

Mzabimycins A and B, novel intracellular angucycline antibiotics produced by Streptomyces sp. PAL114 in synthetic medium containing L-tryptophan

Samira Tata, Adel Aouiche, Christian Bijani, Noureddine Bouras, Frédéric Pont, Florence Mathieu, Nasserdine Sabaou

▶ To cite this version:

Samira Tata, Adel Aouiche, Christian Bijani, Noureddine Bouras, Frédéric Pont, et al.. Mzabimycins A and B, novel intracellular angucycline antibiotics produced by Streptomyces sp. PAL114 in synthetic medium containing L-tryptophan. Saudi Pharmaceutical Journal, 2019, 27, pp.907 - 913. 10.1016/j.jsps.2019.06.004 . hal-03489018

HAL Id: hal-03489018 https://hal.science/hal-03489018v1

Submitted on 21 Jul2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Mzabimycins A and B, novel intracellular angucycline antibiotics produced by *Streptomyces* sp. PAL114 in synthetic medium containing L-tryptophan

Samira Tata^a, Adel Aouiche^a, Christian Bijani^b, Noureddine Bouras^{a,c}, Frédéric

Pont^d, Florence Mathieu^{e,*}, Nasserdine Sabaou^{a,*}

^a Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria

^b Laboratoire de Chimie de Coordination (LCC), CNRS, Université de Toulouse, UPS, INPT,

LCC, 205 Route de Narbonne, 31077 Toulouse, France

^c Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, BP 455, Ghardaïa 47000, Algeria

^d Proteomics group, Centre de de Recherches en Cancérologie de Toulouse (CRCT), INSERM UMR1037, Toulouse, France

^e Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France

* Corresponding authors at: Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole
Normale Supérieure de Kouba, B.P. 92, 16 050 Kouba, Algiers, Algeria (N. Sabaou). *E-mail addresses*: sabaou@yahoo.fr (N. Sabaou). Florence.Mathieu@ensat.fr (F. Mathieu).

Conflict of interest. The authors declare that there is no conflict of interests regarding the publication of this paper.

1	Mzabimyci	ins A	A and B, nove	l int	racellular	ang	gucycline a	ntibiotics
2	produced	by	Streptomyces	sp.	PAL114	in	synthetic	medium
3	containing	L-tr	yptophan					
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23	Conflict of inte	erest.	The authors declare	e that	there is no co	onflic	et of interests r	egarding the
24	publication of the	his pa	per.					

ABSTRACT

27 In our previous studies, the production of four bioactive molecules by Streptomyces sp. 28 PAL114 in complex ISP2 broth medium has been described. Three of these molecules belong to the angucycline family. In this study, two novel antibiotics belonging to the same family 29 30 were produced by strain PAL114 on M2 synthetic medium containing L-tryptophan as 31 precursor. These antibiotics, named mzabimycin A and B, were intracellular and produced only in the presence of L-tryptophan. After four days of culturing PAL114 in the M2 medium, 32 33 the bioactive compounds were extracted from mycelium with methanol and then analyzed by 34 HPLC on reverse phase C18 column. Two active purplish blue fractions were purified. The chemical structures of these molecules were determined on the basis of spectroscopic and 35 spectrometric analyses (¹H and ¹³C NMR, and mass spectra). They were identified to be novel 36 37 angucycline derivative antibiotics. The pure molecules showed activity against some 38 pathogenic Gram-positive bacteria which have multiple antibiotic resistance, such as Staphylococcus aureus MRSA 639c and Listeria monocytogenes ATCC 13932. 39

40

41 Keywords:

- 42 Antimicrobial compounds
- Angucycline antibiotics 43
- 44 L-Tryptophan
- Synthetic medium 45
- 46 **Streptomyces**

47

- 48 Abbreviated running headline
- 49 Novel angucycline antibiotics

- 51 **1. Introduction**
- 52

53 Actinobacteria are Gram-positive bacteria with a genomic guanine-cytosine content 54 higher than 55%, and most of them are mycelial. These bacteria are very interesting due to 55 their large capacity to produce secondary metabolites with diversified chemical structures 56 (Kemung et al., 2018; Takahashi and Nakashima, 2018). They are well-known for the 57 production of antibacterial and antifungal antibiotics and are the source of nearly 45% of the 58 known molecules of microbial origin (Solecka et al., 2012) and 70% of actively marketed 59 molecules (Solanki et al., 2008). However, they are also known for the production of diverse 60 bioactive molecules such as antivirals, antiparasitics, immunostimulants and 61 immunosuppressants (Solecka et al., 2012; Flatt et al., 2013; Nakae et al., 2013; Takahashi 62 and Nakashima, 2018).

The genus *Streptomyces* is known as the producer of the largest number of antibiotics. It produces about 80% of the antibiotics secreted by actinobacteria (Demain et al., 2006; Demain and Sanchez., 2009). Many of these molecules have found an important therapeutic application (Jose and Jebakumar, 2014), and some of them may have cytostatic and antitumor properties, such as urdamycins and langkocyclins (Drautz et al., 1986; Kalyon et al., 2013).

68 Considering the increasing resistance of pathogenic microorganisms to antibiotics 69 (Messai et al., 2008; Fair and Tor, 2014; Li and Webster, 2018), and the toxicity of several 70 antibiotic compounds (Berdy, 2005), it is essential to perpetuate research on antibiotics in the 71 hope of finding new effective and less toxic molecules in order to control pathogenic 72 microorganisms.

Our previous works have already demonstrated the richness and biodiversity of actinobacteria in the Saharan soils of Algeria. These studies have led to the discovery of several novel interesting antibiotics (Zitouni et al., 2004a; Yekkour et al., 2015; Khebizi et al., 2018; Lahoum et al., 2019) and several new species of actinobacteria (Aouiche et al., 2015a; Bouras et al., 2015; Chaabane Chaouch et al., 2017). The actinobacterium strain
PAL114 was isolated from Saharan soil collected from Ghardaïa province, Mzab region,
south Algeria (Aouiche et al., 2014). This strain exhibited a strong antagonistic potential
against several microorganisms and was found to be a producer of four bioactive molecules,
saquayamycins A and C (Aouiche et al., 2014), chaetoglobosin A and vineomycin A1
(Aouiche et al., 2015b), which were yellow extracellular and were produced in complex ISP2
broth medium (Shirling and Gottlieb, 1966).

In this work, we used a synthetic medium, containing starch and L-tryptophan, in order to control the culture conditions and allow the synthesis of new molecules that we could have missed on complex ISP2 (International *Streptomyces* Project) medium. We highlight the production of novel purplish blue intracellular antibiotics. These compounds were extracted and purified, and their structure and activity were determined.

89

90 **2. Materials and methods**

91

92

2.1. Actinobacterium strain and target-microorganisms

93

94 The actinobacterium strain PAL114 was isolated from a Saharan soil in Béni Isguen, 95 Ghardaïa province, Mzab region, southern Algeria (Aouiche et al., 2014). Based on a polyphasic study, this strain was linked to the species Streptomyces griseoflavus (Aouiche et 96 97 al., 2015b). The strain was cultivated on ISP2 medium (Shirling and Gottlieb, 1966) 98 composed of malt extract (10 g/l), yeast extract (4 g/l) and glucose (4 g/l). The pH of the 99 medium was adjusted to 7.2. The aerial and substrate mycelia were grey and brownish-100 yellow, respectively. In ISP2 broth, PAL114 strain grows by forming pellets that are pale 101 brownish-yellow in colour.

102 The target-microorganisms included Gram-positive and Gram-negative bacteria, a yeast 103 and filamentous fungi. They are mostly pathogenic or toxigenic for humans, and many of 104 them have multiple antibiotic resistance (Table 1). Indeed, the strains of *Staphylococcus* 105 *aureus* MRSA 639c, *S. aureus* S1, *Pseudomonas aeruginosa* IPA1 and *Candida albicans* M3 106 were isolated from sick patients in Algerian hospitals.

- 107
- 108

2.2. Production, extraction and purification of antibiotics

109

110 Strain PAL114 was grown in two synthetic media, M1 and M2. Both of these media 111 contain 10 g starch, 2 g NaCl, 0.5 g KH₂PO₄, 1 g K₂HPO₄, 0.5g MgSO₄, 7 H₂O and 2 g 112 CaCO₃ in 1 l distilled water. However, M1 medium contains 0.25% (w/v) of (NH₄)₂SO₄ and 113 M2 medium contains 0.05% (w/v) of L-tryptophan as nitrogen sources. The final pH of the 114 media was adjusted to 7.2. The production of bioactive compounds was conducted in these 115 two media. A seed culture was prepared with the same medium and used to inoculate (for 116 each medium) sixteen 500 ml Erlenmeyer flasks, each containing 100 ml of culture media. 117 The cultures were incubated on a rotary shaker (250 rpm) for 10 days at 30 °C. The extraction 118 of the active compounds was carried out after centrifugation (5000 g, 20 min) of the culture 119 broth to eliminate cells. Half of the cell-free supernatant was extracted with the same volume 120 of dichloromethane and the other half with *n*-butanol. These two solvents were chosen 121 because they extract the antibiotics (saquayamycins A and C, chaetoglobosin A and 122 vineomycin A1) secreted by strain PAL114 (Aouiche et al., 2014; Aouiche et al., 2015b). 123 Extraction of antibiotics from the mycelium was carried out according to the method of 124 Mechlinski (1978). After centrifugation of the cultures, the mycelium was collected and 125 washed several times with distilled water. Ten grams of wet mycelium were extracted with 126 500 ml of methanol, stirring for 2 h at room temperature. The organic layers 127 (dichloromethane, n-butanol and methanol extracts) were dehydrated with Na₂SO₄ and

128	concentrated to dryness by a rotary evaporator under a vacuum at a temperature lower than 40
129	°C. The residues of each extract were dissolved in 1 ml of methanol and subjected to
130	biological assay (paper disk of 6 mm in diameter, Institute Pasteur) against the ten target-
131	microorganisms listed in Table 1.

The purification of bioactive compounds was performed by Agilent reverse phase HPLC (Agilent 1260) using a C18 column (250 mm \times 10 mm; 5 μ m). The elution was at a flow rate of 1 ml/min with a continuous linear gradient solvent system from 20 to 100% methanol in water. The detection of products was carried out by UV at 220 nm. In order to detect the active fractions all peak fractions were collected and tested by the paper disk diffusion method against the ten target-microorganisms (Table 1). Final purification of the active fractions was achieved after the second re-injection in the HPLC under the same conditions.

139

140 *2.3. Structure determination of the antibiotics*

141

142 The structure determination of the antibiotics was made with the pure bioactive 143 compounds. The UV spectra were determined with a Shimadzu UV 1605 spectrophotometer. 144 The mass spectra were recorded on a LCQ ion-trap mass spectrometer (Finnigan MAT, San 145 Jose, CA, USA) with a nanospray ion electro-spray ionization (ESI) source (positive and 146 negative ion modes).

¹⁴⁷ ¹H and ¹³C NMR spectroscopy were used for the characterization of compounds X3 and ¹⁴⁸ X4. NMR samples were prepared by dissolving 5 mg of X3 and X4 compounds in 600 μ l of ¹⁴⁹ CD₃CN. All spectra were recorded on a Bruker Avance 500 spectrometer equipped with a 5 ¹⁵⁰ mm triple resonance inverse Z-gradient probe (TBI ¹H, ³¹P, BB). All chemical shifts for ¹H ¹⁵¹ and ¹³C are relative to TMS using ¹H (residual) or ¹³C chemical shifts of the solvent as a ¹⁵² secondary standard. The temperature was set at 298 K. All the ¹H and ¹³C signals were ¹⁵³ assigned on the basis of chemical shifts, spin-spin coupling constants, splitting patterns and

154	signal intensities, and by using ¹ H- ¹ H COSY45, ¹ H- ¹³ C HSQC and ¹ H- ¹³ C HMBC
155	experiments. Gradient-enhanced ¹ H COSY45 was realised included 36 scans for per
156	increment. ¹ H- ¹³ C correlation spectra using a gradient-enhanced HSQC sequence (delay was
157	optimised for ${}^{1}J_{CH}$ of 145 Hz) was obtained with 200 scans per increment. Gradient-enhanced
158	HMBC was performed allowing 62.5 ms for long-range coupling evolution (340 scans were
159	accumulated). Typically, 2048 t2 data points were collected for 256 t1 increments.
160	
161	2.4. Determination of minimum inhibitory concentrations
162	
163	Minimum inhibitory concentrations (MICs) of pure bioactive compounds were
164	investigated using the conventional agar dilution method of Oki et al. (1990) against the ten
165	target-microorganisms (Table 1). The target bacterial strains were inoculated onto Mueller
166	Hinton medium and the fungal strains on Sabouraud medium. The media contained different
167	concentrations of each active compound (1, 2, 3, 5, 10, 15, 20, 30, 40, 50, 60, 80 and 100
168	$\mu g/ml).$ After a growth period of 24-48 h at 37 °C for bacteria and 48-72 h at 28 °C for fungi,
169	the plates were examined for growth and the lowest antibiotic concentration that inhibited the
170	growth of each organism (MIC) was determined. Mueller Hinton and Sabouraud media,
171	without active compound and inoculated with target organisms, were used as control
172	treatments. All the experiments were performed in duplicate.
173	
174	3. Results and discussion
175	
176	3.1. Production and purification of the antibiotics
177	
178	After four days of fermentation in M1 and M2 media, the culture filtrates were separated
179	from the mycelial biomass by centrifugation, and then extracted with dichloromethane and <i>n</i> -

180 butanol. The extracts of culture filtrates from both media were brownish yellow and inactive against all target-microorganisms. The mycelial biomass and the corresponding methanolic 181 182 extracts were pale brownish yellow from M1 medium, which contains NH₄SO₄, whereas they 183 were dark purplish blue from M2 medium containing L-tryptophan. Furthermore, this dark 184 purplish blue methanolic extract was active against Gram-positive bacteria (B. subtilis ATCC 185 6633, M. luteus ATCC 9314, L. monocytogenes ATCC 13932, S. aureus MRSA 639c and S. aureus S1) but not against Gram-negative bacteria (E. coli E52, P. aeruginosa IPA1), yeast 186 187 (C. albicans M3) and filamentous fungi (A. carbonarius M333 and U. ramanniana NRRL 188 1829), whereas, the extract from M1 medium was found to be inactive against all target-189 microorganisms. The active dark purplish blue extract, obtained from M2 medium, was 190 analyzed by HPLC. Two active fractions against Gram-positive bacteria (cited above) were 191 detected and named X3 (retention time, 64.7 min) and X4 (retention time, 65.19 min), with 192 the latter being predominant (Supplementary data – Fig. 1S).

193 These intracellular and antimicrobial fractions are produced only in the presence of L-194 tryptophan (in M2 but not in M1 medium). L-Tryptophan seems to play an essential role in 195 the biosynthesis of the two bioactive molecules and could therefore be a precursor of the two 196 compounds. However, we have not detected, in any extract (from supernatant and mycelium), 197 the saquayamycins A and C, or vineomycin A1 (angucycline antibiotics), or chaetoglobosin 198 A. These molecules, which are yellow and active against B. subtilis ATCC 6633 and S. 199 aureus MRSA 639c, were detected only in the ISP2 (complex medium) culture filtrate of 200 strain PAL114 (Aouiche et al., 2014; 2015b).

Through these results, it appears that strain PAL114 produces bioactive compounds with different chemical structures depending on the culture conditions. Several previous works showed the ability of strains to produce many secondary metabolites with related chemical structures depending on the available precursors. Indeed, the results of Rohr et al. (1989) on the biosynthesis of urdamycins (angucycline antibiotics) by *Streptomyces fradiae* showed that 206 this species used different labeled precursors to produce different urdamycin molecules. Thus, 207 this species uses the 2-methyl-tryptophan as precursor to produce urdamycin D, the tyrosine 208 to produce urdamycin C and the acetate to produce urdamycin A. All these molecules have 209 the same central chromophore. Similar results were obtained with Saccharothrix algeriensis 210 NRRL B-24137, which produces five dithiolopyrrolone antibiotics in ISP2 medium (Lamari 211 et al., 2002) and several other dithiolopyrrolone molecules, in semi-synthetic medium, 212 induced by the addition of organic acids and amino acids as precursors (Bouras et al., 2008; 213 Merrouche et al., 2010; 2011). Lam et al. (2001) reported a similar approach of using 214 precursor-directed biosynthesis to produce novel fluoroindolocarbazoles A and B by adding 215 DL-6-fluorotryptophan, and fluoroindolocarbazole C by adding DL-5-fluorotryptophan in 216 cultures of Saccharothrix aerocolonigenes ATCC 39243. This is particularly interesting 217 research strategy for producing new antibiotic molecules.

218

219 *3.2. Elucidation of the structure of the antibiotics*

220

The structure of the compounds X3 and X4 was determined by NMR and mass spectrometry. The results showed that these two compounds are novel antibiotics belonging to the angucycline family. They were named mzabimycin A (for the major compound X4) and mzabimycin B (for the minor compound X3), with reference to Mzab region, southern Algeria, the source of the soil from which *Streptomyces* strain PAL114 was isolated. The structure of mzabimycins A and B is shown in Figs. 1 and 2 respectively.

227 Mzabimycin A (X4) was obtained as a purplish blue powder. The UV-visible spectrum 228 (Supplementary data – Fig. 2S) showed the maximal absorbance at 218, 325 and 575 nm. The 229 ESIMS spectrum (Supplementary data – Fig. 3S) contained an ion peak at m/z 1088.31 [M -230 H]⁻. Thus, the molecular weight of this compounds was M = 1089. The ¹³C, HSQC and 231 HMBC spectra, showed 59 carbon signals. It was possible to discern 4 ketone group (& 186.72 to 207.23), 3 hydroxyl group (& 78.90 to 155.90), 11 ether function (& 67.51 to 99.05), 24 sp²-hybridized carbons (& from 107.00 to 144.00) and 11 sp³-hybridized carbons (& 14.04 to 42.61). The 2D ¹H-¹H and ¹H-¹³C experiments and especially the long range ¹H-¹³C couplings observed in the HMBC spectrum (see Fig. 1) permitted to established the connectivity between all the groups of the molecule.

The NMR (Supplementary data – Fig. 4S) data showed that mzabimycin A represents a new antibiotic belonging to the angucycline family. This compound has a central chromophore with L-tryptophan linked to carbon number 3', and five sugars, two rhodinoses, two aculoses and one olivose.

241 Mzabimycin B was obtained as a purplish blue powder. The UV-visible spectrum (Supplementary data – Fig. 2S) showed the maximal absorbance at 218, 280, 330 and 575 nm. 242 243 The ESIMS spectrum (Supplementary data – Fig. 3S) contained an ion peak at m/z 1120.36 244 $[M - H]^{-}$. Thus, the molecular weight of this compound was M = 1121. The HSQC and 245 HMBC spectra, showed 59 carbon signals. It was possible to discern 4 ketone group 246 $(\delta_c 186.72 \text{ to } 207.23)$, 3 hydroxyl group $(\delta_c 78.90 \text{ to } 155.90)$, 11 ether function $(\delta_c 67.51 \text{ to } 155.90)$ 247 99.05), 22 sp²-hybridized carbons (δ_c from 107.00 to 142.89) and 13 sp³-hybridized carbons (δ_c 14.04 to 42.61). The 2D ¹H-¹H and ¹H-¹³C experiments and especially the long range ¹H-248 249 ¹³C couplings observed in the HMBC spectrum (see Fig. 2) permitted to establish the 250 connectivity between all the groups of the molecule.

The NMR data (Supplementary data – Fig. 5S) showed that mzabimycin B represent a novel antibiotic belonging to the angucycline family. This compound has a central chromophore typical of angucycline compounds, but with L-tryptophan linked to carbon number 3', five sugars, two rhodinoses, one olivose, one aculose and one reduced and methoxylated aculose. These sugars were linked to the central chromophore at carbon number 3 (rhodinose and aculose) and carbon number 9 (olivose, rhodinose and reduced and 257 methoxylated aculose). It differs from mzabimycin A only by the second aculose molecule258 that is reduced and methoxylated.

259 The structure of mzabimycins A and B do not correspond to any structure reported in the 260 literature, notably in the www.sciencefinder.com and www.chemspider.com databases, or 261 antibiotics described in The Dictionary of Natural Products (Buckingham, 1997), or in 262 Berdy's review of bioactive microbial metabolites (Berdy, 2005). The mzabimycins A and B 263 are, therefore, two new angucyclines that possess a chromophore containing L-tryptophan and 264 osidic derivatives. These two compounds have the same central chromophore, which is 265 similar to that of the urdamycin D (Rohr et al., 1989) and the langkocyclines B1 and B2 266 (Kalyon et al., 2013). Furthermore, the urdamycin D (Drautz et al., 1986) and the 267 langkocyclines B1 and B2 (Kalyon et al., 2013) are purple blue and have L-tryptophan linked 268 to carbon number 3' of the central chromophore, like mzabimycins A and B. However, 269 langkocycline B1 has four sugars (two rhodinoses and two olivoses) and langkocycline B2 270 has five sugars (three rhodinoses and two olivoses); these sugars are linked to carbon number 271 12b of the central chromophore. Urdamycin D contained one olivose linked to carbon number 272 12b of the central chromophore and two olivoses and one rhodinose linked to carbon number 273 9 of the chromophore. Mzabimycins A and B differ from these antibiotics in the number and 274 the composition of sugars (presence of aculose and reduced and methoxylated aculose) and in 275 the linkage to the central chromophore. Mzabimycins A and B contain in their structure 276 identical sugars to those of vineomycin A1, a yellow extracellular angucycline also produced 277 by strain PAL114, not in synthetic media M1 and M2, but in complex ISP2 medium (Aouiche 278 et al., 2015b). However, there are some differences in the central chromophore structure and 279 the absence of L-tryptophan. These results showed some similarities between the biosynthesis 280 processes of vineomycin A1 and mzabimycins A and B.

281 The production of antibiotics belonging to the families of angucyclines and 282 anthracyclines (close to angucyclines) has already been demonstrated in some strains of

actinobacteria isolated from Saharan soils as strain PAL114. This is the case of the antibiotic
R2 secreted by *Streptosporangium* sp. Sg3 (Boudjella et al., 2010) and mutactimycins C and
PR secreted by *Saccharothrix* sp. SA103 (Zitouni et al., 2004b).

- 286
- 287

3.3. Minimum inhibitory concentrations

288

289 Minimum inhibitory concentrations (MICs) of mzabimycin A (X4) and mzabimycin B 290 (X3), purified by HPLC, are summarized in Table 2. The results showed that these 291 compounds have very similar with activity directed only against Gram-positive bacteria. The 292 strains of Micrococcus luteus (MIC, 15 µg/ml for mzabimycin A and B) and Listeria 293 monocytogenes ATCC 13932 (MICs, 20 µg/ml for mzabimycin B and 40 µg/ml for 294 mzabimycin A) were the most sensitive. The other Gram-positive bacteria, including the two 295 strains of Staphylococcus aureus (60-80 µg/ml) and Bacillus subtilis ATCC 6633 (50 µg/ml), 296 were found to be less sensitive. All tested Gram-negative bacteria, yeasts and filamentous fungi were resistant (> 100 µg/ml). 297

It should be noted that the antimicrobial activity of urdamycin D (Drautz et al., 1986) and langkocyclins B1 and B2 (Kalyon et al., 2013), which are angucyclines close in structure to mzabimycins A and B, is also directed only against Gram-positive bacteria.

Angucycline antibiotics are a group of biologically active compounds with interesting activities including antibacterial, antifungal and antiviral (Kharel et al., 2012), enzyme inhibitory (Eguchi et al., 2017), and platelet aggregation inhibitory properties (Kawashima et al., 1989). Therefore, they are cytotoxic, and some molecules were used as anticancer agents in chemotherapy (Abdelfattah et al., 2008). Yu and O'Doherty (2008) showed the role of vineomycin B2 trisaccharide, consisting of aculose, rhodinose and olivose, in anticancer activity (against a panel of cancer cell lines). The same authors also showed the role of antibiotic PI-080 trisaccharide, consisting of aculose and two olivoses, in anticoagulantactivity.

310

311 3. Conclusion

312

313 Strain PAL114, related to *Streptomyces griseoflavus*, produced two novel intracellular 314 antibiotics, mzabimycins A and B, in synthetic medium containing L-tryptophan as a 315 precursor. These antibiotics, which belonged to the angucycline family, showed activity 316 against some pathogenic Gram-positive bacteria with multiple antibiotic resistance. 317 Considering the important biological activities of angucyclines, it would be interesting to 318 explore other properties of these new angucyclines molecules, as for example anticancer 319 activity, and *in vivo* evaluation studies which could prove promising.

320

321 **Conflict of interest**

The authors declare that there is no conflict of interests regarding the publication of this paper.

- 324
- 325 Appendix A. Supplementary material

326 Supplementary data associated with this article can be found, in the online version, at:

327

328 **References**

329

Abdelfattah, M.S., Kharel, M.K., Hitron, J.A., Baig, I., Rohr, J., 2008. Moromycins A and B
 isolation and structure elucidation of C-glycosylangucycline-type antibiotics from
 Streptomyces sp. KY002. J. Nat Prod. 71 (9), 1569–1573.

334	Aouiche, A., Bijani, C., Zitouni, A., Mathieu, F., Sabaou, N., 2014. Antimicrobial activity of
335	saquayamycins produced by Streptomyces sp. PAL114 isolated from a Saharan soil. J.
336	Mycol. 24 (2), e17–e23.
337	
338	Aouiche, A., Bouras, N., Mokrane, S., Zitouni, A., Schumann, P., Spröer, C., Sabaou, N.,
339	Klenk, H.P., 2015a. Actinokineospora mzabensis sp. nov., a novel actinomycete isolated
340	from Saharan soil. Antonie van Leeuwenhoek 107 (1), 291–296.
341	
342	Aouiche, A., Meklat, A., Bijani, C., Zitouni, A., Sabaou, N., Mathieu, F., 2015b. Production
343	of vineomycin A1 and chaetoglobosin A by Streptomyces sp. PAL114. Ann. Microbiol.
344	65 (3), 1351–1359.
345	
346	Berdy, J., 2005. Bioactive microbial metabolites. J. Antibiot. 58 (1), 1-26.
347	
348	Boudjella, H., Zitouni, A., Coppel, Y., Mathieu, F., Monje, M., Sabaou, N., 2010. Antibiotic
349	R2, a new angucyclinone compound from Streptosporangium sp. Sg3. J. Antibiot. 63
350	(12), 709–711.
351	
352	Bouras, N., Merrouche, R., Lamari, L., Mathieu, F., Sabaou, N., Lebrihi, A., 2008. Precursor
353	directed biosynthesis of new dithiolopyrrolone analogs by Saccharothrix algeriensis
354	NRRL B-24137. Process Biochem. 43 (11), 1244–1252.
355	
356	Bouras, N., Meklat, A., Zitouni, A., Mathieu, F., Schumann, P., Spröer, C., Sabaou, N.,
357	Klenk, H.P., 2015. Nocardiopsis algeriensis sp. nov., an alkalitolerant actinomycete
358	isolated from Saharan soil. Antonie van Leeuwenhoek 107 (2), 313–320.
359	

360	Buckingham, J., 1997. Dictionary of natural products. UK: Chapman and Hall/CRC.
361	
362	Chaabane Chaouch, F., Bouras, N., Mokrane, S., Bouznada, K., Zitouni, A., Schumann, P.,
363	Pötter, G., Spröer, C., Klenk H.P., Sabaou, N. 2017. Planomonospora algeriensis sp.
364	nov., an actinobacterium isolated from a Saharan soil of Algeria. Antonie van
365	Leeuwenhoek 110 (2), 245–252.
366	
367	Demain, A.L., 2006. From natural products discovery to commercialization: a success story.
368	J. Ind. Microbiol. Biotechnol. 33 (7), 486–495.
369	
370	Demain, A.L., Sanchez, S., 2009. Microbial drug discovery: 80 years of progress. J. Antibiot.
371	62 (1), 5–16.
372	
373	Drautz, H., Zähner, H., Rohr, J., Zeeck, A., 1986. Metabolic products of microorganisms.
374	234. Urdamycins, new angucycline antibiotics from Streptomyces fradiae. I. Isolation,
375	characterization and biological properties. J. Antibiot. 39 (12), 1657–1669.
376	
377	Eguchi, Y., Okajima, T., Tochio, N., Inukai, Y., Shimizu, R., Ueda, S., Shinya, S., Kigawa,
378	T., Fukamizo, T., Igarashi, M., Utsumi, R., 2017. Angucycline antibiotic waldiomycin
379	recognizes common structural motif conserved in bacterial histidine kinases. J. Antibiot.
380	70 (3), 251–258.
381	
382	Fair, R.J., Tor, Y., 2014. Antibiotics and bacterial resistance in the 21st Century. Perspect.
383	Medicin. Chem. 6 (6), 25–64.
384	

385	Flatt, P., Wu, X., Perry, S., Mahmud, T., 2013. Genetic insights into pyralomicin biosynthesis
386	in Nonomuraea spiralis IMC A-0156. J. Nat Prod. 76 (5), 939–946.
387	
388	Jose, P.A., Jebakumar, S.R.D., 2014. Unexplored hypersaline habitats are sources of novel
389	actinomycetes. Front. Microbiol. 5, 242.
390	
391	Kawashima, A., Kishimura, Y., Tamai, M., Hanada, K., 1989. New platelet aggregation
392	inhibitors. Chem. Pharm. Bull. 37 (12), 3429–3431.
393	
394	Kalyon, B., Tan, G.Y.A., Pinto, J.M., Foo, C.Y., Wiese, J., Imhoff, J.F., Süssmuth, R.D.,
395	Sabaratnam, V., Fiedler, H.P., 2013. Langkocyclines: novel angucycline antibiotics from
396	Streptomyces sp. Acta 3034. J. Antibiot. 66 (10), 609-616.
397	
398	Kemung, H.M., Tan, L.T.H., Khan, T. M., Chan K.G., Pusparajah P., Goh B.H., Lee, L.H.,
399	2018. Streptomyces as a prominent resource of future anti-MRSA drugs. Front.
400	Microbiol. 9, 2221.
401	
402	Kharel, M.K., Pahari, P., Shepherd, M.D., Tibrewal, N., Nybo, S.E., Shaaban, K.A., Rohr, J.,
403	2012. Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis.
404	Nat. Prod. Rep. 29, 264–325.
405	
406	Khebizi, N., Boudjella, H., Bijani, C., Bouras, N., Klenk, H.P., Pont, F., Mathieu, F., Sabaou,
407	N., 2018. Oligomycins A and E, major bioactive secondary metabolites produced by
408	Streptomyces sp. strain HG29 isolated from a Saharan soil. J. Mycol. 28 (1), 150–160.
409	

410	Lahoum, A., Sabaou, N., Bijani, C., Bouras, N., Pont, F., Snini, S.P., Mathieu F., 2019.
411	Antimicrobial activities of novel bipyridine compounds produced by a new strain of
412	Saccharothrix isolated from Saharan soil. Saudi Pharm. J. 27 (1), 56–65.
413	
414	Lam, K.S., Schroeder, D.R., Veitch, J.M., Colson, K.L., Matson, J.A., Rose, W.C., Doyle,
415	T.W., Forenza, S., 2001. Production, isolation and structure determination of novel
416	fluoroindolocarbazoles from Saccharothrix aerocolonigenes ATCC39243. J. Antibiot. 54
417	(1), 1–9.
418	
419	Lamari, L., Zitouni, A., Boudjella, H., Badji, B., Sabaou, N., Lebrihi, A., 2002. New
420	dithiolopyrrolone antibiotics from Saccharothrix sp. SA 233 I. Taxonomy, production,
421	isolation and biological properties. J. Antibiot. 55 (8), 696–701.
422	
423	Li, B., Webster, T.J., 2018. Bacteria antibiotic resistance: new challenges and opportunities
424	for implant-associated orthopaedic infections. J. Orthop Res. 36 (1), 22-32.
425	
426	Merrouche, R., Bouras, N., Coppel, Y., Mathieu, F., Monje, M.C., Sabaou, N., Lebrihi, A.,
427	2010. Dithiolopyrrolone antibiotic formation induced by adding valeric acid to the culture
428	broth of Saccharothrix algeriensis. J. Nat. Prod. 73 (6), 1164–1166.
429	
430	Merrouche, R., Bouras, N., Coppel, Y., Mathieu, F., Sabaou, N., Lebrihi, A., 2011. New
431	dithiolopyrrolone antibiotics induced by adding sorbic acid to the culture medium of
432	Saccharothrix algeriensis NRRL B-24137. FEMS Microbiol. Lett. 318 (1), 41-46.
433	

434	Messai, Y., Iabadence, H., Benhassine, T., Alouache, S., Tazir, M., Guatier, V., Arlet ,G.,
435	Bakour, R., 2008. Prevalence and characterization of extended-spectrum β -lactamases in
436	Klebsiella pneumoniae in Algiers hospitals (Algeria). Pathol. Biol. 56 (5), 319-325.
437	
438	Mechlinski, W., 1978. The polyene antifungal antibiotics. In: Laskin, A.I., Lechevalier, H.A.,
439	eds. Handbook of microbiology. Vol. III. CRC Press, 93–107.
440	
441	Nakae, K., Kurata, I., Kojima, F., Igarashi, M., Hatano, M., Sawa, R., 2013. Sacchathridine,
442	A, a prostaglandin release inhibitor from Saccharothrix sp. J. Nat. Prod. 76 (4), 720–722.
443	
444	Oki, T., Tenmyo, O., Tomatsu, K., Kamei, H., 1990. Pradimicins A, B and C: new antifungal
445	antibiotics. II. In vitro and in vivo biological activities. J. Antibiot. 43 (7), 763–770.
446	
447	Rohr, J., Beale J.M., Floss H.G., 1989. Urdamycins new angucycline antibiotics from
448	Streptomyces fradiae. IV. Biosynthetic studies of urdamycins A ~ D. J. Antibiot. 41 (7),
449	1151–1157.
450	Shirling, B., Gottlieb, D., 1966. Methods for characterization of Streptomyces species. Int. J.
451	Syst. Bacteriol. 16 (3), 3313-3340.
452	
453	Solanki, R., Kahanna, M., 2008. Bioactive compounds from marine actinomycetes. Indian J.
454	Microbiol. 48 (4), 410–431.
455	Solecka, J., Zajko, J., Postek, M., Rajnisz, A., 2012. Biologically active secondary
456	metabolites from actinomycetes. Cent Eur. J. Biol. 7 (3), 373-390.
457	
458	Takahashi, Y., Nakashima, T., 2018. Actinomycetes, an inexhaustible source of naturally
459	occurring antibiotics. Antibiotics 7 (3), 74.

461	Yekkour, A., Meklat, A., Bijani, A., Toumatia, O., Errakhi, R., Lebrihi, A., Mathieu, F.,
462	Zitouni. A., Sabaou, N., A novel hydroxamic acid-containing antibiotic produced by a
463	Saharan soil-living Streptomyces strain. Lett. Appl. Microbiol. 60 (6), 589-596.
464	
465	Yu, X., O'Doherty, A., 2008. De novo asymmetric synthesis and biological evaluation of the
466	trisaccharide portion of PI-080 and vineomycin B2. Org. lett. 10 (20), 4529-4532.
467	
468	Zitouni, A., Boudjella, H., Mathieu, F., Sabaou, N., Lebrihi, A., 2004a. Mutactimycin PR, a
469	new anthracycline antibiotic from Saccharothrix sp. SA 103. I. Taxonomy, fermentation,
470	isolation and biological activities. J. Antibiot. 57 (6), 367-372.
471	
472	Zitouni, A., Lamari, L., Boudjella, H., Badji, B., Sabaou, N., Gaouar, A., Mathieu, F., Lebrihi,
473	A., Labeda, D.P., 2004b. Saccharothrix algeriensis sp. nov., isolated from Saharan soil.
474	Int. J. Syst. Evol. Microbiol. 54 (4), 1377-1381.

Legends of figures

Fig. 1. Structure of mzabimycin A (X4 compound) (1) and HMBC and COSY correlations (2).

A and D, rhodinose; B and E, aculose; C, olivose.

Fig. 2. Structure of mzabimycin B (X3 compound) (1) and HMBC and COSY correlations (2).

A and D, rhodinose; B, aculose; C, olivose; E, reduced and methoxylated aculose.

→ 1H-13C HMBC correlation

Fig. 1. Structure of mzabimycin A (X4 compound) (1) and HMBC and COSY correlations (2).

A and D, rhodinose; B and E, aculose; C, olivose.

Fig. 2. Structure of mzabimycin B (X3 compound) (1) and HMBC and COSY correlations (2).

A and D, rhodinose; B, aculose; C, olivose; E, reduced and methoxylated aculose.

Table 1

Resistance patterns of target-microorganisms.

Microorganisms	Resistance to
Bacillus subtilis ATCC 6633	NEO
Micrococcus luteus ATCC 9314	NEO
Escherichia coli E52	ATM, CAZ, CTX, FEP, GEN, PIP, TIC, TOB
Pseudomonas aeruginosa IPA1	AMX, CAR, ERY, GEN, NEO, SPI, SSS, VAN
Staphylococcus aureus S1	CLD, GEN, K, PEN, VAN
Staphylococcus aureus MRSA 639c	FA, K, OXA, PEN, TE
Listeria monocytogenes ATCC 13932	OXA, FOS, CAZ, CTX, CXC, FEP, FOX, LIN, CLD,
	PRL, CIP
Candida albicans M3	CHX, ITR, NYS, TER, TIZ
Umbelopsis ramanniana NRRL 1829	CHX, ITR, TER, TIZ
Aspergillus carbonarius M333	CHX, NYS

AMX: amoxicillin; ATM: aztreonam; CAR: carbenicillin; CAZ: ceftazidim; CHX: cycloheximide; CIP: ciprofloxacin; CLD: clindamycin; CTX: cefotaxime; CXC: cefotaxime + clavulanic acid; ERY: erythromycin; FEP: cefepime; FA: fusidic acid; FOS: fosfomycin; FOX: cefoxitin; ITR: itraconazole; GEN: gentamicin; K: kanamycin; NEO: neomycin; NYS: nystatine; LIN: lincomycin; OXA: oxacillin; PEN: penicillin; PRL: pirlimycin; PIP: piperacillin; SPI: spiramycin; SSS: sulfamide; TE: tetracycline; TER: terbinafine; TIC: ticarcillin; TIZ: thioconazole; TOB: tobramycin; VAN: vancomycin.

Table 2

¹ H and ¹³ C		¹ H chemical shi	ift, ppm	¹³ C chemical shift, ppm		
number	X3		X4		X3	X4
1	-	-	-	-	206.90	206.00
2	3.03	(m,2H	3.03	(m,2H)	49.87	49.82
3	-	-	-	-	81.00	81.46
4	1.97-2.31	(d,15.6,2H)	1.97-2.30	(d,15.6,2H)	43.43	43.50
4a	-	-	-	-	79.70	79.80
5	6.09	(d,10.0,1H	6.09	(d,10.0,1H)	137.30	138.00
6	7.03	(d,10.0,1H	7.03	(d,10.0,1H)	118.00	118.00
6a	-	-	-	-	123.30	123.50
7	-	-	-	-	155.90	155.90
7a	-	-	-	-	114.9	114.8
8	-	-	-	-	186.27	186.84
9	-	-	-	-	142.80	148.89
10	8.05	(s,1H)	8.05	(s,1H)	134.93	134.93
11	-	-	-	-	118.60	116.60
11a	-	-	-	-	127.25	127.00
12	-	-	-	-	142.8	142.6
12a	-	-	-	-	128.10	127.00
12b	-	-	-	-	78.90	79.80
13	1.33	(m,3H	1.32	(m,3H)	24.83	24.80
1'	-	-	-	-	-	-
2'	-	-	-	-	159.20	159.20
3'	-	-	-	-	131.00	131.00
4'	-	-	-	-	107.00	107.00
5'	7.83	(s,1H)	7.83	(s,1H)	131.24	131.24
6'	-	-	-	-	136.00	136.00
7'	7.59	(d,7.8,1H)	7.59	(d,7.8,1H)	112.00	112.00
8'	7.29	(t,7.8,1H)	7.29	(t,7.8,1H)	123.00	123.00
9'	7.19	(t,7.8,1H)	7.19	(t,7.8,1H)	121.00	121.00
10'	7.53	(d,7.8,1H)	7.53	(d,7.8,1H)	120.20	120.20

¹H and ¹³C NMR data assignments of X3 (mzabimycin B) and X4 (mzabimycin A) in CD₃CN at 298 K. See Figs. 1 and 2 for numbering of hydrogen and carbon atoms.

11'	-	-	-	-	127.00	127.00
1A	5.26	(m,1H)	5.25	(m,1H)	91.88	92.00
2A	1.98	(m,2H)	1.98	(m,2H)	24.04	24.04
3A	1.94-1.98	(m,2H)	1.94-1.98	(m,2H)	24.25	24.25
4A	3.72	(m,1H)	3.71	(m,1H)	76.18	76.00
5A	4.14	(m,1H)	4.14	(m,1H)	66.56	66.72
6A	1.24	(d,6.5,3H)	1.24	(d,6.5,3H)	16.52	16.47
1B	5.30	(dd,9.0-3.4,1H)	5.30	(dd,9.0-3.4,1H)	95.00	95.00
2B	6.07	(d,9.0,1H)	6.07	(d,9.0,1H)	126.48	128.48
3B	7.00	(d,9.0,1H)	7.00	(d,9.0,1H)	144.00	144.00
4B	-	-	-	-	197.00	197.00
5B	4.60	(d,4.0, 1H)	4.60	(d,4.0, 1H)	70.14	70.14
6B	1.31	(d,4.0, 3H)	1.31	(d,4.0, 3H)	14.43	14.43
1C	4.73	(d,11.0,1H)	4.73	(d,11.0,1H)	70.65	70.65
2C	1.26-2.41	(m,2H)	1.72-2.41	(m,2H)	39.18	39.18
3C	3.74	(m,1H)	3.74	(m,1H)	70.96	70.78
4C	2.85	(m,1H)	2.86	(m,1H)	87.81	87.78
5C	3.43	(m,1H)	3.43	(m,1H)	74.50	74.55
6C	1.07	(dd,6.0-1.8,3H)	1.06	(dd,6.0-1.8,3H)	17.86	17.59
1D	4.89	(m,1H)	4.88	(m,1H)	99.05	99.18
2D	1.60-1.94	(m,2H)	1.60-1.99	(m,2H)	24.50	24.50
3D	1.90-1.93	(m,2H)	1.90-1.93	(m,2H)	24.25	24.25
4D	3.75	(m,1H)	3.72	(m,1H)	75.42	76.00
5D	4.23	(m,1H)	4.22	(m,1H)	67.51	67.44
6D	1.93	(dd,8.7-2.0,3H)	1.71	(dd,7.9-3.5,1H)	16.16	16.18
1E	4.96	(m,1H)	5.30	(m,1H)	99.40	95.00
2E	3.81	(m,1H)	6.07	(d,9.0,1H)	79.00	126.48
3E	2.54-2.83	(dt,15.4-4.8,2H)	7.00	(d,9.0,1H)	40.13	144.00
4E	-	-	-	-	207.23	197.00
5E	4.29	(m,1H)	4.60	(m,1H)	71.53	70.14
6E	1.19	(d,3.6,3H)	1.30	(m,3H)	13.94	14.43
7E	1.45	(d,5.5,3H)	-	-	15.50	-

The numbering of the atoms was made like that of antibiotics urdamycin D (Rohr et al., 1989) and langkocyclines B1 and B2 (Kalyon et al., 2013), which are closely related to the structures of mzabimycins A and B.

Table 3

Minimum inhibitory concentrations (MICs) of X3 (mzabimycin B) and X4 (mzabimycin A) produced by *Streptomyces* sp. PAL114 against several target microorganisms.

MICs (µg/ml)*	
X4	
50	
15	
60	
80	
40	
> 100	
> 100	
> 100	
> 100	
> 100	

* MIC values represent the mean of two replicates;