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Abstract

In this study, the object association issue is tackled in order to ensure a cor-

rect affiliation of perceived objects with known ones. The proposed approach

is based on the evidence theory and includes multiple object features in order

to manage pairing issues in a complex environment. Two heterogeneous in-

formation sources are built based on kinematic features related to the objects:

their position and size on one hand and their direction of motion on the other

hand. A study on the estimation of the belief expressed by these independent

sources is performed. The multiple features are managed through a hierarchical

fusion which includes two levels of combination. The first level is a pairwise

combination, fusing position and orientation data of each pair of objects and

the second one processes sequentially the previously combined information over

all possible associations. This paper also investigates the effectiveness of the

association according to different combination operators at both levels. The

performance of the proposed approach is demonstrated in the Intelligent Trans-

portation Systems context for which environmental perception is crucial. The

validation exploits a large amount of real data issued from a camera and a 3D

LiDAR from the KITTI database.
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modeling/fusion, Autonomous vehicles, Hierarchical fusion.

1. Introduction

Multiple Object Association (MOA) is a crucial function in Multi Target

Tracking (MTT) consisting in matching perceived objects (targets) to known

ones (tracks). This can be done in a multi-sensor configuration in order to

match, at a time, the detections from several sensors. Another solution is to5

consider data from one sensor over time leading then to a temporal association

problem. For Intelligent Transportation Systems (ITS) applications, semantic

scene interpretation is often based on sensors which might typically provide un-

certain, imprecise or incorrect data. This results in mis-detections or ambiguous

information about the true identity or location of an object. Multi-sensor data10

fusion offers a solution to this issue as it seeks to combine data to perform

inferences that may not be possible from a single sensor [1].

Several MOA methods exist: Nearest Neighbour, (Joint) Probability Data

Association Filter ((J)PDAF) or Multi-Hypothesis Tracking (MHT), all defined

on the Bayesian frame [2, 3]. However, in the presence of uncertainties, one can15

prefer the theory of belief functions or evidence theory. It is particularly conve-

nient for uncertainty modeling and propagation in the combination of partially

reliable information. Introduced by Dempster and Shafer [4, 5] as a generaliza-

tion of the Bayesian framework, it has later been used by Smets in his formaliza-

tion of the Transferable Belief Model (TBM) [6]. The use of this theory in MOA20

has brought many advantages compared to the probabilistic methods such as

the management of object appearances and disappearances, or its average com-

plexity. In [7], Gruyer et al. highlight the interest of belief function-based MOA

(BF-MOA) w.r.t. the bayesian approaches.

Hereafter, the authors first describe the major contributions in BF-MOA25

with a focus on the latest ones. The contributions of this paper are given

afterwards.
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1.1. Related Work

Rombaut was first to model MOA with belief functions by defining many

object attributes (numerical, symbolic and logical) [8, 9]. In these works, esti-30

mation models of the attribute mass functions widely used in further research

have also been introduced. Based on Rombaut’s formalism, Royère et al. [10]

established generalized combination rules considering the extended open world

model (eow). In eow, track appearances and disappearances are possible. Im-

proving this work, Mourllion et al. [11] developed two pairing solutions to avoid35

suspicious local associations when evidence conflicts. [11] was also at the origin

of belief function-based MHT algorithms which have largely inspired Gruyer et

al. [7] for road context evaluation. Nevertheless, their solutions suffer either

from high complexity and not dealing with the conflict, or from inaccuracy in

the generated track numbers. Later, Mercier et al. [12] proposed a decisional40

process in the TBM framework aiming at maximizing the pignistic probabilities

in a global way. In this ITS-related study, a fusion of the distances and angles

between the ego-vehicle and the detected objects is performed.

Denœux et al. and Daniel et al. [13, 14] highlighted that Mercier’s solution

is computationally expensive and intractable for real-time execution. Moreover,45

it can also conclude to suspicious associations due to the global optimization.

In the last years, Daniel et al. [14, 15] enhanced the process by suggesting

two pairing algorithms which locally solve the association problem and largely

reduce the computational complexity.

In most of the studies referenced above, the association of multiple perceived50

objects in a scene is based on the position information [7, 11, 12]. When avail-

able, additional object features like its class or velocity have been considered as

pieces of evidence to be gathered. Ristic and Smets [16], for instance, use the

class information with the assumption that objects from the same class could

be associated. Inspired by these works, Rekik et al. [17] followed the same55

methodology to construct objects in a scene starting from partially occluded

detections. The association part is done thanks to a modified Hungarian al-
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gorithm. Considering that identical class objects can be matched is a strong

assumption. Especially in road scenes, it is common to have objects of the same

class (pedestrians or cars on highway) in close positions or to have a number of60

classes close to the number of objects.

Denœux et al. [13] solved the MOA by maximizing the plausibility of all pos-

sible relations between tracks and targets through a linear assignment problem

taking account of three object features: velocity, class and position. The main

advantage is that the resulting computational cost is polynomial. However, the65

constructed relations are exclusive to the number of tracks and targets and the

decision criteria has the inconvenience of being optimistic.

Chavez-Garcia and Aycard [18] developed a real-time multi-sensor fusion

system devoted to road scene perception exploiting the evidence theory. By

adding the object classification to the their kinematic features provided by three70

sensors (LiDAR, radar and camera) and by fusing them with Yager’s rule (see

Section 3.4), they showed improved detection results. To achieve good perfor-

mance, an important a priori knowledge of the object classes characteristics is

necessary to define the bbas. In [19], Hachour et al. introduced a matching algo-

rithm based on the Generalized Bayes’ Theorem and evaluated its performance75

on synthetic data (simulated tracking scenarios). Nevertheless, only mono-scan

and mono-sensor configurations are considered and the complexity is higher than

the reference approach from Denœux [13]. A multi-sensor tracking method has

been recently proposed by Dan et al. [20]. In their work, an association step

very similar to the one presented in [21], is done thanks to an orthogonal sum to80

link local tracks with fused tracks. Nevertheless, the pairing results are highly

related to the multi-sensor tracking model. In the proposed paper, the focus is

put only on the object association step. It appears from this review that track

association in cluttered environment should consider heterogeneous object fea-

tures in order to be effective. Those features have to be selected depending on85

the application considered.
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1.2. Contributions

As shown previously and to the best of the authors’ knowledge, the literature

is mainly dedicated to enhance the final step of the association process, i.e. the

decision-making, or to suggest formalizations dealing with the computational90

complexity. The aggregation of potentially discordant data and the resulting

conflict has not yet been exploited in the aim of dealing with suspicious or am-

biguous associations. In fact, numerous contributions are providing improved

pairing decision criteria and algorithms (joint pignistic probability in [12], local

pignistic probability in [14], contour function in [13], etc.). Only few of them95

consider the conflict raised during mass combination [7, 11]. Moreover, none

of them discuss the choice of the fusion rule and use generally Dempster’s rule,

even if the pairwise pairings are based on the combined data. It is then obvi-

ous that the fusion step of full, imperfect or heterogeneous information plays a

key role in the association scheme. In practical applications like real-time envi-100

ronment perception, it is common to deal with partial, imprecise, uncertain or

missing information. In this context, complex situations can lead to incomplete

or conflicting data given by the sensors. That is why, this work focuses on the

choice of the combination operators with respect to the association performance.

A main interest is put on the conflict management raised during combination.105

The idea behind this paper is to define, for ITS-related applications, a robust

object association framework dealing with multiple sources and heterogeneous

data. The focus is put on an adequate modeling of the information according

to their distinct nature. We propose in this paper a review of the data models

suitable for this objective. A thorough study of the combination of the data110

delivered by heterogeneous sources is presented to guarantee a robust result

regardless of the matching algorithm. We believe that if an information is dis-

criminant enough, the solution issued from the combination algorithm must be

trivial. Therefore, we investigate another additional source to the object posi-

tion, expressing the motion direction of dynamic objects. Object features like115

their class already exploited in the literature and with limited impact for road
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scene perception require classification methods unintended in this application.

The direction of motion of the perceived objects can, in complex scenarios like

intersections or highway driving, help to discriminate those objects.

The objectives of this article are multiple : determine the appropriate source120

model for the retained object attributes (cf. Section 4.2), propose a robust mul-

tiple feature fusion strategy and choose the best combination rule (cf. Section

4.1) and finally evaluate the approach on a large amount of realistic driving

scene data (cf. Section 5).

The aim of this paper is to present an original strategy to improve and ex-125

tend a camera-based MOA algorithm [21] with the use of LiDAR data. The

knowledge on which the association is applied is derived on the one hand from

the object’s position and size obtained from images of the scene. On the other

hand, the object direction of motion are extracted from 3D Lidar point clouds.

Both data represent two different similarity measures for the construction of130

two credal sources. A multiple feature fusion strategy is applied to manage

these heterogeneous sources and to guarantee the best outcome through differ-

ent combination rules. A two step hierarchical fusion strategy is introduced:

the first one handles, through a multisensor and temporal fusion, data from

heterogeneous sources expressing a local knowledge of each candidate hypothe-135

sis. It combines position and orientation pairwise mass functions and provides

the belief in the association of two specific objects. The second one allows to

raise the ambiguity by expressing a global knowledge based on an aggregated

belief w.r.t. all available sources. It is a sequential fusion which gathers the

knowledge expressed in the first level of combination in order to define the pair-140

ing confidence between resp. a given target/track and resp. all tracks/targets.

To assess the feasibility of the fusion framework in the application context of

autonomous vehicles, the KITTI database [22] is used. A quantitative analy-

sis performed on an important amount of data containing objects of different

nature is done. To the authors knowledge, such an extensive validation (consid-145

ering several hundreds of frames and pairings) of a belief function-based object

association solution in real conditions is unique.
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The article is organized as follows: the application context and problem

description are given in Section 2. Some fundamental concepts in evidence

theory and their application to MOA are presented in Section 3. The modeling150

of the object features and the multiple feature fusion strategy are then described

in Section 4 to be later tested on experimental data in Section 5. Finally, Section

6 concludes this paper.

2. MOA for Intelligent Vehicles

2.1. Object Perception in Cluttered Environments155

In the context of Intelligent Vehicles (IV), the crucial point is to ensure the

safety of road users. In order to achieve such an objective, it is mandatory for an

IV to obtain an accurate and robust representation of the environment near the

vehicle. The main aim of a perception system is then to detect the surround-

ing environment (static and moving objects, navigable area, etc.). Usually,160

perception starts by collecting data from multiple and heterogeneous sensors

(cameras, radars, LiDARs, etc.) mounted on the ego-vehicle. As none of these

hardware solutions provide perfect data, there is a need to fuse the information

collected. Moreover, objects in the scene can be totally/partially occluded, ex-

ternal conditions can vary, etc. Thus, providing tools able to model/deal with165

data uncertainties, imprecision, incompleteness or conflicting information is of

utmost interest. In the context of a complex surrounding environment (urban

traffic, pedestrians...), the perception system should be robust enough to handle

several objects to be detected and associated [23]. In this paper, the input of the

MOA algorithm is based on camera images. As already mentioned, from these170

2D data, it is possible to determine the position and the size of the objects. In

addition, the use of a LiDAR provides 3D data from the point cloud (see Figure

1). The LiDAR information can be used to improve the MOA algorithm by

including, in addition to the position from the camera, the orientation of the

object. Indeed, as one can see on Figure 1 taken from the KITTI benchmark175

[22], the camera-based image can be naturally enriched with LiDAR informa-
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tion. The perception of objects in cluttered environment, and the temporal

association of perceived objects, is here realized through the fusion of measures

from these two heterogeneous sensors.

Figure 1: Example on a typical scene from the KITTI benchmark (Top) and the corresponding

LiDAR Data (Bottom).

2.2. Problem Description180

Let us define respectively a target/track as Xi/Yj . Basically, the pairing

process performed during data association between multiple targets and tracks

aims at associating a target Xi to a track Yj . In highly changing environments,

the process is challenging due to the variable object numbers as well as their

possible appearance and disappearance over time. The association process is185

bi-directional (see Fig. 2), i.e. two cases of pairing are distinguished: a target-

to-track (X → Y ) and a track-to-target (Y → X) matching.
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Figure 2: Multi-Object association from [24].

Two sets ΘXi and ΘYj gathering respectively the M tracks and N targets

are defined:

ΘXi = {Y1, Y2, ..., YM , Y∗}, (1)

ΘYj = {X1, X2, ..., XN , X∗}, (2)

with i ∈ I = {1 . . . N}, j ∈ J = {1 . . .M}. A track appearance is described by190

including the solution Y∗ to the track set ΘXi whereas a track disappearance

is defined by the proposition X∗ in the target set ΘYj . The association task to

be treated remains as answering the question, considering a pair of objects at

a time k : “are these objects related?” and two possible solutions are whether

“yes” or “no”.195

3. Representation of Evidence

This section is dedicated to some fundamental tools of the Dempster-Shafer

framework for evidence modeling and decision-making under uncertainty. To

complete this synthesis, the reader may refer to the references given below as

well as to the seminal book of Dempster [5] and to Smets’s work regarding the200

TBM [6].
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3.1. Basics of Belief Functions

The mathematical theory of evidence has been introduced by Shafer in order

to ensure an adequate representation of uncertainty. Shafer’s work is often called

theory of evidence because it deals with weights of evidence and numerical

degrees of support based upon evidence. A frame of discernment Θ is firstly

defined as a set of discrete states (hypotheses Hj):

Θ =

k⋃
j=1

{Hj}with ∀i 6= j, Hi ∩Hj = ∅. (3)

k is the number of hypotheses and Θ describes all known exclusive solutions to

the tackled problem. All possible combinations of singletons Hj of Θ define the

power set or referential frame 2Θ such that:

2Θ = {∅, {H1} , ..., {Hj} , ..., {H1, H2, H3} , ...,Θ} . (4)

When modeling knowledge, pieces of evidence can be set on one or several

elements of 2Θ. This evidence from a source is represented by a mass function

m(.) defined as a mapping from the power set 2Θ to [0, 1]:205

∑
A∈2Θ

m(A) = 1, (5)

with m(A) the degree of belief supporting proposition A ∈ 2Θ and that can not

be committed to any more specific proposition of the referential subset. A is

known as a focal set. m(A) defines the belief that A is the solution to the raised

question/problem.

Based on these definitions, the aim when addressing a real problem is to210

construct an evidential model, i.e. a basic belief assignment (bba) for any source

expressing knowledge on the problem to be solved.

3.2. Belief Assignment Models

In order to define the source knowledge, an appropriate bba should be esti-

mated. In the literature, several models are available and the chosen one oftenly215

10



depends on the nature of data and the application in concern. Some common

models are described and discussed here.

A simple bba has at most two focal sets [4]. This model is used when a source

Sj can only support one hypothesis A ∈ 2Θ and attributes a partial knowledge

to this solution: 
mj(A) = s,

mj(B) = 1− s,

mj(C) = 0, ∀C ∈ 2Θ, C 6= A,C 6= B,

(6)

with s ∈ [0, 1]. When B = Θ, this model is known as a simple support function.

With B = A, a complementary mass function is obtained, very similar to a

probabilistic modeling especially when |A| = 1 (|.| is the cardinality) which

withdraws the interest in using belief functions. An example is used in [25]

for clustering purposes. It is evaluated according to a distance dij between an

object j and a given cluster Ci with C being the discernment frame:
mj({Ci}) = αϕ(dij),

mj(C) = 1− αϕ(dij)),

mj(A) = 0 ∀A ∈ 2C\{C, {C}}.

(7)

ϕ(.) is a decreasing function based on dij such that the higher dij , the lower

the confidence in the membership of the object to the class Ci. α is a source

reliability-related factor. Rombaut [9] proposed an extension of Eq. (7) based220

on the notion of specialized source supporting only one hypothesis A of Θ:


mj(A) = αϕ(dij),

mj(A) = α(1− ϕ(dij)),

mj(Θ) = 1− α.

(8)

As in Eq. (7), ϕ(.) is a decreasing function. Such bba can be self-conflicting

since evidence can be assessed at a time on A and A, meaning that both could

be the solution. It has been widely used in MOA as it models imprecision and

uncertainty. Similarly to Eq. (8), Gruyer et al. defined a bba which does not225

simultaneously express belief and disbelief in a hypothesis, i.e., a mass cannot
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be generated at the same time on A and A. Its main advantage is to avoid

auto-conflict. More details can be found in [7].

The simple support model has the advantage of expressing the source’s un-

certainty through the mass on the whole set which is not the case for the comple-230

mentary mass function. It also necessitates a specific information as it indicates

the belief on a single proposition (singleton or set). In counterpart, none of these

bbas are appropriate when a source expresses belief on several propositions. The

complementary mass model obtained from Eq. (6) is able to deal with singletons

or composite propositions (sets). The main disadvantage of this model is that it235

generates auto-conflict because of the simultaneous belief in a proposition and

its complement. Being very similar to a probabilistic modeling, these solutions

do not take advantage of the extensions provided by the evidence theory.

Specialized sources (cf. Eq. (8)) provide a more general framework since

they model the mass on a proposition (singleton or set), its complement and240

ignorance. One major advantage is their adaptability since they can reproduce

optimistic, pessimistic or neutral behaviors thanks to the model parameters [7].

The counterpart is the parameter tuning or optimization required according

to the problem. When evidence conflicts, it might also raise a high conflict

because it comes down to combining two simple support functions. In this245

context, the non-antagonist model from [7] offers a solution to the auto-conflict

as it independently describes a proposition and its complement on separate

intervals. Nevertheless, this specificity does not allow to optimally deal with

inaccuracy in the sensor data and uncertainty. The antagonist model (Eq. (8))

being less constraining, it fits better to the case of use described in this paper.250

3.3. Refinement and Coarsening

Refinement and coarsening are important operations applied in order to ex-

press source’s knowledge on the same discernment frame. Often, two sources can

express evidence on two distinct or complementary bodies of evidence. More-

over, any expression of a discernment frame Θ can generally be divided in differ-255

ent propositions [4] since the discernment frame’s granularity is usually chosen
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by convention. In order to manage the pieces of knowledge and combine the

information, it is necessary to have a larger or a more specific frame by the use

of these operations.

Considering two frames Ω and Θ, a refinement ρ(.) of Θ to Ω is defined as a260

mapping ρ(.) : 2Θ → 2Ω which verifies the following statements [4]:

{ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω (9)

{ρ(A), A ⊆ Θ} =
⋃
θ∈A

{ρ({θ}), θ ∈ Θ} (10)

Therefore, Θ is a coarsening of Ω and Ω is a refinement of Θ. Considering a

mass mΘ(.) expressing belief on Θ, the resulting mass mΘ↑Ω(.) elaborated by a

refinement to Ω is found by applying a vacuous extension of mΘ(.) in Ω:

mΘ↑Ω(B) =

m
Θ(A) if B = ρ(A), A ⊆ Ω,

0 otherwise.

(11)

Inversely, coarsening is denoted by the ↓ operator as follows:

mΘ↓Ω(B) =
∑

B⊆Ω\ρ−1(B)=A

mΩ(B), A ⊆ Ω. (12)

3.4. Combination of Evidence

This step is crucial for data fusion as it merges the various pieces of evidence

delivered by the information sources. One of the main properties due to the

evidential combination is the potential appearance of conflict. According to [15,265

26], conflict can have several origins: aberrant measurements, inconsistent belief

models and the multiplicity of sources. Moreover, conflict can raise from the

non-reliability of sources and non-exhaustiveness of the discernment frame [27]

and can be used as additional information in the fusion process [15].

The exhaustiveness of the discernment frame is made with the close world270

assumption implying m(∅) = 0. In real case applications, it is rather hard or

impossible to identify all solutions of a given problem. The frame of discern-

ment exhaustiveness can thus not be guaranteed. Therefore, to treat the related

13



conflict, two additional frameworks have been introduced: the open world (ow)

[6] and the extended open world (eow) [9, 10]. In the ow, sources are reliable275

and the conflict mass m(∅) represents the non-exhaustiveness of the discernment

frame. In this context, the conflict is considered as the unknown hypotheses.

This also applies to the TBM where the conflicting mass is not forced to zero

after combination. In the eow, an additional hypothesis ∗ is added to the dis-

cernment frame in order to include all unknown hypotheses so that Θ is again280

exhaustive. The conflicting mass is then related either to the sources’ unrelia-

bility or the discordance between the data [15]. Therefore, the eow framework

is adopted in this application.

Combining data when evidence conflicts has been largely investigated and

several combination rules have emerged. This section briefly recalls those which285

have been used in this work and evaluated in Section 5. For further details,

the reader can refer to [15, 28]. The chosen rules are all based on the conjunc-

tive operator. Disjunctive rules are disregarded because they induce a loss of

specificity and can only be used when at least one source is reliable.

Under the assumption of exhaustiveness and exclusivity of Θ, the fundamen-

tal combination rule is Dempster’s rule [4] or orthogonal sum (OS). It requires

independent and reliable sources and is formulated as follows:

m⊕(A) =
1

1− κ
∑

A1∩...∩Ap=A

p∏
j=1

mj(Aj), (13)

where κ is the conflict such that:

κ = m(∅) =
∑

A1∩...∩Ap=∅

p∏
j=1

mj(Aj). (14)

Proposed by Smets [6] in the TBM in order to preserve the conflict, the290

conjunctive combination does not require the exhaustiveness of the discernment

frame. Mathematically, it is an unnormalized orthogonal sum:


m∩(A) =

∑
A1∩...∩Ap=A

p∏
j=1

mj(Aj),

m∩(∅) = κ =
∑

A1∩...∩Ap=∅

p∏
j=1

mj(Aj).
(15)
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Conceptually, when all sources are reliable, the belief on the empty set m∩(∅)

informs about a solution outside of Θ. It is useful to precise that Eq. (13) and

Eq. (15) describe associative and commutative operators. With Yager’s rule

(Y ) [29], the conflicting mass m∩(∅) obtained after a conjunctive combination

is assigned to Θ. Therefore, when evidence conflicts, we are ignorant about the

problem solution: mY (A) = m∩(A), ∀A ⊂ Θ,

mY (Θ) = m∩(Θ) +m∩(∅).
(16)

This operator is associative but not commutative requiring a combination se-

quence to be defined a priori.

Also known as the mixed rule, Dubois and Prade’s rule (DP) [30] merges the

conjunctive and disjunctive operators. The conflicting mass raised by A∩B = ∅

is attributed to the proposition A ∪ B. For two pieces of evidence m1(.) and

m2(.), the combined mass mDP (.) is:

mDP (X) =
∑

A∩B=X

m1(A)m2(B) +
∑

A∪B=X
A∩B=∅

m1(A)m2(B). (17)

This operator is not commutative thus when fusing several bbas, it is important295

to define the fusion sequence.

The Proportional Conflict Redistribution (PCR) rules have been proposed

by Dezert and Smarandache [31]. These operators allow a proportional redistri-

bution of the partial conflict according to the concerned focal elements. Several

extensions have been introduced by Martin and Osswald to increase the number

of experts, such as the PCR6 [27]:

mPCR6(X) = m∩(X)+

M∑
i=1

mi(X)2
∑

M−1⋂
k=1

Yσi
(k)X=∅

(Yσi(1),...,Yσi(M−1))∈(2Θ)M−1


M−1∏
j=1

mσi(j)(Yσi(j))

mi(X) +
M−1∑
j=1

mσi(j)(Yσi(j))

 .
(18)

where Yj ∈ 2Θ is the response of the expert j, mj(Yj) the associated belief
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function and σi counts from 1 to M :σi(j) = j if j < i,

σi(j) = j + 1 if j ≥ i.
(19)

3.5. Decision-making

The last step of the fusion scheme is decision-making, i.e. finding the best

solutions under uncertainty among the potential hypotheses in Θ. The bbas

combination leads to evidences placed either on singletons or on unions. The300

decision performs a mapping from 2Θ to Θ in order to retain the best proposition

of Θ related to the problem of concern. In order to handle uncertainty, this

process is based on the optimization of an evidential function.

Classical decision criteria are based on maximizing the credibility function

which is considered to be pessimistic or the plausibility function which is opti-

mistic. A common approach adopted by Smets [32] consists in the transforma-

tion of evidence to probabilities. It provides an intermediate solution between

the maximum of credibility and plausibility. The pignistic probability is com-

puted through the relation:

BetP (Hj) =
∑
A∈2Θ

Hj⊆A

mΘ (A)

|A| (1−mΘ(∅))
, (20)

with mΘ(∅) < 1 and |A| the cardinality of A. Therefore, the decision by maxi-

mizing BetP (.) according to the problem’s constraints is given by:

HBetP = argmax
Hj∈Θ

BetP (Hj). (21)

3.6. Representation of Evidence in MOA

This section recalls fundamental elements in object association using belief305

functions and already described by some of the authors [14, 24].

Considering the target and track sets introduced in Section 2.2 (see (1) and

(2)) ΘXi and ΘYj respectively represent two discernment frames gathering the

M tracks, N targets, appearance and disappearance propositions are defined.
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Belief degrees are set on the association potentiality of each pair of target

and track. A pairwise association concerns the evaluation if “yes” or “no”

these objects are related to each other. For a given source, its belief will then

be expressed on these two propositions defining the frame of discernment Θij =

{yes, no} which will be simplified to Θij = {y, n}. Three pieces of evidence

are constructed: the belief in the association mi,j({y}), in the non association

mi,j({n}) and mi,j({Θij}) stands for the ignorance. Obviously, both frames ΘXi

and ΘYj are refinements of Θij (see Fig. 3). By applying a vacuous extension

Figure 3: Refinement enabling the transfer from Θij to ΘXi [12].

(cf. Section 3.3), the belief can be expressed on a common frame:
m

ΘXi
j (Yj) = mi,j({y}),

m
ΘXi
j (Yj) = mi,j({n}),

m
ΘXi
j (ΘXi) = mi,j(Θij).

(22)

It is worth noting that Yj is the non association. It corresponds to the set310

containing all tracks except Yj , i.e. ΘXi\Yj = {Y1, ..., Yj−1, Yj+1, ..., YM , Y∗}.

An object pairing is assessed based on two assumptions:

• Only one target is associated to a track (one-to-one association),

• There might be appearances and disappearances of tracks.

To attribute masses to respective sources using Eq. (22), a proper modeling315

needs to be initiated depending on the nature and characteristics of the data.
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The choice of models according to those described in Section 3.2 will be discussed

in Section 4.

The main criteria for evidential decision-making is the pignistic probability

BetP (.) (cf. Section 3.5). This measure is mostly used because it converts mass

functions to probabilities convenient for selecting the most eligible hypothesis.

When using a conjunctive combination (cf. Section 3.4), the combined masses

can be obtained from the initial bbas as recalled in [14]. Afterwards, based on

Eq. (20), the pignistic probability for each object Xi is given by:

BetPXi(Yj) =m
ΘXi
j (Yj)

M∏
a=1
a6=j

(1−mΘXi
a (Ya)) +

∑
A⊆ΘXi
Yj∈A
|A|>1

1

|A|

M∏
b=1
Yb∈A

(m
ΘXi
b (ΘXi))

M∏
b=1
Yb 6∈A

(m
ΘXi
b (Yb)),

(23)

BetPXi(Y∗) =

M∏
a=1

(m
ΘXi
a (Ya)) +

∑
A⊆ΘXi
Y∗∈A
|A|>1

1

|A|

M∏
b=1
Yb∈A

(m
ΘXi
b (ΘXi))

∏
b=1
Yb 6∈A

(m
ΘXi
b (Yb)).

(24)

The conflicting mass function in Eq. (20) is defined by:

m
ΘXi
j (∅) = 1−

[
M∏
a=1

ξa +

M∑
a=1

m
ΘXi
a (Ya)

M∏
b=1
b 6=a

ηb

]
(25)

with ξa = (1 − mΘXi
a (Ya)) and ηb = (1 − mΘXi

b (Yb)). The resulting pignistic

probabilities are therefore normalized by (1 − mΘXi
j (∅)). It can be especially320

noticed that a decision of appearance/disappearance is related to the belief in

the non-association combined with the ignorance (see Eq. (24)). Since the asso-

ciation is bi-directional (Xi ⇒ Yj and Yj ⇒ Xi), the pignistic transformation is

realized for both cases which results in two probability matrices BetPXi(.) and

BetPYj (.) shown in Table 1 and Table 2. Each line defines the probabilities of325

the associations of Xi with Y1...YM , ∗ and vice versa.
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BetPXi(.) Y1 . . . YM ∗

X1 BetPX1(Y1) . . . BetPX1(YM ) BetPX1(∗)

X2 BetPX2
(Y1) . . . BetPX2

(YM ) BetPX2
(∗)

...
...

...
...

...

XN BetPXN (Y1) . . . BetPXN (YM ) BetPXN (∗)

Table 1: Target-to-Track pignistic matrix

BetPYj (.) X1 . . . XN ∗

Y1 BetPY1
(X1) . . . BetPY1

(XN ) BetPY1
(∗)

Y2 BetPY2
(X1) . . . BetPY2

(XN ) BetPY2
(∗)

...
...

...
...

...

YM BetPYM (X1) . . . BetPYM (XN ) BetPYM (∗)

Table 2: Track-to-Target pignistic matrix.

4. Multiple Feature Fusion

This section describes the multiple feature hierarchical fusion. The aim is to

allow different information sources to distinctively describe dynamic objects in a

complex driving environment. Firstly, it highlights how these data are combined330

in order to obtain a global view of the potential pairings. In a second step, we

show how the belief masses of the heterogeneous object data are obtained thanks

to the bba introduced previously.

4.1. Fusion Structure

The need for multiple sensors is recurrent in a wide number of applications.335

This necessitates an efficient fusion considering the imprecision and the incom-

pleteness of the respective data. In this study, the focus will primarily be laid

on the inconsistency of reliable sources, i.e., when their belief is based on infor-

mation which might not always be conclusive at decision-making.

The hierarchical multi-feature fusion is suggested as a solution to ambiguity340

resolution in MOA. The aim is to gather enough knowledge about the objects
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Figure 4: Hierarchical multiple feature fusion architecture.

behavior and displacement in the scene, i.e. their position/scale and direction of

motion. The fusion strategy is applied according to Fig. 4. First, both similarity

measures describing the object position and its direction of motion are computed

separately. These measures are then used to obtain the respective position mp
i,j345

and orientation mo
i,j bbas. This section details each step and Algorithm 1 gives

an overview of the process.

Since both sources provide distinct and complementary information about

the pairwise association of Xi and Yj , it is convenient to fuse them (Fig. 4 Pair-

wise Combination step). For a pair of objects Xi and Yj , this first fusion level

aims at gathering the partial information given by the position and orientation

source in order to obtain a mass function m
�
p,o

i,j
(.) describing the total belief in

the pairwise association:

m
�
p,o

i,j
(.) = mp

i,j(.)�m
o
i,j(.), (26)

with i ∈ I = {1 . . . N}, j ∈ J = {1 . . .M} and � can refer to any combination

operator shown in Section 3.4. This step is sequentially performed among all

association pairings.350

Whatever the association method or framework employed, it is always suit-

able to limit/reduce the number of assignment hypotheses. The “Evidential

Source Selection” in Fig. 4 avoids unnecessary association evaluations and thus
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limits the computation requirements. Gating is a standard method used in MTT

to identify the neighboring targets for a pairing with a particular track. A sim-355

ilar strategy was introduced by the authors in [24] to implement an evidential

selection. The objective is to rely on the source data to discard those having a

low belief in a pairing hypothesis and only maintain the most pertinent ones.

More details are given in [24] in which the experimental validation shows the

reduction in computation cost coupled to high association performances.360

A second level of combination is performed (cf. Fig. 4) in order to allocate a

mass m
�
p,o

i,.
(.) or m

�
p,o

.,j
(.) to express the belief applied to the association of resp.

a target i/track j to all resp. tracks/targets:
m
�
p,o

i,.
(.) = m

�
p,o

i,1
(.)� ...�m

�
p,o

i,M
(.),

m
�
p,o

.,j
(.) = m

�
p,o

1,j
(.)� ...�m

�
p,o

N,j
(.),

(27)

where N and M are the number of targets and tracks respectively. This

combination is sequentially applied over all targets (i ∈ {1 . . . N}) and tracks

(j ∈ {1 . . .M}). Finally, the decision making is performed thanks to the trans-

formation of the combined belief masses m
�
p,o

i,.
(.) and m

�
p,o

.,j
(.) into pignistic prob-

abilities with Eq. (23) and (24). The best hypotheses are found based on the365

optimization presented in Section 3.5.

4.2. BBA from Sensor Data: Object Position Modeling

In this section, a recall of [24] on how the relative position between objects

can be treated to build pairwise association bbas is presented. For the position,

the bbas are defined according to Eq. (8). The position attribute is, in this

application, the most informative w.r.t. the association objective. By evaluating

the distance between two objects in a common spatial frame, it will be possible to

define if they are associated or not or if there is a doubt. Roughly speaking, this

model extends the fact that an object cannot be at two different locations in the

scene and two different objects cannot have exactly the same position at a given

time. The masses are based on statistical distances (Euclidean, Mahalanobis,
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Algorithm 1 Multiple Feature Fusion

Require: dij ,∆ψij , i ∈ I = {1, ..., N}, j ∈ J = {1, ...,M}.

Ensure: Hierarchical and sequential combination to compute m
�
p,o

i,.
(.) and

m
�
p,o

.,j
(.).

{Pairwise Combination}

for i = 1 to N do

for j = 1 to M do

m
�
p,o

i,j
(.) = mp

i,j(.)�mo
i,j(.)

end for

end for

{Evidential Source Selection (see [24])}

{Sequential Combination}

for i = 1 to N do

m
�
p,o

i,.
(.) = m

�
p,o

i,1
(.)� ...�m

�
p,o

i,M
(.)

end for

for j = 1 to M do

m
�
p,o

.,j
(.) = m

�
p,o

1,j
(.)� ...�m

�
p,o

N,j
(.)

end for

etc.) between each pair of objects [25]:
mp
i,j({y}) = α

′
exp−γ

′
dβ
′

ij ,

mp
i,j({n}) = α

′
(1− exp−γ

′
dβ
′

ij ),

mp
i,j(Θi,j) = 1− α′ ,

(28)

where 0 < α
′
< 1 is the sensor a priori known reliability. γ

′ ∈ R∗ and β
′ ∈ N∗

are weighting parameters. Generally speaking, the model parameters are defined

heuristically [25]. In Section 5.2, the identification of these coefficients will be370

discussed. In this application, each object is defined by a bounding box in the

image coordinates as shown in Fig. 5. The position and scale of an object can

be evaluated based on the top left corner and the bottom right corner of the

bounding box. Therefore, the similarity measure dij is defined as follows:
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Figure 5: Example of various object detections (Extracted from KITTI Seq.02 [22]).

dij =
dtlij + dbrij

2
, (29)

where dtlij and dbrij stand for the Euclidean distances in the sensor frame between375

the top left (tl) and bottom right (br) corners of the Xi and Yj bounding boxes

respectively as shown in Fig. 6a.

4.3. BBA from Sensor Data: Object Motion Direction Modeling

Assuming that the direction of motion of each track Yj and target Xi is

available throughout time by a given sensor (here a LiDAR), we propose to380

compute the similarity measure ∆ψij as follows:

∆ψij = |ψXi − ψYj |, (30)

where ∆ψij is the relative direction of motion of objects Xi and Yj while ψXi

and ψYj are the direction of motion of each of them (Fig. 6b). This measure

is therefore used to generate the adequate bba. In a similar way than for the

position bba, the representation of a specialized source model is retained. How-

ever, it is obvious that for object pairings, the orientation is less pertinent or

informative than the position. In fact, two different objects can move in the

same direction leading to a small relative orientation. In this case, these objects

should not be associated. A first idea would be to define a bba supporting either

the non association or the ignorance as performed in [33]. This model can be
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(a) Position and size attribute (b) Direction of motion attribute

Figure 6: Attribute determination (Extracted from KITTI Seq.18 [22]).

built from the antagonist mass function Eq. (8):

Model 1:


mo
i,j({y}) = 0,

mo
i,j({n}) = α(1− exp−γ∆ψij

β

),

mo
i,j(Θij) = 1− α(1− exp−γ∆ψij

β

).

(31)

Eq. (31) supports the non-association when object have different direction in

the sensor frame or at least, it is ignorant. Its drawback is that it will never be

confident in the association of objects even if they are matching. This might

alter the decision-making process and select false associations (an example is

presented in Section 5). To cope with this inconvenience, the direction of motion

source can be expressed defined by Eq. (32) similarly to the position bba. One

objective of this paper is to study both models on different real scenarios in
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order to evaluate their impact on the association process (see Section 5).

Model 2:


mo
i,j({y}) = α exp−γ∆ψij

β

,

mo
i,j({n}) = α(1− exp−γ∆ψij

β

),

mo
i,j(Θi,j) = 1− α.

(32)

5. Experimental Results

This section evaluates the proposed multi-feature fusion on real data from

KITTI [22]. It largely extends [33] in which the authors rated the orientation

model 1 from Eq. (31) on a pedestrian detection and tracking sequence from385

KITTI. Here, tests are conducted with both orientation bbas on multiple sce-

narios (urban and highway traffic, etc.). First, the dataset used for validation

and the assessment criteria are presented. In a second step, the bbas parame-

ter identification is discussed and the position and orientation bbas validity is

shown. Finally, a quantitative evaluation of the fusion framework and a discus-390

sion related to conflict management are proposed.

5.1. Dataset Description and Evaluation Criteria

KITTI provides a set of sequences containing labeled detections of pedes-

trians, cars, cyclists, vans, and trucks in various road scenes (highway, urban

driving, etc.) as ground truth. Data from several sensors (inertial measure-395

ment units, GPS, cameras, LiDAR, etc.) mounted on a manually driven car are

available. The results described here focus on the image and LiDAR data. The

detections are defined by object tracklets which contain the dimensions of the

2D bounding boxes, occlusion states on the image frame, etc. For each detec-

tion, a 3D bounding box defines the set of LiDAR data that coincides with the400

object. The orientation angles used here correspond to the motion direction of

these 3D detections. Several sequences are used due to their object and road

context heterogeneity. Table 3 gives the sequence details and Fig. 7 a screen-

shot of the driving situations. They vary according to the number and nature

of detections as well as the vehicle’s speed during data recording. For instance,405
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Sequence 17 contains a set of frames which was captured when the car was

stationary. The acquisition from Sequence 08 is majorly established between

30 to 60 km/h and more. In Sequence 18, the vehicle’s speed was mostly less

than 30 km/h. A total number of nearly 2 000 associations are evaluated for

these 3 sequences.410

Figure 7: Example frames from Sequence 08 (bottom) and 18 (top).

Seq.08 Seq.17 Seq.18

Number of frames 390 145 339

Number of associations 492 434 1130

Max vehicle speed (km/h) 62 0 55

Min vehicle speed (km/h) 38 0 0

Speed < 30 km/h (%) 0 100 66

30 < Speed < 60 km/h (%) 86 0 34

Speed > 60 km/h (%) 14 0 0

Table 3: KITTI Image sequence characteristics.
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Pedestrian Car Cyclist Van

Seq.08 X X X X

Seq.17 X - - -

Seq.18 X X X X

Table 4: Object class in the KITTI sequences.

Figure 8: Number of detected objects per frame w.r.t the used sequences.

Fig. 8 shows the number of detected objects per frame according to the

used sequences. For instance, Seq.08 and Seq.17 contain at most 5 objects.

However, sequence 18 contains frames having up to 7 objects and most of the

frames contain 4 to 5 objects. Therefore, Seq.18 has the most associations to

process, 1130 against less than 500 for Seq.08 and Seq.17. Finally, Table 4415

describes the nature/class of objects labeled in the respective sequences. Their

heterogeneity can be easily attested.

The evaluation of the approach is established according to the rate of true

associations known as the recall. The recall is defined as the fraction of matched

pairs that are correct and the fraction of true object pairs that were matched [13]:
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Recall(%) =
|{true pairs} ∩ {matched pairs}|

{matched pairs}
. (33)

5.2. Model Identification

Considering the importance of parameters α
′
/α, β

′
/β and γ

′
/γ in the bbas

given by Eq. (28), Eq. (31) and Eq. (32), the determination of these values420

according to the nature of the similarity measure is investigated. Basically,

each parameter has a specific meaning. α
′
/α translate the sensor’s reliability,

β
′
/β and γ

′
/γ are weighting parameters function of the targeted application.

α
′
/α depends on the source providing the data to be gathered, here the sensors.

In this case, due to the high quality of these sensors, they are considered reliable.425

The parameters are set to 0.9 (α = α
′

= 0.9), standard values for this kind of

application. This is a good compromise since it allows to keep some ignorance

even if the source is confident in the association (i.e. when dij is close to 0).

β
′
/β has very little impact on the performance of the association, it can be fixed

either to 1 or 2 [25]. Here, it is decided, for comparison purposes, to follow the430

standard choice for MOA which is to set β = β
′

= 1 [13].

γ
′
/γ is very important because it represents the decreasing rate of the asso-

ciation confidence. It should be chosen considering the nature of the similarity

measure and its variation range. Here, a sensitivity study is made to determine

these factors according to the recall (Eq. (33)). The analysis is devoted to the435

object position modeling but the same is applied to identify the object motion

direction model. Figure 9 shows the variation of the recall according to the

KITTI Sequence 08, 17 and 18. It can be seen that the most significant results

are obtained for γ
′

= 0.01. This value is not only convenient for the sequences

that have been tested but it can be generalized to any sequence w.r.t. the res-440

olution of the considered images. Since the similarity measure dij corresponds

to the relative distance of the recorded positions in pixels, its values can vary at

most in the whole frame size, i.e. dij ∈ [0...1294.7]. An example of the variation

of dij according to each frame of Sequence 08 is illustrated in Figure 10. The

confidence in the association rises when this measure is low and tends to zero445
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Figure 9: Influence of the position decreasing rate γ
′

on the association performance.

when dij attains its maximum value. The factor γ
′

monitors the variation of

the confidence w.r.t. the similarity as shown in Figure 11.
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Figure 10: Minimum and maximum values of dij for each frame from Seq.08.

To measure the impact of γ
′

on the mass model, Figure 11 shows three

different configurations. It can be seen obviously that the larger γ
′

is, the faster

the association mass decreases with respect to the similarity measure dij . It can450

be noticed that for γ
′

= 0.02 and γ
′

= 0.1, the association masses are quickly

tending to 0 which explains the decreasing recall in Figure 9. This configurations

would lead in a loss of confidence in the association with small variations of the
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similarity measure and would not be appropriate in our case.

Figure 11: Influence of γ
′

on belief assignment.

By applying the same approach to the orientation source model, the param-455

eters α, β and γ have been fixed to resp. 0.9, 1.0 and 1.5.

5.3. Orientation Motion Model Validation

The orientation source is evaluated according to both mass models presented

in Section 4.3 and the parameters α, β and γ previously obtained. This valida-

tion is performed in iso-conditions w.r.t the model parameters. This allows the460

source to distinguish slight variations of the object relative direction of motion.

For this experiment, Sequence 17 is used. In this scenario, five moving pedes-

trians are detected (cf. Fig. 12). Four of them (X1 to X4) are going in the

same direction whereas X5, partially occluded by X1 and X2, is walking in the

opposite direction. Moreover, the objects have very close positions in the image465

frame. Tracks Y1, Y2, Y3, Y4 and Y5 (occluded) should be associated to X1, X2,

X3, X4 and X5 respectively.

Fig. 13 presents the bbas generated with both orientation models correspond-

ing to the belief supporting the relation between target X1 (new object) to track

Y5 (known object). The belief assignment is made according to the relative di-470

rection of motion of objects detected between two successive frames as shown in

Fig. 12. Model 2 distributes the knowledge on association, non-association, and

ignorance (cf. Fig. 13) but is not confident in the association (mo
1,5({y}) = 0.01)

of X1 and Y5 as they move in opposite directions. Moreover, both models are
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equally confident in the non-association of X1 to Y5. Finally, their amount of475

ignorance is very similar in this situation and both correctly describe the behav-

ior of objects in the scene where X1 cannot be associated to Y5 when referring

to their motion.

Figure 12: Pedestrian position and direction of motion: from known to new detections (lower

to upper frame).

Consider now X1 and Y1, a target and a track that should be associated

(ground truth). Fig. 14 presents the masses mo
1,1(.) issued with Model 1 and480

2. Model 2 is very confident about their association whereas Model 1 remains

largely ignorant due to the close direction of motion: the mass on the whole set

is close to the vacuous mass function. In this case, Model 2 is more informative

about the association objective.

In order to evaluate the presented models for the MOA, they are both in-485

cluded in the hierarchical fusion described earlier. The process is evaluated

on frame 30 (Fig. 12). First, the object position and size source provides the

following associations (target-to-track | track-to-target):
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Figure 13: mo
1,5(.) according to the orientation models.

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5

↓ ⇓ ↓ ↓ ⇓ ↓ ⇓ ↓ ↓ ⇓

Y1 Y5 Y3 Y4 Y2 X1 X5 X3 X4 X2

Table 5: Association decisions with the position/size source on KITTI Seq.17.

It can be seen that an ambiguity (represented by a double arrow) occurs in

the association of X2 → Y5 and X5 → Y2 in both ways due to the close position490

and occlusion of these objects in the scene. The standalone orientation source

generated according to Model 1 believes in the following assignments:

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5

⇓ ↓ ⇓ ↓ ⇓ ⇓ ↓ ⇓ ⇓ ⇓

Y∗ Y2 Y∗ Y4 Y∗ X∗ X2 X∗ X∗ X∗

Table 6: Association decisions with Model 1 on KITTI Seq.17.

It is noticeable that many wrong decisions are made since this bbm mainly

supports appearances (Y∗) and disappearances (X∗) of objects as shown by

Eq. (24). It can be concluded that the ignorance given by a source supports495

mainly the appearance/disappearance probability, leading to incorrect associa-

tions. On the other hand, the standalone orientation source generated according
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Figure 14: mo
1,1(.) according to orientation models.

to Model 2 gives the following pairings:

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 Y5

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Y1 Y2 Y3 Y4 Y5 X1 X2 X3 X4 X5

Table 7: Association decisions with Model 2 on KITTI Seq.17.

All associations are correct in both ways. Even though some distinct objects

move in the same direction, for instance target X3 and track Y4, the model500

parameters allow the source to easily differentiate them. Finally, it will be

shown that better pairing results are obtained when using Model 2 to represent

the orientation information in the fusion process.

5.4. Performance Rating

Table 8 compares the performance of the standalone sources and the pro-505

posed multi-feature fusion approach. The evaluation is done according to se-

quences 08, 17, and 18. To evaluate more effectively the proposed approach, the

estimation and combination steps are investigated. The results describe both

orientation bbms and two combination rules are investigated: the conjunctive

rule and the orthogonal sum (OS).510
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The results show that the orientation source attains significantly different

rates of true associations with both models. In fact, for all sequences, Model

2 gives better performance than Model 1 as expected in Section 5.3. On the

other hand, the position source scores a high rate of true associations for all

sequences confirming that this is the most informative data for heterogeneous515

object pairing. Nevertheless, the complexity and variety of the scenes and of

the related objects already leads to some wrong associations. An error-free

pairing only with the position is not achievable mainly due to the occlusion

cases or crossing scenarios. The best scores (100%) are obtained by the fusion

strategy with Model 2 for the orientation source. However, an important factor520

to be considered is the combination operator. For instance, in Sequence 18,

the enhancement of the recall is remarkable when normalizing the conflict in

the two levels of combination. It raises from approximately 57% to 100%. Here,

it can be explained by the absorbing property of the conflict during successive

conjunctive combinations lowering the belief in the pairwise associations. This525

reveals the need for an investigation on the conflict management method and

the comparison of different operators which will be exposed in the next section.

Combination operator Position Orientation (Model 1) Fusion Orientation (Model 2) Fusion

S
e
q
.
0
8

Conjunctive 97.25 75.02 97.05 96.75 99.59

OS 97.26 75.02 97.05 96.54 99.69

S
e
q
.
1
7

Conjunctive 98.40 55.61 99.09 94.06 90.18

OS 99.54 55.61 100 95.32 100

S
e
q
.
1
8

Conjunctive 98.76 90.03 98.58 68.36 57.29

OS 99.20 90.03 98.62 96.50 100

Table 8: Association scores by standalone sources and their combination.

5.5. Conflict Management

Considering the variety of combination rules in the evidence theory, it is

necessary to guarantee the conformity of a chosen rule to the addressed problem.530

In the presented approach, two main levels of combination are to be considered:

the fusion of multiple features in Eq. (26) and the line/column-wise combination

in Eq. (27). The first level of combination is interesting to investigate since its
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objective is to fuse heterogeneous data described by belief functions in order

to remove ambiguity in the association problem. In this pairwise combination535

of mp
i,j(.) and mo

i,j(.), two situations can be encountered: either the sources

agree or highly conflict. When they disagree, the resulting conflict is important

as it indicates an eventual mis-association due to a small variation of position

but a large relative direction of motion and vice versa. Under the reliability

hypothesis of each source, the conflict raised at this first fusion level informs540

about two objects that do not match. The conflict distribution is evaluated on

the example depicted in Fig. 12 according to the combination rules presented

in Section 3.4.

Figure 15: Belief expressed in the association of X2 to Y5 (from Fig. 12) by the standalone

sources and their fusion.

In Fig. 15, the four masses expressing conflict, association (yes), non-association

(no) and ignorance of the association of X2 to Y5 with respect to both sources545

and the results of five combination rules are displayed. It shows the high con-

flict due to the fact that X2 and Y5 are highly close whereas their motion

is in complete opposition. The conflict appearing in the conjunctive combi-

nation is relatively high (0.719). The non-association mass expressed by the

orientation source being high, the combined non-association mass (in normal-550

ized/conjunctive) is higher than the association mass. This also applies for the

other combination rules. The only difference resides in the ignorance and con-
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flict masses. Basically, both Yager and Dubois and Prade’s (DP) give the same

output because each source expresses its belief only on three focal elements: the

association hypothesis of two particular objects, their non-association and the555

ignorance. Therefore, the disjunction {y} ∪ {n} is equivalent to the ignorance.

Both Yager and DP induce less specific bbas. Thus, it is more interesting to use

either Dempster’s normalization or a more refined distribution such as PCR6.

Figure 16: Combination rule evaluation at the pairwise fusion: pignistic probabilities corre-

sponding to the best hypothesis.

In Fig. 16, the best pignistic probabilities corresponding to each correct asso-

ciation are displayed for the use case illustrated in Fig. 12. The reason for which560

these results are demonstrated is to evaluate the pairwise combination (first fu-

sion level) on the position and orientation sources. For this first combination,

all operators are used whereas for the second level, only the the normalized

rule is used. It can be noticed that the resulting BetPs vary differently with

respect to the chosen operator. For instance, Yager and DP’s impact on the565

specificity is apparent as it has the lowest BetPs. However, Dempster’s rule

has quite assertive probabilities since they mostly vary between 0.7 and 0.9.

PCR6 resulting probabilities remain approximately in the range of relevant val-

ues. Fig. 16 demonstrates that normalized-based pairwise combination has the

largest confidence in the chosen hypotheses compared to the rest of the opera-570
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tors. Finally, a comparison is done between Dempster’s rule and PCR6 on the

complete Seq.17 in Fig. 17. It can be noticed that the normalized combination

maximizes the confidence in the best hypotheses. Such operation can facilitate

the optimization step in decision-making by avoiding hazardous decisions and

can guarantee a robust association regardless the matching algorithm.575

Figure 17: Best Pignistic Probabilities according to two combination strategies (OS: Orthog-

onal Sum, PCR6) on KITTI Seq.17.

6. Conclusion and Perspectives

This paper tackles the problem of Multiple Object Association (MOA) in

the Belief Function framework for Intelligent Vehicles (IV). It proposes three

main contributions: the first one is based on an evidential multi-feature fusion

strategy to treat the MOA issue in cluttered environments. The approach is580

based on two heterogeneous sources defined by the position and size of dynamic

objects as well as their direction of motion in the scene. This strategy provides

a complementary information to the position source, commonly used, in order

to ensure a distinction of close objects which could belong to the same category

(pedestrians, cars, etc.) but having different trajectories. Hence, this informa-585

tion removes ambiguity in decision-making. The evidence raised by each feature

(position and orientation) is defined by independent mass models to generate
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two separate sources. The second contribution relies on the selection and study

of the appropriate mass models w.r.t. to the available sensor data. Hence, this

paper first provides a recall of the most used mass models and discusses the spe-590

cialized source model finally retained. The model identification process is also

depicted. A credal fusion combines the position and orientation data. For this

fusion, several rules are evaluated according to their rate of true associations

on three complex sequences provided by the KITTI database. The proposed

approach performed better than the individual sources as they provide differ-595

ent characteristics related to an object’s comportment. The fusion, therefore,

merges the evidence provided by each source to solve ambiguities. The third

major contribution is the evaluation of the proposed strategy on an important

and influential set of real data in the field of IV. Commonly, belief function-

based MOA algorithms are validated on limited data sets. In this case, the600

paper stands out by the extensive objective validation it highlights. The results

have also demonstrated the impact of the feature fusion in the association of

dynamic objects to ensure a robust perception in the IV context.

Several perspectives could be considered. In the current work, a LiDAR

provides the object direction of motion and a camera issues the position and605

size. An interesting research direction to investigate would be to define the ob-

ject position using the LiDAR data and the direction of motion based on the

image frames. Some preliminary tests of this configuration show very similar

results compared to those of this paper. This investigation will be pursued for

comparison purposes. Secondly, taking account of additional features related to610

the objects in the scene in order to be robust w.r.t. the large variety of driv-

ing scenarios is a necessary research direction. For instance, situations dealing

with objects of different natures, kinematics, shapes, etc. require to consider

valuable object-related information in the association process. Another future

work will be to implement tracking to insure a complete supervision of complex615

environments. Finally, this algorithm will be tested on the experimental vehi-

cle ARTEMIPS within the laboratory to validate its efficiency in a real-time

multi-sensor data fusion framework.
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