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In uncertainty quantication, multivariate sensitivity analysis (MSA), including variance-based sensitivity analysis, and derivative global sensitivity measure (DGSM) are widely used for assessing the eects of input factors on the model outputs. While MSA allows for identifying the order and the strength of interactions among inputs, DGSM provides only a global eect of inputs by making use of model derivatives. It is interesting to combine the advantages of both approaches and to come up with generalized sensitivity indices (GSIs) from MSA based on model derivatives. First, we derive the mathematical expressions of the total eect and total-interaction eect functionals based on derivatives. Second, we construct minimum variance unbiased estimators (MVUEs) of the total-eect and total-interaction eect covariance matrices, and third, we provide the estimators of the total and total-interaction GSIs as well as their consistency and asymptotic normality. Finally, we demonstrate the applicability of these new results by means of simulations.

Multivariate sensitivity analysis (MSA) ([1; 2; 3; 4; 5]), including variance-based 7 sensitivity analysis (VbSA) ([6; 7; 8; 9]), is the standard way of assessing the impor-8 tance of input factors on the model output(s) as well as interactions among input factors by making use of the model runs. The estimations of generalized sensitivity indices (GSIs) from MSA, including Sobol' indices, have been largely investigated ([10; 1; 11; 2; 4; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22]). Among the sample-based methods, the estimators of the rst-order and total indices proposed in [1; 10; 12] allow for improving the estimates of sensitivity indices, as they are based on minimum variance unbiased estimators.

For response models with available gradients, derivative global sensitivity measure (DGSM) ([23; 24; 25]) is an appropriate way of assessing a global impact of input factors, as it is computationally more attractive than VbSA or MSA (samplebased methods). Given that the DGSM index and the total index (from VbSA) can provide dierent ranking of input factors, upper bounds and lower bounds of the total index and the total-interaction index based on derivatives were proposed ([26; 27; 28]). An upper bound of the total index (resp. total-interaction index), which is a (known) constant times the DGSM index (resp. cross-derivatives index), is used for the screening purpose. Indeed, while a small value of the upper bound of the Sobol total index means that the associated input does not really act in the model; a big value of the upper bound does not bring much information, regarding factors classication, and big values of upper bounds can happen especially in the case of the total-interaction index ([16; 27]).

In this paper, we combine the advantages of DGSM and MSA approaches to come up with a new way of computing the GSIs by making use of model derivatives. First, we derive the mathematical expressions of the total eect and total-interaction eect functionals using the model derivatives, cumulative distribution functions (CDFs), and probability density functions (PDFs). Second, we construct minimum variance unbiased estimators (MVUEs) of the total-eect and total-interaction eect covari-that includes d input factors X. We use u ⊆ {1, 2, . . . , d} for a non-empty subset of {1, 2, . . . , d}, ū = {1, 2, . . . , d}\u for the complement of u w.r.t. {1, 2, . . . , d }, and |u| for its cardinality (i.e., the number of elements in u). For a given u, we use X u = {X j , j ∈ u} for a subset of input factors and X ∼u = {X j , j ∈ ū} for the vector containing all input factors, except X u . We have the following partition:

X = (X u , X ∼u ).
For an n × n square matrix Σ = (σ ij , i, j ∈ {1, . . . , n}), the trace (Tr), the Frobenius norm (||Σ|| F ), and the vectorization (Vec(Σ)) of Σ are dened as follows:

Tr(Σ) = n i=1 σ ii , ||Σ|| 2 F = n i=1 n j=1 |σ ij | 2 = Tr ΣΣ T ,
Vec(Σ) = [σ i1 ∀ i ∈ {1, . . . , n}; σ i2 ∀ i ∈ {1, . . . , n}; . . . ; σ in ∀ i ∈ {1, . . . , n}] T .

By denition, the vectorization of Σ is a vector containing the rst column of Σ, followed by the second column, and so on.

The function f (•) may be subjected to the transformation of the form:

D w f (X) ,
where D w is a weighting matrix. In the case of the model outputs with dierent units, some transformations may be used to obtain unit-less outputs. A classical way to accomplish this is to divide each output by its standard deviation, that is, In what follows, we consider only independent input factors (assumption A1) and measurable and dierentiable functions f :

D -1 w = diag(
R d → R n having nite second moments, that is, E ||f (X)|| 2 L 2 < +∞.

Multivariate sensitivity analysis: two types of generalized sensitivity indices

This section gives two denitions of generalized sensitivity indices, including Sobol' indices, using the sensitivity functionals. We propose i) a new Hoeding decomposition; ii) a link between the sensitivity functionals; and iii) the two main denitions of GSIs.

Hoeding decomposition

Under the independence assumption A1, the multivariate Hoeding decomposition ( [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF]; [START_REF] Efron | The jacknife estimate of variance[END_REF]) is given by

f (X) = f ∅ + d j=1 f j (X j ) + d j 1 <j 2 f j 1 j 2 (X j 1 , X j 2 ) + . . . + f 1...d (X 1 , . . . , X d ) = f ∅ + w, w⊆{1,2,...d} |w|>0 f w (X w ) , (2.1) 
where

f ∅ = E [f (X)] is the expectation of the model output, f j (X j ) = E [f (X)|X j ]-f ∅ , and f w (X w ) = E [f (X)|X w ] - v, v⊂w f v (X v ) for a non-empty subset w ⊆ {1, 2, . . . , d}. The functional E [f (X)|X u ] -f ∅ generalizes f j (X j ) = E [f (X)|X j ] -f ∅ from (2.1)
to cope with any subset X u of input factors. It allows for quantifying the single contribution of the input X u . We refer to the latter as the rst-order functional,

that is, f f o u (X u ) = E [f (X)|X u ] -f ∅ .

New Hoeding decomposition: link between the total eect and total-interaction eect functionals

The total-eect and total-interaction eect functionals can be easily derived by re-organizing the Hoeding decomposition. For a given v with v ⊆ u, we dene the set A v as a set containing elements of the form {v, w} with w ⊆ ū, that is,

A v = {{v, w}, w ⊆ ū} . (2.2) 
By denition, it is obvious that v ∈ A v and A v ⊂ {w, w ⊆ {1, 2, . . . , d}}. In particular, A ∅ = {w, w ⊆ ū} and A u = {{u, w}, w ⊆ ū}. While A u contains all the super-sets of u (i.e., sets that contain u), A v contains some super-sets of v but not all of them. Furthermore, ∀ A ∈ A v , A satises the following properties:

• ∀ j ∈ v, then j ∈ A; • ∀ j ∈ u\v, then j / ∈ A.
Using the set A v , with v ⊆ u, Lemma 1 gives a partition of {w, w ⊆ {1, 2, . . . , d}}.

Lemma 1. Let u be a non-empty subset of {1, 2, . . . , d}, v 1 , v 2 be two subsets of

u (i.e., v 1 ⊆ u, v 2 ⊆ u). (i) If v 1 = v 2 then we have A v 1 A v 2 = ∅ . (2.3) 
(ii) The partition of the set {w, w ⊆ {1, 2, . . . , d}} is given by

{w, w ⊆ {1, 2, . . . , d}} = v, v⊆u A v . (2.4) 
(iii) If we use B v 1 for the set containing all the super-sets of v 1 , we have

B v 1 = v, v 1 ⊆v⊆u A v . (2.5) 
Proof. See AppendixA.

Lemma 1 gives an interesting tool for managing and controlling 2 d elements with only 2 |u| elements. For instance, when u = {j}, the set {w, w ⊆ {1, 2, . . . , d}} is completely controlled by A u and A ∅ , and this result was obtained in [26; 13]. When u = {j 1 , j 2 }, {w, w ⊆ {1, 2, . . . , d}} can be managed with the following four sets

A ∅ , A {j 1 } , A {j 2 } , A u . The set A u with |u| = 1 (resp. |u| = 2
) is particularly interesting in SA, as it can lead to assess the total eect (resp. the total-interaction eect of the second order) of input factor(s) ([12; 10; 1; 27; 16; 17]). Indeed, A {j} is a set containing all the super-sets of {j}, and it is sucient to assess the total eect of X j . In the same sense, while A u can lead to assess the total-interaction eect of the |u| th order, B v 1 allows for quantifying the total-interaction eect of the |v 1 | th order, with v 1 ⊆ u. If |u| = 1, the total-interaction eect of X u comes down to the total eect of X u . Now, if we dene f Av (X) = w, w∈Av f w (X w ) with f w (X w ) dened in Equation 

f (X) = v, v⊆u f Av (X v , X ∼v ) , (2.6) 
where the components f Av (x), v ⊆ u are mutually orthogonal.

(ii) The functional

f sup v 1 (X) = f Bv 1 (X) = v, v 1 ⊆v⊆u f Av (X) , (2.7) 
allows for quantifying the total-interaction eect of X v 1 .

(iii) The functional

f tot u (X) = v, v⊆u |v|>0 f Av (X v , X ∼v ) , (2.8) 
allows for quantifying the total eect of X u .

Proof. See AppendixB.

In what follows, we refer to f sup u (X) as the total-interaction eect functional (TIEF) of X u and f tot u as the total eect functional (TEF) of X u . Lemma 2 provides a link between TIEF and TEF.

Lemma 2. Let u ⊆ {1, 2, . . . , d} be a non-empty subset. If assumption A1 holds, then we have

f tot u (X u , X ∼u ) = v, v⊂u (-1) |u|-|v|+1 f sup u\v (X) , (2.9) 
and

f sup u (X) = v, v⊂u (-1) |u|-|v|+1 f tot u\v (X) . (2.10) 
Proof. See AppendixC.

Denition of generalized sensitivity indices

When we use the variance as a measure of the variability of the model outputs, a denition of the sensitivity indices for the multivariate-response models should be based on the following covariance matrices.

The rst-order covariance matrix of X u is given by

Σ u = V f f o u (X) . (2.11)
Further, the total-eect covariance matrix of X u is given by

Σ tot u = V f tot u (X) .
(2.12)

Likewise, the total-interaction covariance matrix of X u is given by

Σ sup u = V [f sup u (X)] . (2.13) 
For the single-response models (n = 1), the prioritization of input factors based on the covariance matrices is straightforward, as the covariance matrices are scalars.

In the case of the multivariate-response models with n > 1, Lamboni [START_REF] Lamboni | Multivariate sensitivity analysis: minimum variance unbiased estimators of the rst-order and total-eect covariance matrices[END_REF] proposed to apply matrix norms on the covariance matrices in order to prioritize input factors.

In this paper, we consider two types of generalized sensitivity indices from [START_REF] Lamboni | Multivariate sensitivity analysis: minimum variance unbiased estimators of the rst-order and total-eect covariance matrices[END_REF].

Denition 2. Let Σ, Σ u , Σ sup u , and Σ tot u be the covariance matrices of the model outputs, the rst-order, the total-interaction eect and the total-eect functionals, respectively.

The rst-type GSIs are dened below ([3; 2; 4]).

The rst-order GSI of X u is dened as follows:

GSI F u = Σ 1/2 u 2 F ||Σ 1/2 || 2 F . (2.14)
Further, the total GSI of X u is given by

GSI F Tu = (Σ tot u ) 1/2 2 F ||Σ 1/2 || 2 F , (2.15) 
and the total-interaction GSI of X u is given by

GSI F sup,u = (Σ sup u ) 1/2 2 F ||Σ 1/2 || 2 F . (2.16)
Likewise, the second-type GSIs are dened as follows ( [START_REF] Lamboni | Multivariate sensitivity analysis: minimum variance unbiased estimators of the rst-order and total-eect covariance matrices[END_REF]):

GSI l 2 u = ||Σ u || F n ||Σ 1/2 || 2 F ;
(2.17)

GSI l 2 Tu = ||Σ tot u || F n ||Σ 1/2 || 2 F ; (2.18)
and

GSI l 2 sup,u = ||Σ sup u || F n ||Σ 1/2 || 2 F . (2.19)
Remark 1. The rst-type GSIs such as GSI F u , GSI F Tu , GSI F sup,u are equivalent to the classical denition, that is,

GSI F u = Tr (Σ u ) Tr (Σ) , GSI F Tu = Tr (Σ tot u ) Tr (Σ) , GSI F sup,u = Tr (Σ sup u )
Tr (Σ) .

In the case of single response models (n = 1), the two types GSIs come down to In what follows, we assume that the function f : R d → R n is a measurable and dierentiable function with respect to each input (assumption A3). Namely, we use X for d input factors and x for a value of X; u for a non-empty subset of {1, . . . , d};

(x u , x ∼u ), (y u , x ∼u ) and (z u , x ∼u ) for three sample values of X. The usual total dierential of f (df ) with higher-order terms is given as follows ( [START_REF] Courant | Dierential and integral calculus[END_REF]):

df = d j=1 ∂f ∂x j (x) dx j + d 1≤i<j≤d ∂ 2 f ∂x {i,j} (x) dx {i,j} + . . . + ∂ d f ∂x (x) dx = v, v⊆{1, ..., d} |v|>0 
∂ |v| f ∂x v (x) dx v , (3.20) 
where ∂ |v| f ∂xv (x) stands for the |v| th cross-partial derivatives of each component of f with respect to each x j , with j ∈ v. By integrating Equation (3.20), we obtain the

increment of f ([31]), that is, f (z u , x ∼u ) -f (y u , x ∼u ) = j∈u z j y j ∂f ∂x j (x) dx j + v, v⊆u |v|>1 zv yv ∂ |v| f ∂x v (x) dx v . (3.21) 
When we multiply Equation (3.21) by the probability density function ρ u (y u ) and integrate it over the joint support Ω u , we obtain the total-eect functional given by (see Equation (B.1))

f tot u (z u , x ∼u ) = f (z u , x ∼u ) - Ωu f (y u , x ∼u ) dµ(y u ) = j∈u Ω j z j y j ∂f ∂x j (x)ρ j (y j ) dx j dy j + v, v⊆u |v|>1 
Ωv zv yv ∂ |v| f ∂x v (x)ρ v (y v ) dx v dy v . (3.22) 
Under assumption A1 (independent input factor), ρ v (y v ) = j∈v ρ j (y j ), and the right-hand terms of Equation (3.22) become an iteration of one-dimensional integral.

For j ∈ u, consider the measurable function t j : Ω j → [0, 1] given by t j (x j ) =

x j -y j z j -y j .

Using (3.22), a change of variables gives

f tot u (z u , x ∼u ) = j∈u Ω j 1 0 ∂f ∂x j (t j z j + y j (1 -t j ), x ∼j ) × (z j -y j ) × ρ j (y j ) dt j dy j + v, v⊆u |v|>1 
Ωv [0, 1] |v| ∂ |v| f ∂x v ([t j z j + y j (1 -t j ) ∀ j ∈ v], x ∼v ) × j∈v (z j -y j ) × ρ j (y j ) dt v dy v . (3.23) 
Now, we can express the TIEF and TEF as functions of the model derivatives, the cumulative distribution functions (CDF), and the probability density functions (PDF). Theorem 1 provides these results.

Theorem 1. Let X be d input factors, X (1) be an i.i.d copy of X, F j (resp. ρ j ) be the CDF (resp. PDF) of X j with j = 1, . . . , d, and u be a non-empty subset of {1, 2, . . . , d}. If assumptions A1: the input factors X are independent, A2: the model outputs f (X) have nite second moments, A3: each component of f is measurable and dierentiable with respect to x u , A4: for all v ⊆ u, ∂ |v| f ∂xv (X) are measurable and have nite second moments, A5: the PDF ρ j is continuous on the support Ω j and ρ j (x j ) ∈]0, +∞[ ∀ x j ∈ Ω j hold, then (i) we have the following expressions of the TEF and TIEF, respectively.

f tot u (X) = v, v⊆u |v|>0 E X (1) u   ∂ |v| f ∂x v X (1) v , X ∼v j∈v F j (X (1) 
j ) 1 -1I [X (1) j =X j ] -1I [X (1) j >X j ] ρ j (X (1) j )   , (3.24) 
and

f sup u (X) = (-1) |u|+1 E X (1) u   ∂ |u| f ∂x u X (1) u , X ∼u j∈u F j (X (1) 
j ) 1 -1I [X (1) j =X j ] -1I [X (1) j >X j ] ρ j (X (1) 
j )   , (3.25) 
where E X (1) u means that the expectation is taken with respect to X (1) u , j∈v is the product of a sequence depending on j with j ∈ v, and 1I [X (1)

j =X j ] = 1 if X (1) j = X j
and 0 otherwise.

(ii) We have the following expansion of the function f .

f (X) = f ∅ + v, v⊆{1, ..., d} |v|>0 E X (1)   ∂ |v| f ∂x v X (1) v , X ∼v j∈v F j (X (1) 
j ) 1 -1I [X (1) j =X j ] -1I [X (1) j >X j ] ρ j (X (1) 
j )   , (3.26) 
with

f ∅ = E [f (X)].
(iii) The total-interaction eect covariance matrix becomes

Σ sup u = V   E   ∂ |u| f ∂x u X (1) u , X ∼u j∈u F j (X (1) 
j ) 1 -1I [X (1) j =X j ] -1I [X (1) j >X j ] ρ j (X (1) j 
) | X     . (3.27) 
Likewise, the total eect covariance matrix is given by

Σ tot u = V     E     v, v⊆u |v|>0 ∂ |v| f ∂x v X (1) v , X ∼v j∈v F j (X (1) 
j ) 1 -1I [X (1) j =X j ] -1I [X (1) j >X j ] ρ j (X (1) j ) | X         .
(3.28)

Proof. See AppendixD.

From Theorem 1, it comes out that the total eect and total-interaction eect covariance matrices are the rst-order covariance matrices of the functions

v, v⊆u |v|>0 ∂ |v| f ∂x v X (1) v , X ∼v j∈v F j (X (1) j ) 1 -1I [X (1) j =X j ] -1I [X (1) j >X j ] ρ j (X (1) j ) 
, and

∂ |u| f ∂x u X (1) u , X ∼u j∈u F j (X (1) 
j ) 1 -1I [X (1) j =X j ] -1I [X (1) j >X j ] ρ j (X (1) j ) 
, respectively. Thus, the estimator of the rst-order covariance matrices from [START_REF] Lamboni | Multivariate sensitivity analysis: minimum variance unbiased estimators of the rst-order and total-eect covariance matrices[END_REF] can be adapted to obtain the estimators of GSIs using model derivatives.

Remark 2. The derivative-based expressions of the TEF and TIEF in Equations (3.24-3.25) are still suitable for functions that are continuous on the joint support Ω and dierentiable almost everywhere.

It is obvious that the TEF and TIEF are centered, that is,

E f tot u (X) = E [f sup u (X)] = 0 .

Estimators of generalized sensitivity indices using model derivatives

The theory of U-statistics allows for easily deriving the properties of estimators ([32; 33; 34; 29; 35; 36]). Lamboni [10; 1; 12] introduced the theory of U-statistics in sensitivity analysis by deriving minimum variance unbiased estimators of (the nonnormalized) GSIs and Sobol' indices as well as the consistency and the asymptotic normality of such estimators. The main idea consists in i) constructing a kernel (i.e., a random function which expectation is exactly our parameter of interest);

ii) proposing the estimator of that parameter using the kernel; iii) deriving the statistical performance of the proposed estimator. In this section, we follow these main steps to construct estimators of the total-eect, the total-interaction eect covariance matrices and GSIs by making use of model derivatives.

4.1. Kernel functions for the total-eect and the total-interaction eect covariance matrices Let u ⊆ {1, . . . , d} be a non-empty subset, X (1) , X (2) be 2 i.i.d copies of X, X

u , X

u be 2 i.i.d copies of X u . For all v ⊆ u with |v| > 0, we dene the weight-derivative function (d(•)) as follows:

d X (1) , X (3) v = ∂ |v| f ∂x v X (3) v , X (1) 
∼v j∈v

F j X (3) j 1 -1I X (3) j =X (1) j -1I X (3) j >X (1) j ρ j X (3) j . 
(4.29)

To estimate the total-eect and the total-interaction covariance matrices using model derivatives, we consider two functions with two types of inputs X (1) , X (2) and X

u , X

. For the total-interaction covariance matrix, we consider the function K sup (•) given by K sup X (1) , X (2) ,

X (3) u , X (4) 
u = 1 4 d(X (1) , X (3) u ) -d(X (2) , X (3) u ) × d(X (1) , X (4) u ) -d(X (2) , X (4) u ) T + 1 4 d(X (1) , X (4) u ) -d(X (2) , X (4) u ) × d(X (1) , X (3) u ) -d(X (2) , X (3) u ) 
T .

(4.30)

Likewise, we consider the function K tot (•) for the total-eect covariance matrix with K tot X (1) , X (2) , X (3) u , X (4)

u = 1 4     v, v⊆u |v|>0 
v 1 , v 1 ⊆u |v 1 |>0
d(X (1) , X (3) v ) -d(X (2) , X (3) v ) × d(X (1) , X (4) v 1 ) -d(X (2) , X (4) v 1 )

T     + 1 4     v, v⊆u |v|>0 
v 1 , v 1 ⊆u |v 1 |>0
d(X (1) , X (4) v 1 ) -d(X (2) , X (4) v 1 ) × d(X (1) ,

X (3) v ) -d(X (2) , X (3) v ) T     .
(4.31)

The functions K sup X (1) , X (2) , X

u , X

and K tot X (1) , X (2) , X

u , X

u are symmetric under independent permutations of their rst arguments (X (1) , X (2) ) and second arguments (X

u , X

u ). Indeed, the values of such functions do not change if we permute the position of X (1) and X (2) in one hand, and the position of X Theorem 2. If assumptions A1-A5 hold, then we have

E K sup X (1) , X (2) , X (3) u , X (4) u = Σ sup u , (4.32) 
E K tot X (1) , X (2) , X (3) u , X Theorem 3. Let X = X (1) ,

X (2) , Y = X (3) u , X (4) u 
, and

X i , Y i , i = 1, 2, . . . , m,
be two independent samples of size m from X and Y, respectively. If assumptions A1-A5 hold, then (i) the minimum variance unbiased estimator of Σ sup u for a given m and degree

(2, 2) is given by

Σ sup u = 1 4m m i=1 d(X (1) 
i , X

i,u ) -d(X (3) 
i , X

i,u ) × d(X (3) 
i , X

i,u ) -d(X

i , X

i,u )

T + d(X (1) 
i , X

i,u ) -d(X (4) 
i , X

i,u ) × d(X (4) 
i , X

i,u ) -d(X (3) 
i , X

i,u ) T , (3) 
and we have

E Σ sup u = Σ sup u . (4.35) (ii) If m → +∞, Σ sup u is consistent, that is, Σ sup u P -→ Σ sup u . (4.36) (iii) If m → +∞, Vec Σ sup u follows a normal distribution, that is, √ m Vec Σ sup u -Vec [Σ sup u ] D -→ N (0, V (Vec[K sup (X , Y)])) . (4.37) 
Proof. See AppendixF.

Theorem 4. Let X = X (1) , X (2) , Y = X (3) u , X

, and X i , Y i , i = 1, 2, . . . , m, be two independent samples of size m from X and Y, respectively. If assumptions A1-A5 hold, then (i) the minimum variance unbiased estimator of Σ tot u for a given m and degree

(2, 2) is given by

Σ tot u = 1 4m m i=1 v, v⊆u |v|>0 
v 1 , v 1 ⊆u |v 1 |>0 × d(X (1) 
i , X

i,v ) -d(X (3) 
i , X

i,v ) × d(X (3) 
i , X

i,v 1 ) -d(X

i , X

i,v 1 )

T + d(X (1) 
i , X

i,v 1 ) -d(X

i , X

i,v 1 ) × d(X (4) 
i , X

i,v ) -d(X (3) 
i , X

i,v ) T , (3) 
and we have

E Σ tot u = Σ tot u . (4.39) (ii) If m → +∞, Σ tot u is consistent, that is, Σ tot u P -→ Σ tot u . (4.40) (iii) If m → +∞, Vec Σ tot u follows a normal distribution, that is, √ m Vec Σ tot u -Vec Σ tot u D -→ N 0, V(Vec[K tot (X , Y)]) . (4.41)
Proof. The proof is similar to the proof of Theorem 3.

Remark 3. The property of minimum variance is valid for a class of estimators that are based on the weight-derivative function and make use of the same information such as the degree (2, 2) and the same sample size (m).

Theorems 3-4 give the formulas for computing the TIEF and TEF covariance matrices. For computing GSIs using matrix norms, we use the formulas proposed in Corollaries 1-2.

Corollary 1. Under assumptions A1-A5, (i) the minimum variance unbiased estimator of Tr (Σ sup u ) is given by

Tr (Σ sup u ) = 1 2m m i=1
Tr d(X (1) i , X

i,u ) -d(X (3) 
i , X

i,u )

× d(X (1) 
i , X

i,u ) -d(X

i , X 

√ m Tr (Σ sup u ) -Tr (Σ sup u ) D -→ N (0, V(Tr[K sup (X , Y)])) . (4.45) (ii) A consistent estimator of ||Σ sup u || F is given by ||Σ sup u || F = Σ sup u F , (4.46) 
and we have

||Σ sup u || F P -→ ||Σ sup u || F . (4.47)
Proof. The proof is obvious bearing in mind Theorem 3, the Slutsky theorem, and the linearity of the trace and expectation.

Likewise, we use the following formulas for computing the non-normalized total GSIs of X u .

Corollary 2. Under assumptions A1-A5, (i) the minimum variance unbiased estimator of Tr (Σ tot u ) is given by

Tr (Σ tot u ) = 1 2m m i=1 v, v⊆u |v|>0 v 1 , v 1 ⊆u |v 1 |>0
Tr d(X (1) i , X

i,v ) -d(X (3) 
i , X

i,v ) × d(X (3) 
i , X

i,v 1 ) -d(X

i , X 

(ii) A consistent estimator of ||Σ tot u || F is given by ||Σ tot u || F = Σ tot u F , (4.52) 
and we have

||Σ tot u || F P -→ Σ tot u F . (4.53)
Proof. The proof is obvious bearing in mind Theorem 4, the Slutsky theorem, and the linearity of the trace and expectation. Now, we can derive the estimators of the normalized GSIs proposed in Denition 2. Theorem 5 gives the estimators of both types of GSIs, and it provides the performance of these estimators.

Theorem 5. If assumptions A1-A5 hold, then (i) the rst-type and total GSI of X u is given by

GSI F Tu = Tr (Σ tot u ) Tr Σ , (4.54)
where Σ is the classical estimator of the variance-covariance matrix of the model outputs, that is,

Σ = V[f (X)],
and it is estimated using M model runs.

Moreover, if m → +∞ and m/M → 0 then we have

GSI F Tu P -→ GSI F Tu , (4.55) 
and

√ m GSI F Tu -GSI F Tu D -→ N 0, V(Tr[K tot (X , Y)]) (Tr [Σ]) 2 . (4.56) (ii)
The rst-type and total-interaction GSI of X u is given by

GSI F sup,u = Tr (Σ sup u ) Tr Σ , (4.57) 
and if m → +∞ and m/M → 0 we have

GSI F sup,u P -→ GSI F sup,u . (4.58) √ m GSI F sup,u -GSI F sup,u D -→ N 0, V(Tr[K sup (X , Y)]) (Tr [Σ]) 2 . (4.59) (iii)
The second-type (total and total-interaction) GSIs of X u are given by Proof. See AppendixG.

GSI l 2 Tu = ||Σ tot u || F nTr Σ , ( 4 

Computational issues

This section illustrates the computations of GSIs and Sobol' indices using derivatives of dierent functions. First, we provide an algorithm for computing the GSIs using the proposed estimators, and second, we apply such algorithm on dierent functions.

Algorithm, design scheme and computational cost

For a given sample size m, the following steps allow for computing the total-eect and total-interaction eect covariance matrices.

Algorithm 1. Estimations of the d total-eect covariance matrices.

• Sample 4 input values (matrices) of type m × d (X 1 , . . . , X 4 )

• For each input factor X j , replace the j th column of X 1 and X 3 with the j th column of X 2 (i.e, X 2j ) to obtain 2 new matrices (X 1,2j , X 3,2j )

• Compute the model derivative with respect to X j for the two input values X 1,2j , X 3,2j to obtain ∂f ∂x j (X 1,2j ) and ∂f ∂x j (X 3,2j )

• Run the weight-derivative function from Equation (4.29) for (X 1 X 2j ) (resp.

(X 3 X 2j )) as follows:

d (X 1 X 2j ) = ∂f ∂x j (X 1,2j ) F j (X 2j ) 1 -1I [X 2j =X 1j ] -1I [X 2j >X 1j ] ρ j (X 2j ) ,
with X 1j the j th column of X 1

• Repeat the loop for one more time by replacing X 2 with X 4

• Use the estimators in (4.38), (4.54), and (4.60) to obtain the estimates of the total-eect covariance matrices and GSIs.

Algorithm 1 is still suitable for computing the total-interaction eect covariance matrices (4.34) and GSIs (4.57, 4.62) of the subset of input factors X v , with |v| > 1.

We should modify the steps ii)-iv) of Algorithm 1 as follows: replace the columns of 

Test cases

In this section, we performed some numerical tests to assess the eectiveness of our estimations. To illustrate our approach, we considered two types of functions as follows: functions with a small number of inputs (d = 3), and functions with a medium number of inputs (d = 6, d = 10). We computed the model derivatives using the nite dierence method, and we computed the GSIs for two values of the sample size (m), that is, m = 1000, 5000 using Sobol's sequence or Quasi-Monte

Carlo ( [START_REF] Dutang | randtoolbox: Generating and Testing Random Numbers[END_REF]). For each sample size (m), we replicated the process of computing the indices R = 50 times by changing the seed randomly when sampling input values.

Multivariate Ishigami's function (d = 3, n = 3)

The multivariate Ishigami function includes three independent input factors following a uniform distribution on [-π, π], and it provides three outputs ( [START_REF] Lamboni | Multivariate sensitivity analysis: minimum variance unbiased estimators of the rst-order and total-eect covariance matrices[END_REF]). It is dened as follows:

f (x) =      
sin(x 1 ) + 7 sin 2 (x 2 ) + 0.1 x 4 3 sin(x 1 ) sin(x 1 ) + 5.896 sin 2 (x 2 ) + 0.1 x 4 3 sin(x 1 ) sin(x 1 ) + 6.494 sin 2 (x 2 ) + 0.125 x 4 3 sin(x 1 )

      .
(5.64)

The true and estimated values of the GSIs for this function are listed in Table 1.

Block-additive function (d = 6, n = 1)

The block-additive function includes six independent inputs following a uniform distribution on [-1, 1] ( [START_REF] Roustant | Crossed-derivative based sensitivity measures for interaction screening[END_REF]). It is dened as follows:

f (x) = cos(-0.8 -1.1x 1 + 1.1x 5 + x 3 ) + sin(0.5 + 0.9x 4 + x 2 -1.1x 6 ) . (5.65)
The true values of Sobol' indices and the estimates are listed in Table 2. The multivariate Sobol function includes 10 independent input factors following a uniform distribution on [0, 1] ( [START_REF] Lamboni | Multivariate sensitivity analysis: minimum variance unbiased estimators of the rst-order and total-eect covariance matrices[END_REF]). It is dened as follows: 

GSI F T.j GSI F T.j GSI l2 T.j GSI l2 T.j m =
f (x) =          d=10 j=1 |4 x j -2| + A[1,j] 1 + A[1,j] d=10 j=1 |4 x j -2| + A[2,j] 1 + A[2,j] d=10 j=1 |4 x j -2| + A[3,j] 1 + A[3,j] d=10 j=1 |4 x j -2| + A[4,j] 1 + A[4,j]          . ( 5 
        
, the values of the GSIs are listed in Table 3. indices (average over 50 replications) are followed by their standard deviations (in bracket). While the top part of this table focuses on the total indices, the bottom part deals with the totalinteraction indices. For concise reporting of small indices, we use e-a for 10 -a . our estimators. This numerical instability decreases when increasing the sample size (m = 5000), and we obtain reasonable precision for all input factors.

GSI F T.j GSI F T.j GSI l2 T.j GSI l2 T.j m =

Numerical results and discussion

It happens to obtain negative estimates of some null total-interaction indices (Tables 12), although the negative estimates are too small (around -10 -20 ). This result seems to suggest the diculty of our estimator of the total-interaction index to better estimate null values of indices according to the precision required. The second-type GSIs, which are also equivalent to Sobol' indices in the case of single response mpdels, avoid obtaining negatives estimates of indices even for small or null values of indices by denition. Moreover, for the three functions considered in this paper, the second-type GSIs give the same ranking of input factors compared to the rst-type GSIs.

Conclusion

In this paper, we propose and study a novel way of computing two types of generalized sensitivity indices, including Sobol' indices, using model derivatives, the cumulative distribution function, and the probability density function. First, we derive the mathematical expressions of the total-eect and total-interaction eect functionals and covariance matrices based on the model derivatives. Second, we construct minimum variance unbiased estimators of the total-eect and total-interaction eect covariance matrices, and third, we provide estimators of the total and totalinteraction GSIs as well as their consistency and asymptotic normality. ). The second-type GSIs avoid obtaining negative estimates by denition, and they provide the same ranking of input factors compared to the rst-type GSIs for the models considered in this paper. In the next future, it is interesting to i) improve the robustness of our estimators, ii) investigate a dimension-free algorithm for computing our indices using derivatives, iii) compare our estimates with those obtained by using derivatives-free algorithms (i.e., that do not use derivatives), iv) extend our approach to cope with dependent input factors.

For point (i), as v 1 = v 2 , there exists at least one element j ∈ v 2 and j / ∈ v 1 .

Bearing in mind the denition and properties of A v (see Denition 1), we have:

∀ A 2 ∈ A v 2 , j ∈ A 2 . As j ∈ (u\v 1 ), we can write j / ∈ A 1 , ∀ A 1 ∈ A v 1 . Therefore, ∀ A 1 ∈ A v 1 , A 1 / ∈ A v 2 .
For point (ii), it is obvious that ∪ v⊆u A v ⊆ {w, w ⊆ {1, 2, . . . , d}} by denition. To show that {w, w ⊆ {1, 2, . . . , d}} ⊆ ∪ v⊆u A v , let us consider a set w 0 ∈ {w, w ⊆ {1, 2, . . . , d}}.

If w 0 ⊆ u then there exists v ⊆ u such that v = w 0 , and therefore w 0 ∈ A v . If

w 0 ∩ u = ∅ then w 0 ∈ A ∅ (v = ∅). If w 0 = w 1 ∪ w 2 with w 1 ⊆ u and w 2 ∩ u = ∅ then w 0 ∈ A w 1 A ∅ .
Point (iii) is obvious using point (i).

AppendixB. Proof of Proposition 1

Point (i) is a consequence of Lemma 1 and the fact that the terms in Equation (2.1) are mutually orthogonal and centered.

Point (ii) is obvious using the set B v 1 from Lemma 1.

For Point (iii), the functional

f tot u (X) = v, v⊆u |v|>0 
f Av (X v , X ∼v ) contains all information brought by X u to the model, and it is sucient to assess the overall contribution of input X u . We also have ( [START_REF] Lamboni | Multivariate sensitivity analysis: minimum variance unbiased estimators of the rst-order and total-eect covariance matrices[END_REF])

f tot u (X) = f (X) -E [f (X) | X ∼u ] . (B.1)
Bearing in mind (2.7), we have

v, v⊂u (-1) |u|-|v|+1 f sup u\v (X) = v, v⊂u (-1) |u|-|v|+1 w, (u\v)⊆w⊆u f Aw (X) = v, v⊂u w, (u\v)⊆w⊆u (-1) |u|-|v|+1 f Aw (X) (C.1) For v 1 ⊆ u and |v 1 | > 0, the sum w, (u\v)⊆w⊆u in Equation (C.1) contains v 1 for {v, (u\v) ⊆ v 1 } ≡ {v = u\t, t ⊆ v 1 and t = ∅}. Thus, Equation (C.1) becomes v, v⊂u (-1) |u|-|v|+1 f sup u\v (X) = v 1 , v 1 ⊆u |v 1 |>0 t, t⊆v 1 |t|>0 (-1) |t|+1 f Av 1 (X) = v 1 , v 1 ⊆u |v 1 |>0 f Av 1 (X) , as |v 1 | |t|=1 (-1) |t|+1 |v 1 | |t| = - |v 1 | |t|=1 (-1) |t| |v 1 | |t| = 1.
The rst result holds using Equation (2.8).

The last result in (2.10) is obtained using Equation (2.9). Indeed, v, v⊂u

(-1) |u|-|v|+1 f tot u\v (X) = v, v⊂u (-1) |u|-|v|+1 v 1 , v 1 ⊂(u\v) (-1) |u|-|v|-|v 1 |+1 f sup (u\v)\v 1 (X) = v, v⊂u v 1 , v 1 ⊂(u\v) (-1) -|v 1 | f sup u\(v∪v 1 ) (X) . For w = {v 1 ∪ v}, we have |w| = |v 1 | + |v| as v 1 ∩ v = ∅. We can see that {(v, v 1 ), v ⊂ u, v 1 ⊂ (u\v)} ≡ {(w, v 1 ), w ⊂ u, v 1 ⊆ w}. Thus, we have v, v⊂u (-1) |v|+|u|-1 f tot u\v (X) = w, w⊂u v 1 , v 1 ⊆w (-1) -|v 1 | f sup u\w (X) = w, w⊂u |w| |v 1 |=0 |w| |v 1 | (-1) -|v 1 | f sup u\w (X) = f sup u (X) , as |w| |v 1 |=0 |w| |v 1 | (-1) -|v 1 | = 0 if |w| > 0 and 1 otherwise.
AppendixD. Proof of Theorem 1

Let start with Point (i). Replacing z u with x u in Equation (3.23) yields to

f tot u (x) = j∈u Ω j 1 0 ∂f ∂x j (t j x j + y j (1 -t j ), x ∼j ) × (x j -y j ) × ρ j (y j ) dt j dy j + v, v⊆u |v|>1 
Ωv [0, 1] |v| ∂ |v| f ∂x v ([t j x j + y j (1 -t j ) ∀ j ∈ v], x ∼v ) × j∈v (x j -y j ) × ρ j (y j ) dt v dy v . (D.1)
For j ∈ u, consider the measurable function r j (y j ) = t j x j + y j (1 -t j ). We can see that y j = r j -t j x j 1-t j , dy j = dr j 1-t j , and x j -y j =

x j -r j 1-t j . By making a change of variables and bearing in mind Fubini-Lebesgue's theorem, we have

f tot u (x) = j∈u Ω j ∂f ∂x j (r j , x ∼j ) 1 0 x j -r j (1 -t j ) 2 ρ j r j -t j x j 1 -t j dt j dr j + v, v⊆u |v|>1 Ωv ∂ |v| f ∂x v ([r j ∀ j ∈ v], x ∼v ) × [0, 1] |v| j∈v x j -r j (1 -t j ) 2 ρ j r j -t j x j 1 -t j dt v dr v .
As the integral

1 0 x j -r j (1 -t j ) 2 ρ j r j -t j x j 1 -t j dt j = -F j r j -t j x j 1 -t j 1 0 = F j (r j ) -lim t j →1 F j r j -t j x j 1 -t j = F j (r j ) -1I [r j >x j ] -F j (r j )1I [r j =x j ] ,
the rst result holds, that is,

f tot u (x) = j∈u Ω j ∂f ∂x j (r j , x ∼j ) F j (r j )(1 -1I [r j =x j ] ) -1I [r j >x j ] dr j + v, v⊆u |v|>1 
Ωv ∂ |v| f ∂x v ([r j ∀ j ∈ v], x ∼v ) j∈v F j (r j )(1 -1I [r j =x j ] ) -1I [r j >x j ] dr v ,
or equivalently

f tot u (X) = j∈u E X (1) j   ∂f ∂X j (X (1) 
j , X ∼j )

F j (X (1) 
j )(1 -1I [X (1) j =X j ] ) -1I [X (1)

j >X j ] ρ j (X (1) 
j )   + v, v⊆u |v|>1 E X (1) v   ∂ |v| f ∂x v X (1) v , X ∼v j∈v F j (X (1) 
j )(1 -1I [X (1) j =X j ] ) -1I [X (1)

j >X j ] ρ j (X (1) j ) 
  .

To derive the expression of TIEF based on model derivatives, we combine Equa-tion (2.10) and Equation (3.24). Indeed,

f sup u (X) = v, v⊂u (-1) |u|-|v|+1 v 1 , v 1 ⊆(u\v) |v 1 |>0 E X (1) v 1 ∂ |v 1 | f ∂x v 1 X (1) v 1 , X ∼v 1 × j∈v 1 F j (X (1) 
j )(1 -1I [X (1) j =X j ] ) -1I [X (1) j >X j ] ρ j (X (1) 
j )   = v, v⊂u v 1 , v 1 ⊆(u\v) |v 1 |>0
(-1) |u|-|v|+1 E X (1)

v 1 ∂ |v 1 | f ∂x v 1 X (1) v 1 , X ∼v 1 × j∈v 1 F j (X (1) 
j )(1 -1I [X (1) j =X j ] ) -1I [X (1) j >X j ] ρ j (X (1) j ) 
  .

For a given v 1 ⊆ u with v 1 = ∅, we can see that {v, v 1 ⊆ (u\v)} ≡ {v = u\t, v 1 ⊆ t ⊆ u}.

Thus, we have

f sup u (X) = v 1 , v 1 ⊆u |v 1 |>0 t, v 1 ⊆t⊆u (-1) |t|+1 E X (1) v 1 ∂ |v 1 | f ∂x v 1 X (1) v 1 , X ∼v 1 × j∈v 1 F j (X (1) 
j )(1 -1I [X (1) j =X j ] ) -1I [X (1) E d(X (1) , X (3) v ) -d(X (2) , X (3) v ) d(X (1) , X (4) v 1 ) -d(X (2) , X (4) v 1 )

j >X j ] ρ j (X (1) 
j )   = (-1) |u|+1 E X (1) u   ∂ |v 1 | f ∂x u X (1) u , X ∼u j∈u F j (X (1) 
j )(1 -1I [X (1) j =X j ] ) -1I [X (1) j >X j ] ρ j (X (1) 
T = 1 4 |u| v⊆u |v|=1 |u| v 1 ⊆u |v 1 |=1
E d(X (1) , X (3) v )d(X (1) , X (4) v 1 ) T + 1 4

|u| v⊆u |v|=1 |u| v 1 ⊆u |v 1 |=1
E d(X (2) , X (3) v d(X (2) , X (4)

v 1 ) T = 1 4 |u| v⊆u |v|=1 |u| v 1 ⊆u |v 1 |=1 E E X (3) v d(X (1) , X (3) v ) E X (4) v 1
d(X (1) , X (4)

v 1 ) T + 1 4 |u| v⊆u |v|=1 |u| v 1 ⊆u |v 1 |=1 E E X (3) v d(X (2) , X (3) v E X (4) v 1
d(X (2) , X (4)

v 1 ) T = 1 4 E     |u| v⊆u |v|=1 E X (3) v d(X (1) , X (3) v ) |u| v 1 ⊆u |v 1 |=1 E X (3) v 1
d(X (1) , X 

  models (either multivariate or single response) are widely 2 used as experimental tools for supporting decision making in natural or human-3 induced phenomena. They often include numerous uncertain input factors, and it 4 is interesting to assess the eects of input factors on the whole model outputs prior 5 to scenario-building, model-reducing, or model diagnostic activities.

6
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  w) is a diagonal matrix with w representing the vector of the standard deviations of the outputs. In the following text, we use f (•) as either the original function or a given transformation of the latter.

( 2 . 1 )

 21 , we can give a new decomposition of f (see Proposition 1).

  Sobol' indices. Thus, both types of GSIs extend Sobol' indices to cope with multivariate response models. The l 2 -based denition of GSIs (second-type GSIs) explicitly includes the o-diagonal elements of the covariance matrices. Therefore, it accounts for the correlations among the component of sensitivity functionals. 3. Generalized sensitivity and Sobol' indices using model derivatives Section 2 provides the denitions of generalized sensitivity indices using the main sensitivity functionals. To propose the GSIs and Sobol' indices based on model derivatives, we are going to express the TIEF and TEF as functions of the model derivatives.

u

  in the other hand. Theorem 2 gives other properties of such functions.

  that the functions K(•) (resp. K tot (•)) are unbiased estimators of Σ sup u (resp. Σ tot u ). Both functions are called kernels of degree (2, 2) in the theory of U-statistics of two samples. Theorems 3-4 propose the estimators of Σ sup u and Σ tot u .

i,v 1 )m

 1 Tr (Σ tot u ) -Tr Σ tot u D -→ N 0, V(Tr[K tot (X , Y)]) .(4.51)

X 1

 1 and X 3 that belong to v with the same columns of X 2 to obtain 2 new matrices, and compute the weight-derivative function as dened in(4.29).The total number of the evaluations of the model derivatives to obtain the values of the d total indices (i.e., computational cost of this algorithm) is 4 × m × d. For the second-order total-interaction indices, up to 4 × m × d(d -1) evaluations of the model derivatives are necessary for obtaining the indices estimates, as a null partial derivative yields to null cross-partial derivatives. These computational costs depend on the crude estimators used in this paper.

1 Tables 1 - 3 3 both

 1133 report the estimated values of sensitivity indices for the three func-2 tions. From Tables 1-3, it comes out that our estimators give accurate estimates of GSIs and Sobol' indices in average, and these estimates allow for identifying the 4 most inuential input factors. Regarding the precision of our estimates (standard 5 deviations), we obtain better estimates of indices in the case of the block-additive 6 function and the multivariate Sobol function when the sample size is 1000. For the

  Finally, we provide an algorithm for computing these covariance matrices and the GSIs, including the Sobol indices. The numerical tests conrmed the accuracy of our estimates in general, except for some null indices. While a medium value of the sample size (m = 1000) gives interesting results for the Sobol and block additive functions, our estimators exhibit a numerical instability in the case of Ishigami's function. Our estimators of the rst-type GSIs and Sobol' indoces show some diculties for estimating null indices by providing negative estimates (around -10 -20

i+|v 1 |+1= (- 1 )

 11 |u|+1 1I [v 1 =u] .Point (ii) is a particular case of Equation(3.24). Indeed, if we choose u = {1, . . . , d}, we havef tot u (X) = f (X) -E [f (X)] (see Equation (B.1)).Point (iii) is obvious.

=

  E [K sup (X , Y)], the corresponding U-statistic of two sample associated with the kernel K sup (X , Y) is Σ sup u .It is obvious that Vec Σ sup u is also an unbiased estimator of Vec[Σ sup u ], and it is symmetric w.r.t the two types of inputs. Therefore, it follows from the theory of U-statistics that Vec Σ sup u has a minimum variance for the class of unbiased estimators that make use of the kernel K sup (X , Y) and have nite 4 th moment (see[1; 10] for more details). We also have the following results: (0, C), which is obtained by applying the delta method to √ M Tr (Σ) -Tr (Σ) D -→ N (0, C 0 ).

  The new decomposition aims at managing the Hoeding decomposition with only 2 |u| components, with u ⊆ {1, 2, . . . , d} and |u| its cardinality. The idea consists in expanding the function f (•) as a sum of collections of functions dened in Equation (2.1). For a given subset u, a collection (of functions) relies on one component of a partition of the set {w, w ⊆ {1, 2, . . . , d}} into 2 |u| subsets.

Denition 1. Let u be a non-empty subset of {1, 2, . . . , d}, and ū = {1, 2, . . . , d}\u be a set containing all the elements of {1, 2, . . . , d}, except those of u.

Table 1 :

 1 True and estimated values of two types of generalized sensitivity indices for the multivariate Ishigami function. The estimated GSIs (average over 50 replications) are followed by their standard deviations (in bracket). While the top part of this table focuses on the total GSI, the bottom part deals with the total-interaction GSIs. For concise reporting of small indices, we use e-a for 10 -a .

			1000	5000		m = 1000	5000
	X 1 0.628 0.639 (0.14)	0.630 (0.06)	0.209	0.213 (0.04) 0.210 (0.02)
	X 2 0.372 0.340 (0.35)	0.375 (0.11)	0.125	0.135 (0.09) 0.125 (0.04)
	X 3 0.284 0.272 (0.13)	0.277 (0.04)	0.093	0.091 (0.04) 0.092 (0.01)
	GSI F sup,u	GSI F sup,u	GSI l2 sup,u	GSI l2 sup,u
	X 1 : X 2	0	e-23 (e-22)	3e-24 (e-23)	0	3e-23 (e-22) 9e-24 (e-23)
	X 1 : X 3 0.284 0.336 (0.74)	0.273 (0.21)	0.093	0.155 (0.22) 0.101 (0.05)
	X 2 : X 3	0 6e-25 (6e-24) -6e-25 (3e-24)	0	e-24 (2e-24) 8e-25 (e-24)

5.2.3. Multivariate Sobol's function (d = 10, n = 4)

Table 2 :

 2 True and estimated values of Sobol' indices for the block-additive function. The estimated

Table 3 :

 3 True and estimated values of two types of the total GSIs for the multivariate Sobol function of type A. The estimated GSIs (average over 50 replications) are followed by their standard deviations (in bracket).

multivariate Ishigami function, we have the worst precision for input X 2 , showing

a big impact of the sample size on the estimates and/or a numerical instability of
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AppendixE. Proof of Theorem 2

First, we establish some useful equalities for the proofs, and second, we derive the two results of Theorem 2. We know that d(X (1) , X

v ) is centered, that is, E d(X (1) , X

v ) = 0 (see Remark 2).

Bearing in mind that X (j 1 ) and X (j 2 ) u are independent for j 1 = 1, 2 and j 2 = 3, 4, X (1) and X (2) (resp. X 

where

v ) means that the expectation is taken with respect to

with j 1 ∈ {1, 2} and j 2 ∈ {3, 4}.

According to Equation (3.25) and using Equation (E.1), the total-interaction covariance matrix is given by

with j 1 ∈ {1, 2}. Indeed,

bearing in mind the symmetry of Equation (4.30). Indeed,

u )d(X (1) , X

u ) E d(X (1) , X

u ) T = 0 and E d(X (1) , X

u )d(X (2) , X

u ) T = 0.

The proof of the second results (4.33) is similar to the proof of Equation (4.32).

To show (4.33), it is sucient to prove that

Indeed, as E d(X (1) , X

v )d(X (2) , X

v )d(X (1) , X

v 1 ) T = 0,

v ) , and

Points (a), (b), and (d) are equivalent to Points (i), (ii), and (iii) of Theorem 3.

AppendixG. Proof of Theorem 5

The results about the consistency are obvious bearing in mind Corollaries 1-2 and the Slutsky theorem.

For the asymptotic normality, rst, bearing in mind Slutsky's theorem and using

Corollary 1, we can write

Second, we need to show that √ m → 0 ,