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A study of estimation of space and time distribution of heat flux at the front face of a thin plate is presented in this paper. This identification is carried out from the temperature data collected on the rear face by an infrared camera. The inversion procedure is based on a sequential estimation method: the state representation of the 3D parabolic model of heat conduction in solids. Of course, the parameterized heat flux distribution is discrete in both space (2D) and time. The high number of unknowns to be estimated simultaneously, as well as the measurement noise, makes the ill-posed character of this multi-dimensional inverse problem quite high. Regularization is implemented by using two techniques: the stabilization by the function specification method and the Tikhonov penalization.

Introduction

This article deals with the problem of the identification of heat sources from temperature measurements by infrared thermography. This problem is frequently encountered in the design of electronic components. These components are used in many industries. The components must be reliable in order to follow the requirements for an increase of the electrical power and a compact design. Temperature is one of the sizing parameters of these components. In order to define their thermal behavior, the development of tools for identifying heat sources from temperature measurements is of major interest. Often direct access to these sources is delicate. The goal is to locate and evaluate their power from measurements made in more easily accessible locations. In heat conduction, heat flux estimation is a common application of inverse heat conduction problem (IHCP). Many investigations have presented several methods in improving the stability of IHCP [START_REF] Ozisik | Inverse Heat Transfer: Fundamentals and Applications[END_REF]- [START_REF] Dowding | A Sequential Gradient Method for the Inverse Heat Conduction Problem (IHCP)[END_REF]. With regards to the thermal characterization by inverse problem in electronics, one can quote the references [START_REF] Janicki | Application of inverse heat conduction methods in temperature monitoring of integrated circuits[END_REF], [START_REF] Zawada | Simultaneous estimation of heat transfer coefficient and thermal conductivity with application to microelectronic materials[END_REF]. In reference [START_REF] Janicki | Application of inverse heat conduction methods in temperature monitoring of integrated circuits[END_REF], the authors used an inverse matrix inversion method to reconstruct, spatially and in steady state, the heat flux density dissipated on a printed circuit. In reference [START_REF] Zawada | Simultaneous estimation of heat transfer coefficient and thermal conductivity with application to microelectronic materials[END_REF], the objective of the study was to estimate the conductivity and the heat transfer coefficient of a body. In the study [START_REF] Feuillet | The Discrete Boundary Resistance method for thermal analysis of solid-state circuits and devices[END_REF], the authors developed a method (Discrete Boundary Resistance) in order to determine temperature distribution in a semi-analytical way within tri-dimensional solid-state circuits and packaged devices in steady state conditions. A methodology using conjugate gradient method was also proposed to estimate surface heat flux of a continuous casting mould (two-dimensional model) using limited temperature measurement data [START_REF] Udayraj | Estimation of surface heat flux in continuous casting mould with limited measurement of temperature[END_REF]. In [START_REF] Neto | Simultaneous Estimation of Location and Timewise-Varying Strength of a Plane Heat Source[END_REF], the authors present a numerical study using the conjugate gradient method with the adjoint equation to solve a transient IHCP, where the source location and the timewise varying strength are unknown. In [START_REF] Najafi | Real time solution for inverse heat conduction problems in a two-dimensional plate with multiple heat fluxes at the surface[END_REF] a filter based solution was developed to solve a two-dimensional IHCP with multiple unknown heat fluxes. References [START_REF] Liu | Inverse estimation of wall heat flux by using particle swarm optimization algorithm with Gaussian mutation[END_REF]- [START_REF] Mohammadiun | Estimation of the time-dependent heat flux using the temperature distribution at a point by conjugate gradient method[END_REF] present estimations of the evolution of a wall heat flux. A non-intrusive technique was proposed for determining the spatially varying heat transfer coefficient on the surface of a flat plate mounted with flush discrete heat sources [START_REF] Jakkareddy | A non-intrusive technique to determine the spatially varying heat transfer coefficients in a flat plate with flush mounted heat sources[END_REF]. The study presented some similarities to the problem discussed in our article. An approach using an experimentally built low order model was proposed for the estimation of time-varying heat sources by Girault et al. [START_REF] Girault | Estimation of time-varying heat sources through inversion of a low order model built with the Modal Identification Method from in-situ temperature measurements[END_REF]. Similarly, a two-dimensional numerical study on the problem of estimation of spatially and temporally varying heating boundary conditions of a two-dimensional object has also been dealt with in reference [START_REF] Zhou | Inverse estimation of spatially and temporally varying heating boundary conditions of a two-dimensional object[END_REF]. Then, Renault et al. [START_REF] Renault | A two-step regularized inverse solution for 2-D heat source reconstruction[END_REF] presented a method for reconstructing heat source terms (considered both spatially and time-dependent) from 2D temperature. Recently, Yadav et al. [START_REF] Yadav | Inverse models for transient wall heat flux estimation based on single and multi-point temperature measurements[END_REF] estimated a time-dependent wall heat flux by using a Levenberg Marquardt algorithm. The focus of this paper is to identify unknown heat fluxes on a flat-plat, which depend on time and space. This configuration corresponds to a non-intrusive detection of heat sources. The data acquisition was carried out on the opposite surface of the plate by an infrared camera. The inverse problem is solved by a non-iterative sequential algorithm based on the inversion of the state representation. Moreover, Tikhonov method and future time steps are used to regularize the IHCP.

Thermal direct model

Mathematical modelling

The three-dimensional transient heat conduction is studied in a parallelepipedic body with the dimensions W L V × × . Figure 1 presents the studied system and the applied boundary conditions. This configuration corresponds to component placements upon industrial electronic boards as shown in Figure 2. In this study, the dimensions of the plate are:

14 L W cm = =
, and its thickness is: 4 V mm = . The temperature field in the medium is the solution of the heat conduction equation :

2 2 2 2 2 2 p T T T T C x y z t λ ρ   ∂ ∂ ∂ ∂ + + =   ∂ ∂ ∂ ∂   (1) 
The initial temperature field is known, which is the result of a steady state.

( )

0 0 , , t T f x y z = = (2)
Side surfaces, ie in x = 0, y = 0, x = W and x = L, and the lower surface in z = V, are subjected to heat convection conditions (equation (3)).
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The boundary condition of the upper surface at z = 0 is unknown (equation ( 4)).

( )

0 , , ? z T x y t z λ ϕ = ∂ - = = ∂ (4) 
The objective of this study is to estimate the heat flux density ( )

, , x y t ϕ in z = 0 from temperature measurements made in z = V without having any prior information on its spatial distribution and its temporal evolution. The thermal conductivity and diffusivity of the plate are .

A parametric study has shown that the influence of these parameters on the results is negligible.

Solving the direct problem

The direct problem is solved by using the finite volume method (FVM). The structure is meshed in regular parallelepipedic volumes. The number of elements according to x, y, z is Nx, Ny, Nz, respectively. The total number of volumes is

T x y z N N N N = ⋅ ⋅ . Time discretization is noted n t n t = ⋅ ∆ . For 0,1,... n n N ∀ = 1 1 0 n n n n AT A T BU B U + + ′ ′ + + + = (5)
where, T is the state vector containing the values of the temperature at the different points of the mesh, and where U is the vector of the unknown heat fluxes or the entries of the model. The dimensions of these vectors are:

( )

dim n T T N = and
( )

dim S U N =
, S N being the number of unknowns of the model at time n t .

Then, the different matrixes are:

[ ] [ ] 1 1 cond cap cond cap com com A M M t A M M t B M B M δ δ δ δ = ⋅ - ∆ ′ = -⋅ + ∆ = ⋅ ′ = -⋅ (6) 
They are calculated from the following different matrixes: cap M : the capacity matrix (diagonal hollow matrix, ( )

dim cap T T M N N = × );
cond M : the conductance matrix (a hollow heptadiagonal matrix with ( )

dim cond T T M N N = × ); com M : the command matrix with ( ) dim com T S M N N = × .
δ is the degree of time implicity: 0 δ = , for the explicit scheme ; 0.5 δ = , for the semi-implicit scheme (Crank-Nicholson scheme) and 1 δ= for the implicit scheme.

Besides, the vector of the unknowns U contains all the non-homogeneities of the problem. In this case it contains the discretized values of ( )

, , x y t ϕ at the different points of the mesh of the boundary condition in 0 z= .

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 , 1 1 , , , with , H 2 H 2 
H 2 H 2 H 2 H 2 S n i N N i n i i n i n i i i i i i n n n x y t g x y f t g x y x x x x y y y y f t t t t t ϕ ϕ = + = = = ⋅ ⋅ = -∆ - + ∆ -∆ - + ∆         = -∆ - + ∆ ∑ ∑ (7) 
H is the Heaviside function and n ϕ is the vector of the unknown heat fluxes at time n t .

( ) ( )

1 1 n N n n n t f t ϕ ϕ + = = ⋅ ∑ ( 8 
)
This vector is therefore composed of the flux applied to each boundary element in the face z=0.

The dimension of unknown parameters n ϕ at each time step is therefore

S x y N N N = ⋅ (i.e.
( )

dim n S N ϕ =
). The vector U contains the known boundary conditions U and the ones unknown n ϕ . After dissociating the parameters, the eq. ( 5) becomes:

1 1 1 0 n n u n u n n n AT A T B U B U B B ϕ ϕ ϕ ϕ + + + ′ ′ ′ + + + + + = (9) 
This equation leads to writing the system state representation given by the following equation:

1 1 2 1 3 4 1 5 n n n n n n T D T D U D U D D ϕ ϕ + + + = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ (10) 
with

1 1 1 1 1 1 2 3 4 5 , , , , u u D A A D A B D A B D A B D A B ϕ ϕ - - - - - ′ ′ ′ = - = - = - = - = - (11) 
The numerical data of the mesh for this study are summarized in Table 1. 

x ∆ [ ] mm y ∆ [ ] mm z ∆ [ ]

Estimation of the heat fluxes

Identification procedure

In the inverse problem, the heat flux ( )

, , x y t ϕ is unknown. In order to solve this problem, temperature measurements Y % on the rear surface z=V at different time steps are performed.

The different n ϕ have to be identified at each step time tn. Then, the parameter vector β to be identified is composed of the different n ϕ :

1 2 n T T T T T n N β ϕ ϕ ϕ ϕ   =   L L (12) 
The vector estimation is performed by minimizing the square of the difference between measured data and calculated temperatures by the direct problem [START_REF] Beck | Nonlinear estimation applied to the nonlinear inverse heat conduction problem[END_REF], [START_REF] Bauzin | Estimation of thermal contact parameters at the interface of two sliding bodies[END_REF], [START_REF] Bauzin | Thermal characterization of frictional interfaces using experiments and inverse heat conduction methods[END_REF]. The functional of the least-square method is given by equation( 13):

( )

 ( ) 2 1 1 q n i N n N i i n n n i F Y Y β = = = = = - ∑ ∑ (13) 
where  i n Y is the measured temperature at time n t and coordinates ( )

, i i x y . i n Y
is the calculated temperature at the same place and the same time obtained from the temperature n T by the observation matrix C:

n n Y C T = ⋅ (14) 
The number of measurement points used on the surface at each time step is q N . The function φ (represented in a discrete way by the parameter vector β ) minimizing this relation is the least square solution. It must satisfy the condition of cancellation of the gradient of the functional F with respect to parameter β :

( )  ( ) 2 1 1 2 0 q n i N n N i i i n n n n i p Y F Y Y β β β = = = = ∂ ∇ = - = ∂ ∑ ∑ (15)
where, p is the index of parameters to be identified, i.e. N N N = ⋅ . The method used to solve our problem is the non-iterative sequential algorithm based on the inversion of the state representation given by the equation ( 10). This method is particularly well-suited to the problems of estimating boundary conditions. Moreover, one advantage of this technique is that the methods of regularization by future time steps and regularization by penalization of Tikhonov could be adapted relatively easily [START_REF] Beck | Inverse Heat Conduction: Ill-Posed Problems[END_REF]. From equation ( 14), the expression of the calculated temperature at time n t and coordinates ( )

, i i
x y on the surface is:

For 0 n = 1 1 Y C T = ⋅ (16) 
Using the relations of Eq. ( 10) and ( 11), it comes:

1 2 1 4 1 Y C D U C D ϕ = ⋅ ⋅ + ⋅ ⋅ 1 1 1 1 1 u Y C A B U C A B ϕ ϕ - - = -⋅ ⋅ -⋅ ⋅ (17) 
For the other step times, as the same way it comes:

0 n ∀ > 1 1 n n Y C T + + = ⋅ 1 1 2 1 3 4 1 5 n n n n n n Y C D T C D U C D U C D C D ϕ ϕ + + + = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ (18) 
The definition of matrices D1 D2 D3 D4 and D5 are given in Eq. [START_REF] Zawada | Simultaneous estimation of heat transfer coefficient and thermal conductivity with application to microelectronic materials[END_REF]. The minimization of the criterion F (Eq. ( 15)) leads to the relations ( 19) to [START_REF] Zhou | Inverse estimation of spatially and temporally varying heating boundary conditions of a two-dimensional object[END_REF] for the estimated unknown heat flux vectors

1 2 ˆˆˆˆˆn T T T T T n N β ϕ ϕ ϕ ϕ   =   L L . For n=0 1 1 1 1 ˆT T M M M Y L ϕ -     = -     % (19) 
with

1 4 M CD CA B ϕ - = = - (20) 
and

1 1 2 1 1 u L C D U C A B U - = ⋅ ⋅ = -⋅ ⋅ (21) 
For n>0

1 1 1 1 ˆT T n n n M M M Y L ϕ - + + +     = -     % (22)
With this time

1 1 2 1 3 5 n n n n n L C D T C D U C D U C D ϕ + + = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ (23) 
The calculation of the inverse matrix

1 T T M I M M M -   =  
provides a least square solution of the inverse problem (Eq. ( 13)).

Regularization of the inverse problem

The inverse problem consists of reconstructing a flux density in space and in time. The regularizations by means of the addition of a future time step [START_REF] Beck | Inverse Heat Conduction: Ill-Posed Problems[END_REF] and by penalization of Tikhonov [START_REF] Tikhonov | Numerical Methods for the Solution of Ill-Posed Problems[END_REF], [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF] are used simultaneously. The first, as defined, must stabilize the solution in the temporal direction, while the second must act in the directions of space.

The regularization by means of adding future time steps consists of using information at moments after the "current" moment 1 n t + by making a temporary assumption on the additional unknown input vectors:

1 1 1 2 1 , f n n n N ϕ ϕ ϕ + + + + + + K
, where Nf is the number of future time steps.

In order to minimize the functional ( ) F β , the unknown heat flux is considered constant on the future time steps:

1 f f N ∀ = K , 1 n f n ϕ ϕ + + = (24) 
From this assumption, the following recursive relation in order to calculate the temperatures on the future time steps is established:

1 1 1 1 5 1 2 1 1 3 0 0 1 1 4 1 5 1 0 0 i f i f f f i i n f n n n f i n f i i i i f i f i i n i i Y C D T D D D D U D D U C D D D D ϕ ϕ = = + + + + + - + - = = = = - + = =   = + + +       + +     ∑ ∑ ∑ ∑ (25) 
The system of the equation ( 18) is replaced by the following globalized system [START_REF] Videcoq | Model reduction for the resolution of multidimensional inverse heat conduction problems[END_REF]:

1 n ϕ + = + Y D b (26) 
The different matrices of equation ( 26) are:

1 2 1 1 T n n n f n Nf Y Y Y Y + + + + + +   =   Y L L 1 2 1 1 T n n n f n Nf D D D D + + + + + +   =   D L L 1 2 1 1 T n n n f n Nf b b b b + + + + + +   =   b L L (27) 
With the different terms:

1 1 1 4 1 5 0 0 1 1 1 1 5 1 2 1 1 3 0 0 i f i f i i n f i i i f i f f f i i n f n n n f i n f i i i D C D D D D b C D T D D D D U D D U ϕ = = - + + = = = = + + + + + - + - = =   = +       = + + +     ∑ ∑ ∑ ∑ (28) 
Even if q S N N = , the system of the equation ( 26) is overdetermined as soon as 0

f N ≠ . Indeed,
it is composed of Nq equations with NS unknowns. Its least square resolution is written in the following form (for

1 n f n N N   ∀ = -   K : 1 1 1 1 ˆT T n n n ϕ - + + +     = -     D D D Y b % (29) 
If 0 n = , the resolution is done by the relation of equation [START_REF] Mohammadiun | Estimation of the time-dependent heat flux using the temperature distribution at a point by conjugate gradient method[END_REF]. The regularization by future time steps and the regularization by penalization of Tikhonov have complementary actions on the stabilization of the solution. They can be used simultaneously. The functional to be minimized then becomes:

( )  1 2 2 1 n n N n n T n F Y Y R β µ ϕ = + =   = - +     ∑ (30) 
In this case, the minimization in the least square sense of the functional takes the form:

1 1 1 1 ˆT T T n T n n R R ϕ µ - + + +     = + -     D D D Y b % (31)
The choice of the parameter T µ is crucial. If it is poorly adapted, it can introduce a bias in the identification. The regularization parameters, namely the number of future time steps Nf and the Tikhonov parameter , T n µ , are chosen in order to respect the criterion of discrepancy, i.e.:

Y Y σ σ ≈ % (32) with ( ) ( ) ( ) 2 , , 1 1 1 
n f q n N N q N Y q n q n n q n f q Y Y N N N σ = - = = = = - - ∑ ∑ % ( 33 
)
The procedure for determining the regularization parameters is as follows:

Nf is increased till 2 Y Y σ σ ≈ % . Then, T
µ is adjusted to respect the condition of discrepancy. This calculation is done thanks to an iterative method (dichotomy) and it requires about ten iterations. Thus, the regularization will be half due to the method of future time steps and half to the penalization of Tikhonov.

Sensitivity analysis

Sensitivity analysis is conducted from the "static" and "dynamic" sensitivity matrices associated with this method of inversion of the state representation [START_REF] Videcoq | Model reduction for the resolution of multidimensional inverse heat conduction problems[END_REF].

The dynamic sensitivity ,

d p X ( ( ) , dim d p q X N =
) to the surface heat flux on one element p ϕ , corresponds to the index response (i.e., 1 p ϕ = and all other 0 i ϕ = ) of the model given by equation [START_REF] Bauzin | Thermal characterization of frictional interfaces using experiments and inverse heat conduction methods[END_REF]. The vectors of dynamic sensitivities are contained in the matrix D . The static sensitivity matrix is the limit of the dynamic sensitivity matrix when the time step becomes infinitely large. The correlation coefficient cc between two sensitivity vectors is calculated as:

( ) ( ) ( )( ) , , , , , , , , , , , i j i 
j i j i j T d d d i j d d T T d d d d X X cor cor X X X X X X β β β β β β β β = = (34)
So that the inversion is feasible, it is necessary for the computation step time to be chosen in a way that a disturbance on the heat flux p ϕ occurs, which takes place at time n and is significantly visible at time n+1. In the literature, the authors give a criterion on a Fourier number Fo in order to quantify the difficulty of the inverse problem. It is based on the step time Δt and on the distance d which separates the point where the disturbance takes place from the point where the measurement is made:

2 o t F d α ⋅ ∆ = (35)
This Fourier number is conventionally used as a reference in a one-dimensional inverse problem [START_REF] Beck | Inverse Heat Conduction: Ill-Posed Problems[END_REF]. The higher this number is, the more the inversion is "facilitated". Inverse problems become difficult to solve when 0.1 o F < . For these reasons, the computation time step will be imposed at 0.24 seconds for the previously defined plate height configuration of 4 [mm]. In Figure 3 and Figure 4, the dynamic sensitivities , d center X of the central heat flux for plate taking Nf=0, are plotted. The central temperature is most sensitive to the variation of central heat flux. It is this measurement point that will best allow for the recovery of the values of the central heat flux. For the presented cases, it is noted that four sensitivities are non-negligible in comparison to the sensitivity of the central temperature. As it is shown in the Figure 4, only four heat fluxes p ϕ have a correlation coefficient higher than 0.2. Generally, the higher the plate will be, the higher the correlations between heat fluxes will be calculated. In the studied case, these correlations are weak enough in order to identify all the parameters.

Experimental Results

Experimental device

The upper face of the plate is covered by an insulating block of four centimeters thickness. The heating elements are copper printed circuits of thickness 35 μm on 1.5 mm of epoxy resin. Three rectangular heat sources (S1, S2, S3) of size 25mm×15mm are located on the symmetry axis of the plate as shown in Figure 5. The heating elements are supplied by a DC power supply. The terminal voltages of each element are measured over time. A FLIR A40 infrared camera is placed at a distance of 50 cm above the rear face of the plate. The acquisition frequency is 60Hz and the resolution on the observed surface is 44100 pixels. This face and the side faces were painted with high emissivity paint. A photo of the experimental device is shown in Figure 6. This experimental setup is representative of heat transfer in bipolar transistors with vertical structures The results presented in this study were obtained on two different tests with the following characteristics:

• Test 1: the sources are switched simultaneously.

• Test 2: the sources are switched one after the other. For this experiment, heat sources are powered simultaneously in the same way during 30s. The Figure 7 presents the evolution of the average of the measured and identified heat flux in the central source (S2). For this test, the evolutions of the three sources are the same. The evolution of the identified heat flux is in agreement with the measurements. The filtered field of temperatures measured by infrared camera for a fixed time is plotted in Figure 9 (a). For comparison, the temperature field calculated from the estimated heat fluxes is plotted in Figure 9 (b). The thermal maps are similar. 

Test 2

For the second test, the locations of the sources are similar to those of test 1. The unique difference is that the heat sources are powered one after the other. The duration of the power supply is 18s. The evolutions of the average of measured and identified surface heat flux for each source (S1, S2 and S3), plotted in Figure 11, shows that the results are in good agreement. The error i S ε on each of the three sources for this experiment is less than 3%. In the Figure 8, a map of the identified heat flux for a fixed time (t=36s) is plotted. The non-zero identified surface heat fluxes , 36 i t s ϕ = correspond to the location of the three heat sources (black rectangles in Figure 8(b)). At this time, the third source (S3) is not yet powered (as it can be seen in Figure 11). The filtered field of temperatures measured by infrared camera for this time is plotted in Figure 13 (a). The temperature field calculated from the estimated heat fluxes is plotted in Figure 13 (b). The temperature maps are also similar for this test. 

Conclusion

In this paper, an inverse problem of reconstituting the locations and intensities of heat fluxes on a plate from temperature measurements on the opposite side was performed. The results showed a good agreement between measured and identified fluxes. The choice of the inversion of the state representation was made for the inversion method. This method is sequential and, moreover, it presents the advantages of being non-iterative and of allowing the inverse problem to be analyzed by calculating sensitivities, conditionings and correlations. It is thus possible to reconstruct the spatiotemporal distribution of heat flux densities, for which we have no prior information. Only the case of fixed sources has been studied in this article (which represents the configuration of the electronic components), but the technique used can be extended to the case of moving sources. Thus, in addition to finding the distribution of flux densities, this method also makes it possible to reconstruct the temperature field throughout the structure. It will also be possible to detect hot spots, for example. This is an inverse problem which presents a high level of difficulty since we have had to deal with the case of a transient 3D geometry. The unknown surface heat flux has been discretized in space and time, bringing the number of unknowns of the inverse problem to a very large number. It is shown that the use of a regularization procedure is needed. 
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 1 Characteristics of the mesh.