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In this study, the object association issue is tackled in order to ensure a correct affiliation of perceived objects with known ones. The proposed approach is based on the evidence theory and includes multiple object features in order to manage pairing issues in a complex environment. Two heterogeneous information sources are built based on kinematic features related to the objects: their position and size on one hand and their direction of motion on the other hand. A study on the estimation of the belief expressed by these independent sources is performed. The multiple features are managed through a hierarchical fusion which includes two levels of combination. The first level is a pairwise combination, fusing position and orientation data of each pair of objects and the second one processes sequentially the previously combined information over all possible associations. This paper also investigates the effectiveness of the association according to different combination operators at both levels. The performance of the proposed approach is demonstrated in the Intelligent Transportation Systems context for which environmental perception is crucial. The validation exploits a large amount of real data issued from a camera and a 3D LiDAR from the KITTI database.
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Introduction

Multiple Object Association (MOA) is a crucial function in Multi Target

Tracking (MTT) consisting in matching perceived objects (targets) to known ones (tracks). This can be done in a multi-sensor configuration in order to match, at a time, the detections from several sensors. Another solution is to consider data from one sensor over time leading then to a temporal association problem. For Intelligent Transportation Systems (ITS) applications, semantic scene interpretation is often based on sensors which might typically provide uncertain, imprecise or incorrect data. This results in mis-detections or ambiguous information about the true identity or location of an object. Multi-sensor data fusion offers a solution to this issue as it seeks to combine data to perform inferences that may not be possible from a single sensor [START_REF] Hall | Mathematical Techniques in Multisensor Data Fusion[END_REF].

Several MOA methods exist: Nearest Neighbour, (Joint) Probability Data Association Filter ((J)PDAF) or Multi-Hypothesis Tracking (MHT), all defined on the Bayesian frame [START_REF] Reid | An algorithm for tracking multiple targets[END_REF][START_REF] Blackman | Multiple-target Tracking with Radar Applications[END_REF]. However, in the presence of uncertainties, one can prefer the theory of belief functions or evidence theory. It is particularly convenient for uncertainty modeling and propagation in the combination of partially reliable information. Introduced by Dempster and Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF][START_REF] Dempster | A generalization of bayesian inference[END_REF] as a generalization of the Bayesian framework, it has later been used by Smets in his formalization of the Transferable Belief Model (TBM) [START_REF] Smets | The transferable belief model[END_REF]. The use of this theory in MOA has brought many advantages compared to the probabilistic methods such as the management of object appearances and disappearances, or its average complexity. In [START_REF] Gruyer | Multi-hypotheses tracking using the dempster-shafer theory. application to ambiguous road context[END_REF], Gruyer et Hereafter, the authors first describe the major contributions in BF-MOA with a focus on the latest ones. The contributions of this paper are given afterwards.

Related Work

Rombaut was first to model MOA with belief functions by defining many object attributes (numerical, symbolic and logical) [START_REF] Rombaut | Decision making in data fusion using Dempster-Shafer's theory[END_REF][START_REF] Rombaut | Decision in multi-obstacle matching process using Dempster-Shafer's theory[END_REF]. In these works, estimation models of the attribute mass functions widely used in further research have also been introduced. Based on Rombaut's formalism, Royère et al. [START_REF] Royère | Data association with believe theory[END_REF] established generalized combination rules considering the extended open world model (eow ). In eow, track appearances and disappearances are possible. Improving this work, Mourllion et al. [START_REF] Mourllion | Multi-hypotheses tracking algorithm based on the belief theory[END_REF] developed two pairing solutions to avoid suspicious local associations when evidence conflicts. [START_REF] Mourllion | Multi-hypotheses tracking algorithm based on the belief theory[END_REF] was also at the origin of belief function-based MHT algorithms which have largely inspired Gruyer et al. [START_REF] Gruyer | Multi-hypotheses tracking using the dempster-shafer theory. application to ambiguous road context[END_REF] for road context evaluation. Nevertheless, their solutions suffer either from high complexity and not dealing with the conflict, or from inaccuracy in the generated track numbers. Later, Mercier et al. [START_REF] Mercier | Object association with belief functions, an application with vehicles[END_REF] proposed a decisional process in the TBM framework aiming at maximizing the pignistic probabilities in a global way. In this ITS-related study, a fusion of the distances and angles between the ego-vehicle and the detected objects is performed.

Denoeux et al. and Daniel et al. [START_REF] Denoeux | Optimal object association in the dempster-shafer framework[END_REF][START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF] highlighted that Mercier's solution is computationally expensive and intractable for real-time execution. Moreover, it can also conclude to suspicious associations due to the global optimization.

In the last years, Daniel et al. [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF][START_REF] Daniel | Fusing navigation and vision information with the transferable belief model: Application to an intelligent speed limit assistant[END_REF] enhanced the process by suggesting two pairing algorithms which locally solve the association problem and largely reduce the computational complexity.

In most of the studies referenced above, the association of multiple perceived objects in a scene is based on the position information [START_REF] Gruyer | Multi-hypotheses tracking using the dempster-shafer theory. application to ambiguous road context[END_REF][START_REF] Mourllion | Multi-hypotheses tracking algorithm based on the belief theory[END_REF][START_REF] Mercier | Object association with belief functions, an application with vehicles[END_REF]. When available, additional object features like its class or velocity have been considered as pieces of evidence to be gathered. Ristic and Smets [START_REF] Ristic | Global cost of assignment in the tbm framework for association of uncertain id reports[END_REF], for instance, use the class information with the assumption that objects from the same class could be associated. Inspired by these works, Rekik et al. [START_REF] Rekik | Dynamic object construction using belief function theory[END_REF] followed the same methodology to construct objects in a scene starting from partially occluded detections. The association part is done thanks to a modified Hungarian al-gorithm. Considering that identical class objects can be matched is a strong assumption. Especially in road scenes, it is common to have objects of the same class (pedestrians or cars on highway) in close positions or to have a number of classes close to the number of objects.

Denoeux et al. [START_REF] Denoeux | Optimal object association in the dempster-shafer framework[END_REF] solved the MOA by maximizing the plausibility of all possible relations between tracks and targets through a linear assignment problem taking account of three object features: velocity, class and position. The main advantage is that the resulting computational cost is polynomial. However, the constructed relations are exclusive to the number of tracks and targets and the decision criteria has the inconvenience of being optimistic.

Chavez-Garcia and Aycard [START_REF] Chavez-Garcia | Multiple sensor fusion and classification for moving object detection and tracking[END_REF] developed a real-time multi-sensor fusion system devoted to road scene perception exploiting the evidence theory. By adding the object classification to the their kinematic features provided by three sensors (LiDAR, radar and camera) and by fusing them with Yager's rule (see Section 3.4), they showed improved detection results. To achieve good performance, an important a priori knowledge of the object classes characteristics is necessary to define the bbas. In [START_REF] Hachour | A robust credal assignment solution based on the generalized bayes' theorem[END_REF], Hachour et al. introduced a matching algorithm based on the Generalized Bayes' Theorem and evaluated its performance on synthetic data (simulated tracking scenarios). Nevertheless, only mono-scan and mono-sensor configurations are considered and the complexity is higher than the reference approach from Denoeux [START_REF] Denoeux | Optimal object association in the dempster-shafer framework[END_REF]. A multi-sensor tracking method has been recently proposed by Dan et al. [START_REF] Dan | A robust D-S fusion algorithm for multi-target multi-sensor with higher reliability[END_REF]. In their work, an association step very similar to the one presented in [START_REF] Boumediene | Multi-roi association and tracking with belief functions: Application to traffic sign recognition[END_REF], is done thanks to an orthogonal sum to link local tracks with fused tracks. Nevertheless, the pairing results are highly related to the multi-sensor tracking model. In the proposed paper, the focus is put only on the object association step. It appears from this review that track association in cluttered environment should consider heterogeneous object features in order to be effective. Those features have to be selected depending on the application considered.

Contributions

As shown previously and to the best of the authors' knowledge, the literature is mainly dedicated to enhance the final step of the association process, i.e. the decision-making, or to suggest formalizations dealing with the computational complexity. The aggregation of potentially discordant data and the resulting conflict has not yet been exploited in the aim of dealing with suspicious or ambiguous associations. In fact, numerous contributions are providing improved pairing decision criteria and algorithms (joint pignistic probability in [START_REF] Mercier | Object association with belief functions, an application with vehicles[END_REF], local pignistic probability in [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF], contour function in [START_REF] Denoeux | Optimal object association in the dempster-shafer framework[END_REF], etc.). Only few of them consider the conflict raised during mass combination [START_REF] Gruyer | Multi-hypotheses tracking using the dempster-shafer theory. application to ambiguous road context[END_REF][START_REF] Mourllion | Multi-hypotheses tracking algorithm based on the belief theory[END_REF]. Moreover, none of them discuss the choice of the fusion rule and use generally Dempster's rule, even if the pairwise pairings are based on the combined data. It is then obvious that the fusion step of full, imperfect or heterogeneous information plays a key role in the association scheme. In practical applications like real-time environment perception, it is common to deal with partial, imprecise, uncertain or missing information. In this context, complex situations can lead to incomplete or conflicting data given by the sensors. That is why, this work focuses on the choice of the combination operators with respect to the association performance.

A main interest is put on the conflict management raised during combination.

The idea behind this paper is to define, for ITS-related applications, a robust object association framework dealing with multiple sources and heterogeneous data. The focus is put on an adequate modeling of the information according to their distinct nature. We propose in this paper a review of the data models suitable for this objective. A thorough study of the combination of the data delivered by heterogeneous sources is presented to guarantee a robust result regardless of the matching algorithm. We believe that if an information is discriminant enough, the solution issued from the combination algorithm must be trivial. Therefore, we investigate another additional source to the object position, expressing the motion direction of dynamic objects. Object features like their class already exploited in the literature and with limited impact for road scene perception require classification methods unintended in this application.

The direction of motion of the perceived objects can, in complex scenarios like intersections or highway driving, help to discriminate those objects.

The objectives of this article are multiple : determine the appropriate source model for the retained object attributes (cf. Section 4.2), propose a robust multiple feature fusion strategy and choose the best combination rule (cf. Section 4.1) and finally evaluate the approach on a large amount of realistic driving scene data (cf. Section 5).

The aim of this paper is to present an original strategy to improve and extend a camera-based MOA algorithm [START_REF] Boumediene | Multi-roi association and tracking with belief functions: Application to traffic sign recognition[END_REF] with the use of LiDAR data. The knowledge on which the association is applied is derived on the one hand from the object's position and size obtained from images of the scene. On the other hand, the object direction of motion are extracted from 3D Lidar point clouds.

Both data represent two different similarity measures for the construction of two credal sources. A multiple feature fusion strategy is applied to manage these heterogeneous sources and to guarantee the best outcome through different combination rules. A two step hierarchical fusion strategy is introduced: the first one handles, through a multisensor and temporal fusion, data from heterogeneous sources expressing a local knowledge of each candidate hypothesis. It combines position and orientation pairwise mass functions and provides the belief in the association of two specific objects. The second one allows to raise the ambiguity by expressing a global knowledge based on an aggregated belief w.r.t. all available sources. It is a sequential fusion which gathers the knowledge expressed in the first level of combination in order to define the pairing confidence between resp. a given target/track and resp. all tracks/targets.

To assess the feasibility of the fusion framework in the application context of autonomous vehicles, the KITTI database [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF] is used. A quantitative analysis performed on an important amount of data containing objects of different nature is done. To the authors knowledge, such an extensive validation (considering several hundreds of frames and pairings) of a belief function-based object association solution in real conditions is unique.

The article is organized as follows: the application context and problem description are given in Section 2. Some fundamental concepts in evidence theory and their application to MOA are presented in Section 3. The modeling of the object features and the multiple feature fusion strategy are then described in Section 4 to be later tested on experimental data in Section 5. Finally, Section 6 concludes this paper.

MOA for Intelligent Vehicles

Object Perception in Cluttered Environments

In the context of Intelligent Vehicles (IV), the crucial point is to ensure the safety of road users. In order to achieve such an objective, it is mandatory for an IV to obtain an accurate and robust representation of the environment near the vehicle. The main aim of a perception system is then to detect the surrounding environment (static and moving objects, navigable area, etc.). Usually, perception starts by collecting data from multiple and heterogeneous sensors (cameras, radars, LiDARs, etc.) mounted on the ego-vehicle. As none of these hardware solutions provide perfect data, there is a need to fuse the information collected. Moreover, objects in the scene can be totally/partially occluded, external conditions can vary, etc. Thus, providing tools able to model/deal with data uncertainties, imprecision, incompleteness or conflicting information is of utmost interest. In the context of a complex surrounding environment (urban traffic, pedestrians...), the perception system should be robust enough to handle several objects to be detected and associated [START_REF] Laghmara | 2.5d evidential grids for dynamic object detection[END_REF]. In this paper, the input of the MOA algorithm is based on camera images. As already mentioned, from these 2D data, it is possible to determine the position and the size of the objects. In addition, the use of a LiDAR provides 3D data from the point cloud (see Figure 1). The LiDAR information can be used to improve the MOA algorithm by including, in addition to the position from the camera, the orientation of the object. Indeed, as one can see on Figure 1 taken from the KITTI benchmark [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF], the camera-based image can be naturally enriched with LiDAR informa-tion. The perception of objects in cluttered environment, and the temporal association of perceived objects, is here realized through the fusion of measures from these two heterogeneous sensors. 

Problem Description 180

Let us define respectively a target/track as X i /Y j . Basically, the pairing process performed during data association between multiple targets and tracks aims at associating a target X i to a track Y j . In highly changing environments, the process is challenging due to the variable object numbers as well as their possible appearance and disappearance over time. The association process is 185 bi-directional (see Fig. 2), i.e. two cases of pairing are distinguished: a targetto-track (X → Y ) and a track-to-target (Y → X) matching. Two sets Θ Xi and Θ Yj gathering respectively the M tracks and N targets are defined:

Θ Xi = {Y 1 , Y 2 , ..., Y M , Y * }, (1) 
Θ Yj = {X 1 , X 2 , ..., X N , X * }, (2) 
with i ∈ I = {1 . . . N }, j ∈ J = {1 . . . M }. A track appearance is described by including the solution Y * to the track set Θ Xi whereas a track disappearance is defined by the proposition X * in the target set Θ Yj . The association task to be treated remains as answering the question, considering a pair of objects at a time k : "are these objects related? " and two possible solutions are whether "yes" or "no".

Representation of Evidence

This section is dedicated to some fundamental tools of the Dempster-Shafer framework for evidence modeling and decision-making under uncertainty. To complete this synthesis, the reader may refer to the references given below as well as to the seminal book of Dempster [START_REF] Dempster | A generalization of bayesian inference[END_REF] and to Smets's work regarding the TBM [START_REF] Smets | The transferable belief model[END_REF].

Basics of Belief Functions

The mathematical theory of evidence has been introduced by Shafer in order to ensure an adequate representation of uncertainty. Shafer's work is often called theory of evidence because it deals with weights of evidence and numerical degrees of support based upon evidence. A frame of discernment Θ is firstly defined as a set of discrete states (hypotheses H j ):

Θ = k j=1 {H j } with ∀i = j, H i ∩ H j = ∅. (3) 
k is the number of hypotheses and Θ describes all known exclusive solutions to the tackled problem. All possible combinations of singletons H j of Θ define the power set or referential frame 2 Θ such that:

2 Θ = {∅, {H 1 } , ..., {H j } , ..., {H 1 , H 2 , H 3 } , ..., Θ} . (4) 
When modeling knowledge, pieces of evidence can be set on one or several elements of 2 Θ . This evidence from a source is represented by a mass function m(.) defined as a mapping from the power set 2 Θ to [0, 1]:

A∈2 Θ m(A) = 1, (5) 
with m(A) the degree of belief supporting proposition A ∈ 2 Θ and that can not be committed to any more specific proposition of the referential subset. A is known as a focal set. m(A) defines the belief that A is the solution to the raised question/problem.

Based on these definitions, the aim when addressing a real problem is to construct an evidential model, i.e. a basic belief assignment (bba) for any source expressing knowledge on the problem to be solved.

Belief Assignment Models

In order to define the source knowledge, an appropriate bba should be estimated. In the literature, several models are available and the chosen one oftenly depends on the nature of data and the application in concern. Some common models are described and discussed here.

A simple bba has at most two focal sets [START_REF] Shafer | A mathematical theory of evidence[END_REF]. This model is used when a source S j can only support one hypothesis A ∈ 2 Θ and attributes a partial knowledge to this solution: withdraws the interest in using belief functions. An example is used in [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempstershafer theory[END_REF] for clustering purposes. It is evaluated according to a distance d ij between an object j and a given cluster C i with C being the discernment frame:

         m j (A) = s, m j (B) = 1 -s, m j (C) = 0, ∀C ∈ 2 Θ , C = A, C = B, (6) 
         m j ({C i }) = αϕ(d ij ), m j (C) = 1 -αϕ(d ij )), m j (A) = 0 ∀A ∈ 2 C \{C, {C}}. (7) 
ϕ(.) is a decreasing function based on d ij such that the higher d ij , the lower the confidence in the membership of the object to the class C i . α is a source reliability-related factor. Rombaut [START_REF] Rombaut | Decision in multi-obstacle matching process using Dempster-Shafer's theory[END_REF] proposed an extension of Eq. ( 7) based 220 on the notion of specialized source supporting only one hypothesis A of Θ:

         m j (A) = αϕ(d ij ), m j (A) = α(1 -ϕ(d ij )), m j (Θ) = 1 -α. (8) 
As in Eq. ( 7), ϕ(.) is a decreasing function. Such bba can be self-conflicting since evidence can be assessed at a time on A and A, meaning that both could be the solution. It has been widely used in MOA as it models imprecision and uncertainty. Similarly to Eq. ( 8), Gruyer et al. defined a bba which does not be generated at the same time on A and A. Its main advantage is to avoid auto-conflict. More details can be found in [START_REF] Gruyer | Multi-hypotheses tracking using the dempster-shafer theory. application to ambiguous road context[END_REF].

The simple support model has the advantage of expressing the source's uncertainty through the mass on the whole set which is not the case for the complementary mass function. It also necessitates a specific information as it indicates the belief on a single proposition (singleton or set). In counterpart, none of these bbas are appropriate when a source expresses belief on several propositions. The complementary mass model obtained from Eq. ( 6) is able to deal with singletons or composite propositions (sets). The main disadvantage of this model is that it generates auto-conflict because of the simultaneous belief in a proposition and its complement. Being very similar to a probabilistic modeling, these solutions do not take advantage of the extensions provided by the evidence theory.

Specialized sources (cf. Eq. ( 8)) provide a more general framework since they model the mass on a proposition (singleton or set), its complement and ignorance. One major advantage is their adaptability since they can reproduce optimistic, pessimistic or neutral behaviors thanks to the model parameters [START_REF] Gruyer | Multi-hypotheses tracking using the dempster-shafer theory. application to ambiguous road context[END_REF].

The counterpart is the parameter tuning or optimization required according to the problem. When evidence conflicts, it might also raise a high conflict because it comes down to combining two simple support functions. In this context, the non-antagonist model from [START_REF] Gruyer | Multi-hypotheses tracking using the dempster-shafer theory. application to ambiguous road context[END_REF] offers a solution to the auto-conflict as it independently describes a proposition and its complement on separate intervals. Nevertheless, this specificity does not allow to optimally deal with inaccuracy in the sensor data and uncertainty. The antagonist model (Eq. ( 8))

being less constraining, it fits better to the case of use described in this paper.

Refinement and Coarsening

Refinement and coarsening are important operations applied in order to express source's knowledge on the same discernment frame. Often, two sources can express evidence on two distinct or complementary bodies of evidence. Moreover, any expression of a discernment frame Θ can generally be divided in different propositions [START_REF] Shafer | A mathematical theory of evidence[END_REF] since the discernment frame's granularity is usually chosen by convention. In order to manage the pieces of knowledge and combine the information, it is necessary to have a larger or a more specific frame by the use of these operations.

Considering two frames Ω and Θ, a refinement ρ(.) of Θ to Ω is defined as a mapping ρ(.) : 2 Θ → 2 Ω which verifies the following statements [START_REF] Shafer | A mathematical theory of evidence[END_REF]:

{ρ({θ}), θ ∈ Θ} ⊆ 2 Ω is a partition of Ω (9) {ρ(A), A ⊆ Θ} = θ∈A {ρ({θ}), θ ∈ Θ} (10)
Therefore, Θ is a coarsening of Ω and Ω is a refinement of Θ. Considering a mass m Θ (.) expressing belief on Θ, the resulting mass m Θ↑Ω (.) elaborated by a refinement to Ω is found by applying a vacuous extension of m Θ (.) in Ω:

m Θ↑Ω (B) =      m Θ (A) if B = ρ(A), A ⊆ Ω, 0 otherwise. (11) 
Inversely, coarsening is denoted by the ↓ operator as follows:

m Θ↓Ω (B) = B⊆Ω\ρ -1 (B)=A m Ω (B), A ⊆ Ω. ( 12 
)

Combination of Evidence

This step is crucial for data fusion as it merges the various pieces of evidence delivered by the information sources. One of the main properties due to the evidential combination is the potential appearance of conflict. According to [START_REF] Daniel | Fusing navigation and vision information with the transferable belief model: Application to an intelligent speed limit assistant[END_REF][START_REF] Lefevre | Belief function combination and conflict management[END_REF], conflict can have several origins: aberrant measurements, inconsistent belief models and the multiplicity of sources. Moreover, conflict can raise from the non-reliability of sources and non-exhaustiveness of the discernment frame [START_REF] Martin | Toward a combination rule to deal with partial conflict and specificity in belief functions theory[END_REF] and can be used as additional information in the fusion process [START_REF] Daniel | Fusing navigation and vision information with the transferable belief model: Application to an intelligent speed limit assistant[END_REF].

The exhaustiveness of the discernment frame is made with the close world assumption implying m(∅) = 0. In real case applications, it is rather hard or impossible to identify all solutions of a given problem. The frame of discernment exhaustiveness can thus not be guaranteed. Therefore, to treat the related conflict, two additional frameworks have been introduced: the open world (ow ) [START_REF] Smets | The transferable belief model[END_REF] and the extended open world (eow ) [START_REF] Rombaut | Decision in multi-obstacle matching process using Dempster-Shafer's theory[END_REF][START_REF] Royère | Data association with believe theory[END_REF]. In the ow, sources are reliable and the conflict mass m(∅) represents the non-exhaustiveness of the discernment frame. In this context, the conflict is considered as the unknown hypotheses.

This also applies to the TBM where the conflicting mass is not forced to zero after combination. In the eow, an additional hypothesis * is added to the discernment frame in order to include all unknown hypotheses so that Θ is again exhaustive. The conflicting mass is then related either to the sources' unreliability or the discordance between the data [START_REF] Daniel | Fusing navigation and vision information with the transferable belief model: Application to an intelligent speed limit assistant[END_REF]. Therefore, the eow framework is adopted in this application.

Combining data when evidence conflicts has been largely investigated and several combination rules have emerged. This section briefly recalls those which have been used in this work and evaluated in Section 5. For further details, the reader can refer to [START_REF] Daniel | Fusing navigation and vision information with the transferable belief model: Application to an intelligent speed limit assistant[END_REF][START_REF] Yang | Evidential reasoning rule for evidence combination[END_REF]. The chosen rules are all based on the conjunctive operator. Disjunctive rules are disregarded because they induce a loss of specificity and can only be used when at least one source is reliable.

Under the assumption of exhaustiveness and exclusivity of Θ, the fundamental combination rule is Dempster's rule [START_REF] Shafer | A mathematical theory of evidence[END_REF] or orthogonal sum (OS). It requires independent and reliable sources and is formulated as follows:

m ⊕ (A) = 1 1 -κ A1∩...∩Ap=A p j=1 m j (A j ), ( 13 
)
where κ is the conflict such that:

κ = m(∅) = A1∩...∩Ap=∅ p j=1 m j (A j ). ( 14 
)
Proposed by Smets [START_REF] Smets | The transferable belief model[END_REF] in the TBM in order to preserve the conflict, the conjunctive combination does not require the exhaustiveness of the discernment frame. Mathematically, it is an unnormalized orthogonal sum:

         m ∩ (A) = A1∩...∩Ap=A p j=1 m j (A j ), m ∩ (∅) = κ = A1∩...∩Ap=∅ p j=1 m j (A j ). (15) 
Conceptually, when all sources are reliable, the belief on the empty set m ∩ (∅) informs about a solution outside of Θ. It is useful to precise that Eq. ( 13) and

Eq. ( 15) describe associative and commutative operators. With Yager's rule (Y ) [START_REF] Yager | On the dempster-shafer framework and new combination rules[END_REF], the conflicting mass m ∩ (∅) obtained after a conjunctive combination is assigned to Θ. Therefore, when evidence conflicts, we are ignorant about the problem solution:

     m Y (A) = m ∩ (A), ∀A ⊂ Θ, m Y (Θ) = m ∩ (Θ) + m ∩ (∅). ( 16 
)
This operator is associative but not commutative requiring a combination sequence to be defined a priori.

Also known as the mixed rule, Dubois and Prade's rule (DP ) [START_REF] Dubois | Representation and combination of uncertainty with belief functions and possibility measures[END_REF] merges the conjunctive and disjunctive operators. The conflicting mass raised by A ∩ B = ∅ is attributed to the proposition A ∪ B. For two pieces of evidence m 1 (.) and m 2 (.), the combined mass m DP (.) is:

m DP (X) = A∩B=X m 1 (A)m 2 (B) + A∪B=X A∩B=∅ m 1 (A)m 2 (B). ( 17 
)
This operator is not commutative thus when fusing several bbas, it is important 295 to define the fusion sequence.

The Proportional Conflict Redistribution (PCR) rules have been proposed

by Dezert and Smarandache [START_REF] Smarandache | Information fusion based on new proportional conflict redistribution rules[END_REF]. These operators allow a proportional redistribution of the partial conflict according to the concerned focal elements. Several extensions have been introduced by Martin and Osswald to increase the number of experts, such as the PCR6 [START_REF] Martin | Toward a combination rule to deal with partial conflict and specificity in belief functions theory[END_REF]:

m PCR6 (X) = m ∩ (X)+ M i=1 m i (X) 2 M -1 k=1 Yσ i (k)X=∅ (Y σ i (1) ,...,Y σ i (M -1) )∈(2 Θ ) M -1      M -1 j=1 m σi(j) (Y σi(j) ) m i (X) + M -1 j=1 m σi(j) (Y σi(j) )      . ( 18 
)
where Y j ∈ 2 Θ is the response of the expert j, m j (Y j ) the associated belief function and σ i counts from 1 to M :

     σ i (j) = j if j < i, σ i (j) = j + 1 if j ≥ i. (19) 

Decision-making

The last step of the fusion scheme is decision-making, i.e. finding the best solutions under uncertainty among the potential hypotheses in Θ. The bbas combination leads to evidences placed either on singletons or on unions. The 300 decision performs a mapping from 2 Θ to Θ in order to retain the best proposition of Θ related to the problem of concern. In order to handle uncertainty, this process is based on the optimization of an evidential function.

Classical decision criteria are based on maximizing the credibility function which is considered to be pessimistic or the plausibility function which is optimistic. A common approach adopted by Smets [START_REF] Smets | Constructing the pignistic probability function in a context of uncertainty[END_REF] consists in the transformation of evidence to probabilities. It provides an intermediate solution between

the maximum of credibility and plausibility. The pignistic probability is computed through the relation:

BetP (H j ) = A∈2 Θ H j ⊆A m Θ (A) |A| (1 -m Θ (∅)) , (20) 
with m Θ (∅) < 1 and |A| the cardinality of A. Therefore, the decision by maximizing BetP (.) according to the problem's constraints is given by:

H BetP = arg max Hj ∈Θ BetP (H j ). (21) 

Representation of Evidence in MOA

This section recalls fundamental elements in object association using belief 305 functions and already described by some of the authors [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF][START_REF] Laghmara | On the information selection for optimal data association[END_REF].

Considering the target and track sets introduced in Section 2.2 (see ( 1) and

(2)) Θ Xi and Θ Yj respectively represent two discernment frames gathering the M tracks, N targets, appearance and disappearance propositions are defined.

Belief degrees are set on the association potentiality of each pair of target and track. A pairwise association concerns the evaluation if "yes" or "no" these objects are related to each other. For a given source, its belief will then be expressed on these two propositions defining the frame of discernment Θ ij = {yes, no} which will be simplified to Θ ij = {y, n}. Three pieces of evidence are constructed: the belief in the association m i,j ({y}), in the non association m i,j ({n}) and m i,j ({Θ ij }) stands for the ignorance. Obviously, both frames Θ Xi and Θ Yj are refinements of Θ ij (see Fig. 3). By applying a vacuous extension (cf. Section 3.3), the belief can be expressed on a common frame:

           m Θ X i j (Y j ) = m i,j ({y}), m Θ X i j (Y j ) = m i,j ({n}), m Θ X i j (Θ Xi ) = m i,j (Θ ij ). (22) 
It is worth noting that Y j is the non association. It corresponds to the set

310 containing all tracks except Y j , i.e. Θ Xi \Y j = {Y 1 , ..., Y j-1 , Y j+1 , ..., Y M , Y * }.
An object pairing is assessed based on two assumptions:

• Only one target is associated to a track (one-to-one association),

• There might be appearances and disappearances of tracks.

To attribute masses to respective sources using Eq. ( 22), a proper modeling 315 needs to be initiated depending on the nature and characteristics of the data.

The choice of models according to those described in Section 3.2 will be discussed in Section 4.

The main criteria for evidential decision-making is the pignistic probability BetP (.) (cf. Section 3.5). This measure is mostly used because it converts mass functions to probabilities convenient for selecting the most eligible hypothesis.

When using a conjunctive combination (cf. Section 3.4), the combined masses can be obtained from the initial bbas as recalled in [START_REF] Daniel | Multi-object association decision algorithms with belief functions[END_REF]. Afterwards, based on Eq. ( 20), the pignistic probability for each object X i is given by:

BetP Xi (Y j ) =m Θ X i j (Y j ) M a=1 a =j (1 -m Θ X i a (Y a )) + A⊆Θ X i Y j ∈A |A|>1 1 |A| M b=1 Y b ∈A (m Θ X i b (Θ Xi )) M b=1 Y b ∈A (m Θ X i b (Y b )), (23) 
BetP Xi (Y * ) = M a=1 (m Θ X i a (Y a )) + A⊆Θ X i Y * ∈A |A|>1 1 |A| M b=1 Y b ∈A (m Θ X i b (Θ Xi )) b=1 Y b ∈A (m Θ X i b (Y b )). ( 24 
)
The conflicting mass function in Eq. ( 20) is defined by: m

Θ X i j (∅) = 1 - M a=1 ξ a + M a=1 m Θ X i a (Y a ) M b=1 b =a η b (25) 
with

ξ a = (1 -m Θ X i a (Y a )) and η b = (1 -m Θ X i b (Y b )).
The resulting pignistic probabilities are therefore normalized by (1 -m

Θ X i j (∅)).
It can be especially 320 noticed that a decision of appearance/disappearance is related to the belief in the non-association combined with the ignorance (see Eq. ( 24)). Since the association is bi-directional (X i ⇒ Y j and Y j ⇒ X i ), the pignistic transformation is realized for both cases which results in two probability matrices BetP Xi (.) and BetP Yj (.) shown in Table 1 and Table 2. Each line defines the probabilities of 325 the associations of X i with Y 1 ...Y M , * and vice versa. 

BetP Xi (.) Y 1 . . . Y M * X 1 BetP X1 (Y 1 ) . . . BetP X1 (Y M ) BetP X1 ( * ) X 2 BetP X2 (Y 1 ) . . . BetP X2 (Y M ) BetP X2 ( * ) . . . . . . . . . . . . . . . X N BetP X N (Y 1 ) . . . BetP X N (Y M ) BetP X N ( * )
Y M BetP Y M (X 1 ) . . . BetP Y M (X N ) BetP Y M ( * )

Multiple Feature Fusion

This section describes the multiple feature hierarchical fusion. The aim is to allow different information sources to distinctively describe dynamic objects in a complex driving environment. Firstly, it highlights how these data are combined in order to obtain a global view of the potential pairings. In a second step, we show how the belief masses of the heterogeneous object data are obtained thanks to the bba introduced previously.

Fusion Structure

The need for multiple sensors is recurrent in a wide number of applications.

This necessitates an efficient fusion considering the imprecision and the incompleteness of the respective data. In this study, the focus will primarily be laid on the inconsistency of reliable sources, i.e., when their belief is based on information which might not always be conclusive at decision-making.

The hierarchical multi-feature fusion is suggested as a solution to ambiguity resolution in MOA. The aim is to gather enough knowledge about the objects and orientation m o i,j bbas. This section details each step and Algorithm 1 gives an overview of the process.

Since both sources provide distinct and complementary information about the pairwise association of X i and Y j , it is convenient to fuse them (Fig. 4 Pairwise Combination step). For a pair of objects X i and Y j , this first fusion level aims at gathering the partial information given by the position and orientation source in order to obtain a mass function m p,o i,j (.) describing the total belief in the pairwise association:

m p,o i,j (.) = m p i,j (.) m o i,j (.), (26) 
with i ∈ I = {1 . . . N }, j ∈ J = {1 . . . M } and can refer to any combination operator shown in Section 3.4. This step is sequentially performed among all association pairings.
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Whatever the association method or framework employed, it is always suitable to limit/reduce the number of assignment hypotheses. The "Evidential Source Selection" in Fig. 4 avoids unnecessary association evaluations and thus 20 limits the computation requirements. Gating is a standard method used in MTT to identify the neighboring targets for a pairing with a particular track. A similar strategy was introduced by the authors in [START_REF] Laghmara | On the information selection for optimal data association[END_REF] to implement an evidential selection. The objective is to rely on the source data to discard those having a low belief in a pairing hypothesis and only maintain the most pertinent ones.

More details are given in [START_REF] Laghmara | On the information selection for optimal data association[END_REF] in which the experimental validation shows the reduction in computation cost coupled to high association performances.

A second level of combination is performed (cf. Fig. 4) in order to allocate a mass m p,o i,.

(.) or m p,o .,j (.) to express the belief applied to the association of resp.

a target i/track j to all resp. tracks/targets:

     m p,o i,. (.) = m p,o i,1 (.) ... m p,o i,M (.), m p,o .,j (.) 
= m p,o 1,j (.) ... m p,o N,j (.), (27) 
where N and M are the number of targets and tracks respectively. This combination is sequentially applied over all targets (i ∈ {1 . . . N }) and tracks (j ∈ {1 . . . M }). Finally, the decision making is performed thanks to the transformation of the combined belief masses m p,o i,.

(.) and m p,o .,j (.) into pignistic probabilities with Eq. ( 23) and [START_REF] Laghmara | On the information selection for optimal data association[END_REF]. The best hypotheses are found based on the optimization presented in Section 3.5.

BBA from Sensor Data: Object Position Modeling

In this section, a recall of [START_REF] Laghmara | On the information selection for optimal data association[END_REF] on how the relative position between objects can be treated to build pairwise association bbas is presented. For the position, the bbas are defined according to Eq. ( 8). The position attribute is, in this application, the most informative w.r.t. the association objective. By evaluating the distance between two objects in a common spatial frame, it will be possible to define if they are associated or not or if there is a doubt. Roughly speaking, this model extends the fact that an object cannot be at two different locations in the end for etc.) between each pair of objects [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempstershafer theory[END_REF]:

         m p i,j ({y}) = α exp -γ d β ij , m p i,j ({n}) = α (1 -exp -γ d β ij ), m p i,j (Θ i,j ) = 1 -α , (28) 
where 0 < α < 1 is the sensor a priori known reliability. γ ∈ R * and β ∈ N * are weighting parameters. Generally speaking, the model parameters are defined heuristically [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempstershafer theory[END_REF]. In Section 5.2, the identification of these coefficients will be 370 discussed. In this application, each object is defined by a bounding box in the image coordinates as shown in Fig. 5. The position and scale of an object can be evaluated based on the top left corner and the bottom right corner of the bounding box. Therefore, the similarity measure d ij is defined as follows: 

d ij = d tl ij + d br ij 2 , ( 29 
)
where d tl ij and d br ij stand for the Euclidean distances in the sensor frame between the top left (tl) and bottom right (br) corners of the X i and Y j bounding boxes respectively as shown in Fig. 6a.

BBA from Sensor Data: Object Motion Direction Modeling

Assuming that the direction of motion of each track Y j and target X i is available throughout time by a given sensor (here a LiDAR), we propose to compute the similarity measure ∆ψ ij as follows:

∆ψ ij = |ψ Xi -ψ Yj |, (30) 
where ∆ψ ij is the relative direction of motion of objects X i and Y j while ψ Xi and ψ Yj are the direction of motion of each of them (Fig. 6b). This measure is therefore used to generate the adequate bba. In a similar way than for the position bba, the representation of a specialized source model is retained. However, it is obvious that for object pairings, the orientation is less pertinent or informative than the position. In fact, two different objects can move in the same direction leading to a small relative orientation. In this case, these objects should not be associated. A first idea would be to define a bba supporting either the non association or the ignorance as performed in [START_REF] Laghmara | Evidential object association using heterogeneous sensor data[END_REF]. This model can be built from the antagonist mass function Eq. ( 8):

Model 1:

         m o i,j ({y}) = 0, m o i,j ({n}) = α(1 -exp -γ∆ψij β ), m o i,j (Θ ij ) = 1 -α(1 -exp -γ∆ψij β ). (31) 
Eq. ( 31) supports the non-association when object have different direction in the sensor frame or at least, it is ignorant. Its drawback is that it will never be confident in the association of objects even if they are matching. This might alter the decision-making process and select false associations (an example is presented in Section 5). To cope with this inconvenience, the direction of motion source can be expressed defined by Eq. ( 32) similarly to the position bba. One objective of this paper is to study both models on different real scenarios in order to evaluate their impact on the association process (see Section 5).

Model 2:

         m o i,j ({y}) = α exp -γ∆ψij β , m o i,j ({n}) = α(1 -exp -γ∆ψij β ), m o i,j (Θ i,j ) = 1 -α. ( 32 
)

Experimental Results

This section evaluates the proposed multi-feature fusion on real data from KITTI [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF]. It largely extends [START_REF] Laghmara | Evidential object association using heterogeneous sensor data[END_REF] in which the authors rated the orientation model 1 from Eq. ( 31) on a pedestrian detection and tracking sequence from KITTI. Here, tests are conducted with both orientation bbas on multiple scenarios (urban and highway traffic, etc.). First, the dataset used for validation and the assessment criteria are presented. In a second step, the bbas parameter identification is discussed and the position and orientation bbas validity is shown. Finally, a quantitative evaluation of the fusion framework and a discussion related to conflict management are proposed.

Dataset Description and Evaluation Criteria

KITTI provides a set of sequences containing labeled detections of pedestrians, cars, cyclists, vans, and trucks in various road scenes (highway, urban driving, etc.) as ground truth. Data from several sensors (inertial measurement units, GPS, cameras, LiDAR, etc.) mounted on a manually driven car are available. The results described here focus on the image and LiDAR data. The detections are defined by object tracklets which contain the dimensions of the 2D bounding boxes, occlusion states on the image frame, etc. For each detection, a 3D bounding box defines the set of LiDAR data that coincides with the object. The orientation angles used here correspond to the motion direction of these 3D detections. Several sequences are used due to their object and road context heterogeneity. Table 3 gives the sequence details and Fig. 7 a screenshot of the driving situations. They vary according to the number and nature of detections as well as the vehicle's speed during data recording. For instance, Sequence 17 contains a set of frames which was captured when the car was stationary. The acquisition from Sequence 08 is majorly established between 30 to 60 km/h and more. In Sequence 18, the vehicle's speed was mostly less than 30 km/h. A total number of nearly 2 000 associations are evaluated for these 3 sequences. Seq.08 Seq.17 Seq. 

Pedestrian Car Cyclist Van

Seq.08

Seq.17 ---

Seq.18

Table 4: Object class in the KITTI sequences. Fig. 8 shows the number of detected objects per frame according to the used sequences. For instance, Seq.08 and Seq.17 contain at most 5 objects.

However, sequence 18 contains frames having up to 7 objects and most of the frames contain 4 to 5 objects. Therefore, Seq.18 has the most associations to process, 1130 against less than 500 for Seq.08 and Seq.17. Finally, Table 4 415 describes the nature/class of objects labeled in the respective sequences. Their heterogeneity can be easily attested.

The evaluation of the approach is established according to the rate of true associations known as the recall. The recall is defined as the fraction of matched pairs that are correct and the fraction of true object pairs that were matched [START_REF] Denoeux | Optimal object association in the dempster-shafer framework[END_REF]:

Recall(%) = |{true pairs} ∩ {matched pairs}| {matched pairs} . (33) 

Model Identification

Considering the importance of parameters α /α, β /β and γ /γ in the bbas given by Eq. ( 28), Eq. ( 31) and Eq. ( 32), the determination of these values according to the nature of the similarity measure is investigated. Basically, each parameter has a specific meaning. α /α translate the sensor's reliability, β /β and γ /γ are weighting parameters function of the targeted application.

α /α depends on the source providing the data to be gathered, here the sensors.

In this case, due to the high quality of these sensors, they are considered reliable.

The parameters are set to 0.9 (α = α = 0.9), standard values for this kind of application. This is a good compromise since it allows to keep some ignorance even if the source is confident in the association (i.e. when d ij is close to 0).

β /β has very little impact on the performance of the association, it can be fixed either to 1 or 2 [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempstershafer theory[END_REF]. Here, it is decided, for comparison purposes, to follow the standard choice for MOA which is to set β = β = 1 [START_REF] Denoeux | Optimal object association in the dempster-shafer framework[END_REF].

γ /γ is very important because it represents the decreasing rate of the association confidence. It should be chosen considering the nature of the similarity measure and its variation range. Here, a sensitivity study is made to determine these factors according to the recall (Eq. ( 33)). The analysis is devoted to the object position modeling but the same is applied to identify the object motion direction model. Figure 9 shows the variation of the recall according to the KITTI Sequence 08, 17 and 18. It can be seen that the most significant results are obtained for γ = 0.01. This value is not only convenient for the sequences that have been tested but it can be generalized to any sequence w.r. To measure the impact of γ on the mass model, Figure 11 shows three different configurations. It can be seen obviously that the larger γ is, the faster the association mass decreases with respect to the similarity measure d ij . It can be noticed that for γ = 0.02 and γ = 0.1, the association masses are quickly tending to 0 which explains the decreasing recall in Figure 9. This configurations would lead in a loss of confidence in the association with small variations of the 29 similarity measure and would not be appropriate in our case. By applying the same approach to the orientation source model, the parameters α, β and γ have been fixed to resp. 0.9, 1.0 and 1.5.

Orientation Motion Model Validation

The orientation source is evaluated according to both mass models presented in Section 4.3 and the parameters α, β and γ previously obtained. This validation is performed in iso-conditions w.r.t the model parameters. This allows the source to distinguish slight variations of the object relative direction of motion.

For this experiment, Sequence 17 is used. In this scenario, five moving pedestrians are detected (cf. Fig. 12). Four of them (X 1 to X 4 ) are going in the same direction whereas X 5 , partially occluded by X 1 and X 2 , is walking in the opposite direction. Moreover, the objects have very close positions in the image frame. Tracks Y 1 , Y 2 , Y 3 , Y 4 and Y 5 (occluded) should be associated to X 1 , X 2 , X 3 , X 4 and X 5 respectively. Fig. 13 presents the bbas generated with both orientation models corresponding to the belief supporting the relation between target X 1 (new object) to track Y 5 (known object). The belief assignment is made according to the relative direction of motion of objects detected between two successive frames as shown in Fig. 12. Model 2 distributes the knowledge on association, non-association, and ignorance (cf. Fig. 13) but is not confident in the association (m o 1,5 ({y}) = 0.01) of X 1 and Y 5 as they move in opposite directions. Moreover, both models are equally confident in the non-association of X 1 to Y 5 . Finally, their amount of ignorance is very similar in this situation and both correctly describe the behavior of objects in the scene where X 1 cannot be associated to Y 5 when referring to their motion. In order to evaluate the presented models for the MOA, they are both included in the hierarchical fusion described earlier. The process is evaluated on frame 30 (Fig. 12). First, the object position and size source provides the following associations (target-to-track | track-to-target): Figure 13: m o 1,5 (.) according to the orientation models.

X 1 X 2 X 3 X 4 X 5 Y 1 Y 2 Y 3 Y 4 Y 5 ↓ ⇓ ↓ ↓ ⇓ ↓ ⇓ ↓ ↓ ⇓ Y 1 Y 5 Y 3 Y 4 Y 2 X 1 X 5 X 3 X 4 X 2
Table 5: Association decisions with the position/size source on KITTI Seq.17.

It can be seen that an ambiguity (represented by a double arrow) occurs in the association of X 2 → Y 5 and X 5 → Y 2 in both ways due to the close position 490 and occlusion of these objects in the scene. The standalone orientation source generated according to Model 1 believes in the following assignments: to Model 2 gives the following pairings:

X 1 X 2 X 3 X 4 X 5 Y 1 Y 2 Y 3 Y 4 Y 5 ⇓ ↓ ⇓ ↓ ⇓ ⇓ ↓ ⇓ ⇓ ⇓ Y * Y 2 Y * Y 4 Y * X * X 2 X * X * X *
X 1 X 2 X 3 X 4 X 5 Y 1 Y 2 Y 3 Y 4 Y 5 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Y 1 Y 2 Y 3 Y 4 Y 5 X 1 X 2 X 3 X 4 X 5
Table 7: Association decisions with Model 2 on KITTI Seq.17.

All associations are correct in both ways. Even though some distinct objects move in the same direction, for instance target X 3 and track Y 4 , the model parameters allow the source to easily differentiate them. Finally, it will be shown that better pairing results are obtained when using Model 2 to represent the orientation information in the fusion process.

Performance Rating

Table 8 compares the performance of the standalone sources and the proposed multi-feature fusion approach. The evaluation is done according to sequences 08, 17, and 18. To evaluate more effectively the proposed approach, the estimation and combination steps are investigated. The results describe both orientation bbms and two combination rules are investigated: the conjunctive rule and the orthogonal sum (OS).

The results show that the orientation source attains significantly different rates of true associations with both models. In fact, for all sequences, Model 2 gives better performance than Model 1 as expected in Section 5.3. On the other hand, the position source scores a high rate of true associations for all sequences confirming that this is the most informative data for heterogeneous object pairing. Nevertheless, the complexity and variety of the scenes and of the related objects already leads to some wrong associations. An error-free pairing only with the position is not achievable mainly due to the occlusion cases or crossing scenarios. The best scores (100%) are obtained by the fusion strategy with Model 2 for the orientation source. However, an important factor to be considered is the combination operator. For instance, in Sequence 18, the enhancement of the recall is remarkable when normalizing the conflict in the two levels of combination. It raises from approximately 57% to 100%. Here, it can be explained by the absorbing property of the conflict during successive conjunctive combinations lowering the belief in the pairwise associations. This reveals the need for an investigation on the conflict management method and the comparison of different operators which will be exposed in the next section. 

Conflict Management

Considering the variety of combination rules in the evidence theory, it is necessary to guarantee the conformity of a chosen rule to the addressed problem.

In the presented approach, two main levels of combination are to be considered: the fusion of multiple features in Eq. ( 26) and the line/column-wise combination in Eq. ( 27). The first level of combination is interesting to investigate since its objective is to fuse heterogeneous data described by belief functions in order to remove ambiguity in the association problem. In this pairwise combination of m p i,j (.) and m o i,j (.), two situations can be encountered: either the sources agree or highly conflict. When they disagree, the resulting conflict is important as it indicates an eventual mis-association due to a small variation of position but a large relative direction of motion and vice versa. Under the reliability hypothesis of each source, the conflict raised at this first fusion level informs about two objects that do not match. The conflict distribution is evaluated on the example depicted in Fig. 12 according to the combination rules presented in Section 3.4. In Fig. 15, the four masses expressing conflict, association (yes), non-association (no) and ignorance of the association of X 2 to Y 5 with respect to both sources and the results of five combination rules are displayed. It shows the high conflict due to the fact that X 2 and Y 5 are highly close whereas their motion is in complete opposition. The conflict appearing in the conjunctive combination is relatively high (0.719). The non-association mass expressed by the orientation source being high, the combined non-association mass (in normalized/conjunctive) is higher than the association mass. This also applies for the other combination rules. The only difference resides in the ignorance and con-flict masses. Basically, both Yager and Dubois and Prade's (DP) give the same output because each source expresses its belief only on three focal elements: the association hypothesis of two particular objects, their non-association and the ignorance. Therefore, the disjunction {y} ∪ {n} is equivalent to the ignorance. Both Yager and DP induce less specific bbas. Thus, it is more interesting to use either Dempster's normalization or a more refined distribution such as PCR6. In Fig. 16, the best pignistic probabilities corresponding to each correct association are displayed for the use case illustrated in Fig. 12. The reason for which these results are demonstrated is to evaluate the pairwise combination (first fusion level) on the position and orientation sources. For this first combination, all operators are used whereas for the second level, only the the normalized rule is used. It can be noticed that the resulting BetPs vary differently with respect to the chosen operator. For instance, Yager and DP's impact on the specificity is apparent as it has the lowest BetPs. However, Dempster's rule has quite assertive probabilities since they mostly vary between 0.7 and 0.9. PCR6 resulting probabilities remain approximately in the range of relevant values. Fig. 16 demonstrates that normalized-based pairwise combination has the largest confidence in the chosen hypotheses compared to the rest of the opera-tors. Finally, a comparison is done between Dempster's rule and PCR6 on the complete Seq.17 in Fig. 

Conclusion and Perspectives

This paper tackles the problem of Multiple Object Association (MOA) in the Belief Function framework for Intelligent Vehicles (IV). It proposes three main contributions: the first one is based on an evidential multi-feature fusion strategy to treat the MOA issue in cluttered environments. The approach is based on two heterogeneous sources defined by the position and size of dynamic objects as well as their direction of motion in the scene. This strategy provides a complementary information to the position source, commonly used, in order to ensure a distinction of close objects which could belong to the same category (pedestrians, cars, etc.) but having different trajectories. Hence, this information removes ambiguity in decision-making. The evidence raised by each feature (position and orientation) is defined by independent mass models to generate two separate sources. The second contribution relies on the selection and study of the appropriate mass models w.r.t. to the available sensor data. Hence, this paper first provides a recall of the most used mass models and discusses the specialized source model finally retained. The model identification process is also depicted. A credal fusion combines the position and orientation data. For this fusion, several rules are evaluated according to their rate of true associations on three complex sequences provided by the KITTI database. The proposed approach performed better than the individual sources as they provide different characteristics related to an object's comportment. The fusion, therefore, merges the evidence provided by each source to solve ambiguities. The third major contribution is the evaluation of the proposed strategy on an important and influential set of real data in the field of IV. Commonly, belief functionbased MOA algorithms are validated on limited data sets. In this case, the paper stands out by the extensive objective validation it highlights. The results have also demonstrated the impact of the feature fusion in the association of dynamic objects to ensure a robust perception in the IV context. Several perspectives could be considered. In the current work, a LiDAR provides the object direction of motion and a camera issues the position and size. An interesting research direction to investigate would be to define the object position using the LiDAR data and the direction of motion based on the image frames. Some preliminary tests of this configuration show very similar results compared to those of this paper. This investigation will be pursued for comparison purposes. Secondly, taking account of additional features related to the objects in the scene in order to be robust w.r.t. the large variety of driving scenarios is a necessary research direction. For instance, situations dealing with objects of different natures, kinematics, shapes, etc. require to consider valuable object-related information in the association process. Another future work will be to implement tracking to insure a complete supervision of complex environments. Finally, this algorithm will be tested on the experimental vehicle ARTEMIPS within the laboratory to validate its efficiency in a real-time multi-sensor data fusion framework.

  al. highlight the interest of belief function-based MOA (BF-MOA) w.r.t. the bayesian approaches.

Figure 1 :

 1 Figure 1: Example on a typical scene from the KITTI benchmark (Top) and the corresponding LiDAR Data (Bottom).

Figure 2 :

 2 Figure 2: Multi-Object association from [24].

  with s ∈ [0, 1]. When B = Θ, this model is known as a simple support function. With B = A, a complementary mass function is obtained, very similar to a probabilistic modeling especially when |A| = 1 (|.| is the cardinality) which

Figure 3 :

 3 Figure 3: Refinement enabling the transfer from Θ ij to Θ X i [12].

Figure 4 :

 4 Figure 4: Hierarchical multiple feature fusion architecture.

Algorithm 1

 1 scene and two different objects cannot have exactly the same position at a given time. The masses are based on statistical distances (Euclidean, Mahalanobis, Multiple Feature Fusion Require: d ij , ∆ψ ij , i ∈ I = {1, ..., N }, j ∈ J = {1, ..., M }. Ensure: Hierarchical and sequential combination to compute m pm p i,j (.) m o i,j (.) end for end for {Evidential Source Selection (see [24])} {Sequential Combination} for i = 1 to N do m p,o i,.

Figure 5 :

 5 Figure 5: Example of various object detections (Extracted from KITTI Seq.02 [22]).

Figure 6 :

 6 Figure 6: Attribute determination (Extracted from KITTI Seq.18 [22]).
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Figure 7 :

 7 Figure 7: Example frames from Sequence 08 (bottom) and 18 (top).

Figure 8 :

 8 Figure 8: Number of detected objects per frame w.r.t the used sequences.

  t. the resolution of the considered images. Since the similarity measure d ij corresponds to the relative distance of the recorded positions in pixels, its values can vary at most in the whole frame size, i.e. d ij ∈ [0...1294.7]. An example of the variation of d ij according to each frame of Sequence 08 is illustrated in Figure 10. The confidence in the association rises when this measure is low and tends to zero

Figure 9 :Figure 10 :

 910 Figure 9: Influence of the position decreasing rate γ on the association performance.

Figure 11 :

 11 Figure 11: Influence of γ on belief assignment.

Figure 12 :

 12 Figure 12: Pedestrian position and direction of motion: from known to new detections (lower to upper frame).

Figure 15 :

 15 Figure 15: Belief expressed in the association of X 2 to Y 5 (from Fig. 12) by the standalone sources and their fusion.

Figure 16 :

 16 Figure 16: Combination rule evaluation at the pairwise fusion: pignistic probabilities corresponding to the best hypothesis.
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  . It can be noticed that the normalized combination maximizes the confidence in the best hypotheses. Such operation can facilitate the optimization step in decision-making by avoiding hazardous decisions and can guarantee a robust association regardless the matching algorithm.

Figure 17 :

 17 Figure 17: Best Pignistic Probabilities according to two combination strategies (OS: Orthogonal Sum, PCR6) on KITTI Seq.17.

Table 1 :

 1 Target-to-Track pignistic matrix

	BetP Yj (.)	X 1	. . .	X N	*
	Y 1	BetP Y1 (X 1 ) . . . BetP Y1 (X N )	BetP Y1 ( * )
	Y 2	BetP Y2 (X 1 ) . . . BetP Y2 (X N )	BetP Y2 ( * )
	. . .	. . .	. . .	. . .	. . .

Table 2 :

 2 Track-to-Target pignistic matrix.

Table 3 :

 3 18 KITTI Image sequence characteristics.

	Number of frames	390	145	339
	Number of associations	492	434	1130
	Max vehicle speed (km/h)	62	0	55
	Min vehicle speed (km/h)	38	0	0
	Speed < 30 km/h (%)	0	100	66
	30 < Speed < 60 km/h (%)	86	0	34
	Speed > 60 km/h (%)	14	0	0

Table 6 :

 6 Association decisions with Model 1 on KITTI Seq.17.

		It is noticeable that many wrong decisions are made since this bbm mainly
		supports appearances (Y * ) and disappearances (X * ) of objects as shown by
	495	Eq. (24). It can be concluded that the ignorance given by a source supports
		mainly the appearance/disappearance probability, leading to incorrect associa-
		tions. On the other hand, the standalone orientation source generated according
		32

Table 8 :

 8 Association scores by standalone sources and their combination.

		Combination operator Position Orientation (Model 1) Fusion Orientation (Model 2) Fusion
	Seq.08	Conjunctive OS	97.25 97.26	75.02 75.02	97.05 97.05	96.75 96.54	99.59 99.69
	Seq.17	Conjunctive OS	98.40 99.54	55.61 55.61	99.09 100	94.06 95.32	90.18 100
	Seq.18	Conjunctive OS	98.76 99.20	90.03 90.03	98.58 98.62	68.36 96.50	57.29 100

simultaneously express belief and disbelief in a hypothesis, i.e., a mass cannot