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Abstract 

A central goal in cognitive science is to parse the series of processing stages underlying a 

cognitive task. A powerful yet simple behavioral method that can resolve this problem is finger 

trajectory tracking: by continuously tracking the finger position and speed as a participant 

chooses a response, and by analyzing which stimulus features affect the trajectory at each time 

point during the trial, we can estimate the absolute timing and order of each processing stage, 

and detect transient effects, changes of mind, serial versus parallel processing, and real-time 

fluctuations in subjective confidence. We suggest that trajectory tracking, which provides 

considerably more information than mere response times, may provide a comprehensive 

understanding of the fast temporal dynamics of cognitive operations.  

What is trajectory tracking? 

A fundamental problem in Psychology involves characterizing the series of cognitive 

processing stages underlying mental operations such as mental arithmetic, decision-making, etc. 

In traditional mental chronometry, which dates back to Donders in the late 19th century [1], 

response times (RT) are interpreted as an index of the underlying cognitive processes. Mental 

chronometry can examine whether a set of mental operations run serially or in parallel (the 

additive factors method [2–4]) and can detect processing bottlenecks (the psychological 

refractory period effect [5,6]). Nevertheless, RT is only a summary measure of all operations that 

occurred during an experimental trial. Thus, mental chronometry cannot reveal the absolute 

timing and order of the processing stages, and even its ability to inform about serial versus 

parallel processing is limited [7]. 

To overcome these limitations, several methods aim to provide direct information about the 

time course of processing stages (Box 1). Among these, a powerful behavioral method is 

trajectory tracking – continuously tracking the fluctuations in the finger or mouse location as a 

participant makes a decision by pointing. This method has been used to study motor control 

processes [8–10], and since Spivey's work in 2005 [11] it is increasingly being used also to 

investigate high-level cognitive processes including decision making [12–20], subjective 

confidence estimation [13,21], cognitive control [22], executive functions [23], number 

processing [24–29], arithmetic [30,31], various aspects of language processing [11,32–36], 
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sequence processing [37], social attitudes [38] and cognition [39,40], dual processing [41], and 

the processing of subliminal information [36,42]. 

The methodological aspects of trajectory tracking have already produced several excellent 

review papers [39,43,52,44–51]. To take this discussion another step forward, here we review 

important aspects of trajectory tracking that previously received little attention: we show how 

continuous analysis of the trajectory in each time point can reveal the cognitive operations 

involved in a given task, their order, their duration, and their timing [10,24,28,29,53–56]; how 

single-trial analyses can detect within-trial changes of mind; and how movement speed can 

reveal online fluctuations in subjective confidence [13]. We focus solely on high-level cognitive 

processes; the motor aspects of finger/mouse trajectories, and how they interact with the decision 

process, are briefly addressed in Box 2 and were reviewed at length in [43]. 

The basics of trajectory tracking 

We start with a simple example, the monitoring of a serial decision-making task. Evidence 

accumulation is a well-accepted mechanism for decision making, but the evidence that supports 

this conclusion is either indirect, based on analysis of response time distributions, or costly, 

based on neural recordings. Can finger tracking provide a more direct source of evidence for a 

real-time process of evidence accumulation during decision making? We tested this idea in a 

decision-making task by presenting stimuli serially in discrete steps [13]: on each trial, 

participants saw arrows appearing one after another, each pointing left or right, and had to move 

their finger to the left or right response button according to the majority of arrows (Fig. 1a). If 

participants process each arrow as it appears and use the accumulated information to update their 

finger movement, this should result in the trajectory deviating leftwards or rightwards whenever 

the arrow changes its direction, even before the end of the trial. Single-trial trajectories (Fig. 1b) 

suggested that this was indeed the case: in trials such as �� (green), which include arrow 

direction changes, trajectories seem to fluctuate more than in trials without arrow direction 

changes (e.g., ���, orange). This pattern becomes even clearer when inspecting the full 

dataset (average trajectories, Fig. 1c): the tree-like branching pattern in this figure clearly 

indicates that each arrow was processed soon after it appeared and quickly started affecting the 
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trajectories. This finding is confirmed by computing the first time point when each particular 

arrow started having a significant effect on the trajectory (circles in Fig. 1c). 

Variants of the experimental design 

As illustrated by this example, in a typical trajectory tracking task, the participant moves 

the finger or mouse from a fixed start point to the response location. The response locations can 

be discrete buttons [13,14,28,29] (Fig. 1a), a continuous line [24,31] (Fig. 1e), or other spatial 

arrangements [10,21,35]. To obtain continuous trajectory information, the finger should move 

continuously without ever stopping. This can be achieved by enforcing a minimum-speed limit 

[10,24]. To obtain such information right from the start of the trial, the finger should start 

moving before the stimulus appears [10,16,25,57]. Participants respond using a mouse, or by 

moving their finger in space or on a touchscreen: all response modes can tap mental operations. 

However, moving the finger is the most natural mode, and a mouse requires additional 

sensorimotor transformations which increase variance [58], so we recommend using the finger. 

There are currently at least three software packages for trajectory tracking experimentation: 

MouseTracker [55] (http://mousetracker.org), MouseTrap [50] 

(http://pascalkieslich.github.io/mousetrap), and our own recently-released TrajTracker 

(http://trajtracker.com).  

Analyzing the results 

Most trajectory-tracking studies used summary measures that provide one value per trial. 

For example, in tasks with two response buttons, a higher degree of competition between the two 

responses can be indexed as larger deviation from the ideal straight line towards the correct 

response button [27,28,30,44,56] (see a recent review in TICS [39] about the use of trajectory 

tracking to investigate such response competition). However, such summary measures do not 

make optimal use of the full richness of trajectory information – for instance, they would miss 

the tree-like pattern in Fig. 1c. To reach more detailed temporal conclusions, trajectories must be 

analyzed as a continuous series of time points [16,24,25,31,57,59,60]. This can reveal when a 

particular factor (e.g., an arrow) starts affecting the trajectories (Fig. 1c), and how this effect 

builds up in time.  

Time-by-time regression provides a simple means of analyzing the data. For each time 

point (e.g., the dashed line in Fig. 1b), the x coordinates are entered as the dependent variable in 
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a multiple linear regression with the key factors that are thought to affect the processing stages 

[16,24,60,61]. For instance, in our arrows decision-making study, to assess the effects of the 3 

arrows, their directions (coded as +1/-1) are entered as 3 predictors (see the regression equation 

in Fig. 1b). The data of each participant is regressed separately, and the regression coefficients 

are averaged across participants for each predictor and time point, and plotted as a function of 

time, such that each predictor yields one curve (Fig. 1d). The regression curves of the 3 arrows 

are almost parallel, indicating that the 3 arrows entered into an accumulation of evidence process 

that started 250-400 ms after the arrow’s appearance on screen. The different asymptotes of the 3 

regression lines indicate that at the end of the trial, the finger was affected by earlier arrows 

slightly more than by late arrows.  

Such a time-resolved regression method for analyzing time-series data has been used since 

the 1960's [62,63], but was applied to manual trajectory data much later [16]. A common 

practice is to normalize the time points into percentage of each trial's duration [16,55] or reach 

distance [52] before applying time-resolved analyses. However, this may bias the results if the 

normalization factor correlates with the analyzed variables [64]. Sometimes, such normalization 

is better avoided – e.g., when the analysis aims to discover what happens at an absolute time 

during the trial, or when the analysis focuses on the early part of the trajectory [24,25]. 

An alternative to regressions is to look, at each time point, for a significant difference 

between the x coordinates of different experimental conditions [10,11]. In our experiment, 

comparing trials starting with � versus trials starting with  reveals when the first arrow affects 

the finger movement, comparing trials starting with �� versus � (or � versus ) 

reveals the second arrow's effect, and so on (circles in Fig. 1c). More generally, such a time-

resolved statistic (t-test or ANOVA) detects time windows during which different experimental 

conditions invoke different cognitive representations [27,28,30,52,65]. 

A critical assumption of time-resolved analyses is that changes in cognitive representations 

are quickly reflected in the pointing movement. The motor program is not launched once 

cognitive processing is finished, in a strictly serial manner, but keeps being updated in real-time, 

in parallel to the ongoing cognitive processes, such that partial information gets transmitted to 

the unfolding motor program in a cascaded manner. This assumption was validated by several 

studies [10,13,14,22,31,56,66–69]. To investigate mental operations we do not have to commit to 

a particular motor-control framework (Box 2 and [43]), yet the above assumption is compatible 
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with recent models that assume that movement selection and execution operate continuously and 

in parallel to each other [70]. 

Decomposing a cognitive task 

Serial organization of covert processing stages 

In the arrows experiment, seriality is imposed by the stimuli. An even more interesting 

method, rarely used so far, is to use trajectory tracking to reveal the serial organization of covert 

processing stages. For example, in a study that examined the processing stages in mental 

arithmetic [31], participants saw single-digit addition or subtraction problems (one per trial) and 

pointed to the estimated result location on a 0-10 number line. Average trajectories of the 

subtractions 9-1, 9-2, 9-3, … 9-8 (Fig. 1e) suggested serial processing of the two operands: the 

finger first pointed towards the larger operand and then deviated towards the result. This serial 

effect was confirmed using the time-resolved regression method. Here, the dependent variable 

was not the x coordinates but the implied endpoint – the end-of-trial x coordinate that the finger 

would reach if it keeps its current direction. This measure improves the temporal precision of the 

analysis because with x coordinates, any factor that modifies the finger direction can be revealed 

only after the finger has traveled some distance in the new direction [24]. The predictors were 

the larger operand, the smaller operand (in negative value for subtractions), and the operator 

(coded as +1 or -1). The finger was first influenced by the larger operand (regardless of whether 

it appeared on the left or right of an addition problem), and only ~150 ms later by the smaller 

operand, suggesting that the two operands were processed serially (Fig. 1f). 

Transient effects 

Time-resolved analysis can also detect processing stages whose effect does not persist until 

the end of the trial. For example, Fig. 1f shows that on top of the two operands, the finger 

position was additionally affected by the operator during an intermediate time window: the 

finger slightly deviated rightwards for addition problems and leftwards for subtractions. This 

operator-driven bias, known as operational momentum [71,72], completely disappeared by the 

end of the trial. If the same task had been run without trajectory tracking, or analyzed using a 

trial-level summary measure of the trajectory, this effect could have been missed. 

Single-subject sensitivity  
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Trajectory tracking is powerful enough to detect effects within individual participants. 

For example, in the calculation experiment (Fig. 1e), each of the 30 subjects showed serial 

processing of the two operands (larger operand followed by smaller operand). This single-subject 

sensitivity, rarely exploited so far, may have not only theoretical but also clinical importance: 

trajectory tracking may be turned into a diagnostic tool to assess certain cognitive disorders. For 

instance, we ran a single aphasic patient in a task that required pointing to the location of two-

digit numbers on a number line. This patient showed serial effects of the decade and unit digits 

which differed strikingly from a control group, suggesting a deficit in that patient’s ability to 

process the two digits in parallel [26]. 

Model-free analyses 

The regression approach examines trajectories according to a hypothesized model. 

However, trajectories provide enough data to allow also for model-free analyses. For example, 

principal components analysis (PCA) [47] reveals, without a-priori assumptions, the orthogonal 

factors that affect the finger/mouse movement. Plotting each factor loading at each time point 

can reveal how its effect builds up in time – on average (Fig. 7 in [47]) and even on single trials. 

The cognitive meaning of each factor can be interpreted by analyzing its temporal pattern and by 

finding which experimental conditions yield trajectories with high loads on this factor. 

Measuring the delay between cognitive processes 

When two processing stages unfold serially, we can use the time-resolved regression 

method to measure the delay between them. In our arithmetic example (Fig. 1f), the delay 

between the processing of the two operands is the horizontal distance between their regression 

curves. Mathematically, this delay can be computed in several ways: by finding the optimal 

horizontal shift of one regression curve that would minimize the overall area between the two 

regression curves, by fitting each curve to a predefined function with the temporal onset as a free 

parameter [37], or by comparing the time when each curve reaches a threshold value (e.g. half of 

its maximum). For Fig. 1f, the latter method estimated that the second operand of additions was 

processed 107 ms after the first, while for subtractions the delay was significantly larger, 207 ms. 
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Measuring subjective confidence in real time 

Confidence is defined as our degree of belief that a certain thought or action is correct. 

Faster decisions are generally associated with higher subjective confidence [73]. Remarkably, 

trajectory tracking provides information not only about the ongoing decision (reflected in the 

finger/mouse direction relative to the various response options), but also about the instantaneous 

buildup of subjective confidence (reflected in the finger or mouse speed towards the chosen 

option) [13]. For instance, in the arrows task (Fig. 1c), starting from the second arrow, we 

observed that each new arrow affected the instantaneous speed (Fig. 2a), and crucially, final 

speed correlated with the subjective confidence reports at the end of each trial. Furthermore, 

even in the course of a trial, the specific factors that affected speed were the same factors that 

affected the self-reported confidence: a larger amount of instantaneous evidence, which 

increased confidence, also increased the instantaneous speed; and reversals in the arrow direction 

(relative to the previous arrow), which reduced confidence, also decreased the instantaneous 

speed (see the corresponding time-resolved regressions in Fig. 2b). 

The use of trajectory tracking to measure confidence offers three major advantages. First, it 

can measure subjective confidence in real time. As far as we know, no other behavioral method 

is capable of doing so. Second, the method can measure how subjective confidence changes even 

before the participant commits to a particular response location, i.e., it measures the pre-decision 

confidence. The idea is that even before the decision, participants slow down when they feel 

momentarily unconfident, in order to accumulate more evidence, and tracking the manual 

movement can detect this slowdown. Third, unlike other measures of confidence [21,74,75], 

which typically involve an explicit post-decision report, the finger/mouse speed is an implicit 

measure. It can be measured in virtually any pointing task without any training or explicit 

instructions. This makes the method potentially useful in several scenarios, e.g., when 

experimenting with animals or with young children. Trajectory tracking is indeed applicable to 

children (see a review in [46]), in experiments with two response buttons [76–78] and even in 

experiments with multiple target locations [79,80]. 

Trajectory tracking can simultaneously index decision and confidence, and it can be 

exploited in additional ways to simultaneously record multiple measures. For example, one study 

[21] used four response buttons, organized as a square, with the middle of the square as the 
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trial’s starting point. The participants were asked to report their decision by moving left or right, 

and simultaneously report their confidence in that decision by moving up or down. Using similar 

designs, participants can respond simultaneously to any two questions: horizontal and vertical 

movement would provide continuous indices for the two responses, and the movement speed 

could still be used as a third index, reflecting confidence. 

Detecting changes of mind, changes of confidence, and other 

change points in single trials  

So far, we have described time-resolved analyses that pool over many trials. These can 

reveal what happens on average, but they cannot reliably show that two effects co-exist in the 

same trial [13,49]. Trajectory tracking, however, is sensitive enough to provide information 

about cognitive changes that occur within single trials. Changes of mind, i.e., moments in which 

the planned response decision was changed, can be captured as changes in the movement 

direction [56,69], and are sometimes visible even in single trials (Fig. 3a). Statistically, several 

techniques can detect such changes – e.g., finding points with high horizontal acceleration, or 

points wherein the trajectory switches between clockwise and counter-clockwise movements 

[13]. We can focus on specific changes of mind (e.g. the first in a trial [25]), or count their total 

number per trial. For example, in the arrows task, more arrow reversals per trial yielded more 

changes of mind (indexed as clockwise-counterclockwise switches, Fig. 3b, red curve). In 

another study [81], participants pointed left or right to indicate whether the stimulus was a black 

or white face. Changes of mind showed that participants with low familiarity with mixed-color 

individuals showed more changes of mind (more/stronger left-right deviations per trial) in 

mixed-color faces than in single-color faces. The degree of change of mind can even be 

estimated continuously as the trajectory curvature [13]. 

We can similarly detect within-trial changes in confidence – e.g., by finding points with 

high positive or negative acceleration in the vertical axis, in which speed is affected by 

confidence but not by the left-right decision [13] (Fig. 3b, blue curve). 

At the motor level, to account for within-trial changes of mind, motor control theories can 

assume that a trial consists of several movement plans [14,82]. 
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The term “change of mind” supposes that a trial involves a series of interim decisions, each 

of which may differ from the previous one. Correspondingly, the methods presented above 

attempt to dissect each trial into a series of mutually exclusive sections, each reflecting a single 

movement plan. An alternative assumption is that a trial involves a series of temporally 

overlapping processes [83,84]. To detect them, the trajectory can be dissected into a series of 

overlapping sub-movements. The technique is simple: it assumes that the velocity profile of all 

sub-movements has the same bell-like shape, which can be mathematically modeled as a 

function with three free parameters (start time, duration, and amplitude). For each trial, the 

number of sub-movements and their parameters are fit to the trajectory’s velocity profile [14]. 

This method can yield very good fits with the actual trajectories (Fig. 3c). Within this model, 

each sub-movement may reflect a processing stage or an interim decision. The sub-movement’s 

start time and duration reflect the timing of the corresponding processing stage, and the relative 

amplitudes of different sub-movements inform about the relative magnitudes of the underlying 

cognitive representations. 

Changes of mind may also be informative when examined at the whole-trial level 

(summary measures). For instance, Moher and Song [85] classified trials into "partial errors" 

(when the finger deviated towards the incorrect response prior to selecting the correct one) 

versus "direct movements", and showed that this classification predicted the dynamics of the 

subsequent trial. Other model-free methods can cluster trajectories based on their shape without 

a-priori assumptions [49]. 

Avoiding the pitfalls 

Trajectories offer a powerful source of information, but to analyze them properly, one 

should avoid several potential pitfalls. We hereby describe what we see as the main difficulties. 

Time versus space confound 

Trajectory tracking paradigms require the participant to deviate the finger or mouse 

towards a target location, and they record how this movement progresses in time. Under this 

setting, stronger deviations and earlier deviations may sometimes produce identical trajectories. 

Similarly, it is sometimes hard to tell whether factor A affects the cognitive processing more than 
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factor B or before factor B, because the two alternatives are indistinguishable in several analysis 

methods.  

In such cases, one should use analysis methods that can control for the time-space 

confound. For example, in [24] participants saw numbers and pointed to the corresponding 

positions on a number line (similar to Fig. 1e). Time-resolved regressions showed an effect of 

the target number, but also a transient effect of its logarithm (Fig. 4b). This log effect initially led 

us to incorrectly conclude that participants transiently activated a logarithmic representation of 

quantity [24]. In fact, the log effect was an artifact of averaging trials with different temporal 

characteristics [25]: the participants processed small numbers faster than large numbers 

(presumably due to different durations of number identification and comprehension processes), 

so the finger deviated sideways earlier on trials with smaller numbers (Fig. 4a), creating an 

artificial log effect in the regressions. To control for this artifact, we realigned each trajectory 

relative to the trial's initial processing duration, indexed as the first time when the trajectory 

showed a significant sideways deviation. With this new definition of time points, the regressions 

no longer showed an effect of log(target) (Fig. 4c) – i.e., the apparent logarithmic effect could be 

completely explained by inter-trial differences in the onset of lateral finger movements. 

Similarly, we can align trajectories (and any time-resolved analysis) on the trial endpoint [13] or 

on any other measurable within-trial event. 

Averaging across trials 

Many of the analysis methods described above, including time-resolved regression, pool 

over large sets of trials. Such analyses provide information about what happens on average, but 

they may hide inter-trial variability or distinct single-trial events. These aggregate-level 

approaches may, for example, suggest simultaneous co-activation of cognitive representations 

that actually originate in different subsets of trials [49]. To overcome these limitations and draw 

reliable conclusions about within-trial processes, average-based analyses should be 

complemented with single-trial analyses (e.g., trial clustering [49]) and other methods described 

above, e.g., aligning trials. 

Speed versus deviation confound 

In decision tasks with trajectory tracking, the finger/mouse deviation reflects the buildup of 

the decision, whereas its instantaneous speed reflects subjective confidence. However, speed and 
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deviation may be confounded. For example, higher speed may cause larger deviation (distance) 

from the middle of the screen. Alternatively, sharp sideways deviations may cause the finger to 

slow down for purely motor reasons. Analyses that aim to distinguish between decision and 

confidence should control for the potential relations between speed and deviation – e.g., by 

adding the momentary curvature as a covariate (see additional methods in [13]). 

Motor and geometric confounds 

The motor response in trajectory tracking experiments is more complex than in several 

classical paradigms, e.g., responding by clicking a button [86,87]. This complexity introduces 

potential motor biases. For example, pointing towards the left side of the screen or towards the 

right side involves the activation of different muscles, and this creates asymmetry between left 

and right responses. This problem can be addressed in several ways – e.g., by swapping the 

response sides on half of the trials, or by recruiting both right-handed and left-handed 

participants [25]. Another type of artifact arises when the response location is continuous (e.g., 

the point-to-number-line task, Fig. 1e). In such tasks, responses close to the middle of the screen 

are quite different from responses close to the end of the screen: they require different motor 

plans and they produce trajectories with different geometrical properties (e.g., mid-screen 

trajectories would have lower curvatures). At least in some cases, e.g. perceptual decision 

making, the cost of an action may even bias the decision itself [88]. To address such artifacts, the 

statistical analyses in continuous-response paradigms should control for the response location – 

e.g., by adding the distance from the middle of the screen as covariate [25]. 

Concluding Remarks 

Mental chronometry has been the dominant behavioral method to investigate the dynamics 

of cognitive operations since Donders in the late 19th century. However, RTs are only a 

summary measure of the entire processing chain, blind to the succession of the processing stages. 

Here we presented an emerging framework using trajectory tracking that is powerful enough to 

resolve this temporal dissection problem, revealing the order and absolute time of each 

processing stage, arbitrating between parallel vs. serial architectures and indexing subjective 

online decision confidence. Additionally, trajectory tracking has a practical advantage among 

other time-resolved behavioral methods (e.g. eye tracking), since it is very accessible, cheap and 
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scalable. The paradigm may potentially have even more advantages and uses (see Outstanding 

Questions), which would need to be first confirmed more thoroughly using a multi-

methodological approach; these may provide new exciting directions to better understand the 

relationship between behavior and brain activity.  
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Box 1. Trajectory tracking versus other time-resolved 

measures of the dynamics of cognitive processes 

Finger tracking is just one of the methods by which cognitive processes can be tracked in real-

time – with various advantages and drawbacks: 

Eye tracking 

Gaze shifts during a trial can track the underlying cognitive operations [89], while pupil 

dilation can index the degree of cognitive effort [90]. Both eye saccades [91] and pupil dilation 

[92] quickly reflect cognitive changes, so they can provide a fine-grained index of cognitive 

processing, with a resolution of about ~100 ms. 

Eye and hand movements are usually coordinated [93–95], with eye saccades preceding the 

movement initiation [96], but they can also dissociate [94,95]. This distinction may occur for 

several reasons – e.g., because separate visual mechanisms support perception and action [97], or 
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because moving the hand may involve a higher decision threshold than moving the eye [51]. 

Indeed, guiding manual movement is merely one goal of eye gaze [98]. Also when examining 

high-level cognitive processes, eye tracking and finger/mouse tracking may tap either similar or 

different processes depending on the specific experimental design [94,99], and may be used as 

complementary methods. 

Presently, eye tracking hardware is much more expensive than trajectory tracking. In the 

future, cheap high-quality eye-tracking technologies (e.g. in smartphones) may increase the 

popularity of this method. 

Brain imaging 

Continuous measurement is possible using methods that measure brain activity with high 

temporal resolution, such as electroencephalography (EEG) and magnetoencephalography 

(MEG). Some experimental paradigms, which were run both with trajectory tracking [37] and 

with neuronal recordings [100], have obtained similar results. 

EEG and MEG offer important advantages over trajectory tracking, including millisecond-

accuracy, direct measurement, the ability to uncover the neural mechanisms underlying 

cognition, and the ability to examine what happens before, after, and even in the absence of 

behavioral response. However, trajectory tracking also offers advantages over brain imaging. It 

can show how a decision process affects behavior. The cognitive meaning of the finger deviating 

towards a particular response may often be easier to interpret than that of a brain activity pattern. 

Moreover, compared with trajectory tracking, EEG and MEG are costly, involve a lengthy 

acquisition procedure, require multidisciplinary teams, and are not easily scalable to large groups 

of participants. When both methods are appropriate for a particular research question, trajectory 

tracking offers a cheaper, simpler, and faster alternative to EEG/MEG. 

Combining the two methods could potentially offer additional power. For example, one 

may detect specific events in single trajectories – e.g., changes of mind (direction) or changes in 

confidence (speed) – and use them to guide the analysis of brain signals. 

Box 2. From decision to manual movement 

Motor control can be conceptualized as a complex decision-making process [101] that 

involves several aspects: the selection of the movements that may achieve the particular goal, the 
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shaping and execution of a single movement, the revision of a given movement in case it 

should be adjusted to meet the goal, and the optimization of the sequence of required 

movements to maximize task performance [43]. 

Traditional theories of action planning assumed serial selection and execution, that is, 

subjects first select the target, and only then execute the movement [102]. However, more recent 

models challenge this serial assumption. For example, one study [10] first recorded the 

participants' finger trajectories as they pointed towards a target point. Then, in the critical trials, 

several potential target locations were shown when the finger started moving, and the specific 

target was indicated only later in the trial. The initial finger trajectory was the mean of the 

trajectories to the different possible targets; later, when the target was indicated, the finger 

deviated towards it. The researchers concluded that even before selecting a movement plan 

towards a particular target, the participants could represent several movement potential plans 

(subject to working memory limitations [103]) and initiate a movement according to their 

average. This idea that movement can start even before the final decision, is critical for 

experiments that examine the temporal dynamics of high-level cognitive processes, because this 

is what allows measuring, via the finger movement, intermediate processing stages 

[13,14,22,31,67,69]. 

An interesting property of the sequencing of movements is the fact that reaching a given 

goal location can be achieved with an infinite number of movement trajectories. This is known as 

the ‘problem of redundancy’. So how does the motor system choose a particular trajectory at a 

given time?  One of the most influential models developed to address this question is the optimal 

feedback control (OFC) [104]. According to the OFC model, the motor system uses an 

optimization algorithm with the aim of minimizing the movement’s cost, which is normally 

considered to be related to energy consumption. Accordingly, a central principle of the OFC 

model is the ‘minimum intervention’, that is, the revision process of the movement trajectory 

occurs only when it is necessary in order to meet the goal of the task. A possible extension of this 

idea is that the finger would deviate (thereby revealing a "change of mind") only when its current 

direction deviates from the intended goal by a sufficient amount [25,105]. 
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Figure Captions 

Fig. 1. Finger trajectories can reveal a series of cognitive processes. (a) Arrows 

decision-making task. On each trial, participants saw sequentially-presented arrows (unknown to 

the participant, 1, 3, or 5 arrows; SOA = 300 ms), each pointing left or right, and dragged their 

finger on a touchscreen to a left or right response locations according to the majority of arrows 

[13]. (b) X coordinates as a function of time for sample trials of one participant. Time-resolved 

analyses examine which factors affect the finger in each time-point (dashed line). (c) X 

coordinates as a function of time, averaged over trials and participants for each possible 3-arrow 

sequence. Circles indicate when the trajectories branched apart according to each new arrow. (d) 

Time course of the arrows’ effects. For each subject and time-point, across trials, x coordinates 

were regressed against three predictors coding the arrow directions. We plotted the regression 

weights (β) averaged across subjects, with their standard error. Each line reflects the buildup of a 

particular arrow’s effect. (e) Here, on each trial the participants saw a single-digit addition or 

subtraction and pointed to the result location on an unmarked number line [31]. Average x 

coordinates were plotted as a function of time for 9 of the exercises. (f) Time course of the effect 

of each operand, analyzed with time-resolved regressions (same method as in panel (d)): for each 

time point, implied endpoints (the location where the finger would land if it keeps its current 

direction) were regressed against the larger operand, the smaller operand (in negative value for 

subtractions), and the operator (+1 or -1). The first operand effect builds up before that of the 

second operand, indicating that they were processed serially. 

Fig. 2. Instantaneous finger speed reflects subjective confidence. (a) Average y-velocity 

on 3-arrow trials of the arrows task (Fig. 1a) [13], plotted as a function of time for each sequence 

type (pooling over pairs of mirror sequences). Each new arrow affects speed in two ways: first, 

the finger speeds up following arrows that increase the absolute amount of evidence (Δ|Evidence| 

> 0) and slows down following arrows that decreased evidence. Second, the finger slows down 

when an arrow differs in the direction from the previous arrow. Crucially, the same two factors 

also affect the explicit post-decision ratings of subjective confidence. This indicates that the y 

speed is a good index of online subjective confidence. (b) The same two effects (Δ|Evidence| and 

arrow-direction-changes) are revealed in the time-resolved regression analysis. For each 

participant and each time point, the instantaneous y speed was regressed on the Δ|Evidence| 

provided by the 2nd and 3rd arrows, and on a third predictor coding whether these two arrows 
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pointed in the same direction or not. The regression coefficients were averaged and plotted like 

in Fig. 1d. 

Fig. 3. Within-trial changes of mind can be detected in single trials. (a) Number 

comparison task. On each trial, participants move their finger left or right to indicate whether the 

digit presented is smaller or larger than 5. Plotting single trials indicates that in harder trials 

(target closer to 5), the participants tend to transiently point towards the incorrect response 

button and then change their mind and deviate towards the correct response (reprinted with 

permission from [29]). (b) Such deviations can be quantified by counting the number of bends 

(consecutive clockwise or counterclockwise movement) per trial (red curve). Here, in the arrows 

task (Fig. 1a) [13], trials with more changes in the arrow direction induce more bends and more 

speed fluctuations (blue curve; a speed fluctuation was defined as a time window with strong 

vertical acceleration). (c) An alternative approach assumes that each trial involves several 

discrete and temporally-overlapping processing stages. To capture these processing stages, we 

can break down each trajectory into a series of overlapping sub-movements. This is done by 

fitting the number of sub-movements and the parameters of each sub-movements (direction, 

speed, time window) to the observed trajectory (reprinted with permission from [14]). 

Fig. 4. Distinguishing between time delays and transient effects. (a) Average x 

coordinates, plotted as a function of time, in a task in which participants pointed to the estimated 

position of a 2-digit number on a number line [25]. During an early time-window, the trajectories 

of small target numbers are more spaced apart than the large-number trajectories. This can be 

interpreted either as a transient effect of non-linear representation of the target quantity, or as 

faster processing of small target numbers. (b) Time-resolved regressions (same plot type as Fig. 

1d): for each time-point and subject, the implied endpoints were regressed against the target 

number and its logarithm. The regression coefficients were averaged across subjects and plotted 

as a function of time. The transient effect of log(target) suggests a transient activation of log 

number magnitude. (c) Similar time-resolved regressions, which differ only in how trials were 

temporally aligned. Here, instead of target onset, trials were aligned starting from the trial’s first 

significant sideways deviation (X movement onset). In this analysis, the effect of log(target) was 

no longer significant. This refutes the nonlinear-quantity representation hypothesis: the transient 

log effect in (b) is completely reducible to between-trial differences in the target number’s initial 

processing duration.  












