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Abstract 

 

Background: Nivolumab and pembrolizumab targeting PD-1 have recently been approved 

among recurrent and/or metastatic head and neck squamous cell carcinoma (HNSCC) 

patients who failed platinum therapy. We aimed to evaluate the prognostic value of selected 

immune gene expression in HNSCC.  

Patients and Methods: We retrospectively assessed the expression of 46 immune-related 

genes and immune-cell subpopulation genes including immune checkpoints using RT-PCR 

among 96 HNSCC patients who underwent primary surgery at Institut Curie between 1990 

and 2006. Univariate and multivariate analyses were performed to assess the prognostic 

value of dysregulated genes.  

Results: Median age of the population was 56 years [range: 35–78]. Primary tumor location 

was oral cavity (45%), oropharynx (21%), larynx (18%), and hypopharynx (17%). Twelve 

patients (13%) had an oropharyngeal HPV-positive tumor. Most significantly overexpressed 

immune-related genes were TNFRSF9/4-1BB (77%), IDO1 (75%), TNFSF4/OX40L (74%) 

and TNFRSF18/GITR (74%), and immune-cell subpopulation gene was FOXP3 (62%). 

Eighty five percent of tumors analyzed overexpressed actionable immunity genes, including 

PD-1/PD-L1, TIGIT, OX40/OX40L and/or CTLA4. Among the immune-related genes high 

OX40L mRNA level (p=0.0009) and low PD-1 mRNA level (p=0.004) were associated with 

the highest risk of recurrence. Among the immune-cell subpopulation genes patients with 

high PDGFRB mRNA level (p<0.0001) and low CD3E (p=0.0009) or CD8A mRNA levels 

(p=0.004) were also at the highest risk of recurrence.   

Conclusions: OX40L and PDGFRB overexpression was associated with poor outcome 

whereas PD-1 overexpression was associated to good prognostic in HNSCC patients treated 

with primary surgery suggesting their relevance as potential prognostic biomarkers and major 

therapeutic targets. 
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1. Introduction 

Head and neck squamous cell carcinoma (HNSCC) is the seventh cause of cancer with a 

yearly 40-50% mortality [1]. Classical risk factors for HNSCC include tobacco and alcohol 

consumption, as well as human papillomavirus (HPV) infection that has been demonstrated 

to have a prognostic impact [2].  

The Cancer Genome Atlas reported the genomic landscape of more than 270 primary 

HNSCC [3] with mutations in several oncogenes including PIK3CA (21%) and HRAS (4%), 

as well as in tumor suppressor genes including TP53 (72%), CDKN2A (22%), FBXW7 (5%), 

KMT2D (MLL2) (18%), and PTEN (2%) [3,4]. Genomic alterations involving the cell cycle 

(TP53, CCND1, CDKN2A), as well as FGFR1 amplifications, and tumor genomic alterations 

burden were shown to be prognostic and potential therapeutic targets for patients with 

HNSCC [5]. No relevant biomarkers for tailored therapeutic strategies have been identified in 

HNSCC to date. 

Beside surgery, radiotherapy and chemotherapy, HNSCC treatment includes targeted 

therapy and immunotherapy. Cetuximab, a monoclonal antibody that targets EGFR 

(epidermal growth factor receptor), has been the first targeted therapy approved in HNSCC, 

both in the locally advanced setting combined with radiotherapy [6] and in the first-line 

recurrent and/or metastatic setting in combination with chemotherapy [7]. Two anti-PD-1 

immune checkpoint inhibitors have been approved for the treatment of recurrent and/or 

metastatic HNSCC refractory to platinum therapy in 2016 [8,9]. These agents are better 

tolerated than chemotherapy and demonstrated durable responses in a minority of patients 

[8,9].  

At the tumor microenvironment (TME) level, the infiltration of HNSCC by innate and adaptive 

immune cells has been well documented. Several studies have identified immune cells with a 

prognostic value, such as CD8+ T cells, Foxp3+ regulatory T cells. The presence of tertiary 

lymphoid structures were also reported to affect prognosis [10–14]. OX40, PD-1 and CTLA-4 
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were shown to have a significantly higher expression in T-cell subsets isolated from tumors 

of HNSCC patients [15]. Few integrative studies reported the prognostic value of immune 

genes in HNSCC. 

We aimed in this study to assess the expression of immune genes and to evaluate their 

prognostic value in untreated HNSCC patients. 
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2. Patients and Methods 

2.1. Patients 

 

We retrieved samples from HNSCC patients who underwent upfront surgery at the Institut 

Curie between 1990 and 2006. We selected 96 patients with complete clinical, histological 

and biological data and long-term follow-up. 

This study was approved by the internal review board of Institut Curie and was conducted in 

accordance with the ethics principles of the Declaration of Helsinki. In accordance with the 

French regulations, all patients were informed that analyzes were to be performed on the 

biological specimens obtained during their treatment, and they did not express their 

opposition.  

2.2. Gene selection 

 

Fourty-six genes involved in the immune process were selected, including 30 genes defined 

as immune-related genes and 16 genes that were defined as immune-cell subpopulation 

genes (Supplementay Table 1). We chose TBP (Genbank accession number NM_003194) 

which encodes the TATA box binding protein as an RNA control gene. 

2.3. DNA sequencing & mutation assessment 

 

Targeted DNA sequencing of a selection of 100 genes corresponding to the most frequently 

altered genes in HNSCC and potential therapeutic targets was performed on Illumina 

HiSeq2500 sequencer and then annotated in the COSMIC and 1000 genome databases [16] 

,as described in Dubot et al., 2018. Tumor genomic alterations burden was assessed by 

summing the number of recurrent deleterious genomic alterations (SNV+CNV) per 

sample.Sanger sequencing was also performed to confirm PIK3CA, KRAS, HRAS and 

NRAS mutations. 
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2.4. HPV genotyping  

 

HPV status was assessed at the Pathology Department of the Institut Curie. HPV typing was 

conducted using total DNA isolated from formalin-fixed tissue blocks. Real-time PCR was 

performed with Sybr®Green and specific primers for HPV16 and 18 using a 7900HT Fast 

Real-Time PCR System (Applied Biosystems, Foster City, CA). 

 

2.5. Real time quantitative RT-PCR 

 

PCR consumables, RNA extraction, ctDNA synthesis and PCR reaction conditions were 

previously described in detail [17]. Primers are described in Supplementary Table 2. For 

each investigated gene, mRNA values ≥3 were considered as overexpressions and ≤0.33 as 

underexpressions. We previously used the same cut-off value for altered tumor gene 

expression [17].  

 

2.6. Immunohistochemistry/OX40L protein expression 

 

We performed IHC assay by using OX40L (Cell Signaling Technology, rabbit, 59036, 1/100, 

pH9) antibody in a series of 20 HNSCC among the 96 HNSCC patients corresponding to 10 

patients with high OX40L mRNA level and 10 with low OX40L mRNA level (supplementary 

material and methods). We performed immunohistochemical study of the tumor 

microenvironment by using OX40L immunostaining in tumor cells, stromal cancer associated 

fibroblasts (CAFs) and mononuclear inflammatory cells (MICs). All quantifications were 

performed with blinding to patient status by 2 expert pathologists.  

 

2.7. Statistical analyses 
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The clinicopathological features were tested for association with disease-free interval (DFI) 

by using Log-rank test. DFI was determined from the time of initial diagnosis to the time of 

the first event among locoregional recurrence, metastatic recurrence or second cancer. The 

clinicopathological and biological characteristics were tested for association with transcript 

level expression by using chi-square tests for categorical variables. The association between 

clinical variables and RNA levels was tested using Kruskal-Wallis H tests. Cox proportional 

hazards regression was used to estimate hazard ratio (HR) and their 95% confidence 

intervals (95% CI) for covariates associated with DFI showing significance at p<0.1 on 

univariate analysis. Differences between two populations were judged significant at 

confidence levels greater than 95% (p<0.05) [18]. Unsupervised hierarchical cluster analyses 

were performed using Morpheus algorithm to identify homogenous genes and tumor groups 

regarding molecular data. 
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3. Results 

3.1. Patient characteristics 

 

The characteristics of the 96 untreated HNSCC patients are listed in Table 1. Median age 

was 56 years [range: 35–78]. Most patients were males with tobacco and alcohol 

consumption. Twelve patients (13%) had an HPV-positive with a majority in oropharyngeal 

cancer. Pathological staging showed a high proportion of stage IV. The main tumor location 

was oral cavity (45%), followed by oropharynx (21%), larynx (18%) and hypopharynx (17%). 

Most patients had less than three tumor genomic alterations as previously determined [5]. 

HPV infection was the only characteristic that significantly impacted disease free interval 

(DFI) (p=0.032, Log-rank test), with a higher DFI reported for HPV-positive patients.  

 

3.2. mRNA expression of immune genes  

 

Figure 1 illustrates mRNA expression of the 46 immune genes according to clinical and 

molecular characteristics of the 96 HNSCC patients.  

3.2.1 mRNA expression of the immune-related genes 

 

Among the 30 immune-related genes analyzed, 18 genes were significantly deregulated in 

HNSCC tumors as compared to normal head and neck tissue (p<0.05), all being 

overexpressed except ICOSLG and TNFRSF14 (Table 2). Seven genes were overexpressed 

in more than 50% of tumors (4-1BB, GITR, ICOS, OX40L, CD70, IDO1 and CD80). OX40L 

had the highest mRNA level with a median of 6.52 fold and was overexpressed in 74% of 

tumors. Expression of PVRIG was significantly higher in HPV-positive tumors, whereas 

GITR, NT5E and CD276 expressions were significantly lower in HPV-positive tumors (Table 

3). All immune-related genes except ICOSLG showed no modification in the expression 

profile in HNSCC who harbored oncogenes mutations (NRAS, HRAS, KRAS or PIK3CA) as 
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compared to not mutated. Regarding tumor genomic alterations burden, 20 out of the 30 

immune-related genes (67%) were significantly overexpressed in tumors with less than three 

tumor genomic alterations except for GITR, which showed a lower mRNA level (Table 3). 

Unsupervised hierarchical clustering analyses of 96 HNSCC samples with the 30 immune-

related genes showed that the majority of genes coding a receptor protein clustered together 

as compared to genes coding a ligand protein (Supplementary Figure 1). 

3.2.2 mRNA expression of the immune-cell subpopulation genes 

 

Among the 16 immune-cell subpopulation genes analyzed, 7 genes (44%) were significantly 

deregulated in HNSCC tumors as compared to normal head and neck tissue (p<0.05). 

FOXP3 was overexpressed, while only NCAM1 was underexpressed in more than 50% of 

the tumors as compared to normal head and neck tissue (Table 4).  

Expressions of PDGFRB and NCAM1 were significantly different according to HPV status 

(Table 5). All immune-cell subpopulation genes except PDGFRB and FUT4 were significantly 

underexpressed in HNSCC with more than three tumor genomic alterations.  

A similar unsupervised hierarchical clustering analysis of 96 HNSCC samples with the 16 

immune-cell subpopulation genes showed that the lymphocytes specific genes also clustered 

together (Supplementary Figure 2). 

 

3.3. OX40L protein expression using immunochemistry 

 

Using IHC, OX40L protein was expressed in epithelial cancer cells for most tumor samples 

(H Score: 1-2.5) with a predominantly cytoplasmic location in various populations of the TME, 

including mononuclear inflammatory cells (MICs), fibroblasts and muscle (Supplementary 

Figure 3). 

 

3.4. Prognostic value of immune gene expression  
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Twelve out of the 30 immune-related genes (40%) were associated with a short DFI in 

univariate analysis, including four genes with a high mRNA level and eight genes with a low 

mRNA level (Supplementary Table 3). High OX40L mRNA level (p=0.0009) and low PD-1 

mRNA levels (p=0.004) were associated with the highest risk of recurrence (Figure 2).  

Eight out of the 16 immune-cell subpopulation genes (50%) were associated with a short 

DFI, including two genes with a high mRNA level and six genes with a low mRNA level 

(Supplementary Table 4). High PDGFRB mRNA level (p<0.0001) and low CD3E or CD8A 

mRNA levels (p=0.0009 and p=0.004, respectively) were associated with the highest risk of 

recurrence (Figure 3).  

OX40L, PD-1, PDGFRB, CD3E and CD8A immune genes were significantly associated with 

a short DFI (OX40L: p=0.005, PD-1: p=0.019, PDGFRB: p=0.0004, CD3E: p=0.011, and 

CD8A: p=0.016) (Supplementary Table 5) in a multivariate analysis taking into account all 

clinical parameters associated with a short DFI with a p-value <0.1 (Table 1). 

 

3.5. Expression of actionable immune genes 

 

PD-1/PD-L1, TIGIT, OX40/OX40L, and CTLA4 are currently major actionable genes in the 

context of immunotherapy strategies. Among the 96 tumors analyzed, 82 tumors (85%) 

overexpressed at least one of these six genes. Thirty three tumors (34%) overexpressed 

simultaneously TIGIT, CTLA4, PD-1/PD-L1 and OX40/OX40L. No tumor exclusively 

overexpressed PD-1 or OX40. PD-L1 was exclusively overexpressed in only one sample 

(1%). TIGIT was exclusively overexpressed in only two samples (2%) and CLTA4 in three 

samples (3%) whereas OX40L was exclusively overexpressed in 29 samples (30%) (Figure 

4A). 

Figure 4B describes the clinical and molecular characteristics of the 82 HNSCC patients with 

at least one overexpressed immune gene among the six actionable genes of interest.  
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4. Discussion 

We assessed the prognostic value of selected immune genes expression in a retrospective 

analysis of 96 HNSCC patients who underwent primary surgery at Institut Curie. Our results 

show that most significantly overexpressed genes were 4-1BB (77%), IDO1 (75%), OX40L 

(74%) and GITR (74%) immune-related genes, and FOXP3 (62%) immune-cell 

subpopulation genes. Eighty five percent of tumors analyzed overexpressed actionable 

immunity genes, including PD-1/PD-L1, TIGIT, OX40/OX40L and/or CTLA4. High OX40L 

mRNA level (p=0.0009) and low PD-1 mRNA level (p=0.004) were associated with the 

highest risk of recurrence. Patients with high PDGFRB mRNA levels and low CD3E or CD8A 

mRNA levels also were at the highest risk of recurrence. Overall, around half of immune 

genes had a deregulated mRNA level in tumor cells as compared to normal head and neck 

tissue. Tumors with a low number of genomic alterations had higher mRNA levels of immune 

genes.  

More specifically, our results show that among immune-cell subpopulation genes, antigen 

presenting cells, dendritic cells and B and T cells had a higher mRNA level in tumors 

whereas natural killer cells specific genes (i.e. NCAM1) were underexpressed. Furthermore 

we observed a high FOXP3 mRNA level not correlated to recurrence. This suggests a high 

numbers of T regulatory cells that was also reported in HNSCC patients [10]. Positive 

associations were observed between OX40L and FOXP3 mRNA levels and between OX40L 

and CD4 mRNA levels using the Spearman rank correlation test (r=+0.27, p=0.0083 and 

r=+0.46, p<0.0001 respectively).  

OX40L, PD-1, PDGFRB, CD3E and CD8A were associated with a poor prognosis in our 

study, especially a high mRNA level of OX40L. The prognostic value of OX40L expression is 

controversial in the literature and depends on the type of cancer [19,20]. The overexpression 

of OX40L was significantly associated with a higher risk of recurrence in bladder cancer [19], 

whereas, it was associated with prolonged progression-free survival in glioblastoma [20].  
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In our HNSCC patients, OX40L was expressed in the microenvironment of the tumor cell 

notably in fibroblasts at the protein level. In this regard, we observed a marked positive 

association between OX40L and PDGFRB mRNA levels using the Spearman rank 

correlation test (r=+0.47 and p<0.0001, data not shown). Similarly the expression of OX40L 

was detected in a subset of carcinoma associated fibroblasts characterized by an 

immunosuppressive environment in triple negative breast cancer patients [21]. No clear cell 

location of OX40L protein was reported in the literature for HNSCC.   

Low mRNA level of PD-1 correlated with a poor prognosis in our series. The absence of PD-

L1 mRNA overexpression in circulating tumor cells following anti-PD1 treatment was strongly 

associated with an objective response in HNSCC patients [22]. The prognostic value of PD-1 

mRNA level was also reported in high grade serous ovarian carcinoma [23] and in non-small 

cell lung cancer [24]. Low mRNA level of PD-L1 had also a poor prognosis although less 

significant than PD-1 which is consistent to KEYNOTE-048 trial interim findings who reported 

an improved overall survival and duration of response versus standard therapy in patients 

with PD-L1–positive recurrent or metastatic HNSCC [25]. 

Our results also demonstrated that high mRNA level of PDGFRB, a major fibroblast specific 

gene, was associated with a poor prognosis. Similar results were reported in prostate cancer 

[26]. A high PDGFRB protein expression was also reported to correlate with a short survival 

in renal cell carcinoma [27] and pancreatic adenocarcinoma [28] patients.  

HNSCC patients with low mRNA levels of CD3E or CD8A had a poor prognosis. Similarly, 

high CD3 and CD8 mRNA expression was associated with a decreased risk of relapse in 

early breast cancer patients [29]. CD8 overexpression correlated with prolonged overall 

survival and recurrence-free survival in bladder cancer patients [19]. 

Eighty-five percent of HNSCC tumors had at least an actionable immune gene 

overexpression (PD-1/PD-L1, TIGIT, OX40L/OX40, and CTLA4) in our series. OX40L mRNA 

level was overexpressed in 74% of tumors and had the worst prognostic value, suggesting 

that OX40L is a relevant therapeutic target for HNSCC patients.  
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Several clinical trials evaluate OX40L agonists either as single agent or in combination with 

anti-PD-1/PD-L1 agents (NCT02315066, NCT02923349, NCT02410512, NCT02221960, 

NCT02705482). A phase 1 trial evaluating an anti-OX40 agonistic monoclonal antibody 

(9B12) in 30 patients with refractory metastatic solid malignancies showed a favorable safety 

profile and tumor shrinkage in 12 patients [30].  

In addition in our series, thirty four percent of HNSCC tumors co-expressed PD-1/PD-L1, 

TIGIT, OX40/OX40L, and CTLA4 together suggesting that a combination of immune check-

point inhibitors may be a relevant therapeutic strategy in HNSCC patients. Several clinical 

trials are ongoing with other immunotherapy drugs such as GITR (e.g. NCT01239134 or 

NCT02697591) or 4-1BB (e.g. NCT03364348) generally administered in combination in 

advanced solid malignancies.  
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5. Conclusions 

OX40L and PDGFRB overexpression was associated with poor outcome in HNSCC patients 

treated with primary surgery. On the contrary PD-1 overexpression was associated to good 

prognostic. These results suggest their relevance as potential prognostic biomarkers to be 

validated in an independent cohort. Immunotherapy was recently demonstrated to improve 

overall survival in the recurrent and/or metastatic setting of HNSCC patients with 

pembrolizumab [9] and nivolumab [8] that target PD-1. However, only a minority of patients 

benefit from these agents [8,9], highlighting the urgent need to identify other relevant immune 

targets. 
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Tables 

 
Table 1. Clinical, biological and pathological characteristics of the 96 HNSCC patients in 

relation with disease-free interval (DFI) 
 
    

  
Patients 

(%) 
Events

a
 (%) DFI

b
 

        

Total 96 (100) 45 (47)   
Age     

 
  <56 46 (48) 20 (44) 0.89 (NS) 

  ≥56 50 (52) 25 (50) 
 

Gender     
 

  Female 19 (20) 8 (42) 0.71 (NS) 

  Male 77 (80) 37 (48) 
 

Alcool
c
     

 
  Yes 50 (70) 24 (48) 0.17 (NS) 

  No 21 (30) 8 (38) 
 

Tobacco consumption
d
     

 
  Yes 58 (73) 28 (48) 0.075 (NS) 

  No 22 (27) 7 (32) 
 

HPV status     
 

  Negative 84 (87) 42 (50) 0.032 

  Positive 12 (13) 3 (25) 
 

UICC stage      
 

  Stage I 10 (10) 5 (50) 0.68 (NS) 

  Stage II 15 (16) 6 (40) 
 

  Stage III 12 (13) 4 (33) 
 

  Stage IV 59 (62) 30 (51) 
 

Tumor location     
 

  Oral cavity 43 (45) 22 (51) 0.053 (NS) 
  Oropharynx 20 (21) 5 (25) 

 
  Larynx 17 (18) 8 (47) 

 
  Hypopharynx 16 (17) 10 (63) 

 
Oncogenes’ mutational status

e
     

0.079 (NS)   Not mutated 78 (81) 36 (46) 
  At least one mutated 18 (19) 9 (50) 
Number of molecular alterations

f
     

 
  <3 56 (60) 27 (48) 0.082 (NS) 
  ≥3 37 (40) 17 (46)   

 
a Events: locoregional and/or metastatic recurrence, second cancer 
b Log-rank test 
c Alcohol use was considered at 10 gr/day or more (i.e. alcohol unit). Information was available for 71 patients. 

d Tobacco use was considered at 10 pack years or more. Information was available for 80 patients.  
e PIK3CA, NRAS, HRAS or KRAS oncogenes 
f Number of molecular alterations among a selection of 100 genes as previously determined in Dubot et al., 2018. Information 

was available for 93 patients. 
 
DFI: disease-free interval; NS: not significant; HNSCC: head and neck squamous cell carcinoma; UICC: Union for International 

Cancer Control  

  



European Journal of Cancer  Lecerf et al. 

19 

 

Table 2. mRNA expression of 30 immune-related genes relative to normal tissue mRNA level 

    

 

            

Gene  Protein Alias 
Head and neck 
normal tissue

a
 

Head and neck 
squamous cell 

carcinomas 
p-value

b
 

% under 
expression 

% normal 
expression 

% over 
expression 

(n=27) (n=96) 
                  

HLA-DRA Ligand 
 

1.0 (0.01-5.87) 0.74 (0.01-9.95)  0.91 (NS) 41% 47% 13% 
LAG3 Receptor   1.0 (0.29-4.96)  2.01 (0.2-16.7)  0.001 6% 58% 35% 

PVR Ligand CD155 1.0 (0.66-3.93)  1.22 (0.47-4.78)  0.28 (NS) 0% 95% 5% 

PVRIG Receptor CD112R 1.0 (0.23-7.45)  1.45 (0.17-8.13)  0.24 (NS) 5% 77% 18% 
TIGIT Receptor 

 
1.0 (0.04-9.66)  2.77 (0.09-23.4)  <0.0001 2% 51% 47% 

CD96 Receptor 

 

1.0 (0.14-4.74)  1.12 (0.12-7.28)  0.59 (NS) 8% 79% 13% 

CD226 Receptor   1.0 (0.49-4.16)  0.85 (0.08-4.3)  0.05 (NS) 10% 88% 2% 

TNFSF9 Ligand CD137L, 4-1BBL 1.0 (0.17-5.4)  1.54 (0.14-10.1)  0.011 4% 78% 18% 

TNFRSF9 Receptor CD137, 4-1BB 1.0 (0.23-8.39)  5.05 (0.61-29.9)  <0.0001 0% 23% 77% 

TNFSF18 Ligand GITRL 1.0 (0-36.1)  1.81 (0.05-58.4)  0.063 (NS) 9% 55% 35% 
TNFRSF18 Receptor GITR 1.0 (0.02-4.21)  4.13 (0.57-17.4)  <0.0001 0% 26% 74% 

ICOSLG Ligand ICOSL, B7H2 1.0 (0.46-2.52)  0.64 (0.1-7.98)  0.0003 8% 89% 3% 
ICOS Receptor   1.0 (0.11-6.99)  3.45 (0.27-24.6)  <0.0001 1% 44% 55% 

OX40L  Ligand TNFSF4, CD134L, CD252 1.0 (0-9.94)  6.52 (0.24-48.0)  <0.0001 1% 25% 74% 
OX40 Receptor TNFRSF4, CD134 1.0 (0.29-2.73)  2.12 (0.17-13.0)  <0.0001 1% 74% 25% 

CD70 Ligand TNFSF7 1.0 (0.25-4.32)  4.21 (0.22-92.0)  <0.0001 1% 34% 65% 
CD27 Receptor TNFRSF7 1.0 (0.05-18.6)  1.92 (0.04-14.3)  0.11 (NS) 7% 58% 34% 

TIM-3 Ligand HAVCR2 1.0 (0.35-2.03)  1.57 (0.24-8.3)  0.0006 1% 78% 21% 

LGALS9 Receptor GALECTINE-9 1.0 (0.34-3.02)  1.21 (0.1-10.2)  0.31 (NS) 5% 84% 10% 

PD-L1 Ligand CD274 1.0 (0.31-2.79)  1.26 (0.16-38.7)  0.056 (NS) 6% 70% 24% 

PD-L2 Ligand PDCD1LG2 1.0 (0.29-2.75)  1.45 (0.27-13.6)  0.035 4% 77% 19% 
PD-1 Receptor  PDCD1, CD279 1.0 (0.22-8.09)  1.97 (0.11-14.2)  0.019 6% 62% 32% 

ENTPD1 Ligand CD39 1.0 (0.42-2.48)  1.02 (0.2-3.26)  0.93 (NS) 2% 97% 1% 

IDO1 Ligand   1.0 (0.09-8.68)  6.41 (0.14-184.4)  <0.0001 2% 23% 75% 

NT5E Ligand CD73 1.0 (0.32-2.35)  1.03 (0.06-6.35)  0.79 (NS) 6% 82% 12% 

TNFRSF14 Receptor HVEM 1.0 (0.42-1.6)  0.61 (0.07-1.75)  0.0006 18% 82% 0% 

CD276 Receptor B7H3 1.0 (0.34-1.79)  2.05 (0.26-7.61)  <0.0001 1% 77% 22% 

CD80 Ligand B7-1 1.0 (0.16-5.5) 5.35 (0.67-23.0)  <0.0001 0% 20% 80% 

CD86 Ligand B7-2 1.0 (0.37-2.61)  1.81 (0.27-5.98)  <0.0001 1% 78% 21% 

CD28 Receptor   1.0 (0.31-6.49)  1.32 (0.1-8.16)  0.36 (NS) 5% 79% 16% 

 

a Median (range) of gene mRNA levels; the mRNA values of the samples were normalized such that the median of the 27 head and neck normal tissues mRNA values was equal to 1 

 
b Kruskal Wallis's H Test 
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Table 3. mRNA expression of 30 immune-related genes in HNSCC according to HPV status and the number of molecular alterations 

      

   

HPV- versus HPV+ 
 

 

Not mutated versus mutated oncogenes 

 

Number of molecular alterations 

<3 versus ≥3 

 
Gene  Protein  HPV-

a
 HPV+ p-value

b
  Not mutated Mutated p-value  <3 ≥3 p-value  Alias 

   (n=84) (n=12)  (n=78) (n=18)  (n=56) (n=37)  
            

HLA-DRA Ligand 
 

0.75 (0.01-9.95) 0.15 (0.02-6.14) 0.69 (NS) 0.73 (0.01-6.63) 1.11 (0.03-9.95) 0.59 (NS) 0.78 (0.02-9.95) 0.65 (0.01-4.69) 0.19 (NS) 
LAG3 Receptor 

 
1.88 (0.2-16.7) 3.04 (0.71-9.02) 0.23 (NS) 2.03 (0.20-15.6) 1.78 (0.77-16.7) 0.48 (NS) 2.79 (0.20-15.6) 1.20 (0.24-16.7) <0.0001 

PVR Ligand CD155 1.27 (0.53-4.78) 1.02 (0.47-3.51) 0.41 (NS) 1.20 (0.51-4.78) 1.25 (0.47-4.33) 0.38 (NS) 1.32 (0.47-4.33) 1.07 (0.53-4.78) 0.29 (NS) 

PVRIG Receptor CD112R 1.6 (0.17-8.13) 2.47 (0.47-6.39) 0.047 1.31 (0.17-8.13) 1.80 (0.49-6.27) 0.14 (NS) 1.93 (0.38-8.13) 0.91 (0.17-5.39) <0.0001 
TIGIT Receptor 

 
2.71 (0.09-23.4) 4.07 (1.09-10.7) 0.23 (NS) 2.59 (0.09-23.4) 4.01 (0.67-13.1) 0.13 (NS) 3.95 (0.67-23.4) 1.83 (0.09-13.1) <0.0001 

CD96 Receptor 

 

1.06 (0.12-7.28) 1.79 (0.30-3.85) 0.27 (NS) 1.04 (0.12-7.09) 1.28 (0.35-7.28) 0.27 (NS) 1.64 (0.30-7.09) 0.79 (0.12-7.28) <0.0001 

CD226 Receptor   0.83 (0.08-4.30) 1.03 (0.32-2.61) 0.43 (NS) 0.76 (0.08-3.95) 0.88 (0.37-4.30) 0.20 (NS) 1.24 (0.16-3.95) 0.49 (0.08-4.30) <0.0001 

TNFSF9 Ligand CD137L 1.54 (0.14-10.1) 1.35 (0.69-3.78) 0.71 (NS) 1.60 (0.14-6.27) 1.40 (0.40-10.1) 0.63 (NS) 1.56 (0.20-5.13) 1.52 (0.14-10.1) 0.80 (NS) 

TNFRSF9 Receptor CD137 5.05 (0.61-25.2) 6.08 (2.32-29.9) 0.26 (NS) 4.83 (0.61-29.9) 7.21 (1.33-19.3) 0.15 (NS) 6.43 (1.33-29.9) 4.39 (0.61-18.8) 0.005 

TNFSF18 Ligand GITRL 2.030.05-58.4) 1.33 (0.33-6.46) 0.36 (NS) 1.85 (0.16-58.4) 1.49 (0.05-6.34) 0.51 (NS) 1.73 (0.05-58.4) 2.44 (0.18-57.8) 0.74 (NS) 
TNFRSF18 Receptor GITR 4.26 (0.57-17.4) 2.99 (0.89-9.66) 0.0097 4.23 (0.57-17.4) 3.74 (0.72-11.0) 0.16 (NS) 3.70 (0.57-17.4) 6.80 (0.58-14.8) 0.002 

ICOSLG Ligand ICOSL 0.61 (0.10-2.01) 0.82 (0.33-7.98) 0.10 (NS) 0.57 (0.10-7.98) 0.88 (0.26-7.15) 0.014 0.73 (0.3-7.98) 0.54 (0.10-1.46) 0.079 (NS) 
ICOS Receptor 

 

3.13 (0.27-24.6) 4.45 (2.05-7.77) 0.27 (NS) 3.40 (0.27-24.6) 4.03 (0.37-9.28) 0.45 (NS) 4.49 (0.37-24.6) 2.13 (0.27-9.28) <0.0001 

OX40L  Ligand TNFSF4  6.52 (0.24-48.0) 9.35 (0.43-18.1) 0.91 (NS) 5.85 (0.24-39.5) 7.39 (1.58-48.0) 0.40 (NS) 7.94 (0.39-40.0) 5.45 (0.24-48.0) 0.32 (NS) 
OX40 Receptor TNFRSF4 2.12 (0.17-13.0) 2.09 (0.94-4.67) 0.54 (NS) 2.12 (0.17-13.0) 2.27 (0.94-4.40) 0.99 (NS) 2.23 (0.57-13.0) 1.70 (0.17-4.65) 0.011 

CD70 Ligand TNFSF7 4.10 (0.22-88.2) 5.85 (0.87-92.0) 0.34 (NS) 4.41 (0.22-88.2) 3.93 (0.66-91.4) 0.45 (NS) 4.31 (0.66-92.0) 4.07 (0.22-68.4) 0.23 (NS) 
CD27 Receptor TNFRSF7 1.9 (0.04-14.3) 2.79 (0.49-5.75) 0.45 (NS) 1.82 (0.04-14.3) 2.64 (0.13-5.75) 0.46 (NS) 2.79 (0.13-14.3) 0.93 (0.04-7.54) <0.0001 

TIM-3 Ligand HAVCR2 1.56 (0.24-8.30) 1.87 (0.71-3.49) 0.89 (NS) 1.52 (0.24-5.63) 2.02 (0.89-8.30) 0.13 (NS) 2.01 (0.70-5.63) 1.16 (0.24-8.30) <0.0001 

LGALS9 Receptor GALECTINE-9 1.19 (0.10-10.20) 1.86 (0.26-5.38) 0.15 (NS) 1.22 (0.10-10.2) 1.19 (0.59-5.04) 0.16 (NS) 1.38 (0.26-6.85) 0.89 (0.10-5.04) 0.003 

PD-L1 Ligand CD274 1.17 (0.16-38.7) 1.77 (0.47-8.83) 0.21 (NS) 1.17 (0.16-10.9) 1.72 (0.47-38.7) 0.14 (NS) 1.72 (0.23-38.7) 0.74 (0.16-9.02) <0.0001 

PD-L2 Ligand PDCD1LG2 1.42 (0.27-13.6) 1.51 (0.29-6.27) 0.94 (NS) 1.41 (0.27-13.6) 1.84 (0.29-10.2) 0.41 (NS) 1.79 (0.29-13.6) 1.17 (0.27-4.81) 0.003 
PD-1 Receptor PDCD1 1.92 (-0.11-14.2) 2.60 (0.74-6.34) 0.23 (NS) 1.92 (0.11-12.2) 2.18 (0.85-14.2) 0.17 (NS) 2.67 (0.27-12.2) 0.97 (0.11-14.2) <0.0001 

ENTPD1 Ligand CD39 1.02 (0.20-3.26) 0.76 (0.41-1.83) 0.091 (NS) 1.02 (0.20-3.26) 1.03 (0.45-1.93) 0.77 (NS) 1.17 (0.41-3.26) 0.76 (0.20-2.13) 0.001 

IDO1 Ligand 
 

6.41 (0.14-184.4) 6.21 (1.70-128.3) 0.84 (NS) 6.27 (0.14-138.9) 7.83 (1.34-184.4) 0.33 (NS) 8.35 (0.14-128.3) 4.45 (0.15-184.4) 0.035 

NT5E Ligand CD73 1.15 (0.18-6.35) 0.44 (0.06-2.87) 0.008 1.15 (0.18-6.35) 0.89 (0.06-4.95) 0.34 (NS) 1.16 (0.06-6.35) 0.99 (0.18-5.10) 0.96 (NS) 

TNFRSF14 Receptor HVEM 0.61 (0.07-1.75) 0.66 (0.21-1.27) 0.68 (NS) 0.59 (0.07-1.53) 0.70 (0.31-1.75) 0.12 (NS) 0.71 (0.21-1.53) 0.45 (0.07-1.75) <0.0001 

CD276 Receptor B7H3 2.15 (0.26-7.61) 1.25 (0.59-4.81) 0.005 2.07 (0.26-7.61) 1.91 (0.59-4.81) 0.72 (NS) 1.99 (0.59-4.81) 2.13 (0.26-7.61) 0.22 (NS) 

CD80 Ligand B7-1  5.47 (0.67-23.0) 4.68 (1.99-9.38) 0.59 (NS) 5.23 (0.67-23.0) 7.06 (1.28-16.1) 0.55 (NS) 6.20 (1.28-23.0)  3.66 (0.67-16.0) 0.002 

CD86 Ligand B7-2  1.76 (0.27-5.98) 2.05 (0.77-3.09) 0.98 (NS) 1.71 (0.27-5.98)  2.26 (0.77-5.09) 0.46 (NS) 2.29 (0.68-5.98)  1.36 (0.27-4.56) 0.001 

CD28 Receptor   1.23 (0.10-8.16) 1.72 (0.59-2.92) 0.47 (NS) 1.17 (0.10-8.16)  1.54 (0.58-2.92) 0.84 (NS) 1.85 (0.48-8.16)  0.90 (0.10-5.18) <0.0001 

 
a Median (range) of gene mRNA levels; the mRNA values of the samples were normalized such that the median of the 27 head and neck normal tissues mRNA values was equal to 1 
b Kruskal Wallis's H Test  
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Table 4. mRNA expression of 16 immune-cell subpopulation genes relative to normal tissue mRNA level 

                  

Gene Cellular specificity Alias 
Head and neck 
normal tissue

a
 

Head and neck 
squamous cell 

carcinoma 
p-value

b
 

% under 

expression 

% normal 

expression 

% over 

expression 
(n=27) (n=96) 

                  

ITGAX dendritic cells 
 

1.0 (0.22-3.23)  2.04 (0.52-13.0)  <0.0001 0% 74% 26% 
PDGFRB fibroblast 

 
1.0 (0.22-5.89)  1.1 (0.17-5.58)  0.87 (NS) 3% 93% 4% 

PTPRC hematopoietic cells CD45 1.0 (0.39-6.41)  1.24 (0-6.1)  0.63 (NS) 5% 83% 12% 

MS4A1 LB CD20 1.0 (0.06-161.9)  1.57 (0.02-51.2)  0.14 (NS) 22% 39% 40% 
CTLA4 LT CD152 1.0 (0.03-5.05)  3 (0.21-15.1)  <0.0001 1% 49% 50% 
PRF1 LT 

 

1.0 (0.43-3.34)  1.35 (0.12-8.62)  0.13 (NS) 8% 72% 20% 

CD3E LT 
 

1.0 (0.26-7.59)  1.58 (0.13-11.2)  0.18 (NS) 6% 68% 26% 
CD2 LT 

 
1.0 (0.19-6.73)  1.62 (0.14-13.2)  0.20 (NS) 8% 70% 22% 

FOXP3 LTc 
 

1.0 (0-5.16)  3.98 (0.33-18.2)  <0.0001 0% 39% 62% 

CD8A LTc 
 

1.0 (0.21-6.54)  1.46 (0.08-17.4)  0.65 (NS) 10% 62% 28% 
CD4 LT helper 

 
1.0 (0.56-2.71)  1.04 (0.11-5.33)  0.62 (NS) 6% 90% 4% 

GZMA LT/NK 

 

1.0 (0.35-6.15)  2.16 (0.11-18.9)  0.011 8% 55% 37% 

GZMB LT/NK 
 

1.0 (0.2-18.4)  2.16 (0.09-22.2)  0.0002 2% 57% 41% 
NCAM1 NK CD56 1.0 (0.1-7.6) 0.15 (0.01-7.56)  <0.0001 66% 27% 7% 
CD14 macrophages/monocytes 

 
1.0 (0.39-3.54)  1.17 (0.17-3.41)  0.19 (NS) 3% 95% 2% 

FUT4 neutrophils CD15 1.0 (0.35-4.18)  0.7 (0.13-3.37)  0.002 12% 88% 1% 

 
a Median (range) of gene mRNA levels; the mRNA values of the samples were normalized such that the median of the 27 head and neck normal tissues mRNA values was equal to 1 
b Kruskal Wallis's H Test 

LT: T cell; LB: B cell; NK: Natural killer, LTc: Cytotoxic T lymphocyte 
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Table 5. mRNA expression of immune-cell subpopulation genes in HNSCC according to HPV status and the number of molecular alterations 

   
      

   

HPV- verus HPV+ Not mutated versus mutated oncogenes  Total number of alterations 

(84 versus 12) (78 versus 18) <3 versus ≥3 

    (56 vs 37) 

Gene  Cellular specificity Alias HPV-
a
 HPV+ p-value

b
 Not mutated Mutated p-value <3 ≥3 p-value 

                        

ITGAX dendritic cells 

 

 2.14 (0.52-13.0) 1.77 (0.55-6.03) 0.22 (NS) 1.98 (0.52-13.0)  2.20 (0.55-6.64) 0.33 (NS) 2.35 (0.55-13.0)  1.61 (0.52-6.25) 0.002 

PDGFRB fibroblast 
 

 1.19 (0.21-5.58) 0.64 (0.17-1.73)  0.007 1.13 (0.21-3.55)  1.07 (0.17-5.58)  0.62 (NS) 1.19 (0.17-5.58)  0.99 (0.21-3.31)  0.41 (NS) 
PTPRC hematopoietic cells CD45  1.15 (0.00-6.10) 1.49 (0.59-2.91) 0.53 (NS) 1.14 (0.00-6.10)  1.44 (0.50-3.94) 0.21 (NS) 1.58 (0.00-6.10)  0.74 (0.11-4.96) <0.0001 
MS4A1 LB CD20  1.50 (0.02-51.2) 2.81 (0.10-9.06) 0.80 (NS) 1.43 (0.02-51.2)  2.05 (0.07-8.55) 0.99 (NS) 3.18 (0.04-42.1)  0.48 (0.02-51.2) 0.0002 

CTLA4 LT CD152  2.85 (0.21-15.1) 3.83 (1.79-5.15) 0.48 (NS) 3.00 (0.21-15.1)  3.20 (0.48-9.05) 0.68 (NS) 3.86 (0.48-15.1)  1.97 (0.21-7.91) 0.0002 
PRF1 LT 

 
 1.35 (0.12-8.62) 1.31 (0.58-4.87) 0.98 (NS) 1.32 (0.12-7.67)  1.57 (0.40-8.62) 0.14 (NS) 1.57 (0.24-8.46)  1.01 (0.12-8.62) 0.002 

CD3E LT 

 

 1.35 (0.13-11.2) 2.33 (0.62-6.84) 0.092 (NS) 1.35 (0.13-11.2)  2.07 (0.29-7.10) 0.24 (NS) 2.30 (0.29-11.2)  0.90 (0.13-7.10) <0.0001 

CD2 LT 
 

 1.44 (0.14-13.2) 2.21 (0.61-6.78) 0.11 (NS) 1.44 (0.14-13.2) 1.87 (0.27-8.55) 0.26 (NS) 2.34 (0.27-13.2)  0.86 (0.14-8.55) <0.0001 
FOXP3 LTc 

 
 3.74 (0.33-18.2) 5.42 (1.83-8.76) 0.26 (NS) 3.97 (0.33-18.2)  4.53 (1.08-10.5) 0.63 (NS) 5.13 (1.08-18.2)  2.73 (0.33-10.5) <0.0001 

CD8A LTc 

 

 1.38 (0.08-17.4) 1.98 (0.29-10.5) 0.21 (NS) 1.33 (0.08-11.8)  1.98 (0.38-17.4) 0.062 (NS) 2.34 (0.16-11.8)  0.72 (0.08-17.4) <0.0001 

CD4 LT helper 
 

 1.04 (0.11-5.33) 1.25 (0.50-2.46) 0.30 (NS) 1.04 (0.11-5.33)  1.05 (0.48-4.16) 0.50 (NS) 1.23 (0.37-5.33)  0.66 (0.11-4.16) <0.0001 
GZMA LT/NK 

 
 2.16 (0.11-19.0) 2.16 (0.50-7.85) 0.60 (NS) 2.11 (0.11-18.9)  2.16 (0.32-16.7) 0.44 (NS) 2.55 (0.29-18.9)  1.40 (0.11-16.7) 0.003 

GZMB LT/NK 

 

 2.16 (0.09-22.2) 2.22 (0.57-8.70) 0.65 (NS) 2.16 (0.09-22.2) 2.73 (0.38-14.0) 0.52 (NS) 2.38 (0.09-22.2)  1.65 (0.24-14.0) 0.016 

NCAM1 NK CD56  0.19 (0.01-7.56) 0.05 (0.03-1.13) 0.033 0.16 (0.01-7.56)  0.12 (0.03-3.12) 0.75 (NS) 0.19 (0.01-7.56)  0.12 (0.01-3.01) 0.048 
CD14 macrophages/monocytes 

 
 1.18 (0.17-3.41) 1.10 (0.46-1.70) 0.23 (NS) 1.12 (0.17-3.41)  1.29 (0.46-2.65) 0.34 (NS) 1.33 (0.40-3.41)  0.86 (0.17-2.06) 0.002 

FUT4 neutrophils CD15  0.71 (0.13-3.37) 0.57 (0.29-2.66) 0.34 (NS) 0.70 (0.13-3.37)  0.85 (0.37-2.66) 0.16 (NS) 0.76 (0.24-2.66)  0.64 (0.13-3.37) 0.098 (NS) 

 
a Median (range) of gene mRNA levels; the mRNA values of the samples were normalized such that the median of the 27 head and neck normal tissues mRNA values was equal to 1 
b Kruskal Wallis's H Test 

LT: T cell; LB: B cell; NK: Natural killer, LTc: Cytotoxic T lymphocyte 
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Figures legends  
 

Figure 1. Gene expression versus molecular alterations and clinical patient characteristics 

 

Figure 2. Relationship between disease-free interval and (A) OX40L and (B) PD-1 mRNA 

level 

 

Figure 3. Relationship between disease-free interval and (A) PDGFRB, (B) CD3E, (C) CD8A 

mRNA level 

 

Figure 4. Clinical characteristics and molecular alterations of the main targeted actionable 

genes in immunotherapy 
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Supplementary material 
 

Supplementary Figures 

Supplementary Figure 1. Heat map of the 30 immune related genes mRNA levels in our 

series of 96 HNSCC 

Supplementary Figure 2. Heat map of the 16 immune-cell subpopulation genes mRNA levels 

in our series of 96 HNSCC 

Supplementary Figure 3. OX40L protein expression in two HNSCC patients 

 

Supplementary Tables 

Supplementary Table 1. Description of immune-related genes and immune–cell 

Supplementary Table 2. Oligonucleotide primer sequences used for qRT-PCR genes 

subpopulation genes 

Supplementary Table 3. Relationship between mRNA expression of immune-related genes 

and disease-free interval (DFI) in the 96 HNSCC 

Supplementary Table 4. Relationship between mRNA expression of immune-cell 

subpopulation genes and disease-free interval (DFI) in the 96 HNSCC 

Supplementary Table 5. Multivariate COX analysis of disease-free interval (DFI) in our series 

of 96 HNSCC 

 

Supplementary Patients and Methods 
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