), Brussels, Belgium
²Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Rares Est Sud-Ouest (RESO), Université de Strasbourg, F-67000 Strasbourg, France.
³sorbonne université, faculté de médecine sorbonne université, ap-hp, service de dermatologie et allergologie, hôpital tenon, f-75020 paris, france

CORRESPONDING AUTHOR:
Pr. Laurent ARNAUD, Service de rhumatologie, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares, Hôpital de Hautepierre, 1 Avenue Molière BP 83049, 67098 Strasbourg Cedex, France. Phone: 03 88 12 84 74 | Fax: 03 88 12 82 90 | email: laurent.arnaud@chru-strasbourg.fr

CONFLICTS OF INTERESTS
The authors declare no conflict of interest, no source of funding or sponsors or any relationship to organizations that could potentially influence the present work. The authors of the current study wish to state that tobacco companies were not provided with access to the drafts or to the final version of the manuscript.

FINANCIAL SUPPORT
None

ACKNOWLEDGMENTS
LA & DP conceived the study, were responsible for the study design and statistical analysis. DP, FC, and LA designed the search strategy, and DP and CB conducted the literature review. DP, CB and LA conducted the analysis. DP & LA drafted the initial manuscript, which was revised for critical content by all authors (DP, CB, FC, LA). All of the coauthors had access to data, reviewed the manuscript and provided critical input.

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license https://creativecommons.org/licenses/by-nc/4.0/
ABSTRACT (300 words)

Systemic lupus erythematosus (SLE) is a complex disease with variable presentations, course and prognosis. Published studies present conflicting data regarding the impact of cigarette smoking on SLE risk, disease activity, clinical manifestations and treatment response. We performed a comprehensive literature search using Medline, EMBASE and the Cochrane Collaboration database, and hand searches of relevant bibliographies. All original studies investigating the relationship between smoking and SLE were included in TABALUP. Two investigators systematically extracted data from the relevant studies. When possible, meta-analyses were performed. The meta-analysis of 9 case-controls studies show an increased risk of SLE in current-smokers compared to never-smokers (OR: 1.49 [95%CI: 1.06-2.08]), while former-smokers were not at increased risk of SLE. Data on passive smoking remains scarce and controversial. Pooled analysis studies did not find an over-risk of anti-dsDNA, anti-Sm or anti-SSA positivity according to smoking status. Tobacco smoking significantly reduced the therapeutic effectiveness of hydroxychloroquine in cutaneous lesions (pooled OR 0.53; 95%CI: 0.305-0.927) and belimumab in systemic manifestations (HR 0.10; 95% CI 0.02-0.43). In addition to its usual adverse effects, cigarette smoking is a risk factor of SLE and negatively influences the course of the disease and its treatment. We believe that smoking cessation should be one of the main target of physicians treating SLE patients.

KEY WORDS

Systemic Lupus Erythematosus, tobacco, cigarette smoking, risk, meta-analysis, systematic review
HIGHLIGHTS / KEY POINTS

• Current smoking (but not former-smoking) was associated with an increased risk of SLE
• Positivity for anti-dsDNA, anti-Sm, and anti-SSA was not influenced by the smoking status
• Tobacco smoking strongly reduced the therapeutic efficacy of hydroxychloroquine for cutaneous lupus and of belimumab for systemic manifestations of SLE.
• Smoking cessation should be a cornerstone of SLE treatment
1. INTRODUCTION

Systemic lupus erythematous (SLE) is a complex disease with variable presentations, course and prognosis. As others systemic auto-immune diseases, pathogenesis of SLE remains unknown, but has been shown to result from complex multifactorial interactions between genetic, hormonal and environmental factors that result in the loss of self-tolerance.

Tobacco smoking is one the most prevalent habit and a well-known environmental factor associated with COPD, cancers and cardiovascular diseases. Its involvement in the induction and exacerbation of multiples systemic autoimmune diseases has been the subject of many publications in the past [1]. Despite the inherent limitations of studies design and heterogeneity, there is currently evidences for the role of tobacco smoking in diseases such as rheumatoid arthritis, Grave's disease, multiple sclerosis or Crohn's disease [1,2]. Moreover, in lupus patients, tobacco also increases comorbidities, such as atherosclerosis, with a similar risk as diabetes mellitus [3].

To date, published studies present conflicting data on the impact of cigarette smoking on SLE risk, auto-antibody profile, disease activity, damages and treatment response [1]. We performed a systematic review with meta-analysis (TABALUP) to investigate the relationship between smoking and lupus risk, antibodies profile and treatment efficacy in SLE patients.

2. MATERIALS & METHODS

This meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), and the Meta-analysis of Observational studies in Epidemiology (MOOSE) guidelines. Given that the study did not involve primary data collection or analysis, the study was considered exempt from ethical committee review.

2.1. RESEARCH STRATEGY AND DATA SOURCES

We searched MEDLINE (via PubMed), EMBASE and the Cochrane Database of Systematic Reviews databases from inception to October 2017 for studies examining the association of lupus with tobacco smoking, without language restriction or additional filter. The search strategy used a combination of text words and thesaurus terms (supplementary document). The search was completed by the bibliography review of relevant paper to identify additional studies not indexed by the electronic databases. Attempts were made to contact authors to collect more information from potentially eligible abstracts but none of them sent additional data.

2.2. STUDY ELIGIBILITY

All original studies investigating the relationship between smoking and SLE were included in TABALUP. Studies were included in the analysis if: (i) they investigated the relationship between
smoking habits and lupus (case–control or cohort study); (ii) contained original data; and (iii) contained sufficient data to calculate odds ratios (ORs). We excluded the following: (i) studies containing duplicate or overlapping data; and (ii) case reports, case series, reviews, and letters to the editors.

2.3. STUDY SELECTION
We merged search results obtained from different databases using EndNote software, and removed duplicate references. Every titles and abstracts were independently screened by two investigators (DP and CB) to match the inclusion and exclusion criteria. If the information was insufficient, the decision was based on reading the full text of the article. First authors independently reviewed full-text of selected manuscripts to determine final study eligibility. In case of disagreement, the article was evaluated closely to reach a consensus. Remaining disagreements between the reviewers were resolved by a third party (LA).

2.4. STUDY QUALITY ASSESSMENT
The quality of each included paper was reviewed by the first two authors independently using the Newcastle-Ottawa Scale. In this meta-analysis, the studies with seven star-items or more were considered high-quality studies and those with six star-items or less were considered low quality studies.

2.5. DATA EXTRACTION
The following information was extracted from each paper by a reviewer (DP): author, year of publication, study population, demographics, sample size, smoking status, effect size data (OR or RR) and adjustment factors. When the data of interest could not be found in the articles, we contacted corresponding authors to request further information. When possible, smoking status was regarded as past, current or never smoked. If we could not obtain effect size data adjusted with other confounders, we estimated the crude OR from sample size data. For different studies of the same population (e.g., studies conducted on the same registry with overlapping years), we used the results of the most recent and detailed study. Extracted information was confirmed by a second reviewer (CB).

2.6. STATISTICAL ANALYSIS
Crude measures of effect or adjusted measures of effect were extracted from the individual studies. When possible, ORs and 95% confidence intervals (CI) were estimated for each study. Due to inherent biases in observational study designs, the random effect model was used to obtain the
combined OR and its standard error (SE). To assess heterogeneity among the studies included in meta-analysis, we used the I^2 statistics. A value of I^2 of 0–25% represents insignificant heterogeneity, 26–50% represents low heterogeneity, 51–75% represents moderate heterogeneity, and more than 75% represents high heterogeneity. Publication bias was assessed by visual inspection of funnel plot. The leave-1-out sensitivity analysis was conducted to determine whether our assumptions or decisions had a major effect on the results of the review by omitting each study. All statistical analyses were completed using both JMP13 (SAS institute, Cary NC, USA) and MedCalc (MedCalc Softwares, Belgium) softwares. The criterion for statistical significance was considered to be two-sided p-value < 0.05.

3. RESULTS

3.1. FLOW CHART AND CHARACTERISTICS OF INCLUDED STUDIES
The flow diagram of study selection process is depicted in Figure 1. A total of 2493 potentially eligible references were identified using the described search strategy. After the exclusion of 604 duplicated articles, titles and abstracts of 1889 articles were reviewed. The remaining 229 papers were screened for eligibility. We excluded 78 references because they did not meet our inclusion criteria. Finally, 151 articles were included for further analysis.

3.2. TOBACCO SMOKING AND SLE RISK
Of the 151 studies identified by our literature search, 19 were selected for detailed review regarding this topic [4–25]. Two studies on the association of prenatal and early-life smoke exposure with SLE risk were set apart [6,11]. Another study on CYP1A1 and GSTM1 polymorphisms, smoking and SLE risk by Kiyohara et al. [16] was discussed separately. Two duplicate publications were excluded [24,25] and one study [12] was also ignored because it was conducted on the same registry than Barbhaiya et al. [7].

A total of 15 published articles (13 case-control studies and 2 cohort studies) examined the association of (active) smoking status with SLE risk [4,5,7–10,13–15,17–21,23]. Nine studies examined this association in former-smokers vs non-smokers [7–10,17–19,21,23]. Two case-control studies had been published as abstracts only [5,20]. General characteristics as geographic location, sample size, OR with 95% CI for risk of SLE, as well as adjusted factors to evaluate the risk of SLE in the selected articles are presented in Table 1.
Five out of 15 studies were conducted in Japan [8,10,15,20,23] and 5 in the US [4,7,9,18,21]. The remaining studies were done in Europe (Sweden [14], UK [19] and Finland [17]) and one in China [13]. Tobacco exposure was assessed by structured non-blinded interview [4,9,13,17–19] or self-administered questionnaires [7,8,10,14,15,21,23]. Smoker status was defined as smoking at least one cigarette per day for at least 3 months in 3 studies [9,18,19] and as smoking at least one cigarette per day for at least 12 months in 4 others studies [8,10,17,21]. Smoking definition was not clearly defined in 7 studies [5,7,13–15,20,23]. The evaluation of degree of exposure in each study varied significantly from study to study. In five studies, degree of exposure was not measured [4,5,13,15,20]. In all case-control studies, smoking status of cases was restricted to smoking exposures that preceded the date of diagnosis of SLE. Lupus cases definition was based on the ACR 1997 classification criteria in all but one study [14]. Among those studies, 9 were appropriate for inclusion in our meta-analysis (table 2). All studies included in our analysis were case-control studies. We excluded 2 abstracts [5,20], 2 cohort studies [7,21] and 2 studies based on patients from the same study cohort (KYSS study) [10,20]. A total of 1738 cases and 3209 controls were included in the analysis. The forest plots of cumulative meta-analysis for the relationship between smoking status and SLE risk are shown in Figures 2A and 2B. For the risk of SLE in current smokers versus never-smokers, the pooled OR was 1.49 (95%CI: 1.06-2.08) with significant heterogeneity (I²=78%, p=0.01). For the risk of SLE in ever-smokers versus never-smokers, the pooled OR was 1.54 (95%CI: 1.06-2.23) with significant heterogeneity (I²=86%, p<0.0001). For the risk of SLE in former-smokers versus never-smokers, the pooled OR was 0.97 (95%CI: 0.68-1.38) with significant heterogeneity (I²=63%, p=0.01). The funnel plots demonstrated potential publication bias on this topic, as some small negatives studies were not identified in the published literature.

Ten out of 15 studies investigated the dose-effect of cigarette smoking. Only 4 of them, which included 3 original case-controls studies, showed such effect [8,10,19,23].

3.3. TOBACCO SMOKING AND AUTOANTIBODY PROFILES

Of the 151 studies identified by our literature search, 15 were selected for detailed review regarding this topic [26–40]. Characteristics of those studies are presented in table 3. Two of them were duplicate publications of previous results found in two others selected references, leading to additional information. Nine of them provided data suitable for the meta-analysis. Our meta-analysis did not demonstrate an increased risk of anti-dsDNA, anti-Sm or Anti-SSA positivity according to
smoking status (Figure 3). For the odds of SLE anti-dsDNA positivity in current-smokers versus ever-smokers, the pooled OR was 0.90 (95% CI: 0.42-1.93) with significant heterogeneity ($I^2=91\%$, $p<0.0001$). In ever-smokers vs never-smokers, the pooled OR was 1.03 (95% CI: 0.85-1.25) without heterogeneity ($I^2=13\%$, $p=0.33$). In former-smokers vs never-smokers, the pooled OR was 1.06 (95% CI: 0.62-1.82) with significant heterogeneity ($I^2=73\%$, $p=0.01$).

For the odds of SLE anti-Sm positive in current-smokers versus never-smokers, the pooled OR was 0.58 (95% CI: 0.32-1.05) with significant heterogeneity ($I^2=85\%$, $p=0.001$). Funnel Plot is suggestive of potential publication bias. The odds ratio of ever-smokers vs never-smokers and former-smokers vs never-smokers studies were not significant (data not shown).

For the odds of SLE anti-SSA positive in current-smokers versus non-smokers, the pooled OR was 0.79 (95% CI: 0.50-1.25) with significant heterogeneity ($I^2=69\%$, $p=0.04$). Funnel Plot is not suggestive of potential publication bias. The odds ratio of ever-smokers vs never-smokers and former-smokers vs never-smokers studies were not significant (data not shown).

Four studies out of 13 were not included in this meta-analysis, either because data were missing or were provided as graphs, odd-ratios or ANA titers, not suitable to be pooled with others studies [28,37,39,40].

3.4. TOBACCO SMOKING AND TREATMENTS EFFICACY

Of the 151 studies identified by our literature search, 17 were selected [41–57] for detailed review regarding this topic.

Twelve studies investigated the effect of smoking on the efficacy of antimalarial drugs (primarily hydroxychloroquine) for treating cutaneous lesions in lupus patients. Characteristics of those studies are presented in Table 4. As dermatologic studies, Cutaneous Lupus Erythematosus (CLE) patients as well as SLE patients with dermatologic manifestations were included. Main endpoints and outcome evaluations varied among studies: five studies used qualitative clinical evaluation as their primary endpoint, 6 of them used the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI)[58] and the last used study-specific criteria. In 4 studies, (near-)total healing of cutaneous lesions is also used as primary endpoint. Smoking status was mainly “current” vs “not-current” smokers (former- and never-smokers), except in two studies where smoking definition was ever vs never smokers. Figure 4 shows the meta-analysis of the 11 observational studies investigating the effect of tobacco smoking on antimalarial cutaneous effect. This meta-analysis further updates a previous meta-analysis from our group [59]. The pooled OR based on a random-effect model for cutaneous favorable outcome in smokers vs non-smokers was 0.53 (95% CI: 0.305-0.927) with significant heterogeneity ($I^2=66\%$, $p<0.002$). Visual inspection of the funnel plot did not reveal
obvious asymmetry for all publications. The 2 additional studies were unfortunately not metanalyzable [52,54].

Five studies investigated the relationship between hydroxychloroquine blood concentration and cigarette smoking in patients treated for SLE or others connective tissue diseases [42–44,48,53]. The rationale behind this is that resistance of cutaneous lupus to hydroxychloroquine might be explained by modification of the metabolism of this drug, as cigarette smoking is a potent inducer of cytochrome P450. Those studies, including a total of 1497 patients, did not show any significant relationship between cigarette smoking and hydroxychloroquine concentrations.

Finally, one study [56] provides data on real-life effect of Belimumab in SLE with emphasis on predictors of treatment response. Fifty-height patients were enrolled and followed longitudinally. Response to treatment was defined based on the SLE response index (SRI). After adjustment for baseline SLEDAI-2K scores and prednisone equivalent dosages, ever smokers had a decreased probability to attain SRI-4 response compared with never smokers (HR 0.46; 95% CI 0.22-0.95), as well as current smokers compared with former smokers (HR 0.10; 95% CI 0.02-0.43).

4. DISCUSSION

Regarding the risk of SLE, we have shown in our meta-analysis of 9 case-control studies that current smokers have an increased risk of developing SLE, compared to non-smokers (OR 1.49 [95%CI: 1.06-2.08]). Similar results were observed when comparing ever versus never-smokers (OR 1.54 [95%CI: 1.06-2.23]). The increased risk of developing SLE appears to be associated with current tobacco use but not former-smoking.

To date, we are aware of 2 others reviews with meta-analysis addressing the same clinical question [60,61]. In Costenbader et al., 9 studies (7 case-control and 2 cohort studies) were included. In Jiang et al., 13 studies (11 case–control studies and 2 cohort studies) were included.

Despite the fact that we meta-analyzed contingency data (and not ORs) and more drastically selected the included studies, similar results similar were found.

The mechanisms involved in the link between smoking and SLE development remain speculative. According to current theories, tobacco smoking can promote the appearance of SLE by various mechanisms [62]. Combustion byproducts of tobacco contain thousands of toxic components, including tars, nicotine, carbon monoxide, and polycyclic aromatic hydrocarbons among others. These toxins and induced oxidative stress can react with DNA molecules and increase cell apoptosis. This increase of the apoptotic material containing modified DNA in individuals predisposed to a defective elimination of apoptotic blebs could theoretically induce systemic auto-immunity. This transitory effect linked to smoking could explain the disappearance of the risk in the smokers who have been weaned for over a year (“former-smokers”).
Regarding ANA profiles, our meta-analysis of 9 case-control studies did not demonstrate an increased risk of anti-dsDNA, anti-Sm or Anti-SSA positivity according to smoking status. A link between smoking status and the presence of antinuclear antibodies (and especially anti-dsDNA) remains unclear in epidemiological studies. Results from Barbhaiya et al. [30], are often mentioned to highlight the increase in SLE dsDNA-positive in smokers. This study shows that this risk is linked to a consumption of more than 10 pack-years and disappears with smoking cessation. These results are used to support the hypothesis that active smoking, by modifying DNA and increasing its release via increased apoptosis, NETosis or necrosis, will induce a loss of tolerance and appearance of antibodies against double-stranded DNA in genetically susceptible individuals[1]. In addition, tobacco has been shown to be an environmental factor associated with survivin expression along with various autoimmune diseases. Survivin enhances antigen presentation, maintains persistence of autoreactive cells, and supports production of autoantibodies[63].

No study about the impact of tobacco smoking upon the efficacy of hydroxychloroquine for the systemic manifestations of SLE was found. Following our previous meta-analysis [59], 2 new studies were published [50, 52]. One of them had the design required to be included in the update of the previous meta-analysis [52]. Unfortunately, this study was only published as a congress abstract and did not provide enough information to be pooled. However, their conclusion goes in the same direction as the meta-analyzed data. Interestingly, cutaneous lupus differs from systemic lupus in the very high prevalence of smoking and the sex ratio. The conclusions of this meta-analysis may therefore not be generalizable to all lupus patients.

In the literature, 5 studies demonstrate that the pharmacokinetics of hydroxychloroquine is not influenced by cigarette smoking. Mechanisms by which tobacco smoking may interfere with hydroxychloroquine remain speculative. Others interactions such as modification of lysosomal accumulation of antimalarial drugs or increased disease activity must be investigated. Current data supports the hypothesis of a pharmacodynamic interaction between hydroxychloroquine and nicotine. Antimalarials accumulate in endosomes, bind nucleic acids and inhibit signaling via TLR-7 and TLR-9 [64]. On the other hand, nicotine increases the reactivity of TLR-9 to nucleic acids [65].

Finally, only one study [56] investigated the impact of tobacco smoking on response to belimumab and the same authors [66] showed that the negative effect of tobacco on the efficacy of belimumab is consistent for muco-cutaneous manifestations (SLEDAI2K items and CLASI) Smoking cessation should therefore be advised prior to introduction of such costly treatment to maximize efficiency.
Case-control studies, by their retrospective design, may suffer from several biases. Prospective cohort studies are usually underpowered to highlight significant differences. Finally, as demonstrated in this review, the definition itself of active smoking may differ from study to study. Tobacco smoking is itself a heterogeneous phenomenon in time and place. The composition and quality of tobacco may vary from one period or region to another. Finally, smoking is not limited to controlled smoke inhalation as in a laboratory study. As a social phenomenon, tobacco smoking is linked to many confounding factors such as socio-economic level, stress, consumption of other stimulating substances, bad health habits or lack of therapeutic adherence. All these elements combined the heterogeneity observed across the different studies.

5. CONCLUSION

In addition to its usual adverse effects, cigarette smoking appears to be an important risk factor for SLE and negatively influences the course of the disease as well as treatment efficacy. Based on these findings, it seems that smoking cessation remains a highly cost-effective piece of advice that could improve the management of SLE patients from any point of view and lead to many other benefits. Therefore, we believe that smoking cessation should be one of the primary concerns of physicians treating SLE patients and must be a cornerstone of treatment. More in-depth studies regarding the impact of smoking on SLE are needed and require harmonization of definitions of smoking status and standardization of publication of available data for meta-analysis.
REFERENCES

Table 1: Tobacco smoking as a risk factor of SLE - Literature Review results as shown in original articles

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Geographic location</th>
<th>Number Cases/Controls</th>
<th>Dose-response relationship</th>
<th>OR (95% IC) Current vs Never smokers</th>
<th>OR (95% IC) Ex-smokers vs Never smokers</th>
<th>OR (95% IC) Ever smokers vs Never smokers</th>
<th>Adjusted factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-control studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggarwal et al.</td>
<td>2013</td>
<td>NA</td>
<td>821</td>
<td>821</td>
<td>Not assessed</td>
<td>-</td>
<td>-</td>
<td>1.27 (p=0.02) Age, gender within five years, gender and ethnicity</td>
</tr>
<tr>
<td>Bengtsson et al.</td>
<td>2002</td>
<td>Sweden</td>
<td>85</td>
<td>205</td>
<td>No</td>
<td>1.1 (0.7-1.7)</td>
<td>0.6 (0.4-1.0)</td>
<td>1.8 (0.9-3.6) Age, gender, hypertension, drug allergy, familial history, skin type, blood transfusion, alcohol.</td>
</tr>
<tr>
<td>Cooper et al.</td>
<td>2001</td>
<td>USA</td>
<td>265</td>
<td>335</td>
<td>No</td>
<td>1.14 (0.81-1.59)</td>
<td>1.35 (0.92-1.97)</td>
<td>1.65 (1.17-2.33) Age, gender, race, state and education</td>
</tr>
<tr>
<td>Ekblom-Kullberg et al.</td>
<td>2013</td>
<td>Finland</td>
<td>205</td>
<td>862</td>
<td>No</td>
<td>3.62 (2.22-0.70)</td>
<td>6.69 (2.59-7.28)</td>
<td>Age, gender, race, past income, family history and education</td>
</tr>
<tr>
<td>Ghaussy et al.</td>
<td>2001</td>
<td>USA</td>
<td>125</td>
<td>125</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>Age, term birth, eating habits, sun light exposure, residence, HBV vaccine,...</td>
</tr>
<tr>
<td>Hardy et al.</td>
<td>1998</td>
<td>UK</td>
<td>150</td>
<td>300</td>
<td>Yes</td>
<td>1.95 (1.14-3.31)</td>
<td>1.23 (0.70-2.17)</td>
<td>- Age, gender and social class</td>
</tr>
<tr>
<td>Kiyohara et al.</td>
<td>2009</td>
<td>Japan</td>
<td>151</td>
<td>424</td>
<td>Yes</td>
<td>3.32 (2.00-5.53)</td>
<td>2.86 (1.78-4.60)</td>
<td>Age, region, and alcohol intake.</td>
</tr>
<tr>
<td>Kiyohara et al.</td>
<td>2012</td>
<td>Japan</td>
<td>171</td>
<td>492</td>
<td>Yes</td>
<td>3.06 (1.86-5.03)</td>
<td>2.49 (0.97-6.44)</td>
<td>Age, region, drinking status, and education background</td>
</tr>
<tr>
<td>Nagata et al.</td>
<td>1995</td>
<td>Japan</td>
<td>282</td>
<td>292</td>
<td>Yes</td>
<td>2.31 (1.34-3.97)</td>
<td>1.07 (0.37-3.10)</td>
<td>- Age, gender, geographic vicinity</td>
</tr>
<tr>
<td>Zou et al.</td>
<td>2014</td>
<td>China</td>
<td>260</td>
<td>260</td>
<td>Not assessed</td>
<td>-</td>
<td>-</td>
<td>NA Age, gender, term birth, eating habits, sun light exposure, residence, HBV vaccine,...</td>
</tr>
<tr>
<td>Nakano et al.</td>
<td>2017</td>
<td>Japan</td>
<td>59</td>
<td>244</td>
<td>Not assessed</td>
<td>-</td>
<td>-</td>
<td>2.14 (1.10-4.16) Age and gender</td>
</tr>
<tr>
<td>Reidenberg et al.</td>
<td>1993</td>
<td>USA</td>
<td>195</td>
<td>338</td>
<td>Not assessed</td>
<td>NA</td>
<td>NA</td>
<td>NA Age and gender</td>
</tr>
<tr>
<td>Washio et al.</td>
<td>2017</td>
<td>Japan</td>
<td>160</td>
<td>660</td>
<td>Not assessed</td>
<td>-</td>
<td>-</td>
<td>2.60 (1.76-3.85) Age, region and alcohol drinking</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td>2929</td>
<td>5358</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barbhaiya et al.</td>
<td>2017</td>
<td>USA</td>
<td>286</td>
<td>230386</td>
<td>No</td>
<td>1.14 (0.81-1.61)</td>
<td>1.18 (0.89-1.55)</td>
<td>- Sex, gender, race, BMI, zip code-level median household, oral contraceptive use, age at menarche (≤10 vs >10 years), menopausal status and PMH use</td>
</tr>
<tr>
<td>Formica et al.</td>
<td>2003</td>
<td>USA</td>
<td>67</td>
<td>64433</td>
<td>No</td>
<td>1.6 (0.8-3.3)</td>
<td>1.6 (0.8-3.3)</td>
<td>- Age, gender, education, oral contraceptive use, alcohol consumption, and body mass index</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td>353</td>
<td>294819</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NA = not available; PMH = postmenopausal hormone
Table 2: Tobacco smoking as a risk factor of SLE - Characteristics of included studies

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Localisation and case finding</th>
<th>Controls selection - matching</th>
<th>% female</th>
<th>Repsonse rate Cases/controls</th>
<th>Duration between diagnosis and study</th>
<th>Newcastle-Ottawa Quality Assessment Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zou et al.</td>
<td>2014</td>
<td>China (Anhui Province)</td>
<td>Random from same counties Matched for gender and age</td>
<td>91.5</td>
<td>55.2% / NA</td>
<td>NA</td>
<td>★★★★★★☆☆☆☆☆</td>
</tr>
<tr>
<td>Ekblom-Kullberg et al.</td>
<td>2013</td>
<td>Finland (Helsinki, Espoo and Vantaa) Helsinki University Central Hospital registry</td>
<td>Finnish health examination survey From same cities</td>
<td>100</td>
<td>NA / NA</td>
<td>13 (0-39) years</td>
<td>★★★☆☆☆☆☆☆☆</td>
</tr>
</tbody>
</table>
| Kiyohara et al. | 2012 | Japan (Kyushu) Sapporo SLE (KISS) Study | - Nursing college students and care workers
- Participants at a health clinic | 100 | NA / NA | 11.9 ± 8.55 years | ★★★☆☆☆☆☆☆☆ |
| Bengtsson et al. | 2002 | Sweden (Lund-Orup Healthcare District) Incidents cases – 1981-1999 | Computerized population register Matched for date of birth | 100 | 93% / 53% | 9 (0-18) years | ★★★☆☆☆☆☆☆☆ |
| Cooper et al. | 2001 | USA (North Carolina and South Carolina) Carolina Lupus Study (incidents cases 95-99) | Driver’s license records Matched for gender, age (+/-5y) and state | 90 | 93% / NA | 13 months | ★★★★★☆☆☆☆☆ |
| Ghaussey et al. | 2001 | USA (New Mexico) University New Mexico SLE Database | GP outpatient clinics Matched for gender and age (+/-5y) | 96.8 | 91% / 95% | 8.69 years | ★★★☆☆☆☆☆☆☆ |
| Hardy et al. | 1998 | UK (Nottingham) Geographically complete cohort | FHSA register (resident attached to a GP) Matched for gender and age | 92 | 95% / 39% | NA | ★★★★★☆☆☆☆☆ |
| Nagata et al. | 1995 | Japan Intractable Diseases Registration - 1988-1990 | Check-up list of same public health center Matched for gender and age (+/- 5y) | 100 | NA / NA | NA | ★★★★★☆☆☆☆☆ |
| Reidenberg et al. | 1993 | USA (Philadelphia) SLE cases - 1985-1987 | - Friends matched for gender and age (+/-5y)
- Outpatients matched for gender and age (+/-5y) | 89 | NA / NA | < 3 years | ★★★★★☆☆☆☆☆ |

NA= not available; SLE = Systemic Lupus Erythematosus; +/-5y = within 5 years. GP = General Practitioner
Table 3: Tobacco smoking and ANA profile - Literature Review

<table>
<thead>
<tr>
<th>First author</th>
<th>Population</th>
<th>SLE (n)</th>
<th>Female (%)</th>
<th>Current (%)</th>
<th>Age (years)</th>
<th>Quality (NOQAS)</th>
<th>ANA of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freemer et al. (2005)</td>
<td>USA – UCSF Lupus Genetics Project</td>
<td>410</td>
<td>91</td>
<td>_</td>
<td>33.0 ± 13.2</td>
<td>7★</td>
<td>Xb</td>
</tr>
<tr>
<td>Rubin et al. (2005)</td>
<td>USA – New Mexico Lupus Cohort</td>
<td>119</td>
<td>100</td>
<td>26</td>
<td>NA</td>
<td>6★</td>
<td>Xa</td>
</tr>
<tr>
<td>Smith et al. (2011)</td>
<td>USA - University of Chicago</td>
<td>214</td>
<td>NA</td>
<td>_</td>
<td>NA</td>
<td>Abstract</td>
<td>Xc Xc Xc</td>
</tr>
<tr>
<td>Jolly et al. (2013)</td>
<td>Multinational cohort</td>
<td>NA</td>
<td>NA</td>
<td>12.7</td>
<td>NA</td>
<td>Abstract</td>
<td>Xa</td>
</tr>
<tr>
<td>Ekblom-Kulberg et al. (2014)</td>
<td>Finland – Helsinki Univ Central Hospital</td>
<td>223</td>
<td>92</td>
<td>_</td>
<td>NA</td>
<td>5★</td>
<td>Xc</td>
</tr>
<tr>
<td>Gustafsson et al. (2014)</td>
<td>Sweden – Karolinska Univ Hospital</td>
<td>367</td>
<td>86</td>
<td>18.8</td>
<td>NA</td>
<td>7★</td>
<td>Xa Xa</td>
</tr>
<tr>
<td>Young et al. (2014)</td>
<td>USA - Lupus Family Registry and Repository</td>
<td>1242</td>
<td>89</td>
<td>_</td>
<td>41.7 ± 13.2</td>
<td>7★</td>
<td>Xb Xb Xb</td>
</tr>
<tr>
<td>Arroaro-Avila et al. (2015)</td>
<td>USA - PROFILE cohort</td>
<td>2322</td>
<td>91</td>
<td>15.4</td>
<td>34.4 ± 12.8</td>
<td>5★</td>
<td>Xa</td>
</tr>
<tr>
<td>Xu et al. (2015)</td>
<td>China – CSTAR registry</td>
<td>730</td>
<td>90</td>
<td>8.9</td>
<td>NA</td>
<td>7★</td>
<td>Xa Xa Xa</td>
</tr>
<tr>
<td>Bourre-Tessier et al. (2015)</td>
<td>Canada – 1000 Canadian Faces cohort</td>
<td>1346</td>
<td>91</td>
<td>14</td>
<td>47.1 ± 14.3</td>
<td>5★</td>
<td>Xa Xa Xa</td>
</tr>
<tr>
<td>Montes et al. (2016)</td>
<td>Brazil – Antonio Pedro</td>
<td>105</td>
<td>96</td>
<td>61.9</td>
<td>40.7 ± 11.4</td>
<td>5★</td>
<td>Xa Xa Xa</td>
</tr>
<tr>
<td>Sanchez-Guerrero et al. (2017)</td>
<td>NC – incidental cohort since 1970</td>
<td>487</td>
<td>87</td>
<td>32.1</td>
<td>36.1 ± 13.3</td>
<td>Abstract</td>
<td>Xa Xa Xa</td>
</tr>
<tr>
<td>Arbhaiya et al. (2017)</td>
<td>USA – NHS and NHSII</td>
<td>286</td>
<td>100</td>
<td>_</td>
<td>49.2 ± 10.3</td>
<td>6★</td>
<td>Xa</td>
</tr>
</tbody>
</table>

TOTAL 7850+

NA= not available; NOQAS = Newcastle-Ottawa Quality Assessment Scale; ANA = antinuclear antibodies; dsDNA = double-strand DNA; Sm = anti-Smith antibody; SSa = anti-SSa/Ro antibody; NHS = Nurse Health Study

Xa = raw data
Xb = data shown as graph or odds ratio only, no extractable data for meta-analysis
Xc = data shown as antibodies titers, no extractable data for meta-analysis
Table 4: Tobacco smoking as a risk factor of SLE - Literature review results as shown in original articles

<table>
<thead>
<tr>
<th>Study</th>
<th>Study design and population</th>
<th>NOQAS</th>
<th>Improvement</th>
<th>(near)complete response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td>N</td>
<td>Mean Age</td>
<td>Female %</td>
</tr>
<tr>
<td>Rahman and al. (1998)</td>
<td>retrospective</td>
<td>34</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Jewell and al. (2000)</td>
<td>retrospective</td>
<td>61</td>
<td>NA</td>
<td>70.5</td>
</tr>
<tr>
<td>Kreuter and al. (2009)</td>
<td>retrospective</td>
<td>36</td>
<td>47.4 (24-70)</td>
<td>58</td>
</tr>
<tr>
<td>Wahie and al. (2011)</td>
<td>retrospective</td>
<td>200</td>
<td>40 (16-81)</td>
<td>80</td>
</tr>
<tr>
<td>Frances and al. (2012)</td>
<td>prospective</td>
<td>300</td>
<td>46.6 (12-85)</td>
<td>84.3</td>
</tr>
<tr>
<td>Piette and al. (2012)</td>
<td>prospective</td>
<td>88</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Yokogawa and al. (2012)</td>
<td>retrospective</td>
<td>27</td>
<td>40.7 (18-58)</td>
<td>85</td>
</tr>
<tr>
<td>Kuhn and al. (2014)</td>
<td>retrospective</td>
<td>838</td>
<td>50.2</td>
<td>77</td>
</tr>
<tr>
<td>Kosi and al. (2015)</td>
<td>retrospective</td>
<td>65</td>
<td>NA</td>
<td>78.5</td>
</tr>
<tr>
<td>Porta and al. (2016)</td>
<td>prospective</td>
<td>37</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Nanes and al. (2017)</td>
<td>retrospective</td>
<td>63</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA= not available; NOQAS = Newcastle-Ottawa Quality Assessment Scale; CLASI = Cutaneous Lupus Erythematosus Disease Area and Severity Index; CLASI-RC = CLASI Response Criteria; CR = Clinical Response
FIGURE 1 Flowchart of the TABALUP study

2493 citations retrieved from PubMed (n=593), Embase (n=1699), Cochrane (n=0) + gray literature (n=1)

604 duplicates excluded

229 papers undergoing full-text assessment

78 papers excluded after full-text review
- 43 Abstracts or titles only without explorable data
- 13 No available outcome of interest
- 05 No or low exposure in study groups
- 03 Duplicate publications of same results
- 03 Smoking used as cofactor only
- 03 No comparator (case-report, case series)
- 03 Other systemic disease (primary APL)
- 02 Letter / Editorial / Erratum
- 01 Data not shown
- 01 Smoking habit other than cigarette (hookah)
- 01 Screening audit
- 01 Smoking pooled in "bad health habit" item

1660 excluded papers, based on titles and abstracts

151 papers included in TABALUP

22 papers SLE risk factor
15 papers Autoantibodies profile
15 papers Treatments efficacy
FIGURE 2A. Tobacco as SLE risk factor - EVER vs NEVER smokers

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>SLE cases (Events)</th>
<th>Controls (Events)</th>
<th>Odds Ratio (M.H., Random, 95% CI) Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reidenberg et al. (1993)</td>
<td>98 (195)</td>
<td>196 (338)</td>
<td>11.9%</td>
</tr>
<tr>
<td>Nagata et al. (1995)</td>
<td>54 (282)</td>
<td>32 (261)</td>
<td>19.9%</td>
</tr>
<tr>
<td>Hardy et al. (1990)</td>
<td>67 (139)</td>
<td>118 (261)</td>
<td>11.4%</td>
</tr>
<tr>
<td>Cooper et al. (2001)</td>
<td>102 (265)</td>
<td>171 (355)</td>
<td>12.1%</td>
</tr>
<tr>
<td>Ghaussy et al. (2001)</td>
<td>77 (125)</td>
<td>49 (261)</td>
<td>19.5%</td>
</tr>
<tr>
<td>Bengtsson et al. (2002)</td>
<td>51 (65)</td>
<td>105 (261)</td>
<td>19.6%</td>
</tr>
<tr>
<td>Valeyra et al. (2009)</td>
<td>59 (151)</td>
<td>111 (261)</td>
<td>11.6%</td>
</tr>
<tr>
<td>Ekblom-Kullberg et al. (2013)</td>
<td>153 (205)</td>
<td>552 (862)</td>
<td>15.1%</td>
</tr>
<tr>
<td>Zou et al. (2014)</td>
<td>37 (260)</td>
<td>11 (260)</td>
<td>9.0%</td>
</tr>
</tbody>
</table>

Total events: 698 (1336)

Heterogeneity: Tau^2 = 0.27, Chi^2 = 55.37, df = 6 (P < 0.00001), I^2 = 86%

Test for overall effect: Z = 2.28 (P = 0.02)

FIGURE 2B. Tobacco as SLE risk factor - CURRENT vs NEVER smokers

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>SLE cases (Events)</th>
<th>Controls (Events)</th>
<th>Odds Ratio (M.H., Random, 95% CI) Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reidenberg et al. (1993)</td>
<td>69 (195)</td>
<td>148 (338)</td>
<td>15.3%</td>
</tr>
<tr>
<td>Nagata et al. (1995)</td>
<td>47 (282)</td>
<td>24 (261)</td>
<td>12.8%</td>
</tr>
<tr>
<td>Hardy et al. (1990)</td>
<td>44 (139)</td>
<td>69 (261)</td>
<td>13.8%</td>
</tr>
<tr>
<td>Cooper et al. (2001)</td>
<td>64 (265)</td>
<td>82 (355)</td>
<td>15.1%</td>
</tr>
<tr>
<td>Ghaussy et al. (2001)</td>
<td>52 (125)</td>
<td>24 (125)</td>
<td>12.1%</td>
</tr>
<tr>
<td>Valeyra et al. (2009)</td>
<td>51 (171)</td>
<td>92 (462)</td>
<td>14.7%</td>
</tr>
<tr>
<td>Ekblom-Kullberg et al. (2013)</td>
<td>110 (205)</td>
<td>418 (862)</td>
<td>18.1%</td>
</tr>
</tbody>
</table>

Total events: 431 (836)

Heterogeneity: Tau^2 = 0.19, Chi^2 = 27.67, df = 6 (P = 0.00001), I^2 = 78%

Test for overall effect: Z = 2.33 (P = 0.02)

FIGURE 3A. Anti-dsDNA positivity - EVER vs NEVER smokers

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>SLE smokers (Events)</th>
<th>SLE non-smokers (Events)</th>
<th>Odds Ratio (M.H., Random, 95% CI) Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubin et al. (2005)</td>
<td>17 (40)</td>
<td>29 (79)</td>
<td>5.8%</td>
</tr>
<tr>
<td>Jolliet et al. (2013)</td>
<td>37 (134)</td>
<td>58 (280)</td>
<td>14.4%</td>
</tr>
<tr>
<td>Gustafsson et al. (2014)</td>
<td>105 (156)</td>
<td>86 (171)</td>
<td>16.5%</td>
</tr>
<tr>
<td>Xu et al. (2015)</td>
<td>36 (65)</td>
<td>348 (665)</td>
<td>12.6%</td>
</tr>
<tr>
<td>Bourque-Tessier et al. (2015)</td>
<td>174 (554)</td>
<td>277 (792)</td>
<td>43.6%</td>
</tr>
<tr>
<td>Montes et al. (2016)</td>
<td>25 (39)</td>
<td>45 (66)</td>
<td>5.1%</td>
</tr>
</tbody>
</table>

Total events: 394 (846)

Heterogeneity: Tau^2 = 0.01, Chi^2 = 17.5, df = 5 (P = 0.03), I^2 = 13%

Test for overall effect: Z = 3.22 (P = 0.001)

FIGURE 3B. Anti-Sm positivity - CURRENT vs NEVER smokers

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>SLE Events</th>
<th>Controls (Events)</th>
<th>Odds Ratio (M.H., Random, 95% CI) Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourque-Tessier et al. (2015)</td>
<td>84 (554)</td>
<td>188 (792)</td>
<td>52.5%</td>
</tr>
<tr>
<td>Montes et al. (2016)</td>
<td>7 (39)</td>
<td>14 (66)</td>
<td>21.3%</td>
</tr>
<tr>
<td>Xu et al. (2015)</td>
<td>7 (65)</td>
<td>52 (605)</td>
<td>26.5%</td>
</tr>
</tbody>
</table>

Total events: 98 (254)

Heterogeneity: Tau^2 = 0.14, Chi^2 = 4.31, df = 2 (P = 0.12), I^2 = 54%

Test for overall effect: Z = 0.83 (P = 0.41)
FIGURE 4. CLE response to Hydroxychloroquine - CURRENT vs NEVER

Frances et al. (2012)
Jewell et al. (2000)
Kosi et al. (2015)
Kreuter et al. (2009)
Kuhn et al. (2014)
Lardet et al. (2004)
Piette et al. (2012)
Rahman et al. (1998)
Wahie et al. (2011)
Yokogawa et al. (2012)
Total (fixed effects)
Total (random effects)
SUPPLEMENTARY DOCUMENT

SEARCH STRATEGY

PUBMED

EMBASE

SqlCommand('nicotine'/exp OR 'nicotine':ab,ti OR 'tobacco dependence'/exp OR 'tobacco dependence':ab,ti OR 'tobacco use'/exp OR 'tobacco use':ab,ti OR 'smoking'/exp OR 'smoking':ab,ti OR 'passive smoking'/exp OR 'passive smoking':ab,ti OR 'tobacco'/exp OR 'tobacco':ab,ti OR 'cigarette'/exp OR 'cigarette':ab,ti) AND ('systemic lupus erythematosus'/exp OR 'systemic lupus erythematosus':ab,ti OR 'skin lupus erythematosus'/exp OR 'skin lupus erythematosus':ab,ti OR 'cutaneous lupus erythematosus':ab,ti OR 'discoid lupus erythematosus'/exp OR 'discoid lupus erythematosus':ab,ti OR 'lupus':ab,ti))