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Abstract

In uncertainty quanti�cation, multivariate sensitivity analysis (MSA), including

variance-based sensitivity analysis, and derivative global sensitivity measure (DGSM)

are widely used for assessing the e�ects of input factors on the model outputs. While

MSA allows for identifying the order and the strength of interactions among inputs,

DGSM provides only a global e�ect of inputs by making use of model derivatives.

It is interesting to combine the advantages of both approaches and to come up with

generalized sensitivity indices (GSIs) from MSA based on model derivatives. First,

we derive the mathematical expressions of the total e�ect and total-interaction e�ect

functionals based on derivatives. Second, we construct minimum variance unbiased

estimators (MVUEs) of the total-e�ect and total-interaction e�ect covariance ma-

trices, and third, we provide the estimators of the total and total-interaction GSIs

as well as their consistency and asymptotic normality. Finally, we demonstrate the

applicability of these new results by means of simulations.

Keywords: Derivatives, Generalized sensitivity indices, Matrix norms, MVU

estimators, U-statistics.

1. Introduction1

Complex mathematical models (either multivariate or single response) are widely2

used as experimental tools for supporting decision making in natural or human-3

induced phenomena. They often include numerous uncertain input factors, and it4

is interesting to assess the e�ects of input factors on the whole model outputs prior5

to scenario-building, model-reducing, or model diagnostic activities.6

Multivariate sensitivity analysis (MSA) ([1; 2; 3; 4; 5]), including variance-based7

sensitivity analysis (VbSA) ([6; 7; 8; 9]), is the standard way of assessing the impor-8
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tance of input factors on the model output(s) as well as interactions among input1

factors by making use of the model runs. The estimations of generalized sensitivity2

indices (GSIs) from MSA, including Sobol' indices, have been largely investigated3

([10; 1; 11; 2; 4; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22]). Among the sample-based4

methods, the estimators of the �rst-order and total indices proposed in [1; 10; 12]5

allow for improving the estimates of sensitivity indices, as they are based on mini-6

mum variance unbiased estimators.7

8

For response models with available gradients, derivative global sensitivity mea-9

sure (DGSM) ([23; 24; 25]) is an appropriate way of assessing a global impact of10

input factors, as it is computationally more attractive than VbSA or MSA (sample-11

based methods). Given that the DGSM index and the total index (from VbSA)12

can provide di�erent ranking of input factors, upper bounds and lower bounds of13

the total index and the total-interaction index based on derivatives were proposed14

([26; 27; 28]). An upper bound of the total index (resp. total-interaction index),15

which is a (known) constant times the DGSM index (resp. cross-derivatives index),16

is used for the screening purpose. Indeed, while a small value of the upper bound17

of the Sobol total index means that the associated input does not really act in the18

model; a big value of the upper bound does not bring much information, regarding19

factors classi�cation, and big values of upper bounds can happen especially in the20

case of the total-interaction index ([16; 27]).21

22

In this paper, we combine the advantages of DGSM and MSA approaches to come23

up with a new way of computing the GSIs by making use of model derivatives. First,24

we derive the mathematical expressions of the total e�ect and total-interaction e�ect25

functionals using the model derivatives, cumulative distribution functions (CDFs),26

and probability density functions (PDFs). Second, we construct minimum variance27

unbiased estimators (MVUEs) of the total-e�ect and total-interaction e�ect covari-28
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ance matrices, and third, we provide estimators of the total and total-interaction1

GSIs as well as their consistency and asymptotic normality. Finally, we demonstrate2

the applicability of these new results by means of numerical tests.3

The paper is organized as follows: in Section 2, we recall two de�nitions of GSIs4

using the sensitivity functionals and the Frobenius norm. The sensitivity functionals5

are the functionals that will lead to access the �rst-order, total and total-interaction6

GSIs. Section 3 provides the derivative-based GSIs by deriving the mathematical7

expressions of the sensitivity functionals using the model derivatives, CDFs, and8

PDFs. The derivation of the derivative-based total-interaction GSI motivates the9

proposition of a new Hoe�ding decomposition in Section 2. While in Section 4,10

we propose and study estimators of the GSIs based on model derivatives, Section11

5 deals with the computational issues. It provides an algorithm for computing the12

GSIs values and illustrates our approach on test cases. We conclude this work in13

Section 6.14

Notation15

This section de�nes the symbols that will be used throughout the paper. For16

integer d ∈ N∗ and j = 1, . . . , d, we use µj(xj) = ρj(xj) dxj for an absolutely17

continuous probability measure on an open interval Ωj ⊆ R w.r.t. the Lebesgue18

measure, Xj for a random variable or factor from µj, xj for a sample value of Xj,19

and X = {Xj, j ∈ {1, . . . , d}} for a random vector. We use ρj (resp. Fj) for the20

positive and continuous probability density function (PDF) (resp. the cumulative21

distribution function: CDF) with j = 1, . . . , d. We use µ(x), Ω, ρ(x), F (x) for22

the joint probability measure, the joint support, the joint PDF and the joint CDF23

of X, respectively, and E and V for the expectation and variance taking w.r.t. X.24

We use
D−→ and

P−→ for the convergence in distribution and in probability, respectively.25

26

For integer n ∈ N∗, the function f : Rd → Rn denotes a deterministic function27
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that includes d input factors X. We use u ⊆ {1, 2, . . . , d} for a non-empty subset1

of {1, 2, . . . , d}, ū = {1, 2, . . . , d}\u for the complement of u w.r.t. {1, 2, . . . , d },2

and |u| for its cardinality (i.e., the number of elements in u). For a given u, we3

use Xu = {Xj, j ∈ u} for a subset of input factors and X∼u = {Xj, j ∈ ū} for4

the vector containing all input factors, except Xu. We have the following partition:5

X = (Xu,X∼u).6

7

For an n × n square matrix Σ = (σij, i, j ∈ {1, . . . , n}), the trace (Tr), the

Frobenius norm (||Σ||F ), and the vectorization (Vec(Σ)) of Σ are de�ned as follows:

Tr(Σ) =
n∑

i=1

σii ,

||Σ||2F =
n∑

i=1

n∑
j=1

|σij|2 = Tr
(
ΣΣT

)
,

Vec(Σ) = [σi1 ∀ i ∈ {1, . . . , n}; σi2 ∀ i ∈ {1, . . . , n}; . . . ; σin ∀ i ∈ {1, . . . , n}]T .

By de�nition, the vectorization of Σ is a vector containing the �rst column of Σ,8

followed by the second column, and so on.9

10

The function f(·) may be subjected to the transformation of the form:

Dwf(X) ,

where Dw is a weighting matrix. In the case of the model outputs with di�erent11

units, some transformations may be used to obtain unit-less outputs. A classical12

way to accomplish this is to divide each output by its standard deviation, that is,13

D−1
w = diag(w) is a diagonal matrix with w representing the vector of the standard14

deviations of the outputs. In the following text, we use f(·) as either the original15

function or a given transformation of the latter.16
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1

In what follows, we consider only independent input factors (assumption A1) and2

measurable and di�erentiable functions f : Rd → Rn having �nite second moments,3

that is, E
[
||f(X)||2L2

]
< +∞.4

2. Multivariate sensitivity analysis: two types of generalized sensitivity5

indices6

This section gives two de�nitions of generalized sensitivity indices, including7

Sobol' indices, using the sensitivity functionals. We propose i) a new Hoe�ding8

decomposition; ii) a link between the sensitivity functionals; and iii) the two main9

de�nitions of GSIs.10

2.1. Hoe�ding decomposition11

Under the independence assumption A1, the multivariate Hoe�ding decomposi-12

tion ([29]; [30]) is given by13

f(X) = f∅ +
d∑

j=1

fj(Xj) +
d∑

j1<j2

fj1j2(Xj1 , Xj2) + . . .+ f1...d(X1, . . . , Xd)

= f∅ +
∑

w,w⊆{1,2,...d}
|w|>0

fw(Xw) , (2.1)

where f∅ = E [f(X)] is the expectation of the model output, fj(Xj) = E [f(X)|Xj]−f∅,14

and fw(Xw) = E [f(X)|Xw]−
∑

v, v⊂w

fv(Xv) for a non-empty subset w ⊆ {1, 2, . . . , d}.15

16

The functional E [f(X)|Xu]− f∅ generalizes fj(Xj) = E [f(X)|Xj]− f∅ from (2.1)17

to cope with any subset Xu of input factors. It allows for quantifying the single18

contribution of the input Xu. We refer to the latter as the �rst-order functional,19

that is, f fou (Xu) = E [f(X)|Xu]− f∅.20
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2.2. New Hoe�ding decomposition: link between the total e�ect and total-interaction1

e�ect functionals2

The total-e�ect and total-interaction e�ect functionals can be easily derived by3

re-organizing the Hoe�ding decomposition. The new decomposition aims at manag-4

ing the Hoe�ding decomposition with only 2|u| components, with u ⊆ {1, 2, . . . , d}5

and |u| its cardinality. The idea consists in expanding the function f(·) as a sum6

of collections of functions de�ned in Equation (2.1). For a given subset u, a collection7

(of functions) relies on one component of a partition of the set {w, w ⊆ {1, 2, . . . , d}}8

into 2|u| subsets.9

De�nition 1. Let u be a non-empty subset of {1, 2, . . . , d}, and ū = {1, 2, . . . , d}\u10

be a set containing all the elements of {1, 2, . . . , d}, except those of u.11

For a given v with v ⊆ u, we de�ne the set Av as a set containing elements of the12

form {v, w} with w ⊆ ū, that is,13

Av = {{v, w}, w ⊆ ū} . (2.2)

By de�nition, it is obvious that v ∈ Av and Av ⊂ {w, w ⊆ {1, 2, . . . , d}}. In14

particular, A∅ = {w, w ⊆ ū} and Au = {{u, w}, w ⊆ ū}. While Au contains all the15

super-sets of u (i.e., sets that contain u), Av contains some super-sets of v but not16

all of them. Furthermore, ∀A ∈ Av, A satis�es the following properties:17

• ∀ j ∈ v, then j ∈ A;18

19

• ∀ j ∈ u\v, then j /∈ A.20

Using the setAv, with v ⊆ u, Lemma 1 gives a partition of {w, w ⊆ {1, 2, . . . , d}}.21

22

Lemma 1. Let u be a non-empty subset of {1, 2, . . . , d}, v1, v2 be two subsets of u23

(i.e., v1 ⊆ u, v2 ⊆ u).24

25

(i) If v1 6= v2 then we have26

Av1

⋂
Av2 = ∅ . (2.3)
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(ii) The partition of the set {w, w ⊆ {1, 2, . . . , d}} is given by1

{w, w ⊆ {1, 2, . . . , d}} =
⋃

v, v⊆u

Av . (2.4)

(iii) If we use Bv1 for the set containing all the super-sets of v1, we have2

Bv1 =
⋃

v, v1⊆v⊆u

Av . (2.5)

Proof. See AppendixA.3

�4

Lemma 1 gives an interesting tool for managing and controlling 2d elements with5

only 2|u| elements. For instance, when u = {j}, the set {w, w ⊆ {1, 2, . . . , d}} is6

completely controlled by Au and A∅, and this result was obtained in [26; 13]. When7

u = {j1, j2}, {w, w ⊆ {1, 2, . . . , d}} can be managed with the following four sets8

A∅, A{j1}, A{j2}, Au. The set Au with |u| = 1 (resp. |u| = 2) is particularly inter-9

esting in SA, as it can lead to assess the total e�ect (resp. the total-interaction e�ect10

of the second order) of input factor(s) ([12; 10; 1; 27; 16; 17]). Indeed, A{j} is a set11

containing all the super-sets of {j}, and it is su�cient to assess the total e�ect of12

Xj. In the same sense, while Au can lead to assess the total-interaction e�ect of the13

|u|th order, Bv1 allows for quantifying the total-interaction e�ect of the |v1|th order,14

with v1 ⊆ u. If |u| = 1, the total-interaction e�ect of Xu comes down to the total15

e�ect of Xu.16

17

Now, if we de�ne fAv(X) =
∑

w,w∈Av
fw(Xw) with fw(Xw) de�ned in Equation18

(2.1), we can give a new decomposition of f (see Proposition 1).19

Proposition 1. Let u be a non-empty subset of {1, 2, . . . , d}, v1 ⊆ u be a subset20

of u. If assumption A1 (independence of input factors) holds, then21

22

(i) a new Hoe�ding decomposition of f is given by23

f(X) =
∑
v, v⊆u

fAv(Xv,X∼v) , (2.6)

7



where the components fAv(x), v ⊆ u are mutually orthogonal.1

2

(ii) The functional3

f supv1
(X) = fBv1 (X)

=
∑

v, v1⊆v⊆u

fAv(X) , (2.7)

allows for quantifying the total-interaction e�ect of Xv1.4

5

(iii) The functional6

f totu (X) =
∑
v, v⊆u
|v|>0

fAv(Xv,X∼v) , (2.8)

allows for quantifying the total e�ect of Xu.7

Proof. See AppendixB.8

�9

In what follows, we refer to f supu (X) as the total-interaction e�ect functional10

(TIEF) of Xu and f totu as the total e�ect functional (TEF) of Xu. Lemma 2 provides11

a link between TIEF and TEF.12

Lemma 2. Let u ⊆ {1, 2, . . . , d} be a non-empty subset. If assumption A1 holds,13

then we have14

f totu (Xu,X∼u) =
∑
v, v⊂u

(−1)|u|−|v|+1f supu\v (X) , (2.9)

and15

f supu (X) =
∑
v, v⊂u

(−1)|u|−|v|+1f totu\v(X) . (2.10)

Proof. See AppendixC.16

�17

2.3. De�nition of generalized sensitivity indices18

When we use the variance as a measure of the variability of the model outputs,19

a de�nition of the sensitivity indices for the multivariate-response models should be20
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based on the following covariance matrices.1

2

The �rst-order covariance matrix of Xu is given by3

Σu = V
[
f fou (X)

]
. (2.11)

Further, the total-e�ect covariance matrix of Xu is given by4

Σtot
u = V

[
f totu (X)

]
. (2.12)

Likewise, the total-interaction covariance matrix of Xu is given by5

Σsup
u = V [f supu (X)] . (2.13)

For the single-response models (n = 1), the prioritization of input factors based6

on the covariance matrices is straightforward, as the covariance matrices are scalars.7

In the case of the multivariate-response models with n > 1, Lamboni [1] proposed to8

apply matrix norms on the covariance matrices in order to prioritize input factors.9

In this paper, we consider two types of generalized sensitivity indices from [1].10

11

De�nition 2. Let Σ, Σu, Σsup
u , and Σtot

u be the covariance matrices of the model12

outputs, the �rst-order, the total-interaction e�ect and the total-e�ect functionals,13

respectively.14

15

The �rst-type GSIs are de�ned below ([3; 2; 4]).16

The �rst-order GSI of Xu is de�ned as follows:17

GSIFu =

∣∣∣∣∣∣Σ1/2
u

∣∣∣∣∣∣2
F

||Σ1/2||2F
. (2.14)

Further, the total GSI of Xu is given by18

GSIFTu
=

∣∣∣∣∣∣(Σtot
u )

1/2
∣∣∣∣∣∣2
F

||Σ1/2||2F
, (2.15)
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and the total-interaction GSI of Xu is given by1

GSIFsup,u =

∣∣∣∣∣∣(Σsup
u )1/2

∣∣∣∣∣∣2
F

||Σ1/2||2F
. (2.16)

Likewise, the second-type GSIs are de�ned as follows ([1]):2

GSI l2u =
||Σu||F

n ||Σ1/2||2F
; (2.17)

3

GSI l2Tu
=
||Σtot

u ||F
n ||Σ1/2||2F

; (2.18)

and4

GSI l2sup,u =
||Σsup

u ||F
n ||Σ1/2||2F

. (2.19)

Remark 1. The �rst-type GSIs such as GSIFu , GSI
F
Tu
, GSIFsup,u are equivalent to

the classical de�nition, that is,

GSIFu =
Tr (Σu)

Tr (Σ)
, GSIFTu

=
Tr (Σtot

u )

Tr (Σ)
, GSIFsup,u =

Tr (Σsup
u )

Tr (Σ)
.

In the case of single response models (n = 1), the two types GSIs come down to5

Sobol' indices. Thus, both types of GSIs extend Sobol' indices to cope with multivari-6

ate response models. The l2-based de�nition of GSIs (second-type GSIs) explicitly7

includes the o�-diagonal elements of the covariance matrices. Therefore, it accounts8

for the correlations among the component of sensitivity functionals.9

3. Generalized sensitivity and Sobol' indices using model derivatives10

Section 2 provides the de�nitions of generalized sensitivity indices using the main11

sensitivity functionals. To propose the GSIs and Sobol' indices based on model12

derivatives, we are going to express the TIEF and TEF as functions of the model13

derivatives.14

15

In what follows, we assume that the function f : Rd → Rn is a measurable and16

di�erentiable function with respect to each input (assumption A3). Namely, we use17

X for d input factors and x for a value of X; u for a non-empty subset of {1, . . . , d};18

(xu,x∼u), (yu,x∼u) and (zu,x∼u) for three sample values of X. The usual total19

di�erential of f (df) with higher-order terms is given as follows ([31]):20

10



df =
d∑

j=1

∂f

∂xj
(x) dxj +

d∑
1≤i<j≤d

∂2f

∂x{i,j}
(x) dx{i,j} + . . .+

∂df

∂x
(x) dx

=
∑

v, v⊆{1, ..., d}
|v|>0

∂|v|f

∂xv

(x) dxv , (3.20)

where ∂|v|f
∂xv

(x) stands for the |v|th cross-partial derivatives of each component of f1

with respect to each xj, with j ∈ v. By integrating Equation (3.20), we obtain the2

increment of f ([31]), that is,3

f(zu,x∼u)− f(yu,x∼u) =
∑
j∈u

∫ zj

yj

∂f

∂xj
(x) dxj +

∑
v, v⊆u
|v|>1

∫ zv

yv

∂|v|f

∂xv

(x) dxv .(3.21)

When we multiply Equation (3.21) by the probability density function ρu(yu) and4

integrate it over the joint support Ωu, we obtain the total-e�ect functional given by5

(see Equation (B.1))6

f totu (zu,x∼u) = f(zu,x∼u)−
∫

Ωu

f(yu,x∼u) dµ(yu)

=
∑
j∈u

∫
Ωj

∫ zj

yj

∂f

∂xj
(x)ρj(yj) dxjdyj

+
∑
v, v⊆u
|v|>1

∫
Ωv

∫ zv

yv

∂|v|f

∂xv

(x)ρv(yv) dxvdyv . (3.22)

Under assumption A1 (independent input factor), ρv(yv) =
∏

j∈v ρj(yj), and the7

right-hand terms of Equation (3.22) become an iteration of one-dimensional integral.8

For j ∈ u, consider the measurable function tj : Ωj → [0, 1] given by tj(xj) =
xj−yj
zj−yj .9

Using (3.22), a change of variables gives10

11



f totu (zu,x∼u) =
∑
j∈u

∫
Ωj

∫ 1

0

∂f

∂xj
(tjzj + yj(1− tj),x∼j)× (zj − yj)× ρj(yj) dtjdyj

+
∑
v, v⊆u
|v|>1

∫
Ωv

∫
[0, 1]|v|

∂|v|f

∂xv

([tjzj + yj(1− tj)∀ j ∈ v], x∼v)

×
∏
j∈v

(zj − yj)× ρj(yj) dtvdyv . (3.23)

Now, we can express the TIEF and TEF as functions of the model derivatives,1

the cumulative distribution functions (CDF), and the probability density functions2

(PDF). Theorem 1 provides these results.3

Theorem 1. Let X be d input factors, X(1) be an i.i.d copy of X, Fj (resp. ρj)4

be the CDF (resp. PDF) of Xj with j = 1, . . . , d, and u be a non-empty subset of5

{1, 2, . . . , d}. If assumptions6

7

A1: the input factors X are independent,8

9

A2: the model outputs f(X) have �nite second moments,10

11

A3: each component of f is measurable and di�erentiable with respect to xu,12

13

A4: for all v ⊆ u, ∂|v|f
∂xv

(X) are measurable and have �nite second moments,14

15

A5: the PDF ρj is continuous on the support Ωj and ρj(xj) ∈]0, +∞[∀xj ∈ Ωj16

17

hold, then18

19

(i) we have the following expressions of the TEF and TIEF, respectively.20

f totu (X) =
∑
v, v⊆u
|v|>0

E
X

(1)
u

∂|v|f
∂xv

(
X(1)

v ,X∼v
)∏

j∈v

Fj(X
(1)
j )
(

1− 1I
[X

(1)
j =Xj ]

)
− 1I

[X
(1)
j >Xj ]

ρj(X
(1)
j )

 ,

(3.24)

and21

f supu (X) = (−1)|u|+1E
X

(1)
u

∂|u|f
∂xu

(
X(1)

u ,X∼u
)∏
j∈u

Fj(X
(1)
j )
(

1− 1I
[X

(1)
j =Xj ]

)
− 1I

[X
(1)
j >Xj ]

ρj(X
(1)
j )

 ,

(3.25)

12



where E
X

(1)
u

means that the expectation is taken with respect to X
(1)
u ,

∏
j∈v is the1

product of a sequence depending on j with j ∈ v, and 1I
[X

(1)
j =Xj ]

= 1 if X
(1)
j = Xj2

and 0 otherwise.3

4

(ii) We have the following expansion of the function f .5

6

f(X) = f∅ +
∑

v, v⊆{1, ..., d}
|v|>0

EX(1)

∂|v|f
∂xv

(
X(1)

v ,X∼v
)∏

j∈v

Fj(X
(1)
j )
(

1− 1I
[X

(1)
j =Xj ]

)
− 1I

[X
(1)
j >Xj ]

ρj(X
(1)
j )

 ,

(3.26)

with f∅ = E [f(X)].7

8

(iii) The total-interaction e�ect covariance matrix becomes9

Σsup
u = V

E
∂|u|f
∂xu

(
X(1)

u ,X∼u
)∏
j∈u

Fj(X
(1)
j )
(

1− 1I
[X

(1)
j =Xj ]

)
− 1I

[X
(1)
j >Xj ]

ρj(X
(1)
j )

|X

 .

(3.27)
Likewise, the total e�ect covariance matrix is given by10

Σtot
u = V

E
∑

v, v⊆u
|v|>0

∂|v|f

∂xv

(
X(1)

v ,X∼v
)∏

j∈v

Fj(X
(1)
j )
(

1− 1I
[X

(1)
j =Xj ]

)
− 1I

[X
(1)
j >Xj ]

ρj(X
(1)
j )

|X


 .

(3.28)

Proof. See AppendixD.11

�12

From Theorem 1, it comes out that the total e�ect and total-interaction e�ect

covariance matrices are the �rst-order covariance matrices of the functions

∑
v, v⊆u
|v|>0

∂|v|f

∂xv

(
X(1)

v ,X∼v
)∏

j∈v

Fj(X
(1)
j )
(

1− 1I
[X

(1)
j =Xj ]

)
− 1I

[X
(1)
j >Xj ]

ρj(X
(1)
j )

,

and

∂|u|f

∂xu

(
X(1)

u ,X∼u
)∏
j∈u

Fj(X
(1)
j )
(

1− 1I
[X

(1)
j =Xj ]

)
− 1I

[X
(1)
j >Xj ]

ρj(X
(1)
j )

,

13



respectively. Thus, the estimator of the �rst-order covariance matrices from [1] can1

be adapted to obtain the estimators of GSIs using model derivatives.2

Remark 2. The derivative-based expressions of the TEF and TIEF in Equations3

(3.24-3.25) are still suitable for functions that are continuous on the joint support4

Ω and di�erentiable almost everywhere.5

6

It is obvious that the TEF and TIEF are centered, that is,

E
[
f totu (X)

]
= E [f supu (X)] = 0 .

4. Estimators of generalized sensitivity indices using model derivatives7

The theory of U-statistics allows for easily deriving the properties of estimators8

([32; 33; 34; 29; 35; 36]). Lamboni [10; 1; 12] introduced the theory of U-statistics in9

sensitivity analysis by deriving minimum variance unbiased estimators of (the non-10

normalized) GSIs and Sobol' indices as well as the consistency and the asymptotic11

normality of such estimators. The main idea consists in i) constructing a kernel12

(i.e., a random function which expectation is exactly our parameter of interest);13

ii) proposing the estimator of that parameter using the kernel; iii) deriving the14

statistical performance of the proposed estimator. In this section, we follow these15

main steps to construct estimators of the total-e�ect, the total-interaction e�ect16

covariance matrices and GSIs by making use of model derivatives.17

4.1. Kernel functions for the total-e�ect and the total-interaction e�ect covariance18

matrices19

Let u ⊆ {1, . . . , d} be a non-empty subset,
(
X(1), X(2)

)
be 2 i.i.d copies of X,20 (

X
(3)
u , X

(4)
u

)
be 2 i.i.d copies of Xu. For all v ⊆ u with |v| > 0, we de�ne the21

weight-derivative function (d(·)) as follows:22

d
(
X(1),X(3)

v

)
=
∂|v|f

∂xv

(
X(3)

v ,X(1)
∼v
)∏

j∈v

Fj

(
X

(3)
j

)(
1− 1I[

X
(3)
j =X

(1)
j

])− 1I[
X

(3)
j >X

(1)
j

]
ρj

(
X

(3)
j

) .

(4.29)

14



To estimate the total-e�ect and the total-interaction covariance matrices using1

model derivatives, we consider two functions with two types of inputs
(
X(1), X(2)

)
2

and
(
X

(3)
u , X

(4)
u

)
. For the total-interaction covariance matrix, we consider the func-3

tion Ksup(·) given by4

Ksup
(
X(1), X(2),X(3)

u , X(4)
u

)
=

1

4

([
d(X(1),X(3)

u )− d(X(2),X(3)
u )
]
×
[
d(X(1),X(4)

u )− d(X(2),X(4)
u )
]T)

+
1

4

([
d(X(1),X(4)

u )− d(X(2),X(4)
u )
]
×
[
d(X(1),X(3)

u )− d(X(2),X(3)
u )
]T)

.

(4.30)

Likewise, we consider the function Ktot(·) for the total-e�ect covariance matrix5

with6

Ktot
(
X(1), X(2),X(3)

u , X(4)
u

)
=

1

4

∑
v, v⊆u
|v|>0

∑
v1, v1⊆u
|v1|>0

[
d(X(1),X(3)

v )− d(X(2),X(3)
v )
]
×
[
d(X(1),X(4)

v1
)− d(X(2),X(4)

v1
)
]T


+
1

4

∑
v, v⊆u
|v|>0

∑
v1, v1⊆u
|v1|>0

[
d(X(1),X(4)

v1
)− d(X(2),X(4)

v1
)
]
×
[
d(X(1),X(3)

v )− d(X(2),X(3)
v )
]T
 .

(4.31)

The functions Ksup
(
X(1), X(2),X

(3)
u , X

(4)
u

)
and Ktot

(
X(1), X(2),X

(3)
u , X

(4)
u

)
are7

symmetric under independent permutations of their �rst arguments (X(1), X(2)) and8

second arguments (X
(3)
u , X

(4)
u ). Indeed, the values of such functions do not change9

if we permute the position of X(1) and X(2) in one hand, and the position of X
(3)
u10

and X
(4)
u in the other hand. Theorem 2 gives other properties of such functions.11

12

Theorem 2. If assumptions A1-A5 hold, then we have13

15



E
[
Ksup

(
X(1), X(2),X(3)

u , X(4)
u

)]
= Σsup

u , (4.32)

1

E
[
Ktot

(
X(1), X(2),X(3)

u , X(4)
u

)]
= Σtot

u . (4.33)

Proof. See AppendixE.2

�3

Theorem 2 shows that the functions K(·) (resp. Ktot(·)) are unbiased estimators of4

Σsup
u (resp. Σtot

u ). Both functions are called kernels of degree (2, 2) in the theory of5

U-statistics of two samples. Theorems 3-4 propose the estimators of Σsup
u and Σtot

u .6

Theorem 3. Let X =
(
X(1), X(2)

)
, Y =

(
X

(3)
u , X

(4)
u

)
, and Xi, Yi, i = 1, 2, . . . , m,7

be two independent samples of size m from X and Y, respectively. If assumptions8

A1-A5 hold, then9

10

(i) the minimum variance unbiased estimator of Σsup
u for a given m and degree11

(2, 2) is given by12

Σ̂sup
u =

1

4m

m∑
i=1

([
d(X

(1)
i ,X

(3)
i,u)− d(X

(2)
i ,X

(3)
i,u)
]
×
[
d(X

(1)
i ,X

(4)
i,u)− d(X

(2)
i ,X

(4)
i,u)
]T

+
[
d(X

(1)
i ,X

(4)
i,u)− d(X

(2)
i ,X

(4)
i,u)
]
×
[
d(X

(1)
i ,X

(3)
i,u)− d(X

(2)
i ,X

(3)
i,u)
]T)

,

(4.34)

and we have13

14

E
(

Σ̂sup
u

)
= Σsup

u . (4.35)

(ii) If m→ +∞, Σ̂sup
u is consistent, that is,15

Σ̂sup
u

P−→ Σsup
u . (4.36)

(iii) If m→ +∞, Vec
[
Σ̂sup

u

]
follows a normal distribution, that is,16

√
m
(
Vec

[
Σ̂sup

u

]
− Vec [Σsup

u ]
)
D−→ N (0, V (Vec[Ksup(X , Y)])) . (4.37)

Proof. See AppendixF.17

16



�1

Theorem 4. Let X =
(
X(1), X(2)

)
, Y =

(
X

(3)
u , X

(4)
u

)
, and Xi, Yi, i = 1, 2, . . . , m,2

be two independent samples of size m from X and Y, respectively. If assumptions3

A1-A5 hold, then4

5

(i) the minimum variance unbiased estimator of Σtot
u for a given m and degree6

(2, 2) is given by7

Σ̂tot
u =

1

4m

m∑
i=1

∑
v, v⊆u
|v|>0

∑
v1, v1⊆u
|v1|>0

×
([

d(X
(1)
i ,X

(3)
i,v )− d(X

(2)
i ,X

(3)
i,v )
]
×
[
d(X

(1)
i ,X

(4)
i,v1

)− d(X
(2)
i ,X

(4)
i,v1

)
]T

+
[
d(X

(1)
i ,X

(4)
i,v1

)− d(X
(2)
i ,X

(4)
i,v1

)
]
×
[
d(X

(1)
i ,X

(3)
i,v )− d(X

(2)
i ,X

(3)
i,v )
]T)

,

(4.38)

and we have8

9

E
(

Σ̂tot
u

)
= Σtot

u . (4.39)

(ii) If m→ +∞, Σ̂tot
u is consistent, that is,10

Σ̂tot
u
P−→ Σtot

u . (4.40)

(iii) If m→ +∞, Vec
[
Σ̂tot

u

]
follows a normal distribution, that is,11

√
m
(
Vec

[
Σ̂tot

u

]
− Vec

[
Σtot

u

]) D−→ N
(
0, V(Vec[Ktot(X , Y)])

)
. (4.41)

Proof. The proof is similar to the proof of Theorem 3.12

�13

Remark 3. The property of minimum variance is valid for a class of estimators that14

are based on the weight-derivative function and make use of the same information15

such as the degree (2, 2) and the same sample size (m).16

Theorems 3-4 give the formulas for computing the TIEF and TEF covariance17

matrices. For computing GSIs using matrix norms, we use the formulas proposed in18

Corollaries 1-2.19

17



Corollary 1. Under assumptions A1-A5,1

2

(i) the minimum variance unbiased estimator of Tr (Σsup
u ) is given by3

̂Tr (Σsup
u ) =

1

2m

m∑
i=1

Tr
([

d(X
(1)
i ,X

(3)
i,u)− d(X

(2)
i ,X

(3)
i,u)
]

×
[
d(X

(1)
i ,X

(4)
i,u)− d(X

(2)
i ,X

(4)
i,u)
]T)

, (4.42)

and we have4

5

E
[

̂Tr (Σsup
u )
]

= Tr (Σsup
u ) ; (4.43)

6

̂Tr (Σsup
u )

P−→ Tr (Σsup
u ) ; (4.44)

7 √
m
(

̂Tr (Σsup
u )− Tr (Σsup

u )
)
D−→ N (0, V(Tr[Ksup(X , Y)])) . (4.45)

(ii) A consistent estimator of ||Σsup
u ||F is given by8

̂||Σsup
u ||F =

∣∣∣∣∣∣Σ̂sup
u

∣∣∣∣∣∣
F
, (4.46)

and we have9

̂||Σsup
u ||F

P−→ ||Σsup
u ||F . (4.47)

Proof. The proof is obvious bearing in mind Theorem 3, the Slutsky theorem, and10

the linearity of the trace and expectation.11

�12

Likewise, we use the following formulas for computing the non-normalized total13

GSIs of Xu.14

15

Corollary 2. Under assumptions A1-A5,16

17

(i) the minimum variance unbiased estimator of Tr (Σtot
u ) is given by18

̂Tr (Σtot
u ) =

1

2m

m∑
i=1

∑
v, v⊆u
|v|>0

∑
v1, v1⊆u
|v1|>0

Tr
([

d(X
(1)
i ,X

(3)
i,v )− d(X

(2)
i ,X

(3)
i,v )
]

×
[
d(X

(1)
i ,X

(4)
i,v1

)− d(X
(2)
i ,X

(4)
i,v1

)
]T)

, (4.48)

18



and we have1

2

E
[

̂Tr (Σtot
u )
]

= Tr
(
Σtot

u

)
; (4.49)

3

̂Tr (Σtot
u )

P−→ Tr
(
Σtot

u

)
; (4.50)

4 √
m
(

̂Tr (Σtot
u )− Tr

(
Σtot

u

)) D−→ N
(
0, V(Tr[Ktot(X , Y)])

)
. (4.51)

(ii) A consistent estimator of ||Σtot
u ||F is given by5

̂||Σtot
u ||F =

∣∣∣∣∣∣Σ̂tot
u

∣∣∣∣∣∣
F
, (4.52)

and we have6

̂||Σtot
u ||F

P−→
∣∣∣∣Σtot

u

∣∣∣∣
F
. (4.53)

Proof. The proof is obvious bearing in mind Theorem 4, the Slutsky theorem, and7

the linearity of the trace and expectation.8

�9

Now, we can derive the estimators of the normalized GSIs proposed in De�ni-10

tion 2. Theorem 5 gives the estimators of both types of GSIs, and it provides the11

performance of these estimators.12

13

Theorem 5. If assumptions A1-A5 hold, then14

15

(i) the �rst-type and total GSI of Xu is given by16

ĜSIFTu
=

̂Tr (Σtot
u )

Tr
(

Σ̂
) , (4.54)

where Σ̂ is the classical estimator of the variance-covariance matrix of the model17

outputs, that is, Σ = V[f(X)], and it is estimated using M model runs.18

19

Moreover, if m→ +∞ and m/M → 0 then we have20

ĜSIFTu

P−→ GSIFTu
, (4.55)

and21

√
m
(
ĜSIFTu

−GSIFTu

)
D−→ N

(
0,

V(Tr[Ktot(X , Y)])

(Tr [Σ])2

)
. (4.56)

19



(ii) The �rst-type and total-interaction GSI of Xu is given by1

ĜSIFsup,u =
̂Tr (Σsup

u )

Tr
(

Σ̂
) , (4.57)

and if m→ +∞ and m/M → 0 we have2

ĜSIFsup,u
P−→ GSIFsup,u . (4.58)

3

√
m
(
ĜSIFsup,u −GSIFsup,u

)
D−→ N

(
0,

V(Tr[Ksup(X , Y)])

(Tr [Σ])2

)
. (4.59)

(iii) The second-type (total and total-interaction) GSIs of Xu are given by4

ĜSI l2Tu
=

̂||Σtot
u ||F

nTr
(

Σ̂
) , (4.60)

with5

ĜSI l2Tu

P−→ GSI l2Tu
; (4.61)

and6

ĜSI l2sup,u =
̂||Σsup
u ||F

nTr
(

Σ̂
) , (4.62)

with7

ĜSI l2sup,u
P−→ GSI l2sup,u . (4.63)

Proof. See AppendixG.8

�9

5. Computational issues10

This section illustrates the computations of GSIs and Sobol' indices using deriva-11

tives of di�erent functions. First, we provide an algorithm for computing the GSIs12

using the proposed estimators, and second, we apply such algorithm on di�erent13

functions.14

5.1. Algorithm, design scheme and computational cost15

For a given sample sizem, the following steps allow for computing the total-e�ect16

and total-interaction e�ect covariance matrices.17

20



1

Algorithm 1. Estimations of the d total-e�ect covariance matrices.2

3

• Sample 4 input values (matrices) of type m× d (X1, . . . , X4)4

• For each input factor Xj, replace the jth column of X1 and X3 with the jth5

column of X2 (i.e, X2j) to obtain 2 new matrices (X1,2j, X3,2j)6

• Compute the model derivative with respect to Xj for the two input values7

X1,2j, X3,2j to obtain ∂f
∂xj

(X1,2j) and ∂f
∂xj

(X3,2j)8

• Run the weight-derivative function from Equation (4.29) for (X1X2j) (resp.
(X3X2j)) as follows:

d (X1X2j) =
∂f

∂xj

(X1,2j)
Fj(X2j)

(
1− 1I[X2j=X1j ]

)
− 1I[X2j>X1j ]

ρj(X2j)
,

with X1j the j
th column of X19

• Repeat the loop for one more time by replacing X2 with X410

• Use the estimators in (4.38), (4.54), and (4.60) to obtain the estimates of the11

total-e�ect covariance matrices and GSIs.12

Algorithm 1 is still suitable for computing the total-interaction e�ect covariance13

matrices (4.34) and GSIs (4.57, 4.62) of the subset of input factors Xv, with |v| > 1.14

We should modify the steps ii)-iv) of Algorithm 1 as follows: replace the columns of15

X1 and X3 that belong to v with the same columns of X2 to obtain 2 new matrices,16

and compute the weight-derivative function as de�ned in (4.29).17

18

The total number of the evaluations of the model derivatives to obtain the values19

of the d total indices (i.e., computational cost of this algorithm) is 4 ×m × d. For20

the second-order total-interaction indices, up to 4×m× d(d− 1) evaluations of the21

model derivatives are necessary for obtaining the indices estimates, as a null partial22

derivative yields to null cross-partial derivatives. These computational costs depend23

on the crude estimators used in this paper.24

21



5.2. Test cases1

In this section, we performed some numerical tests to assess the e�ectiveness of2

our estimations. To illustrate our approach, we considered two types of functions3

as follows: functions with a small number of inputs (d = 3), and functions with a4

medium number of inputs (d = 6, d = 10). We computed the model derivatives5

using the �nite di�erence method, and we computed the GSIs for two values of the6

sample size (m), that is, m = 1000, 5000 using Sobol's sequence or Quasi-Monte7

Carlo ([37]). For each sample size (m), we replicated the process of computing the8

indices R = 50 times by changing the seed randomly when sampling input values.9

5.2.1. Multivariate Ishigami's function (d = 3, n = 3)10

The multivariate Ishigami function includes three independent input factors fol-11

lowing a uniform distribution on [−π, π], and it provides three outputs ([1]). It is12

de�ned as follows:13

f(x) =


sin(x1) + 7 sin2(x2) + 0.1x4

3 sin(x1)

sin(x1) + 5.896 sin2(x2) + 0.1x4
3 sin(x1)

sin(x1) + 6.494 sin2(x2) + 0.125x4
3 sin(x1)

 . (5.64)

The true and estimated values of the GSIs for this function are listed in Table 1.14

5.2.2. Block-additive function (d = 6, n = 1)15

The block-additive function includes six independent inputs following a uniform16

distribution on [−1, 1] ([27]). It is de�ned as follows:17

f(x) = cos(−0.8− 1.1x1 + 1.1x5 + x3) + sin(0.5 + 0.9x4 + x2 − 1.1x6) . (5.65)

The true values of Sobol' indices and the estimates are listed in Table 2.18
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First-type GSIs Second-type GSIs

GSIFT.j ĜSIFT.j GSI l2T.j ĜSI l2T.j
m = 1000 5000 m = 1000 5000

X1 0.628 0.639 (0.14) 0.630 (0.06) 0.209 0.213 (0.04) 0.210 (0.02)
X2 0.372 0.340 (0.35) 0.375 (0.11) 0.125 0.135 (0.09) 0.125 (0.04)
X3 0.284 0.272 (0.13) 0.277 (0.04) 0.093 0.091 (0.04) 0.092 (0.01)

GSIFsup,u ĜSIFsup,u GSI l2sup,u ĜSI l2sup,u
X1 : X2 0 e-23 (e-22) 3e-24 (e-23) 0 3e-23 (e-22) 9e-24 (e-23)
X1 : X3 0.284 0.336 (0.74) 0.273 (0.21) 0.093 0.155 (0.22) 0.101 (0.05)
X2 : X3 0 6e-25 (6e-24) -6e-25 (3e-24) 0 e-24 (2e-24) 8e-25 (e-24)

Table 1: True and estimated values of two types of generalized sensitivity indices for the multi-
variate Ishigami function. The estimated GSIs (average over 50 replications) are followed by their
standard deviations (in bracket). While the top part of this table focuses on the total GSI, the
bottom part deals with the total-interaction GSIs. For concise reporting of small indices, we use
e-a for 10−a.

5.2.3. Multivariate Sobol's function (d = 10, n = 4)1

The multivariate Sobol function includes 10 independent input factors following2

a uniform distribution on [0, 1] ([1]). It is de�ned as follows:3

f(x) =



∏d=10
j=1

|4xj − 2|+A[1,j]

1 +A[1,j]∏d=10
j=1

|4xj − 2|+A[2,j]

1 +A[2,j]∏d=10
j=1

|4xj − 2|+A[3,j]

1 +A[3,j]∏d=10
j=1

|4xj − 2|+A[4,j]

1 +A[4,j]


. (5.66)

According to the values of A (matrix of type 4 × d), this function has di�erent

properties. If

A =



0 0 6.52 6.52 6.52 6.52 6.52 6.52 6.52 6.52

0 1 4.5 9 99 99 99 99 99 99

1 2 3 4 5 6 7 8 9 10

50 50 50 50 50 50 50 50 50 50


,

the values of the GSIs are listed in Table 3.4
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First-type GSIs Second-type GSIs

GSIFT.j ĜSIFT.j GSI l2T.j ĜSI l2T.j
m = 1000 5000 m = 1000 5000

X1 0.231 0.229 (0.02) 0.231 (0.01) 0.231 0.229 (0.02) 0.231 (0.01)
X2 0.214 0.216 (0.02) 0.213 (0.01) 0.214 0.216 (0.02) 0.213 (0.01)
X3 0.196 0.196 (0.01) 0.196 (0.004) 0.196 0.196 (0.01) 0.196 (0.004)
X4 0.176 0.176 (0.01) 0.175 (0.005) 0.176 0.176 (0.01) 0.175 (0.005)
X5 0.231 0.230 (0.02) 0.231 (0.007) 0.231 0.230 (0.02) 0.231 (0.007)
X6 0.256 0.254 (0.01) 0.257 (0.006) 0.256 0.254 (0.01) 0.257 (0.006)

GSIFsup,u ĜSIFsup,u GSI l2sup,u ĜSI l2sup,u
X1 : X2 0 2e-20 (e-19) -9e-22 (6e-21) 0 2e-20 (e-19) 1e-21 (6e-21)
X1 : X3 0.067 0.069 (0.01) 0.067 (0.006) 0.067 0.069 (0.01) 0.067 (0.006)
X1 : X4 0 3e-22 (e-21) -9e-22 (5e-21) 0 8e-22 (e-21) 1e-22 (5e-21)
X1 : X5 0.078 0.080 (0.01) 0.079 (0.006) 0.078 0.080 (0.01) 0.079 (0.006)
X1 : X6 0 -4e-21 (3e-20) -3e-22 (e-21) 0 5e-21 (3e-20) 6e-22 (e-21)
X2 : X3 0 e-22 (2e-21) 7e-22 (3e-21) 0 9e-22 (2e-21) 9e-22 (3e-21)
X2 : X4 0.040 0.041 (0.007) 0.040 (0.004) 0.040 0.041 (0.007) 0.040 (0.004)
X2 : X5 0 6e-23 (e-21) e-22 (3e-21) 0 5e-22 (e-21) e-21 (3e-21)
X2 : X6 0.053 0.054 (0.014) 0.053 (0.005) 0.053 0.054 (0.014) 0.053 (0.005)
X3 : X4 0 2e-22 (e-21) -4e-20 (3e-19) 0 4e-22 (e-21) 5e-20 (3e-19)
X3 : X5 0.067 0.066 (0.010) 0.068 (0.006) 0.067 0.066 (0.010) 0.068 (0.006)
X3 : X6 0 2e-20 (e-19) 7e-22 (5e-21) 0 2e-20 (e-19) 1e-21 (4e-21)
X4 : X5 0 -4e-22 (2e-21) 2e-22 (2e-21) 0 9e-22 (2e-21) 1e-21 (2e-21)
X4 : X6 0.046 0.045 (0.01) 0.045 (0.004) 0.046 0.045 (0.01) 0.045 (0.004)
X5 : X6 0 -5e-23 (e-21) e-22 (2e-21) 0 4e-22 (e-21) 8e-22 (2e-21)

Table 2: True and estimated values of Sobol' indices for the block-additive function. The estimated
indices (average over 50 replications) are followed by their standard deviations (in bracket). While
the top part of this table focuses on the total indices, the bottom part deals with the total-
interaction indices. For concise reporting of small indices, we use e-a for 10−a.

5.3. Numerical results and discussion1

Tables 1-3 report the estimated values of sensitivity indices for the three func-2

tions. From Tables 1-3, it comes out that our estimators give accurate estimates of3

both GSIs and Sobol' indices in average, and these estimates allow for identifying the4

most in�uential input factors. Regarding the precision of our estimates (standard5

deviations), we obtain better estimates of indices in the case of the block-additive6

function and the multivariate Sobol function when the sample size is 1000. For the7

multivariate Ishigami function, we have the worst precision for input X2, showing8

a big impact of the sample size on the estimates and/or a numerical instability of9
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First-type GSIs Second-type GSIs

GSIFT.j ĜSIFT.j GSI l2T.j ĜSI l2T.j
m = 1000 5000 m = 1000 5000

X1 0.605 0.619 (0.19) 0.617 (0.13) 0.147 0.152 (0.05) 0.150 (0.03)
X2 0.406 0.395 (0.14) 0.409 (0.04) 0.103 0.100 (0.03) 0.101 (0.01)
X3 0.034 0.034 (0.008) 0.034 (0.003) 0.008 0.008 (0.002) 0.008 (0.001)
X4 0.021 0.022 (0.006) 0.020 (0.002) 0.005 0.005 (0.002) 0.004 (0.001)
X5 0.014 0.014 (0.003) 0.015 (0.001) 0.003 0.003 (0.001) 0.004 (0.001)
X6 0.013 0.012 (0.003) 0.013 (0.002) 0.003 0.003 (0.001) 0.003 (0.0004)
X7 0.011 0.011 ( 0.003) 0.011 (0.001) 0.003 0.003 (0.001) 0.003(0.0003)
X8 0.011 0.011 (0.003) 0.011 (0.001) 0.002 0.003 (0.001) 0.003 (0.0003)
X9 0.010 0.010 (0.004) 0.010 (0.002) 0.002 0.002 (0.001) 0.002 (0.0004)
X10 0.009 0.010 (0.002) 0.009 (0.001) 0.002 0.002 (0.001) 0.002 (0.0002)

Table 3: True and estimated values of two types of the total GSIs for the multivariate Sobol
function of type A. The estimated GSIs (average over 50 replications) are followed by their standard
deviations (in bracket).

our estimators. This numerical instability decreases when increasing the sample size1

(m = 5000), and we obtain reasonable precision for all input factors.2

3

It happens to obtain negative estimates of some null total-interaction indices4

(Tables 1-2), although the negative estimates are too small (around −10−20). This5

result seems to suggest the di�culty of our estimator of the total-interaction index6

to better estimate null values of indices according to the precision required. The7

second-type GSIs, which are also equivalent to Sobol' indices in the case of single8

response mpdels, avoid obtaining negatives estimates of indices even for small or9

null values of indices by de�nition. Moreover, for the three functions considered in10

this paper, the second-type GSIs give the same ranking of input factors compared11

to the �rst-type GSIs.12

6. Conclusion13

In this paper, we propose and study a novel way of computing two types of14

generalized sensitivity indices, including Sobol' indices, using model derivatives, the15

cumulative distribution function, and the probability density function. First, we16
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derive the mathematical expressions of the total-e�ect and total-interaction e�ect1

functionals and covariance matrices based on the model derivatives. Second, we con-2

struct minimum variance unbiased estimators of the total-e�ect and total-interaction3

e�ect covariance matrices, and third, we provide estimators of the total and total-4

interaction GSIs as well as their consistency and asymptotic normality. Finally, we5

provide an algorithm for computing these covariance matrices and the GSIs, includ-6

ing the Sobol indices.7

8

The numerical tests con�rmed the accuracy of our estimates in general, except9

for some null indices. While a medium value of the sample size (m = 1000) gives10

interesting results for the Sobol and block additive functions, our estimators exhibit11

a numerical instability in the case of Ishigami's function. Our estimators of the12

�rst-type GSIs and Sobol' indoces show some di�culties for estimating null indices13

by providing negative estimates (around −10−20). The second-type GSIs avoid ob-14

taining negative estimates by de�nition, and they provide the same ranking of input15

factors compared to the �rst-type GSIs for the models considered in this paper. In16

the next future, it is interesting to i) improve the robustness of our estimators, ii)17

investigate a dimension-free algorithm for computing our indices using derivatives,18

iii) compare our estimates with those obtained by using derivatives-free algorithms19

(i.e., that do not use derivatives), iv) extend our approach to cope with dependent20

input factors.21
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AppendixA. Proof of Lemma 11

For point (i), as v1 6= v2, there exists at least one element j ∈ v2 and j /∈ v1.2

Bearing in mind the de�nition and properties of Av (see De�nition 1), we have:3

∀A2 ∈ Av2 , j ∈ A2. As j ∈ (u\v1), we can write j /∈ A1, ∀A1 ∈ Av1 . Therefore,4

∀A1 ∈ Av1 , A1 /∈ Av2 .5

For point (ii), it is obvious that ∪v⊆uAv ⊆ {w, w ⊆ {1, 2, . . . , d}} by de�nition. To6

show that {w, w ⊆ {1, 2, . . . , d}} ⊆ ∪v⊆uAv, let us consider a set w0 ∈ {w, w ⊆ {1, 2, . . . , d}}.7

If w0 ⊆ u then there exists v ⊆ u such that v = w0, and therefore w0 ∈ Av. If8

w0 ∩ u = ∅ then w0 ∈ A∅ (v = ∅). If w0 = w1 ∪w2 with w1 ⊆ u and w2 ∩ u = ∅ then9

w0 ∈ Aw1

⋃
A∅.10

11

Point (iii) is obvious using point (i).12

AppendixB. Proof of Proposition 113

Point (i) is a consequence of Lemma 1 and the fact that the terms in Equation14

(2.1) are mutually orthogonal and centered.15

16

Point (ii) is obvious using the set Bv1 from Lemma 1.17

18

For Point (iii), the functional f totu (X) =
∑

v, v⊆u
|v|>0

fAv(Xv,X∼v) contains all in-19

formation brought by Xu to the model, and it is su�cient to assess the overall20

contribution of input Xu. We also have ([1])21

f totu (X) = f(X)− E [f(X) |X∼u] . (B.1)
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AppendixC. Proof of Lemma 21

Bearing in mind (2.7), we have2

∑
v, v⊂u

(−1)|u|−|v|+1f supu\v (X) =
∑
v, v⊂u

(−1)|u|−|v|+1
∑

w, (u\v)⊆w⊆u

fAw(X)

=
∑
v, v⊂u

∑
w, (u\v)⊆w⊆u

(−1)|u|−|v|+1fAw(X) (C.1)

For v1 ⊆ u and |v1| > 0, the sum
∑

w, (u\v)⊆w⊆u in Equation (C.1) contains v1 for3

{v, (u\v) ⊆ v1} ≡ {v = u\t, t ⊆ v1 and t 6= ∅}. Thus, Equation (C.1) becomes4

∑
v, v⊂u

(−1)|u|−|v|+1f supu\v (X) =
∑

v1, v1⊆u
|v1|>0

∑
t, t⊆v1
|t|>0

(−1)|t|+1fAv1
(X)

=
∑

v1, v1⊆u
|v1|>0

fAv1
(X) ,

as
∑|v1|
|t|=1(−1)|t|+1

(|v1|
|t|

)
= −

∑|v1|
|t|=1(−1)|t|

(|v1|
|t|

)
= 1. The �rst result holds using Equa-5

tion (2.8).6

7

The last result in (2.10) is obtained using Equation (2.9). Indeed,8

∑
v, v⊂u

(−1)|u|−|v|+1f totu\v(X) =
∑
v, v⊂u

(−1)|u|−|v|+1
∑

v1, v1⊂(u\v)

(−1)|u|−|v|−|v1|+1f sup(u\v)\v1(X)

=
∑
v, v⊂u

∑
v1, v1⊂(u\v)

(−1)−|v1|f supu\(v∪v1)(X) .

For w = {v1 ∪ v}, we have |w| = |v1| + |v| as v1 ∩ v = ∅. We can see that9
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{(v, v1), v ⊂ u, v1 ⊂ (u\v)} ≡ {(w, v1), w ⊂ u, v1 ⊆ w}. Thus, we have1

∑
v, v⊂u

(−1)|v|+|u|−1f totu\v(X) =
∑

w,w⊂u

∑
v1, v1⊆w

(−1)−|v1|f supu\w(X)

=
∑

w,w⊂u

|w|∑
|v1|=0

(
|w|
|v1|

)
(−1)−|v1|f supu\w(X)

= f supu (X) ,

as
∑|w|
|v1|=0

( |w|
|v1|

)
(−1)−|v1| = 0 if |w| > 0 and 1 otherwise.2

AppendixD. Proof of Theorem 13

Let start with Point (i). Replacing zu with xu in Equation (3.23) yields to4

f totu (x) =
∑
j∈u

∫
Ωj

∫ 1

0

∂f

∂xj
(tjxj + yj(1− tj),x∼j)× (xj − yj)× ρj(yj) dtjdyj

+
∑
v, v⊆u
|v|>1

∫
Ωv

∫
[0, 1]|v|

∂|v|f

∂xv

([tjxj + yj(1− tj)∀ j ∈ v], x∼v)

×
∏
j∈v

(xj − yj)× ρj(yj) dtvdyv . (D.1)

For j ∈ u, consider the measurable function rj(yj) = tjxj + yj(1 − tj). We can see5

that yj =
rj−tjxj

1−tj , dyj =
drj

1−tj , and xj − yj =
xj−rj
1−tj . By making a change of variables6

and bearing in mind Fubini-Lebesgue's theorem, we have7

f totu (x) =
∑
j∈u

∫
Ωj

∂f

∂xj
(rj,x∼j)

[∫ 1

0

xj − rj
(1− tj)2

ρj

(
rj − tjxj

1− tj

)
dtj

]
drj

+
∑
v, v⊆u
|v|>1

∫
Ωv

∂|v|f

∂xv

([rj ∀ j ∈ v], x∼v)

×

[∫
[0, 1]|v|

∏
j∈v

xj − rj
(1− tj)2

ρj

(
rj − tjxj

1− tj

)
dtv

]
drv .
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As the integral1

∫ 1

0

xj − rj
(1− tj)2

ρj

(
rj − tjxj

1− tj

)
dtj =

[
−Fj

(
rj − tjxj

1− tj

)]1

0

= Fj(rj)− lim
tj→1

Fj

(
rj − tjxj

1− tj

)
= Fj(rj)− 1I[rj>xj ] − Fj(rj)1I[rj=xj ] ,

the �rst result holds, that is,2

f totu (x) =
∑
j∈u

∫
Ωj

∂f

∂xj
(rj,x∼j)

[
Fj(rj)(1− 1I[rj=xj ])− 1I[rj>xj ]

]
drj

+
∑
v, v⊆u
|v|>1

∫
Ωv

∂|v|f

∂xv

([rj ∀ j ∈ v], x∼v)
∏
j∈v

[
Fj(rj)(1− 1I[rj=xj ])− 1I[rj>xj ]

]
drv ,

or equivalently3

f totu (X) =
∑
j∈u

E
X

(1)
j

 ∂f

∂Xj

(X
(1)
j ,X∼j)

Fj(X
(1)
j )(1− 1I

[X
(1)
j =Xj ]

)− 1I
[X

(1)
j >Xj ]

ρj(X
(1)
j )


+
∑
v, v⊆u
|v|>1

E
X

(1)
v

∂|v|f
∂xv

(
X(1)

v ,X∼v
)∏

j∈v

Fj(X
(1)
j )(1− 1I

[X
(1)
j =Xj ]

)− 1I
[X

(1)
j >Xj ]

ρj(X
(1)
j )

 .

To derive the expression of TIEF based on model derivatives, we combine Equa-4
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tion (2.10) and Equation (3.24). Indeed,1

f supu (X) =
∑
v, v⊂u

(−1)|u|−|v|+1
∑

v1, v1⊆(u\v)
|v1|>0

E
X

(1)
v1

[
∂|v1|f

∂xv1

(
X(1)

v1
,X∼v1

)

×
∏
j∈v1

Fj(X
(1)
j )(1− 1I

[X
(1)
j =Xj ]

)− 1I
[X

(1)
j >Xj ]

ρj(X
(1)
j )


=

∑
v, v⊂u

∑
v1, v1⊆(u\v)
|v1|>0

(−1)|u|−|v|+1E
X

(1)
v1

[
∂|v1|f

∂xv1

(
X(1)

v1
,X∼v1

)

×
∏
j∈v1

Fj(X
(1)
j )(1− 1I

[X
(1)
j =Xj ]

)− 1I
[X

(1)
j >Xj ]

ρj(X
(1)
j )

 .

For a given v1 ⊆ u with v1 6= ∅, we can see that {v, v1 ⊆ (u\v)} ≡ {v = u\t, v1 ⊆ t ⊆ u}.2

Thus, we have3

f supu (X) =
∑

v1, v1⊆u
|v1|>0

∑
t, v1⊆t⊆u

(−1)|t|+1E
X

(1)
v1

[
∂|v1|f

∂xv1

(
X(1)

v1
,X∼v1

)

×
∏
j∈v1

Fj(X
(1)
j )(1− 1I

[X
(1)
j =Xj ]

)− 1I
[X

(1)
j >Xj ]

ρj(X
(1)
j )


= (−1)|u|+1E

X
(1)
u

∂|v1|f
∂xu

(
X(1)

u ,X∼u
)∏
j∈u

Fj(X
(1)
j )(1− 1I

[X
(1)
j =Xj ]

)− 1I
[X

(1)
j >Xj ]

ρj(X
(1)
j )

 ,

due to the fact that4

∑
t, v1⊆t⊆u

(−1)|t|+1 =

|u|∑
|t|=|v1|

(
|u| − |v1|
|t| − |v1|

)
(−1)|t|+1 =

|u|−|v1|∑
i=0

(
|u| − |v1|

i

)
(−1)i+|v1|+1

= (−1)|u|+11I[v1=u] .

Point (ii) is a particular case of Equation (3.24). Indeed, if we choose u =5

{1, . . . , d}, we have f totu (X) = f(X)− E [f(X)] (see Equation (B.1)).6

7

Point (iii) is obvious.8
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AppendixE. Proof of Theorem 21

First, we establish some useful equalities for the proofs, and second, we derive2

the two results of Theorem 2. We know that d(X(1),X
(3)
v ) is centered, that is,3

E
[
d(X(1),X

(3)
v )
]

= 0 (see Remark 2).4

Bearing in mind that X(j1) and X
(j2)
u are independent for j1 = 1, 2 and j2 = 3, 4,5

X(1) andX(2) (resp. X
(3)
u andX

(4)
u ) have the same distribution, we have the following6

equalities.7

E
[
d(X(j1),X(3)

v ) |X(j1)
]

= E
X

(3)
v

[
d(X(j1),X(3)

v )
]

= E
X

(4)
v

[
d(X(j1),X(4)

v )
]
, (E.1)

where E
X

(j2)
v

[
d(X(j1),X

(j2)
v )

]
means that the expectation is taken with respect to8

X
(j2)
u with j1 ∈ {1, 2} and j2 ∈ {3, 4}.9

10

According to Equation (3.25) and using Equation (E.1), the total-interaction11

covariance matrix is given by12

Σsup
u = E

[
d(X(j1),X(3)

u )d(X(j1),X(4)
u )T

]
, (E.2)

with j1 ∈ {1, 2}. Indeed,13

Σsup
u = E

[
d(X(j1),X(3)

u )d(X(j1),X(4)
u )T

]
= E

(
E
[
d(X(j1),X(3)

u )d(X(j1),X(4)
u )T |X(j1)

])
= E

(
E
[
d(X(j1),X(3)

u ) |X(j1)
]
E
[
d(X(j1),X(4)

u )T |X(j1)
])

= E
(
E

X
(3)
u

[
d(X(j1),X(3)

u )
]
E

X
(4)
u

[
d(X(j1),X(4)

u )T
])

= E
(
E

X
(3)
u

[
d(X(j1),X(3)

u )
]
E

X
(3)
u

[
d(X(j1),X(3)

u )T
])

= V
[
f supu (X(j1))

]
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To prove Equation (4.32), it is su�cient to show that1

A =
1

4
E
[[
d(X(1),X(3)

u )− d(X(2),X(3)
u )
]
×
[
d(X(1),X(4)

u )− d(X(2),X(4)
u )
]T]

=
1

2
Σ(sup)

u ,

bearing in mind the symmetry of Equation (4.30). Indeed,2

A =
1

4
E
[
d(X(1),X(3)

u )d(X(1),X(4)
u )T

]
− 1

4
E
[
d(X(1),X(3)

u )d(X(2),X(4)
u )T

]
−1

4
E
[
d(X(2),X(3)

u )d(X(1),X(4)
u )T

]
+

1

4
E
[
d(X(2),X(3)

u )d(X(2),X(4)
u )T

]
=

1

2
Σsup

u ,

as E
[
d(X(2),X

(3)
u )d(X(1),X

(4)
u )T

]
= E

[
d(X(2),X

(3)
u )
]
E
[
d(X(1),X

(4)
u )T

]
= 03

and E
[
d(X(1),X

(3)
u )d(X(2),X

(4)
u )T

]
= 0.4

5

The proof of the second results (4.33) is similar to the proof of Equation (4.32).6

To show (4.33), it is su�cient to prove that7

B =
1

4
E

 |u|∑
v⊆u
|v|=1

|u|∑
v1⊆u
|v1|=1

[
d(X(1),X(3)

v )− d(X(2),X(3)
v )
] [
d(X(1),X(4)

v1
)− d(X(2),X(4)

v1
)
]T


=
1

2
Σtot

u .

Indeed, as E
[
d(X(1),X

(3)
v )d(X(2),X

(4)
v1 )T

]
= E

[
d(X(2),X

(3)
v )d(X(1),X

(4)
v1 )T

]
= 0,8

f totu (X(1)) =
∑|u|

v⊆u
|v|=1

E
X

(3)
v

[
d(X(1),X

(3)
v )
]
, and f totu (X(2)) =

∑|u|
v1⊆u
|v1|=1

E
X

(3)
v1

[
d(X(2),X

(3)
v1 )
]
,9
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we have1

B =
1

4

|u|∑
v⊆u
|v|=1

|u|∑
v1⊆u
|v1|=1

E
([

d(X(1),X(3)
v )− d(X(2),X(3)

v )
] [
d(X(1),X(4)

v1
)− d(X(2),X(4)

v1
)
]T)

=
1

4

|u|∑
v⊆u
|v|=1

|u|∑
v1⊆u
|v1|=1

E
[
d(X(1),X(3)

v )d(X(1),X(4)
v1

)T
]

+
1

4

|u|∑
v⊆u
|v|=1

|u|∑
v1⊆u
|v1|=1

E
[
d(X(2),X(3)

v d(X(2),X(4)
v1

)T
]

=
1

4

|u|∑
v⊆u
|v|=1

|u|∑
v1⊆u
|v1|=1

E
[
E

X
(3)
v

(
d(X(1),X(3)

v )
)
E

X
(4)
v1

(
d(X(1),X(4)

v1
)T
)]

+
1

4

|u|∑
v⊆u
|v|=1

|u|∑
v1⊆u
|v1|=1

E
[
E

X
(3)
v

(
d(X(2),X(3)

v

)
E

X
(4)
v1

(
d(X(2),X(4)

v1
)T
)]

=
1

4
E

 |u|∑
v⊆u
|v|=1

E
X

(3)
v

(
d(X(1),X(3)

v )
) |u|∑

v1⊆u
|v1|=1

E
X

(3)
v1

(
d(X(1),X(3)

v1
)T
)

+
1

4
E

 |u|∑
v⊆u
|v|=1

E
X

(3)
v

(
d(X(2),X(3)

v )
) |u|∑

v1⊆u
|v1|=1

E
X

(3)
v1

(
d(X(2),X(3)

v1
)T
)

=
1

2
Σtot

u .

AppendixF. Proof of Theorem 32

Knowing that Σsup
u = E [Ksup(X , Y)], the corresponding U-statistic of two sam-3

ple associated with the kernel Ksup(X , Y) is Σ̂sup
u .4

It is obvious that Vec
[
Σ̂sup

u

]
is also an unbiased estimator of Vec[Σsup

u ], and it is5

symmetric w.r.t the two types of inputs. Therefore, it follows from the theory of6

U-statistics that Vec
[
Σ̂sup

u

]
has a minimum variance for the class of unbiased es-7

timators that make use of the kernel Ksup(X , Y) and have �nite 4th moment (see8

[1; 10] for more details). We also have the following results:9
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1

(a) unbiasedness

E
[
Vec

[
Σ̂sup

u

]]
= Vec[Σsup

u ] ;

(b) consistency

Vec
[
Σ̂sup

u

]
P−→ Vec[Σsup

u ] ;

(c) asymptotic normality

√
m
(
Vec

[
Σ̂sup

u

]
− Vec[Σsup

u ]
)
D−→ N (0,V[Vec(Ksup)]) .

Points (a), (b), and (d) are equivalent to Points (i), (ii), and (iii) of Theorem 3.2

AppendixG. Proof of Theorem 53

The results about the consistency are obvious bearing in mind Corollaries 1-24

and the Slutsky theorem.5

6

For the asymptotic normality, �rst, bearing in mind Slutsky's theorem and using

Corollary 1, we can write

√
m

 ̂Tr (Σsup
u )

Tr
(

Σ̂
) − Tr (Σsup

u )

Tr
(

Σ̂
)
 D−→ N

(
0,

V(Tr[Ksup(X , Y)])

[Tr(Σ)]2

)
.

Second, we need to show that
√
m

( ̂
Tr(Σsup

u )
Tr(Σ̂)

− Tr(Σsup
u )

Tr(Σ̂)

)
and
√
m

( ̂
Tr(Σsup

u )
Tr(Σ̂)

− Tr(Σsup
u )

Tr(Σ)

)
7

are asymptotically equivalent and therefore have the same asymptotic distribution.8

Indeed,9

√
m

( ̂
Tr(Σsup

u )
Tr(Σ̂)

− Tr(Σsup
u )

Tr(Σ̂)

)
−
√
m

( ̂
Tr(Σsup

u )
Tr(Σ̂)

− Tr(Σsup
u )

Tr(Σ)

)
=
√
mTr (Σsup

u )

(
1

Tr(Σ)
− 1

Tr(Σ̂)

)
→ 0 ,10
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because, the probability1

P

[
√
m

∣∣∣∣∣ 1

T̂r (Σ)
− 1

Tr (Σ)

∣∣∣∣∣ ≥ ε

]
≤ m

ε2
E

( 1

T̂r (Σ)
− 1

Tr (Σ)

)2


≤ m

ε2
C

M

m,M→+∞−−−−−−→ 0 ,

as
√
M
(

1

T̂r(Σ)
− 1

Tr(Σ)

)
D−→ N (0, C), which is obtained by applying the delta method2

to
√
M
(
T̂r (Σ)− Tr (Σ)

)
D−→ N (0, C0).3
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