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Abstract 13 

Several studies have proposed to predict Species Richness (SR) by combining the 14 

predictions of independent Species Distributions Models (SDMs) (the predict first-assemble later 15 

strategy). Alternative methods propose to combine outputs from SDMs differently, by either 16 

summing predicted presence probabilities at each location, or summing binary presence 17 

predictions after thresholding the probabilities. Species can occupy various proportions of their 18 

suitable habitats (i.e, have various levels of habitat saturation), which can cause discrepancy 19 

when predicting their presences through SDMs. Furthermore, these discrepancies can be 20 

increased when combining the predictions of individual SDMs to predict SR. In this article, we 21 

performed simulations of species distributions with varying habitat saturation (i.e., the amount of 22 

suitable habitat occupied by a species), and we compared observed richness with that predicted 23 

by the alternative approaches. We found that probability-based richness is not biased by the level 24 

of habitat saturation, while threshold-based richness over-predicts richness at low habitat 25 

saturation and under-predicts it as high habitat saturation. Probability-based richness should thus 26 

be used in priority when predicting species richness locally. Nonetheless, threshold-based 27 

richness represents species richness constrained by environmental filtering only and thus is a 28 

useful indicator of potential species richness when species fully saturate their habitats. Thus the 29 

systematic comparison of probability-based and threshold-based richness predictions can reveal 30 

the importance of habitat saturation and can thus help identify community assembly mechanisms 31 

at play. 32 

Keywords: habitat saturation, species richness, stacked species distribution models, 33 

predicted presence probabilities, threshold-based presence prediction 34 



Word count: 2909 35 

Highlights 36 

• Habitat saturation impacts predictions from Species Distribution Models (SDM) 37 

• Habitat saturation biases stacked SDMs (S-SDMs) predictions 38 

• Probability-based richness predicts local SR without bias whatever habitat saturation 39 

• Comparing different S-SDMs predictions can shed light on community assembly processes 40 

Introduction 41 

Species Richness is an Essential Biodiversity Variable (EBV) (Pereira et al., 2013), which 42 

should be assessed, monitored and compared across space, time, and ecological contexts. 43 

Different models have been proposed for richness prediction in diverse ecological contexts and at 44 

large spatial scale (Dodson, 1992; Graham and Hijmans, 2006; O’Brien, 1998), with the 45 

perspective of identifying biodiversity hotspots (Mazel et al., 2014; Myers et al., 2000), targeting 46 

effective management practices (Chown et al., 2003), quantifying biodiversity changes (Newbold 47 

et al., 2015) and predicting ecosystem functioning (Cardinale et al., 2012). 48 

Several methods can be used to predict richness depending on which ecological processes 49 

are at play. For example, Macro-Ecological Models (MEMs) directly predict richness at any 50 

location as a function of local environmental variables. These models consider the influence of 51 

environmental filtering and energy limits on richness (Hurlbert and Stegen, 2014). Because site-52 

species data are first aggregated to estimate richness and then used to predict the variation with 53 

the environment, these approaches are called ‘assemble first, predict later’ (Ferrier and Guisan, 54 

2006). Conversely, more and more global and local biodiversity databases include species 55 



occurrences instead of local assemblage composition (GBIF, 2019; Sullivan et al., 2009; Tedesco 56 

et al., 2017). An alternative approach has been to first model occurrences, independently for each 57 

species, at any location using environmental variables through species distribution models 58 

(SDMs) (Guisan and Thuiller, 2005; Guisan and Zimmermann, 2000), then to deduce potential 59 

local richness by combining (=stacking) the predictions of individual SDMs (Calabrese et al., 60 

2014; D’Amen et al., 2015b; Gavish et al., 2017; Scherrer et al., 2018; Schmitt et al., 2017), 61 

which is known as the ‘predict first, assemble later’ approach (Ferrier and Guisan, 2006). When 62 

stacking SDMs, each SDM predicts occurrences for species independently using environmental 63 

variables (Guisan and Zimmermann, 2000). Then, predictions of SDMs for different species are 64 

summed to predict richness at assemblage-level. Stacked-SDMs (S-SDMs) predict observed 65 

richness as well as or better than macro-ecological models (Dubuis et al., 2011; Guisan and 66 

Rahbek, 2011), but there is still no consensus on the stacking method to be used so as to reliably 67 

predict richness with S-SDMs (Scherrer et al., 2018). 68 

Two main methods exist to stack SDMs (Dubuis et al., 2011; Pineda and Lobo, 2009; 69 

Scherrer et al., 2018). Some authors suggested using thresholds to convert probabilities to binary 70 

predictions (presence and absence) (Jim’enez-Valverde and Lobo, 2007; Liu et al., 2005). These 71 

binary predictions are then summed to predict richness at local scale (hereafter threshold-based 72 

richness). One of the main arguments for conversion of probabilities provided by SDMs to binary 73 

predictions is that most of practical applications need binary maps (Jim’enez-Valverde and Lobo, 74 

2007). A caveat of binary predictions is that they translate continuous responses of species along 75 

environmental gradients into binary responses, which imply more abrupt shifts from presence to 76 

absence between suitable and unsuitable conditions (Meynard and Kaplan, 2012). When 77 

predicted probabilities are under the threshold, the model only predicts absences, while it only 78 



predicts presences when predicted probabilities are above it. Close to the threshold value, a small 79 

change in predicted presence probability can change the binary prediction from absence to 80 

presence. Meynard et al. (2012) showed that presence predictions using thresholds fit observed 81 

presences only when species has a threshold-like response, while error increases when a species 82 

response is more gradual. The more species considered that have a gradual response along the 83 

environment, the greater the error when predicting richness. SDMs also directly provide 84 

continuous presence probabilities as outputs (Guisan and Thuiller, 2005), and threshold 85 

conversion to binary predictions adds a step compared to the direct sum of individual model 86 

predictions. Summing the probabilities of individual species model provides the mathematical 87 

expectation of the number of species locally present, assuming that species occurrences are 88 

independent (Calabrese et al., 2014; Violle et al., 2011), hereafter called probability-based 89 

richness. 90 

A basic implicit assumption of SDMs is that only environmental conditions determine 91 

species occurrence, depending on a species fundamental niche (Guisan and Zimmermann, 2000). 92 

Additional processes should affect the realized occupancy patterns, such as dispersal limitation, 93 

competitive exclusion, local extinction dynamics (Pulliam, 2000). SDM predictions and thus 94 

richness predictions are likely to be biased by neglecting the contribution of processes shaping 95 

realized species distributions beyond their fundamental niche requirements (Václavík and 96 

Meentemeyer, 2012), thereby affecting SDM predictions and thus richness predictions. For 97 

instance, due to source-sink dynamics, some species can occupy less suitable sites, and thus be 98 

distributed outside the suitable habitat delimited based on presence probabilities predicted by 99 

SDMs. In addition, a species that is less often present across its suitable habitat would have a 100 

lower predicted presence probability than a species that is present in all its suitable habitats, even 101 



though the predicted binary distribution of an SDM would be the same. We define habitat 102 

saturation of a species as a parameter that affects species occurrence probability based on 103 

environmental suitability. Here saturation is a species-level property and not an upper bound for 104 

richness in assemblages as proposed by Mateo et al. (2017). When species display low habitat 105 

saturation, their realized presence probabilities decrease, so that the predicted summed 106 

probability gets lower. On the contrary, the threshold-based presence prediction is not affected, 107 

by habitat saturation. Indeed, even if the determined species threshold changes with habitat 108 

saturation, the prediction will still be binary (presence or absence) (Meynard and Kaplan, 2012), 109 

thus we expect to observe increasing difference between threshold-based and observed richness 110 

with lower (or higher) habitat saturation. 111 

Predicted presence probabilities partly reflect the ability of species to saturate their niche. 112 

Therefore, we expect probability-based richness to best predict actual richness. While we expect 113 

threshold-based richness to over-predict actual richness. Threshold-based richness rather 114 

represents a pool of species able to occur in given environmental conditions. To test these 115 

expectations we simulated virtual species with varying saturation and niche requirements (Hirzel 116 

et al., 2001; Meynard et al., 2019). We performed S-SDMs to predict richness given 117 

environmental conditions using both threshold- and probability-based richness and compared 118 

how the predictions were affected by habitat saturation. Probability-based richness followed 119 

observed richness whatever the habitat saturation, while threshold-based richness only matched 120 

observed richness when habitat saturation was 100%. Threshold-based richness only considered 121 

the environmental requirements of species, and could thus be used as the prediction of potential 122 

richness based solely on local environmental conditions. Potential richness could then be 123 

compared with other richness predictions that incorporate other ecological processes. 124 



Material and Methods 125 

Species assemblage simulations 126 

Individual species simulation. We simulated a linear environmental gradient of 2000 127 

values, from 1 to 2000. We then used the virtualspecies package version 1.4-2 (Leroy et al., 128 

2016) to define 100 species independently, with quadratic environmental response 𝑠𝑠𝑖𝑖,𝑘𝑘 = 𝑎𝑎 ×129 

Env𝑘𝑘2 + 𝑏𝑏 × Env𝑘𝑘 , with 𝑠𝑠𝑖𝑖,𝑘𝑘 the environmental suitability of species 𝑖𝑖 in assemblage 𝑘𝑘 and Env𝑘𝑘  130 

the environmental variable. 𝑎𝑎 was drawn from a uniform distribution between -20 and -0.01. 𝑏𝑏 131 

was chosen as 𝑏𝑏 = −𝑚𝑚 ∗ 2 ∗ 𝑎𝑎 where 𝑚𝑚 was drawn from a uniform distribution between 1 and 132 

2000 and represents the environment of maximum suitability. The suitability was then scaled 133 

between 0 and 1 by subtracting its minimum and dividing by the difference of its maximum and 134 

minimum. We used the function generateRandomSp() in virtualspecies to get suitability 135 

probabilities for each species and each environmental value (see Figure 1 left column). 136 

Habitat saturation and predicted assemblages. We simulated species presences along 137 

the environmental gradient by performing binomial draws based on the presence probabilities. 138 

The presences probabilities 𝑝𝑝𝑖𝑖,𝑘𝑘 = 𝑠𝑠𝑖𝑖,𝑘𝑘 × 𝛽𝛽 depend on (i) the suitability probabilities defined 139 

above, 𝑠𝑠𝑖𝑖,𝑘𝑘 for species 𝑖𝑖 and assemblage 𝑘𝑘, reflecting fundamental niche requirements, and (ii) an 140 

additional habitat saturation coefficient 𝛽𝛽 representing the ability of species to occupy their 141 

suitable habitat (realized niche). When saturation is below 100%, the species tend to be less often 142 

present in suitable sites than species at 100% saturation (e.g., due to dispersal limitation or 143 

extinction). Species can also reach a saturation over 100% when they are present in less suitable 144 

conditions than according to their fundamental niche (e.g., through source-sink dynamics). We 145 

simulated 8 values of 𝛽𝛽: 10%, 40%, 70%, 100%, 120%, 150% and 170%. If the weighted 146 



probability of presence was greater than one, we reduced it to a maximum of one. We thus 147 

simulated each species assemblage 𝑘𝑘 for each value 𝛽𝛽. 148 

Individual and Stacked Species Distribution Models 149 

We performed Species Distribution Models (SDM) based on simulated species presences. 150 

Modeling and Predicting Presences. We modeled the presence of each species using two 151 

predictors: the environmental value and the square of this value (see Figure 1 middle column) in 152 

Generalized Linear Models (GLM) of the binomial family: 153 

 logit�𝑝𝑝𝑖𝑖,𝑘𝑘� = 𝛽𝛽0Env𝑘𝑘 + 𝛽𝛽1Env𝑘𝑘2  , 
(1) 

with 𝑝𝑝𝑖𝑖,𝑘𝑘  the presence of species 𝑖𝑖 in assemblage 𝑘𝑘 and Env𝑘𝑘  its associated environmental 154 

variable. We thus estimated in each assemblage the probability of finding each species. For each 155 

species we determined the best threshold to get binary predictions by maximizing the True Skill 156 

Statistic (TSS) (Allouche et al., 2006). The TSS balances the proportion of presences correctly 157 

predicted and the proportion of absences correctly predicted. 158 

Predicting Species Richness. We stacked SDM predictions in each assemblage to get a 159 

prediction of richness, with two approaches. We first summed the predicted presence probability 160 

for each species (probability-based richness, prediction (A) in Figure 1): 161 

 
𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑rich,prob,𝑘𝑘 = �𝑝𝑝𝑖𝑖

𝑆𝑆

𝑖𝑖=1

(𝑘𝑘), 
(2) 



 

with 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑rich,prob,𝑘𝑘  the probability-based predicted richness in assemblage 𝑘𝑘, 𝑆𝑆 the total 162 

number of species in the species pool, and 𝑝𝑝𝑖𝑖(𝑘𝑘) the predicted presence probability of species 𝑖𝑖 in 163 

assemblage 𝑘𝑘. Using these probabilities we determine a species-specific threshold 𝑡𝑡𝑖𝑖 using the 164 

True Skill Statistic (Allouche et al., 2006) that defines a binary function 1𝑖𝑖(𝑘𝑘) to predict the 165 

presence of the species in each assemblage: 166 

1𝑖𝑖(𝑘𝑘) : = �1 if 𝑝𝑝𝑖𝑖(𝑘𝑘) ≥ 𝑡𝑡𝑖𝑖
0 if 𝑝𝑝𝑖𝑖(𝑘𝑘) < 𝑡𝑡𝑖𝑖

, 
(3) 

with 𝑝𝑝𝑖𝑖(𝑘𝑘) the predicted presence probability of species 𝑖𝑖 in assemblage 𝑘𝑘 and 𝑡𝑡𝑖𝑖 the 167 

species 𝑖𝑖 threshold defined using TSS. We then compared the sum of predicted presence 168 

probabilities 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑rich,prob,𝑘𝑘 to the sum of predicted presences with species-specific threshold 169 

(threshold-based richness, prediction (B) in Figure 1): 170 

𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑rich,thresh,𝑘𝑘 = �1𝑖𝑖

𝑆𝑆

𝑖𝑖=1

(𝑘𝑘), 
(4) 

with 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑rich,thresh,𝑘𝑘 the threshold-based predicted richness in assemblage 𝑘𝑘, 𝑆𝑆 the total 171 

number of species in the species pool and 1𝑖𝑖(𝑘𝑘) the indicator function defined as above. 172 

We examined how predicted richness fitted observed richness across the whole 173 

environmental gradient, for different levels of habitat saturation. We quantified the deviation with 174 

Root Mean Square Error (RMSE): 175 



 

RMSE = � 1
𝑁𝑁𝑘𝑘

�(
𝑁𝑁𝑘𝑘

𝑘𝑘=1

𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑rich,𝑘𝑘 − 𝑜𝑜𝑏𝑏𝑠𝑠rich,𝑘𝑘)2, (5) 

with 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑rich,𝑘𝑘 the predicted richness of a given method in assemblage 𝑘𝑘, 𝑜𝑜𝑏𝑏𝑠𝑠rich,𝑘𝑘, the 176 

observed richness in this assemblage, and 𝑁𝑁𝑘𝑘 the total number of assemblages. We defined Bias 177 

and Variance components: 178 

 
Bias =

1
𝑁𝑁𝑘𝑘

�(
𝑁𝑁𝑘𝑘

𝑘𝑘=1

𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑rich,𝑘𝑘 − 𝑜𝑜𝑏𝑏𝑠𝑠rich,𝑘𝑘) (6) 

 
Variance =

1
𝑁𝑁𝑘𝑘

�(
𝑁𝑁𝑘𝑘

𝑘𝑘=1

𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑rich,𝑘𝑘 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ� )2 (7) 

with 𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ�  the average predicted richness of a given method across all assemblages. 179 

All analyses and SDMs were performed using R version 3.5.2 (R Core Team, 2019). A 180 

version of the code used in this article is archived on Zenodo 181 

(https://doi.org/10.5281/zenodo.3345742). 182 

Results 183 

Binary predictions (solid segments above and below the plot) showed few differences 184 

whatever habitat saturation (Figure 2). There were the same from environment 1 to 273, then 185 

between environment 467 and 1514, and for environments greater than 1720. In total binary 186 

predictions were the same whatever habitat saturation for over 80% of the environmental values. 187 



However, binary predictions changed abruptly from absences to presences and from presences to 188 

absences for environment close to 500 and to 1500, respectively. On the contrary, the predicted 189 

presence probabilities did vary with habitat saturation (solid curves in the center). The greater the 190 

habitat saturation, the greater the maximum predicted probability. For example at 100% habitat 191 

saturation, the maximum predicted probability was close to 0.95, while at 70% saturation it was 192 

0.7. 193 

When comparing observed richness to probability-based richness and threshold-based 194 

richness (respectively green and purple points and curves on Figure 3), we observed differences 195 

depending on habitat saturation. Across all habitat saturation levels, probability-based richness 196 

showed consistently lower RMSE and variance than threshold-based richness (Figure 4). For 197 

habitat saturation below 100%, threshold-based richness was greater than observed richness, 198 

while probability-based richness followed observed richness. Observed richness against 199 

probability-based richness followed the identity line closely with a slope not different from one 200 

(all 𝑝𝑝 > 0.5, H0 being that the slope is not different from one) and an intercept not different from 201 

zero, related to zero bias at all habitat saturation levels (Figure 4 middle). The relationship 202 

between observed richness and threshold-based richness was not linear and did not follow the 203 

identity line whatever habitat saturation. Probability-based richness showed similar RMSE at all 204 

habitat saturation levels, while threshold-based richness reached its minimum RMSE when 205 

habitat saturation was 80%. When species under-saturated their habitats (𝛽𝛽 < 100%), probability-206 

based richness followed closely observed richness while threshold-richness almost always over-207 

predicted richness. Threshold-based richness lowest RMSE at 80% habitat saturation can be 208 

explained by a balance between slight under-prediction when richness was smaller than 75 and 209 

over-prediction when richness was greater than 75 (Figure 3). When habitat saturation reached 210 



100%, both types of predictions were close to observed richness (Figure 3). At this habitat 211 

saturation, threshold-based richness showed slight over-prediction in richer communities 212 

(predicted richness around 90 species for sites containing 80 species) and slight under-prediction 213 

in poorer sites (predicted richness of around 30 for sites containing 45 species), and an average 214 

under-prediction (negative bias). At this habitat saturation, the RMSE of both methods was close 215 

to the one at 80% habitat saturation, but the variance in prediction increased for probability-based 216 

richness. When species over-saturated their habitats (𝛽𝛽 > 100%), threshold-based richness 217 

strongly under-predicted richness in poorer communities (negative bias) while probability-based 218 

richness showed no bias on average (Figure 4 middle). For example at 150% habitat saturation, 219 

for sites with observed richness around 75, threshold-based richness was around 30 while 220 

probability-based richness was 75. 221 

Discussion 222 

We designed a virtual experiment of species occurrences along an environmental gradient 223 

and performed binomial GLM-based species distribution modeling on these data. The binary 224 

threshold-based presence prediction represented the potential habitat of each species based on its 225 

fundamental niche (Guisan and Zimmermann, 2000), whatever its actual habitat saturation. On 226 

the contrary, the range and average values of predicted presence probabilities depended on 227 

habitat saturation, for a given fundamental niche. When summing the individual species 228 

predictions, the summed presence probabilities well fitted actual richness, as expected, while 229 

habitat saturation strongly affected the threshold-based richness. We thus recommend summing 230 

stacked-SDMs probabilities to predict richness. Still, threshold-based richness can also be a 231 



useful predictor of potential richness, as species threshold-based binary predictions can be used 232 

as a reference species pool for hypothesis testing and modeling of biodiversity dynamics. 233 

In our simulations, probability-based richness on average followed observed richness 234 

whatever habitat saturation. This is in line with the fact that probability-based richness should 235 

provide the mathematical expectation of richness at a given site (Calabrese et al., 2014). Our 236 

results also showed that probability-based richness had a consistently lower RMSE than 237 

threshold-based richness, mostly because of its absence of bias. However, both methods had 238 

higher variance with higher habitat saturation, as a consequence of a mean-variance relationships. 239 

Thus at high habitat saturation, both methods predict an unreliable richness. 240 

Much emphasis has been put in species distribution modeling on providing binary 241 

occurrence prediction. Methods to define thresholds for reliable occurrence prediction have been 242 

extensively debated and alternative options have been proposed (Allouche et al., 2006; Freeman 243 

and Moisen, 2008; Liu et al., 2005, 2013). However, such a prediction does not grasp the 244 

inherently gradual response of species to environmental gradients (Hutchinson, 1957; Meynard 245 

and Kaplan, 2012), and tends to generate an artificial dichotomy. This “binarization” has two 246 

major caveats. First, it does not acknowledge the gradual variation of performance along the 247 

gradient, which increases under-prediction below the threshold and over-prediction above the 248 

threshold. Furthermore, the closer to the threshold the higher the prediction bias: just over/below 249 

the threshold, there is a greater chance to find a species present/absent than further away from the 250 

threshold. Second, it predicts only presences above the threshold and only absences below the 251 

threshold, which does not acknowledge the influence of habitat saturation irrespective of habitat 252 

suitability. In other words, threshold-based richness will always estimate richness as if species 253 

habitat saturation was 100%. Because threshold-based richness over-predicts richness for habitat 254 



saturation under 100% (or under-predicts when habitat saturation is over 100%), its accuracy 255 

regarding the prediction of species turnover may be low (D’Amen et al., 2015b; Dubuis et al., 256 

2011). At coarser and larger scales, because niche preferences dominate the distribution of 257 

species (Pearson and Dawson, 2003), we expect a more deterministic response to the 258 

environment in a threshold-like fashion (Guisan and Thuiller, 2005). Species response to 259 

environmental gradients is thus highly scale-dependent, specific at local and fine scales and 260 

threshold-like at large and coarse scales (Meynard and Kaplan, 2013). The assumption that 261 

species distribution at large and coarse scales is in a threshold fashion (Guisan and Thuiller, 262 

2005) has been difficult to prove (Boucher-Lalonde et al., 2014, 2012). Instead in birds, 263 

mammals and North American trees, a Gaussian distribution best explained the occurrence-264 

environment relationship for most species (Boucher-Lalonde et al., 2014, 2012), while the 265 

threshold model was selected only 5% of the time. Only a fraction of species responds to broad 266 

environmental gradients in a binary way. Meynard et al. (2013) also argued that threshold 267 

response of species observed in many datasets could be the results of data aggregation over 268 

various spatial and temporal scales. 269 

We defined habitat saturation as a coefficient (𝛽𝛽) that affects environmental suitability of 270 

species: it increases (𝛽𝛽 > 1) or decreases (𝛽𝛽 < 1) habitat suitability. It has been shown in diverse 271 

taxa that most species do not saturate their habitat: they occupy less habitat than their potential 272 

habitat (Boucher-Lalonde et al., 2012; Munguia et al., 2008; Svenning and Skov, 2004). Several 273 

mechanisms can explain why a species under-saturates its habitat. For example, dispersal 274 

limitation due to slow recolonization of European trees from glacial refugia has led to habitat 275 

under-saturation (Svenning and Skov, 2004). Biotic interactions are often cited as an additional 276 

factor explaining habitat under-saturation (Svenning and Skov, 2004), as species close in traits 277 



can experience limiting similarity and competitively exclude one another. On the contrary, 278 

positive biotic interactions as well as source-sink dynamics can cause habitat over-saturation 279 

(Eriksson, 1996; Pulliam, 2000; Pulliam and Danielson, 1991). Positive interactions such as 280 

facilitation make facilitated species occupy less suitable habitat thanks to the presence of other 281 

species (Bertness and Callaway, 1994; Stachowicz, 2001). Source-sink theory explains how a 282 

species can be present in unsuitable habitat (sink) by continuously immigrating from a suitable 283 

habitat (source) (Pulliam and Danielson, 1991). Here we considered a single habitat saturation 284 

coefficient (𝛽𝛽) used for all species across all assemblages. This coefficient does not take into 285 

account the variability of habitat saturation that may exist between species, where some species 286 

saturate more their habitat then others. Furthermore, the habitat saturation coefficient cannot take 287 

into account biotic interactions as it is not conditional to the presence of other species; nor that 288 

we expect source-sink dynamics to occur only close to the sources, which should lead to a 289 

context-dependent habitat saturation. Habitat saturation is also influenced by the extent to which 290 

it is measured. In very small areas (e.g., a single quadrat), species tend to fully saturate their 291 

suitable habitat, because they occupy the only micro-habitat available for them. For larger areas 292 

(e.g., several plots), the occurrence of species should be more stochastic due to dispersal 293 

limitation, limiting similarity and biotic interactions as stated above. For even larger areas (e.g., 294 

regional, continental or global), habitat saturation should increase again with the dominance of 295 

deterministic processes that influence occurrence. As such, we could use a species habitat 296 

saturation profile at different areas whose variation would show the change in main assembly 297 

processes. Further research is needed regarding habitat (un-)saturation to understand its causes 298 

and consequences. 299 



A recent study mentions a different but related concept of saturation (Mateo et al., 2017). 300 

Mateo et al. (2017) defined saturation as “environmental constraints [that] limit the number of 301 

species that can coexist in a community”. Here, we defined habitat saturation as a species-level 302 

pattern: it represents the proportion of suitable habitat that a species occupies, it is a species-level 303 

property not a community-level property. Community saturation, i.e. saturation sensu Mateo et 304 

al. (2017), depends on habitat saturation of species. If species have a limited habitat saturation, it 305 

imposes an upper bound to species richness. In our model, there are no strict limits on species 306 

richness, but on each species’ capacity to saturate its habitat. The neutral theory imposes a limit 307 

on the number of individuals in any community (Hubbell, 2001), it is a subset of the 308 

invidividuals/species present in the species pool that encompasses a larger area. Changes in 309 

number of individuals per community, species regional abundances and/or immigration 310 

probability 𝑚𝑚 from the species pool can cause changes in species habitat saturation. By choosing 311 

these three parameters, we can obtain a stable richness that can be interpreted as an upper bound, 312 

as if saturation was community-level process. However, in this case there is no direct bound on 313 

species richness. Richness results from the dynamic extinction-colonization equilibrium and 314 

fluctuates over time, it is not a property of the community per se. Mateo et al. (2017) focused 315 

mostly on S-SDMs that can be be constrained with an explicit constraint on richness. As stated 316 

above, species richness is unlikely to be directly constrained and thus modeling explicitly a 317 

richness constraint may not underline the true community assembly mechanisms that affect 318 

community composition. 319 

Our model, while an interesting basis to test assumptions regarding SDM stacking, 320 

represents an ecologically idealistic situation that uses virtual species. We used a single linear 321 

environmental gradient, which is an over-simplification of environmental gradients. Indeed, 322 



species occurrences are jointly affected by multi-dimensional environmental gradients, which can 323 

be non-linear and lead to observed trait syndromes (Laughlin and Messier, 2015). In our 324 

simulations, all species have a single trait with a single optimum, however with multi-325 

dimensional environmental gradients we could also expect multi-dimensional optima (Oksanen 326 

and Minchin, 2002). Our simulations do not consider biotic interactions, as we simulated the 327 

presence of species independently, while, as stated above, biotic interactions can strongly 328 

influence species habitat saturation (Pulliam, 2000). We used a species pool containing species 329 

with optima on the whole range of the environmental gradient. However, the distribution in 330 

species optima among the species pool can be asymmetrically distributed, which in turn can 331 

affect local community assembly dynamics (Patrick and Brown, 2018). Furthermore, because of 332 

the way the species were simulated, most species niche breadth covered around one third of the 333 

range of the environment. While real communities contain a mix of species with narrow and wide 334 

niches, with many of species having narrow niches and a few having wide niches (Brown, 1984). 335 

Thus, we could determine a ratio between species with wide and narrow environmental niches, 336 

based on observed communities, and simulate virtual communities accordingly. We also assumed 337 

that species’ suitabilities had a quadratic response to the environment, while more complex 338 

relationships exist (Oksanen and Minchin, 2002) and could be used in our model. Our simulation 339 

setup can thus be made more complex for more investigations on factors that may influence S-340 

SDMs richness predictions. Still, our simplified model can help gain insights about S-SDMs. 341 

Depending on the scales considered, we can expect different shapes of species occurrence-342 

environment relationships. At local scale, we expect many stochastic processes (e.g., 343 

demographic stochasticity, competitive exclusion, biotic interactions, microclimatic variations, 344 

etc.) to be at play and drive community assembly (Chase and Myers, 2011). Dominance of 345 



stochastic processes leads to blurred response to environmental variables, because species 346 

occurrence is then not only determined by environmental variables. Predicted presence 347 

probability can account for these processes, because they predict the parameter that governs the 348 

stochastic process leading to species occurrence such as a binomial trial (Pottier et al., 2013). 349 

Indeed, probability-based richness have been shown to estimate the richness of local assemblages 350 

well (Calabrese et al., 2014; D’Amen et al., 2015a, 2015b; Guisan and Rahbek, 2011; Pellissier et 351 

al., 2013). 352 

Threshold-based richness can be thought as the potential richness expected considering 353 

only abiotic deterministic processes. It can be a useful baseline to compare to models that 354 

consider a broader set of processes (Pouteau et al., 2019; Violle et al., 2011). Threshold-based 355 

richness defines a reference pool against which null models or hierarchical analyses can be 356 

performed. It can be considered as an additional method to define species pool (Carstensen et al., 357 

2013; Lessard et al., 2012). Indeed, threshold-based richness would represent a species pool 358 

(Lessard et al., 2015) that considers only the response to environmental filtering for a large area. 359 

Without explicitly considering functional traits, threshold-based richness can also represent a 360 

functional species pool as species traits are filtered by the environment (de Bello et al., 2012). 361 

Threshold-based richness is nested in a hierarchy of models similar to the hierarchy of scales and 362 

processes that shape community assembly (Keil et al., 2013; Mackey and Lindenmayer, 2001; 363 

Mertes and Jetz, 2018; Meyer, 2007; Pearson and Dawson, 2003). Threshold-based predictions, 364 

because they consider environmental filtering only, are representative of coarse and large scales 365 

in this hierarchy of models. In the SESAM framework (D’Amen et al., 2015a; Guisan and 366 

Rahbek, 2011), threshold richness is a reference richness before applying a cutoff in species 367 

presences to account for local variations. The use of threshold-based predictions can thus be 368 



compared to more mechanistic models, to know to what extent observed communities are mostly 369 

shaped by environmental filtering. Other models, to which they can be compared, can incorporate 370 

other important community assembly factors such as dispersal limitation, limiting similarity or 371 

biotic interactions (Chase and Myers, 2011; Munoz et al., 2017; Pouteau et al., 2019; van der Plas 372 

et al., 2015). In summary, using both threshold-based richness and probability-based richness in 373 

succession —first threshold-based richness as a pure environmental prediction then compare it to 374 

probability-based richness— can shed light on community assembly processes. When both agree, 375 

environmental filtering dominates community assembly. If not, habitat saturation can strongly 376 

change threshold-based richness and/or other processes may affect community assembly. 377 

Threshold-based richness and probability-based can further be compared to other predictions 378 

using process-based models that consider additional processes. Essential Biodiversity Variables 379 

can be measured using multiple methods (Pereira et al., 2017), and there is no clear 380 

recommendation on which method should be prioritized to predict EBVs. Probability-based 381 

species richness could be used as a reliable method to predict taxonomic diversity in the EBV 382 

framework, while threshold-based richness can be a useful tool to assess community assembly 383 

processes (Pouteau et al., 2019). 384 
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  614 



Figures 615 

 616 

Figure 1: Full Simulation routine. (1) We first simulated 100 virtual species with quadratic 617 

environmental suitability curves with randomly sampled coefficients. We multiplied each 618 

predicted presence probability by the habitat saturation level then use these probabilities to draw 619 

realized presences (see Material and Methods for details). Then, using the modified probabilities 620 

we drew presences in each assemblage following a binomial distribution. (2) We analyzed the 621 

realized presences with a binomial Generalized Linear Model (GLM), independently for each 622 

species, which provided predicted presence probability of each species in each assemblage (A). 623 

We defined a threshold based on True Skill Statistic (see Material and Methods for details, 624 

Allouche et al. , 2006). This gave the second set of predictions: (B) binary predictions. (3) 625 

Finally, we summed individual predictions in each assemblage for all the species to get two 626 

richness predictions. 627 



 628 

Figure 2: Species expected and predicted presence probability with and without threshold. The 629 

solid curves are the predicted presence probabilities by the GLM used to model the presence of 630 

species. The dotted curve is the expected relationship given by the parameters of the species. 631 

Segments above and below respectively show predicted presences and absences using species-632 

specific threshold. 633 



 634 

Figure 3: Observed vs. predicted richness between two prediction methods as a function of 635 

habitat saturation. Each facet shows different species habitat saturation (see Material and 636 

Methods). The dashed line is the identity line (y = x), indicating perfect predictions. Green points 637 

are probability-based richness predictions; Purple points are threshold-based richness predictions. 638 

The corresponding colored lines are cubic splines smoothers trend lines. Spearman correlation 639 

coefficients are shown in the top left corner of each facet. 640 



 641 

Figure 4: Prediction accuracy of probability-based and threshold-based richness predictions in 642 

function of habitat saturation. Green points and lines: probability-based richness; purple points 643 

and lines: threshold-based richness. (left) Root Mean Square Error (RMSE) of predicted richness, 644 

the average error of richness prediction; (middle) Bias, the average difference across all 645 

assemblages between predicted and observed richness; (right) Variance, the variance of richness 646 

predictions across all assemblages. 647 




