
HAL Id: hal-03488794
https://hal.science/hal-03488794v1

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A precise non-asymptotic complexity analysis of parallel
hash functions without tree topology constraints

Kevin Atighehchi

To cite this version:
Kevin Atighehchi. A precise non-asymptotic complexity analysis of parallel hash functions without
tree topology constraints. Journal of Parallel and Distributed Computing, 2020, 137, pp.246 - 251.
�10.1016/j.jpdc.2019.10.002�. �hal-03488794�

https://hal.science/hal-03488794v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A Precise Complexity Analysis of Parallel Hash
Functions Without Tree Topology Constraints

Kevin Atighehchi

GREYC, Université de Caen Normandie, France

Abstract

A recent work shows how we can optimize a tree based mode of operation for a

hash function where the sizes of input message blocks and digest are the same,

subject to the constraint that the involved tree structure has all its leaves at the

same depth. In this work, we show that we can further optimize the running

time of such a mode by using a tree having leaves at all its levels. We make the

assumption that the input message block has a size a multiple of that of the

digest and denote by d the ratio block size over digest size. The running time is

evaluated in terms of number of operations performed by the hash function, i.e.

the number of calls to its underlying function. It turns out that a digest can

be computed in dlogd+1(l/2)e + 2 evaluations of the underlying function using

dl/2e processors, where l is the number of blocks of the message. Other results

of interest are discussed, such as the optimization of the parallel running time

for a tree of restricted height.

Keywords: Hash functions, Merkle trees, Parallel algorithms, Prefix-free

Merkle-Damg̊ard, Sponge functions

1. Introduction

On the topic of cryptographic hashing, parallelizable operating modes were

proposed in some SHA-3 candidates (Skein [1], MD6 [2], SANDstorm [3]), in

BLAKE2 [4] and more recently in the Special Publication NIST SP 800-185 [5].

Email address: kevin.atighehchi@unicaen.fr (Kevin Atighehchi)

Preprint submitted to Elsevier December 1, 2018

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0743731518308682
Manuscript_c121c5beee2ecf9700cdf94d24a3b6cb

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0743731518308682
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0743731518308682


All these propositions make use of simple tree topologies, and their in-depth

analyses have never been performed. In this paper, we are interested in the

problem of finding a tree structured circuit topology to optimize both the par-

allel running time and the number of involved processors (i.e. in depth and

width). We consider tree hashing modes for an inner hash function (or variable-

input-length compression function) denoted f . The ratio block size over digest

size is an integer denoted d. For instance, if d = 1, they may correspond to SBL

(Single-Block-Length) hash functions based on a block cipher having the key

and the block of the same size. We make the assumption that the hash function

needs only dl/de invocations to the underlying primitive to process an l-block

message, and we will see that some precomputations are required to achieve

such a running time.

Let us assume a hash tree of height h having all its leaves (i.e. message

blocks) at the same depth. If we denote by ai the arity of level i for i = 1 . . . h,

and if d = 1, then the parallel running time to obtain the root node value is∑h
i=1 ai. A recent work [6, 7] has shown that good parameters can be selected

to construct such trees that minimize both the running time and the number of

processors. Under the same topology constraint, other tree hashing modes with

memory concerns were proposed in [8], but the authors only gave asymptotic

complexity using the big-oh notation. The aim of the present paper is to show

that we can further decrease the parallel running time of a tree-based hash

function by removing this structural constraint on the tree. We then remark

that the allocation of tasks to the processors is a bit more subtle, and that the

parallel running time is no longer the sum of the level arities. Our contributions

are manifolds:

• We first recall that it is possible to design a hash function whose im-

plementation will behave like an idealized hash function from the rate

standpoint. In particular, assuming precomputations, this hash function

requires l calls (or dl/de calls) to the underlying primitive to process a

message of l blocks. This resulting sequential hash function is then used

2



as building block for tree hashing.

• We show the parallel running time which can be obtained using hash

trees of smallest height. In particular, we state a result in which both

the running time and the number of involved processors are optimized.

A tree of minimized height has the benefit of minimizing the memory

consumption.

• We then address the case of trees of unrestricted height. We show the

optimal parallel running time which can be obtained in this case and

discuss how the number of involved processors can be decreased without

changing this running time.

• We finally consider a situation in which we have a bounded parallelism.

We show the optimal parallel running time which can be obtained with a

fixed number of processors.

• Except for the bounded parallelism case, all the proposed tree-based oper-

ating modes support live-streaming when the number of processors avail-

able is less than the stated bound.

This paper is organized in the following way. We give some definitions

about trees and hash functions in Section 2. We address the optimization of

tree constructions suitable for parallel hashing in Section 3. Finally, we conclude

the paper in Section 4.

2. Terminology and Background Information

Throughout this paper, we use two conventions for the representation of a

node. With the first convention, a node is an input to f . It is represented by

a series of circles connected by dotted lines, and each circle contains either a

message block or a chaining value. With the second convention1, a node is the

result of f called on a data composed of the node’s children. A node value then

1This is the convention used to describe Merkle trees.

3



corresponds to an image by such a function and a child of this node can be

either an other image or a message block. In this paper, a k-ary tree of height

h is a tree having the following properties:

• The root node (at level h) can be of arity a, with 1 < a ≤ k.

• A level i (6= h) has all its nodes of arity k, except the rightmost one that

can be of smaller arity.

We define the arity of a level in the tree as being the greatest node arity in this

level.

Let us denote the block size and the digest size Nb and No respectively.

We make the assumption that d = Nb/No is a positive integer, and we often

consider that d = 1 for simplicity reasons. A node in the tree is computed

using an inner VIL function that iteratively processes message blocks of size

Nb bits using an underlying function (a block cipher, a permutation or another

compression function) and produces a digest of No bits. The underlying function

is considered to be the lowest level function. For instance, the hash function

Skein [1] is based on a VIL compression function, itself based on a lowest level

primitive, the tweakable block cipher Threefish.

We assume that the evaluation of the inner function requires a number of

calls to its underlying function equal to the number of blocks of the message.

At first sight we could think that this kind of primitive is rare since: (i) there is

usually a padding which is done at the end of the message. For certain message

sizes, this padding requires one more call to the underlying function; (ii) In the

hash functions like SHA-1 and SHA-2, the MD-strengthening add another block

containing the message size. However, we show that we can construct an inner

VIL function that can satisfy a running time of l unit of times for a message of

l blocks. Besides, some existing inner functions are already of this type, such

as the VIL compression function based on the UBI (Unique Block Iteration)

chaining mode of Skein [1] and some other single-block-length hash functions

[9, 10].

4



In this paper, the time complexity corresponds to the number of evaluations

of the lowest level function and we use the term unit of time for one evaluation

of such a function.

2.1. Computation Model

We use the PRAM (Parallel Random Access Machine) model of compu-

tation, assuming the strategy EREW (Exclusive Read Exclusive Write). Tree-

based hash functions do not require that distinct processors read or write simul-

taneously at a same memory location. The considered basic operation depends

on the type of inner function. This operation is a call to a permutation if the

inner function is a sponge-based hash function or a call to a block cipher if this

is a Merkle-Damg̊ard based hash function2.

Except when otherwise specified, the parallel running time corresponds to

the running time when the number of processors is not a priori bounded. As a

consequence, the message is supposed to be already available. In the hash tree

constructions that we propose, if the number of chaining values is denoted ncv

and if the root node is not counted as such, then the number of processors is

equal to ncv+1. Indeed, the chaining values are computed by distinct processors.

2.2. Concretizing an Idealized Rate for the Inner Function

According to Bertoni et al. [11], a hash function designed by using a tree-

based operating mode is indifferentiable from a random oracle if three conditions

(namely tree decodability, message completeness and final-node separability) are

met and if the operated inner function is indifferentiable from a random oracle.

In particular, it was shown that the conditions are fulfilled by a proper encoding

of the inputs to the inner function.

If we want to use an inner function based on the Merkle-Damg̊ard construc-

tion, we need to use the modifications proposed by Coron et al. [12], which

2An MD-based hash function iterates a compression function, itself based on an implicitly
or explicitly defined block-cipher.

5



ensure that this inner function will be indifferentiable from a random oracle.

Inner function based on the prefix-free MD. We choose to use a modifi-

cation of the Merkle-Damg̊ard construction, proposed by Coron et al. [12]. Let

us denote M a message to hash, padded with a bit 1 and the minimal number

of bits 0, such that the length of the padded message is a multiple of Nb. The

modification consists, before applying the MD algorithm, in prepending to this

padded message a block containing the length of M in bits. We denote by f ′

the resulting hash function. Coron et al. show that f ′ is indifferentiable from a

random oracle.

Let us suppose that the inner function used in the tree-based hash function

is f ′. Following the guidelines stated in [11], prepending two bits to the intputs

to f ′ is sufficient to ensure the indifferentiability of the resulting tree-based hash

function. The values of these bits depend on the type of f ′-input, i.e. the lo-

cation of the input in the tree topology. In this paper, we choose to use Nb − 1

bits to encode the type of f ′-input, where only two bits can be non-zero. For

instance the binary encoding can be b0b10Nb−3, where the values of b0 and b1

depend on the type of f ′-input. We can remark that considering the prefix-free

encoding and this second encoding, the first bit of the message is at the end

of the second block. Our argument is that we can precompute all the possible

hash states that result from the processing of the second block. If the number

of possible input sizes (before padding or any prepending) is k then the number

of precomputed hash states is exactly 8k. Thus, with these precomputed values,

the running time to process with f ′ an input that can fit into s blocks is exactly

equal to s units of time.

Inner function based on a sponge construction. We could use a hash

function like Keccak [13] which does not require to embed the message size in

the input. This hash function, constructed on top of a permutation, uses a

padding 10∗1 at the end of the message so that the message bitsize corresponds

6



to a multiple of the block size. Specifically, the appending consists of the bit 1,

followed by the minimal number of bits 0, followed by a bit 1. As in the previous

solution, the computation of the nodes requires to format appropriately the in-

puts of this function, using the necessary encoding (at least two bits) for sound

tree hashing [11]. The trick is to prepend to the input an encoding consisting of

Nb − 2 bits, where only 2 bits can be non-zero (the values of these bits depend

on the type of input). We thus observe that the two first bits of the message

are at the end of the first block. We can precompute all the possible hash states

resulting from the processing of this first block. There are four possibilities for

the two first bits of the message, and four possibilities for the choice of the

encoding, for a total of sixteen possible hash states.

Inner function based on the compression function of Skein. Skein [1]

uses a variable-input-length compression function which requires l invocations

to the tweakable block cipher Threefish to compress a message of l blocks. This

ideal rate is due to the fact that the message is not padded when it is already

a multiple of the block size. The information of the lack of padding is included

in the tweak, thus providing the same functionality as reversible padding. This

compression function is indifferentiable of a random oracle if Threefish acts as

an ideal cipher. As in the case before, we just have to prepend to the message an

encoding of Nb bits in order to distinguish 4 types of input to the compression

function. In fact, only two are sufficient and the remaining bits serves only to

reduce the number of hash states to precompute, i.e. 4 hash states.

3. Optimal Trees Having Their Leaves at All the Levels

The idea of processing both message blocks and chaining values (non-leaf

nodes, i.e. digests) using a single inner function evaluation was suggested in [14]

(under the name of kangaroo hopping) in order to avoid certain computation

overheads. With our assumptions, we first apply this idea for all nodes of a tree

7



of restricted height with the aim of optimizing the parallel running time, and

then we apply it to the case of trees of unrestricted height.

In the following results, the considered inner function has an idealized run-

ning time and is devoid of the padding overhead. If the padding is not neglected,

the number of processors is underestimated:

• If the inner function is the sponge-based construction defined above, the

number of involved processors should be multiplied by four, because two

bits have to be guessed at each parallel step.

• If the inner function is the prefix-free MD construction defined above, the

number of involved processors should be multiplied by two, because one

bit has to be guessed at each parallel step.

For the sake of simplification, we first focus on the case d = 1. The case d > 1

is discussed in the subsequent subsection.

3.1. Case d = 1 (or Nb = No)

An algorithm for a tree of height 2. Let us consider a message of size

l, whose blocks are denoted m1, m2, . . ., ml. The processors are indexed Pi

with i ≥ 1, and we make the assumption that they start their computations

at the same time. The message is subdivided in chunks of variable size to be

distributed to each processor:

• P1 and P2 each receives a chunk of 2 blocks and applies the inner function

on these chunks. P2 computes the hash of m3‖m4, while P1 computes

the hash of m1‖m2 without finalizing it. In other words, P1 prepares to

receive further consecutive blocks. We denote by c2 the digest computed

by P2.

• As long as there remains message blocks, Pi (with i ≥ 3) receives i blocks

and applies the inner function on their concatenation. We denote by ci

the resulted digest computed by Pi for i ≥ 3. Note that Pi can possibly

process less than i blocks if the end of the message is reached.

8



• P1 continues to evaluate the inner function on the collected digests c2,

. . ., ck as they arrive. The evaluation of the inner function is resumed

immediately when a digest ci is available.

• Assuming that Pk is the last processor that has received blocks, the final

digest computed by P1 corresponds to the evaluation of the inner function

on

m1‖m2‖c2‖c3‖ · · · ‖ck−1‖ck.

m1 m2 c2 c3 c4 c5 c6

m3 m4

m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15 m16

m17 m18 m19 m20 m21 m22

P3

P4

P5

P6

P1

P2

Figure 1: Processing of a message of 22 blocks using 8 processors, denoted P1, P2, ..., P6. We
can see that P1 and P2 each process 2 blocks of the message, while Pi, with i ≥ 3, processes
i blocks of the message. The chaining values c2, c3, ..., c6 are collected and processed by P1

as soon as they are computed.

An example of execution of this algorithm is depicted in Figure 1. The

running time of this hash function is the running time for computing ck plus

one, i.e., k + 1 units of time. If the last processor receives a single block,

this one can be processed by the first processor in order to save one processor,

while leaving unchanged the running time of k + 1. Note that k is such that∑k
i=1 i ≥ l − 1, i.e. such that k2 + k − 2(l − 1) ≥ 0. This inequation has two

solutions −1±
√
8l−7

2 , of which only one is positive for l ≥ 1. The solution is then

k =
⌈
−1+

√
8l−7

2

⌉
. Among the tree structures of height 2, the one used in the

algorithm above leads to an optimal parallel running time. While conserving

this running time, one may desire to decrease the number of involved processors.

9



Theorem 1. Let a message of length l blocks such that l ≥ 2. We can construct

a hash tree of height 2 allowing a parallel running time of k + 1 units of time,

using k − i + 2 processors, where

k =

⌈
−1 +

√
4i2 − 12i + 8l + 1

2

⌉
=

⌈
−1 +

√
8l − 8

2

⌉
and

i = max
j

argminj

⌈
−1 +

√
4j2 − 12j + 8l + 1

2

⌉
<

⌈√
4 + 4

√
8l − 8 + 3

2

⌉
.

Proof. We seek to maximize i and minimize k such that Processor P1 processes

i message blocks and k − i + 1 chaining values, and P2, P3, ..., Pk−i+1, Pk−i+2

process respectively i, i + 1, ..., k − 1, k message blocks. The final digest

computed by P1 corresponds to the evaluation of the inner function on

m1‖m2‖ · · · ‖mi‖ci‖ci+1‖ · · · ‖ck−1‖ck.

Thus, we seek to minimize k such that
∑k

j=i−1 j ≥ l − 1. We have to solve the

inequation k2 − k − i2 + 3i − 2l ≥ 0. The discriminant ∆ = 4i2 − 12i + 8l + 1

is strictly positive iff i2 − 3i + 2l + 1/4 ≥ 0. Since this last inequality is verified

for n ≥ i ≥ 1, we have two solutions of which only one is positive. We deduce

that k =
⌈
−1+

√
4i2−12i+8l+1

2

⌉
for n ≥ i ≥ 1. Let us consider the function

f(x) =
−1 +

√
4x2 − 12x + 8l + 1

2

whose derivative is f ′(x) = 2x−3√
8l−4x2−12x+1

. Solving the equation f ′(x) = 0 leads

to the solution x = 3/2. Since f(x) is increasing for x > 3/2, we now have to

seek the maximum integer x satisfying
⌈
−1+

√
4x2−12x+8l+1

2

⌉
= df(3/2)e. We

can upper bound x such that f(x) < f(3/2) + 1, leading to the expected result.

According to [8], for a tree of height k, the optimal parallel running time

is in O(l
1
k ), where l is the size of the message. This result was shown for

both the hashing of stored content (the size of the message has to be known

in advance) and the hashing of live-streamed content. The construction above,

which supports the processing of live-streamed content, does not contradict this

10



result. Anyway, we recall that in our settings, the message is supposed to be

already available, and thus the need of the message size as input to the algorithm

does not matter. We see here that the optimization of such a tree using both

kangaroo hopping and increasing input sizes is interesting. One advantage of

using a tree of restricted height is its limited memory usage in a sequential

execution of the algorithm. If memory usage for a sequential execution is not a

concern, we can consider trees of unrestricted height.

Theorem 2. Let a message of length l blocks. We can construct a hash tree

allowing a parallel running time of exactly dlog2 le+1 units of time, using dl/2e

processors.

Proof. We first give the construction of a tree structure. Then, we consider a

hash function based on it, and we give a scheduling strategy to perform all the

computations in parallel. Let us consider a binary tree of height h = dlog2 le.

We denote by li the number of nodes of level i ≥ 1. Remark that this binary

tree can be such that all its leaves are at the same depth and li = dl/2ie. The

li nodes of the level i are indexed. For j = 1 . . . li, one node of this level is

denoted Nj and, in particular, its leftmost child is denoted Nj,LC . Note that if

Nj has a single child, this latter is still considered as its leftmost child. At each

level i of this tree, starting from level 2 up to level h, we transform the nodes in

the following way: for j = 1 . . . li, the node Nj,LC is discarded and its children

become the children of Nj . We notice that once this operation is performed, a

node Nj can have a higher number of children. The resulting tranformed tree is

no longer a binary tree and its leaves are located at all the levels. An example

of execution of this algorithm is depicted in Figure 2.

We now consider a hash function based on this tree structure. The compu-

tations are done in parallel in the following way: In a same parallel step, each

processor starts the computation of one of the dl/2e nodes that has leaves. This

parallel step requires 2 units of time. Hence, the computations of these nodes

(or of their parent nodes) can progress in a parallel step of one unit of time. We

need to repeat such a parallel step as many times as necessary to complete the

11



processing of this hash tree, i.e., dlog2 le − 1 times. We then deduce a parallel

running time of dlog2 le−1+2 units of time. The number of involved processors

corresponds to the number of nodes having leaves, i.e. dl/2e. An example of

parallel hash computation is depicted in Figure 3.

(a) Binary tree (b) Result of the
first iteration

(c) Result of the second
(and last) iteration

Figure 2: Derivation of a tree structure having its leaves at all the levels from a classic binary
tree that processes a message of 7 blocks

P1 P2 P3 P4

m1 m3 m5 m7

m2 m4 m6 m8

c1 c2

c3

Figure 3: Example of the processing of 8 blocks m1, m2, ..., m8, using another tree represen-
tation. We have 4 processors denoted P1, P2, P3 and P4. A dotted line represents a serial
computation using the same hash context, while a solid line indicates that a hash state is used
by another hash context. The encircled message blocks or chaining values that are connected
with a dotted line are in the same f -input. For instance, the processor P2 computes the hash
of m3‖m4, denoted c1. The chaining values c1 and c3 are used by the hash context of the
processor P1. The parallel running time to compute the root node is equal to the running
time required for computing the hash of m1‖m2‖c1‖c3, i.e., 4 units of time.

12



Remark. Assuming a message of length l blocks, the parallel running time of

dlog2 le + 1 is optimal. Indeed, this is clearly true for a message of 4 blocks

which requires 3 units of time. Let us suppose that the running time of k + 1 is

optimal for a message of length 2k. If we cannot process more than 2k blocks in

k+ 1 units of time, processing 2k more blocks requires at least one more unit of

time. Thus, the running time of k+2 is still optimal for a message of length 2k+1.

Performances improvements. The (parallel) running time of such a tree is

to be compared with the running time of an optimal tree having its leaves at the

same depth [7], i.e. approximately 3dlog3 le. This represents, approximately, a

2x speedup.

What if we apply the algorithm above on a ternary tree to con-

struct another tree? The transformed tree would lead to a parallel running

time of at most (dlog3 le−1) ·2+3 = 2dlog3 le+1. More precisely, if the ternary

tree has a root node of arity 3, then the hash function based on the transformed

tree has a parallel running time of exactly 2dlog3 le + 1. Otherwise, if it is of

arity 2, the transformed tree leads to a parallel running time of exactly 2dlog3 le.

For a large message length l, we have dlog2 le + 1 < 2dlog3 le. It is thus

more interesting to use the topology derived from a binary tree. For a finite and

small number of l, the tree topology derived from a ternary tree gives the same

running time. For these message lengths, such a topology is preferable since it

decreases the number of involved processors. For the reasons outlined below,

deriving a topology from a quaternary tree or any tree of arity greater than 4

worsen the parallel running time.

Can we further decrease the number of processors while conserving

the running time stated in the theorem above? To do so, we should

be able to increase the number of nodes or message blocks processed by one

processor during one parallel step. Let us see a counter-example. Suppose that

13



we have a hash tree that can be processed in a parallel running time of dlog2 le+1

and that one node in this tree has more than 3 leaves, say x leaves. We have

dlog2 xe+ 1 < x when x > 3, meaning that we can transform this node in order

to improve the overall running time.

Theorem 3. Let l be the number of blocks of the message and let i be the biggest

integer such that 2i < l. The optimal parallel running time can be reached using

only dl/3e processors if 2i < l ≤ 3·2i−1 and dl/2e processors if 3·2i−1 < l ≤ 2i+1.

Proof. We just allow the derived tree (in the proof above) to have 3 leaves per

node, instead of 2. We recall that the parallel running time is dlog2(l/2)e + 2

with 2 leaves per node, whereas it is dlog2(l/3)e+ 3 using 3 leaves per node. If

we have dlog2(l/3)e+ 3 ≤ dlog2(l/2)e+ 2 for a given l, the second tree structure

should be used to decrease the number of processors to dl/3e. We now determine

the range of values of l for which dlog2(l/3)e+2 ≤ dlog2 le. Let us set u = log2 l.

We rewrite the inequality dlog2(l/3)e+ 2 ≤ dlog2 le as

di + f − log2(3) + 2e ≤ di + fe (1)

where f is the fractional part of u and i is its integer part. Since 2− log2(3) > 0,

f is necessarily non-zero. Thus, Inequality (2) is satisfied iff 0 < f ≤ log2 3− 1,

i.e. iff i < log2 l ≤ i+log2(3/2). This leads to the expected intervals of validity.

Another question is the optimal parallel running time that can be obtained

using a fixed number of processors.

Theorem 4. Let l be the number of blocks of the message and let P be the

number of processors. There exists a mode having an optimal parallel running

time of dl/P e + dlog2 P e units of time.

Proof. Let us consider a message of 2P blocks. According to Theorem 5, it

can be hashed in a parallel running time of dlog2 2P e+ 1 (= dlog2 P e+ 2) units

of time. During the first two units of time, each processor processes 2 blocks of

the message. We thus replace these 2 blocks by at most dl/P e blocks that can

14



be hashed sequentially in at most dl/P e units of time. Since there always exists

two integers a ≥ 0 and b ≥ 0 such that a + b = P and adl/P e+ bbl/P c = l, we

conclude the result.

3.2. Case d > 1

Theorem 5. Let a message of length l blocks. We can construct a hash tree

allowing a parallel running time of exactly dlog(d+1)(l/2)e + 2 units of time,

using dl/2e processors.

Proof. First, we observe that 2(d+1) blocks of the message can be compressed

in 3 units of times, using d + 1 processors. Indeed, d + 1 processors can each

compress 2 blocks, and the first one can continue the evaluation of its hash

function by processing the chaining values produced by the d other processors.

Given a hash state, we can compress d subsequent chaining values in one unit of

time. Thus, we can compress d+ 1 times more blocks (i.e. 3(d+ 1)2 in total) in

one more unit of time, and by using d+1 times more processors. Repeating this

recursively, we obtain a single chaining value (the root node) at an iteration k.

It appears that k is the smallest integer satisfying the inequality 2(d + 1)k ≥ l.

The total parallel running time then corresponds to the time required by the

most loaded processor: the running time to process two blocks of the message,

in addition to the running time to process at most dk chaining values, i.e. k

units of time, yielding the expected result.

Note that ∀d ≥ 1∀x > 3, we have dlogd+1(x)− logd+1(2)e+2 < x, meaning that

more than 3 leaves per node lead to a suboptimal parallel time.

Theorem 6. Let l be the number of blocks of the message and let i be the biggest

integer such that 2(d+1)i < l. The optimal parallel running time can be reached

using only dl/3e processors if 2(d + 1)i < l ≤ 3(d + 1)i and dl/2e processors if

3(d + 1)i < l ≤ 2(d + 1)i+1.

Proof. A tree with 3 leaves per node is preferable if dlog(d+1)(l/3)e + 3 ≤

dlog(d+1)(l/2)e + 2. We have to determine the range of values l which ful-

15



fil this inequality. Let us set u = log(d+1)(l/2). We rewrite the inequality

dlog(d+1)(l/3)e+ 1 ≤ dlog(d+1)(l/2)e as

di + f + log(d+1)(2/3) + 1e ≤ di + fe (2)

where f and i are respectively the fractional part and the integer part of u.

Since log(d+1)(2/3) + 1 > 0 for all d ≥ 1, f is necessarily non-zero. Thus,

Inequality (2) is satisfied iff 0 < f ≤ − log(d+1)(2/3), i.e. iff i < log(d+1)(l/2) ≤

i− log(d+1)(2/3). This leads to the expected intervals of validity.

Theorem 7. Let l be the number of blocks of the message and let P be the

number of processors. There exists a mode having an optimal parallel running

time of at most dl/P e + dlog(d+1)(P )e units of time.

Proof. This theorem follows immediately from the previous one. We replace

the size l by 2P . This message is then compressed in 2 + dlog(d+1) P e units of

time. In this scheme, each processor starts by compressing two blocks of the

message. If we replace these 2 blocks by dl/P e blocks, this means that we can

compress a message of at most d l
P eP blocks in dl/P e + dlog(d+1) P e units of

time. Since there always exists integers a ≥ 0 and b ≥ 0 such that a + b = P

and adl/P e+ bbl/P c = l, we conclude the result.

4. Concluding Remarks

Before looking at particular computing architectures, studying or designing

parallel algorithms using a PRAM model is always the starting point to under-

stand what will or will not be achievable. If we exclude the topic of arithmetic,

parallel computing for cryptography has so far received little attention. In this

paper, we gave exact complexity results for the case of cryptographic hashing.

Namely, under a PRAM model, two cases were addressed: the bounded paral-

lelism case where the parallel time depends on a fixed number of processors,

and the unbounded case where both the parallel time and the number of proces-

sors depend solely on the message size. In particular, for this second case, exact

16



costs were derived when considering both a 2-level tree and a tree of unrestricted

height.

As a future work, it would be appealing to see FPGA implementations of

the treated cases along with their achievable throughputs. The unbounded case

would be particularly interesting since the width of an implemented circuit is

limited by the available number of logic cells. Two natural questions are then the

maximal width supported by the high-end FPGA platforms and the monetary

price per message size to obtain the lowest parallel time.

References

[1] N. Ferguson, S. L. Bauhaus, B. Schneier, D. Whiting, M. Bellare, T. Kohno,

J. Callas, J. Walker, The skein hash function family (version 1.2) (2009).

[2] R. L. Rivest, B. Agre, D. V. Bailey, C. Crutchfield, Y. Dodis, K. Elliott,

F. A. Khan, J. Krishnamurthy, Y. Lin, L. Reyzin, E. Shen, J. Sukha,

D. Sutherland, E. Tromer, Y. L. Yin, The md6 hash function: A proposal

to nist for sha-3 (2008).

[3] M. Torgerson, R. Schroeppel, T. Draelos, N. Dautenhahn, S. Malone,

A. Walker, M. Collins, H. Orman, The sandstorm hash. submission to nist

sha-3 competition (2008).

[4] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, C. Winnerlein, BLAKE2:

Simpler, smaller, fast as MD5, in: Proceedings of the 11th International

Conference on Applied Cryptography and Network Security, ACNS’13,

Springer-Verlag, Berlin, Heidelberg, 2013, pp. 119–135.

[5] J. Kelsey, S. jen Chang, R. Perlner, Special Publication 800-185. SHA-3

derived functions: cSHAKE, KMAC, TupleHash and Parallel-Hash, Tech.

rep. (August 2016).

[6] K. Atighehchi, R. Rolland, Optimization of tree modes for parallel hash

functions: A case study, IEEE Transactions on Computers 66 (9) (2017)

1585–1598.

17



[7] K. Atighehchi, R. Rolland, Optimization of tree modes for parallel hash

functions, CoRR abs/1512.05864. arXiv:1512.05864.

URL http://arxiv.org/abs/1512.05864

[8] K. Atighehchi, A. Bonnecaze, Asymptotic analysis of plausible tree hash

modes for SHA-3, IACR Trans. Symmetric Cryptol. 2017 (4) (2017) 212–

239.

[9] B. Preneel, R. Govaerts, J. Vandewalle, Hash functions based on block

ciphers: A synthetic approach, in: Proceedings of the 13th Annual Inter-

national Cryptology Conference on Advances in Cryptology, CRYPTO’93,

Springer-Verlag, London, UK, UK, 1994, pp. 368–378.

[10] H. Kuwakado, M. Morii, Indifferentiability of single-block-length and rate-1

compression functions, IEICE Transactions 90-A (10) (2007) 2301–2308.

[11] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, Sufficient conditions for

sound tree and sequential hashing modes, Int. J. Inf. Secur. 13 (4) (2014)

335–353.

[12] J. Coron, Y. Dodis, C. Malinaud, P. Puniya, Merkle-damg̊ard revisited:

How to construct a hash function, in: Advances in Cryptology - CRYPTO

2005: 25th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 14-18, 2005, Proceedings, 2005, pp. 430–448.

[13] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, Keccak, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2013, pp. 313–314.

[14] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, Sakura: A flexible

coding for tree hashing, in: Applied Cryptography and Network Security,

Vol. 8479 of Lecture Notes in Computer Science, Springer International

Publishing, 2014, pp. 217–234.

18




