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Abstract: We consider a family of conservation laws with convex flux perturbed by vanishing
diffusion and non-positive dispersion of the form us + f(u)r = € Uz — 6(|tzz|™)s. Conver-
gence of the solutions {u®%} to the entropy weak solution of the hyperbolic limit equation

ug + f(u), = 0, for all real numbers 1 < n < 2 is proved if § = o(e "= ; R eresy ).

Keywords: diffusion, nonlinear dispersion, KdV-Burgers equation, hyperbolic conservation
laws, entropy measure-valued solutions.

1 Introduction
We consider the initial value problem
u(z,0) = up(x) (1.2)

where f is a convex function, (i.e. f” > 0), € and ¢ are small positive parameters, g is a non-positive
function of the form, with 1 <n < 2,

g(v) = —v[".
When 6 = 0, equation (1.1) reduces to the generalized viscous Burgers equation
Uy + f(u)z = EUgy
and we know, as £ \, 0, the corresponding solution u5° converges to the entropy weak solution of
the hyperbolic problem (the vanishing viscosity method, see, e.g., Whitham [13] or Kruzkov [6])

ug + f(u)z =0 (1.3)
u(z,0) = up(x). (1.4)

On the other hand, when ¢ = 0, if we consider the flux function f(u) = u? and the linear dispersion,
i.e., if we consider the Korteweg-de Vries equation

ug + (u2/2)w = 8 Upgs,
1
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the solution u%? does not converge in a strong topology (see Lax-Levermore [7]). We are concerned
with singular limits.

In the general case, as parameters € > 0 and § # 0 vanish, to ensure convergence we wait that
a dominant dissipation regime is necessary. The pioneer study of these singular limits was given
in 1982 by Schonbek [10] for the generalized Korteweg-de Vries-Burgers equation

Ut + f(u)z = EUgy — 6uzzz

For a convex flux function f(u), she proved the convergence of the solutions u** to the entropy weak
solution of (1.3)-(1.4) under the condition § = O(g3) and, for the particular flux function f(u) = u?,
under the condition 6 = O(g?). While for the last case, according to Perthame-Ryzhik [9], the
sharp condition could be § = o(e).

In “From Boltzmann to Euler: Hilbert’s 6th problem revisited” (Slemrod [11]) one may see the
analogy between the singular limit for the Korteweg-de Vries-Burgers equation and the hydrody-
namic limit of the kinetic Boltzmann equation for a rarefied gas to the continuum Euler equations
of compressible gas dynamics as the Knudsen number approaches zero.

In 1998, LeFloch-Natalini [8] proved the convergence in the case of a nonlinear viscosity function
£ and linear capillarity

Uy + f(u)a: = 5B(ux)x — 0 Uggzs

and Correia-LeFloch [3] dealt with the multidimensional equation. An up-to-date setting is given
in Correia [4]. Whereas in those cases the dominant dissipation regime is ensured by the nonlinear
viscosity. In this work we consider the reverse situation, where the nonlinearity concerns the
dispersive term .

In general when ¢ = 0, the divergent behaviour is expected as we are considering “pure-
dispersive equations” similar to the Korteweg-de Vries equation. Nonetheless, Brenier-Levy [2]
studied the nonlinear equation

Uy + f(u)x = 59(71”)17

where g(v) = —|v|™ (for n = 1,2), as a nonlinear generalization of the Korteweg-de Vries equation.
Such nonlinear dispersion significantly affects the dispersive behaviour of the solutions. In partic-
ular they conjectured in [2] that, with strictly convex flux functions f, the solution of the initial
value problem for the equation

converges under the condition ¢ = o(4).
Recently in [1], we have studied the problem (1.1)-(1.2) for the particular values n = 1 and
n = 2. In the case of n =1, i.e.

U + f(u)m = EUgy — 6|uww|xa

the convergence to the entropy weak solution of (1.3)-(1.4) is obtained if § = o(¢?). And in the
case of n =2, i.e.
up + f(u)e = gy — 5(uim)w7

under the convergence rate § = o(%/2).

In this paper the intermediate power 1 < n < 2 is tackled. The convergence is obtained by
combining the estimates obtained in [1], for n = 1 and n = 2. The paper is organized as follows.
In Section 2, the main convergence result is stated. In Section 3, we provide uniform estimates
for the solutions u® of the perturbed problem (1.1)-(1.2). Finally, Section 4 is devoted to the
convergence proof of those u®° to the entropy weak solution of problem (1.3)-(1.4) when both ¢
and ¢ go down to zero, under suitable conditions.



2 Main Result

The main convergence result is stated. When g(v) = —|v|™ with 1 < n < 2, we prove the following
theorem.

Theorem 2.1 Let € > 0, and § = O(EMT_l;EZ‘(sz"ﬁ:lﬂ ), and f: R — R be a flux function satisfying
0 < f"(u) < C(A+ |uff), where 0 < B < 52 Then, the family solutions {u®°} of (1.1) — (1.2)
converges to the entropy solution of (1.3) — (1.4).

In the particular cases n = 1 and n = 2, the convergence is found for 0 < 8 < 3,6 = o(¢?) and
0<B<3,6= 0(£%/?) respectively. It has been proved in a previous paper [1].
Here, a better rate, equal to § = o(e¥) with k < 2, is obtained when 1 < n < 5/3. As shown in

Figure 1, the optimal rate is achieved for n = % and § = 0(5%).
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Figure 1: Rate of convergence max(2%-1; 2(52’;;11)) for 1 <n <2.

3 A priori Estimates

Assume that 7 is a regular function and ¢ a function defined by ¢’ = ' f’, and let us multiply (1.1)
by n'(u). We obtain

N +a(ws = @'(wug), — en’(w)ug 3.1)
+4 (77/(“> g(“m))x — 00" (u) ug g(ugy) -

Integrate over R x [0,¢] with n(u) = |u/**!. The conservative terms vanish and we obtain the
following lemma.

Lemma 3.1 Let a > 1 and g : R — R be any dispersion function. Each solution of (1.1) satisfies
fort e[0,T]

t
/|u(t)|(”'1 dx  + (a+1)a5//|u|°‘_1uidxds (3.2)
R 0 JR

+

t
(a+1)a5//\u|a71uzg(um)dxd5
0 JR

- / luo|* Tt da .
R



Taking o = 1 in (3.2), provides a priori L? first energy estimates. Nevertheless, this estimate is

useless, the sign du, can not be controlled.
Let us introduce the functions G, and G defined by G’ = G’ = g, i.e,

1

R E_—
(n+1)(n+2)

G(u) = _n—ll— 1 |u|"u, and G(u) = —

Also, we define for t > 0 the sets
U ={z € R, uy(x,t) >0},

and
U, ={z e R, uy(z,t) <0}

We obtain the following estimate.

Lemma 3.2 Let q be a odd number. Then, each solution of (1.1) satisfies for t € [0,T]

t
/ g (8|72 da 4 (g + 2)(g + 1) / / g |9 2, duds
u;t o Juf

t
1S (q+2)(g+1)g(n+2)n / / 1 |1 |G (1) | s
o Jui

t
g+ 1) / / g |73 17 () dards
o Juf

:/Z/l+ |u6|q+2dx,

0

where the last left hand-side term can be replaced by

t
—(g+2)(q+ 1)/ / e |7 f (1) Uy dads .
o Juf
Proof. Multiplying (1.1) by (¢ + 2)(Juz|%us ), we have
((@+2) e fus|us), — (Jual™?)e

= g+ 2@+ Dluel s ()
telg+2)(g+1) ug)?u2,

= —(C] + 1)(|u:c|q+2)ac f/(u)
+e(g+2)(q+1) ua|"u,
+0(g+2)(g+ 1) n|ug|? Glugs)s,

and we get the estimate

((g+2) ulug|Tus)  —  (Jua|®™?)s
= —((a+Dug [T f'(w)),
(g + Vg |72 g [ (u)
+e(g+2)(q+1) ua|"ul,
+(0(a+2)(g+ 1) fue|? Gluas)),

=6 (q+2)(q+ 1) q(n+2)n|ua]"* iy Guga).

(3.4)



Similarly, using the multiplier (¢ + 2)(ug™1), in (1.1), it comes
(@+2ueud™), — (ul™?),
= —(¢+2)(g+1)ui™ f’( ) Usza
+e(q+2)(q+1) uf uz,
+(0(g+2)(g+ 1) nul Glug)),
—6(q+2)(q+1)q(n+2)nul™ Guzs),
and one gets
((q+2uul™) —— (ui*?), (3.6)
= —((@+1)ul"f'(w),
+g+ 1) ul™ " (u)
+e(q+2)(g + D udu,
+(6(g+2)(g+ 1) nud Gluse)),
—0(q+2)(g+1)q(n+2)nul™" Gluz).

Integrating (3.5) and (3.6) over R x [0, ], we obtain respectively

t
/|uz(t)\q+2d:c+5(q+2)(q+1)//|uz\quimd:vds (3.7)
R 0 JR

¢
:/|U6|q+2dl’_(Q+1)/ /uw [uz |72 f (u) dwds
R 0 Jr

t
LS (g+ D+ Daln+2n / / g |72 G ) dirds
0 JR

and
/u()q+2dx—|—€ q+2) q+1// ul u?, drds (3.8)
R
= /(ué)‘“2 dx — (¢ + 1)/ /ug+3 1" (u) deds
R 0 JR
¢
+0(¢+2)(¢g+1)g(n+2) n/ / ul™ G(uy,) drds.
0 Jr
Adding (3.8) and (3.7) for ¢ odd, we obtain (3.3). O

Combining Lemmas 3.1 and 3.2 we obtain the following estimate.

Proposition 3.1 Lete,§ > 0, and f : R — R be a convex flux function, i.e. f” > 0. Then, the

family solutions {u. s} of (1.1) — (1.2) satisfies the uniform estimate for all 257#11 <a<

¢ ¢
/ Ju(t)|*T do + s/ / lu|* ! u? dads + 5/ / Ju|* ™! g | [tge|™ dzds < Co. (3.9)
R 0 JR 0 JR

Proof. When g(v) = —|v|™, equation (3.2) writes

/|u t)* T de + a(a+1) //|u|o‘ Y2 drds =

[uol|8F] + a(a+ 1) 5/ / [u|* ™ g (U™ dads. (3.10)
0o JR




Since f is convex, inequality (3.3) is rewritten for ¢ > 1 odd as

t
/ |u$(t)|q+2dx+5// ]9 02, dds
ur 0 Juf

t t
+0 / / [t |77 |t | T dds —|—/ / [ug |73 f (u) deds < Cp.
o Juy o Juy

Using Young’s inequality, we get

t
5// [u| ™t g [t |™ dzds
0 Jus
// < |~ 1) (ctii% |um|> (8lutze|™) dads
uF Cta+1
+751+%// [te |2 dads,

where ¢ and k are two positive constants such that

a+1 1 n a—1
a1 =4 -1 d-—4+—+——=1.
¢ a(a ), an k+n+2+a+1
Thus,
k_(n+2)(a+1)
(44 n)—na’

54+n 4+n
andk>31f2+1<04<

Now, we choose ¢ odd such that 24+ qg>kand

|“x|k < |ur|3 + |um’|q+2~

From (3.11) with ¢ = 1 and ¢ > k — 2 odd, we deduce

¢ ¢
/ / |ug|* deds + 6 / / [ty |2 dazds < Cy.
0 Ju,+ 0 JuUs*

Integrating (3.10) over [0, ¢] gives
¢ ¢
/ / |u|*Tt dzds < / / lu|* T dads
o Juf 0 JR

t
StC’o—&—a(a—l—l)té// [u|* ™ Uy [tge|™ dads.
o Juf

Now, injecting (3.13) and (3.14) into (3.12), it comes

t t
1
5// |t g, |um|"dxds§00—|—75// || Uy [ty |™ dads
0 JU.* 4 Jo Ju,+

that yields

¢
(5/ / [u|* ™!y (U™ dads < Cp.
0 Ju.+

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



Finally, it is enough to merge (3.16) in (3.10) to obtain (3.9).

Now, let us prove the following lemma.

Lemma 3.3 Assume that f satisfies 0 < f"(u) < C(1+ |ul?), with 0 < 8 < L2 and 1 < n < 2.
Then, we have the estimate

¢
//f'(u)umumdxds
o Jr
1 n—1 t t
+Co(n—1)"me 2 </ /u2 dxds—|—6/ /uidxds). (3.17)
o Jr o Jr

In particular, when n =1, we have

/O t /R (1) g Uy dds

Proof. Note that, since f”(u) < C(1+ |u|?), then
|f'(w) = £/(0)] < C(lul + |ul™).

¢ ¢
//f’(u)uw Uy dxds SC/ / |u||wg ] [tge| dds
0 Jr 0 Jr

t
+C'//|u|ﬁ+1|ux||um|dxds
0 JR

t
< 6—%6—”2%1/ / (ﬁlu\%lum\%\um\) (\u|’%1) (JJWH"T?]) dads

0 JR

_1 _n-1 ¢ 1 n—1 n—1 n—1

+ 6 ne 2n (5n ufE:E|) <|u n ) (E 2n |u$ n > dxds.

0 JR

Thanks to the Young inequality and the relation

1 nflJrnfli1
n 2n on

n—1

1
< CO 0 me TZn

<

G
L.

Thus, we derive

u|/5+%

1
n

Ug

one gets

¢ ¢
//f'(u) Up Ugy drds| < 6 we T (005/ / | P g | [t | deds
o JR o Jr

t
+ coa/ / ]ttt | s
0 JR

¢ ¢
+ Co(n — 1)/ /u2 dxds + Co(n—1)¢ / /ui dxds) .
0 JR 0 JR

(3.18)
It comes from (3.9) with1<n<2a=2anda=nf+2<1+2
t t
5/ / ||t | s + 5/ / "B+ [ | dends < Co. (3.19)
0o Jr 0o Jr
Finally, inequalities (3.19) and (3.18) allow us to conclude the proof of Lemma 3.3 O

We will use this lemma to prove the following proposition.



Proposition 3.2 Let ¢ > 0, § = O(€2€2ﬂﬁ_*11)) and f : R — R be a flux function satisfying 0 <
f(u) < C(14|ul®), A1 Then the family solutions {u s} of (1.1) — (1.2) satisfies
the estimates

/ux() dm+s//u dads < Co 6 e o, (3.20)

2n—1
o
5// Uy [Uge|™ dzds < Cy <5nl> ) (3.21)
2@2n-1)
2n—1

2n
/ dac+5/ /u dxds+5/ / [tz | Uz |™ dzds < |Juo||3 + Co (5"1> . (3.22)
3(2n—1)

Proof. First, equality (3.2) for 1 <n <2 and a =1 reads as

¢ ¢
/u(t)2 dx—|—2s/ /ui dzds = ||uol|3 +25/ /uz |ty |™ dads. (3.23)
R 0o JR 0 JR

Since 1 < n < 2, we have

t t t
5/ / Uy |Uge | dxds < 5/ / Uy |Uge | dxds + 5/ / Uy, uim dxds. (3.24)
0 JuF o Juf 0 JuF

From (3.3) with ¢ = 1, we get

t
5/ / uyu?, deds < Co, (3.25)
0 JuF
which is equivalent to

t
5/ / ugu’, drds < Cy é (3.26)
o Ju.,t+ 9

We can also write

t t
2n—1 _ n—1 1 n—1
5/ / uJ; |uw$| dIdS = 5 2n £ an / / ux 62n€ an
o Juf uf

2n

(5 nl ”T
< — ne (// u? dads + edwe T // uimdmds>
Uu,+

2n

5 "1 n—
5,?, // cul dads + 6 % ' // u?, dads. (3.27)
£ an

Putting (3.27) and (3.26) in (3.24) produces

// Ug |Uge|" dxds < Co§+00(52 4"//u dxds
u+

52’5n
//5u dxds. (3.28)
g 4n

Since § = o(7G+- 1), by injecting (3.28) in (3.23), we obtain

t
/u(t)ZdJH—e/ /uidxdsg Huo\|§+C’og+C’05 B e // » dzds. (3.29)
R 0 Jr

Ups |) dxds.




Inequality (3.7) is rewritten with ¢ = 0 as

t
/ux(t)Qdac—&—Qa/ /uizdwds
R 0 Jr
t
:/(ug)de—FZ//f’(u)uxumdxds.
R 0 Jr

1—1

¢
/uz(t)2 dm+2€/ /uix dzds < Cy+ Cod~we =
R 0 JR

+ Co(n—1)0~ we 27<//u dxds—l—s//u dxds),

and inequality (3.29) implies

Lemma 3.3 points to

1

¢
/ugg(t)2 dx—|—25/ /uim dzds < Cy+ Cod~we =
R 0 JR

+ Co(n—1)5 we~ "zn(||u0||2+co+0052’5115”4n //u dmds)

Note that if § = o(¢), this inequality reduces to

t
/ux(t)zd:anQE//uimdxds < Cpéme E
R 0 JR
+ Cob e <// u? dxds)

Here, 6 = 0(52(55’;1”) which is equivalent to 6”2 = o(c "% ) offers (3.20).

Now, injecting (3.20) in (3.29) gives

A

t _1 _n—1
6 n n— (5 n 2n
/u(t)de—i—E/ /uidxds < ||u0||2+007+00522:16 Eall A
R 0 JR €

2n—1
2n

< uoll3 + ==
£ 4n
2n—1
2 5n—1 Sn
< Juol3 +Co (§/e750)
< Cp.

Finally, combining (3.20), (3.34) and (3.28), we have

t 57l _n—1 52n—1
2n+1 n—1 n € 2n 2n
5/ /+ Uy |Uge|” dxds < Co*+CO(5 2 ¢ In ( . >+C0 —
0 JU,

£ dn
1) 555
< C()*—FQCQ =T
£ in
62"7_11 o
< Co%@*'ﬁf"lai),
£ 4n

and § and € being bounded, inequality (3.21) is found.

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)



Inequality (3.22) directly follows from (3.21) and (3.23), and this achieves the proof of Proposition
3.2.
O

Proposition 3.3 Let ¢ > 0, and § = 0(52527;:11>), and f : R — R be a flur function satisfying
0< f"(u) < C(A+ |ul?), where 0 < B < L. Then, the family solutions {u*°} of (1.1) — (1.2)

satisfies
t
(a) € / /ufJ dxds < Cy,
o Jr

t
(b) ) / /u; [tge|™ dxds < Co,
o Jr
t 5n—1 27;;1
(c) 6/ / Uy [Uge | dzds < Cy (6/82(2"*”) ,
o Juf

1

t 1
(d) 5 / /uiz dxds < Cy (5/537?1) "
0 JR

where u; = max(0, —uy).

Proof. Assertions (a) and (b) come from (3.22), while (¢) corresponds to (3.21).
Thanks to (3.20), we have

t
2 2 1 n—1
(55//uiwdxds < Cobne o ne =
o JR
1 3n—1
S 00555_ n

that is (d).

4 Proof of convergence

We have now all the tools to prove the main result given in Theorem 2.1. We first remind the
notion of entropy measure-valued solution [5].

Definition 4.1 Assume that ug € L'(R) N LY(R) and f € C(R) satisfies the growth condition
[F(w)] < O(u|™) as |u| — oo, for some m € [0,q). (4.1)
A Young measure v is called an entropy measure-valued (e.m.-v.) solution of (1.3)-(1.4) if
(W, |u—k|)¢ + (v,sgn(u — k) (f(u) — f(k)))s <0, forallk eR, (4.2)

in the sense of distributions on R x (0,T), and

1/t
lim — // (V(a,s)s [ —uo(z)]) dxds = 0,  for all compact set K C R. (4.3)
0J/K

t—0+ ¢

We will apply the following Young measure representation theorem [10] in a suitable L? space to
show that v satisfies (4.2).

10



Lemma 4.1 Let {up}nen be a bounded sequence in L ((0,T); L(R)). Then there exists a sub-
sequence denoted by {ln tnen and a weakly-x measurable mapping v : R x (0,T) — Prob(R) such

that, for all functions h € C(R) satisfying (4.1), (V(z,1), k) belongs to L>°((0,T); L?O/Cm(R)) and the
following limit representation holds:

// (V(z,t), h) ¢(x,t) dedt = lim // h(tn (z,t)) ¢(z,t) dadt, (4.4)
Rx(0,T) Rx(0,T)

n—oo

for all ¢ € LY(R x (0,T)) N L>®(R x (0,7)).
Conversely, given v, there exists a sequence {u,} satisfying the same conditions as above and such
that (4.4) holds for any h satisfying (4.1).

Let us start proving (4.2) thanks to Proposition 3.3 and assuming that, in the regime § =

3n—1 Sn—1 . )
o(e” 7 ;e2=-1), initial data ug® converge to ug as follows

{hmﬁo ug?’ =uo in LY(R) N L9(R) (4.5)

)
g1z < |uo|L2.

Standard regularizations of sgn(u — k)(f(u) — f(k)) and |u — k| (k € R) are used, to show that it
is enough to prove the existence of a bounded measure p < 0 such that

n(u) +q(u)y — p in D'(Rx (0,T)) (4.6)

for an arbitrary convex function n (we assume that ’ and n” are bounded on R).
To prove (4.6), we rewrite the formula (3.1) as

n(we +q(u)e = p1 + pi2 + p3 + pia, (4.7)
with
p: = e(n'(w) uw)m,
po: = —en’(u)ul,
pa: = 80 () g(uss)),,
M4t = -0 U//(U) Uy g(ua,;v)

Let’s 8 € C§°(R x (0,T)) a test function. We have

T
| <p1,0>] < 6/ /|9mn’(u)ux|dxds
o Jr

T
< Ce/ /|¢9wuz|dxds
o Jr
T 1/2
< CO6,]|26"? z—:/ /uidxds
o Jr
T 1/2
< CO6,]|26"? (5/ /uidwds) : (4.8)
o Jr
According to Proposition 3.3—(a),
| <p1,0>] < O6,]|L26Y? (4.9)

11



and g1 — 0 when € — 0.
Thereafter,

T
| < po,0>1] < 5/ /\9n"(u)ui|dmd8
o Jr

IN

T
scuenm/ /ugdxds. (4.10)
0 R

and g is bounded thanks to Proposition 3.3—(a). Moreover, since 7 is convex, we have for a non
negative function 6

T
< pg,0> = —5/ /Hn”(u)ui drds < 0. (4.11)
0o Jr

Concerning p3, we have

T
| <ps,0>] < 5/ /|9In’(u)|um|"\dxds
0 R

T
05/ /|9$||um|”d:17ds
o Jr
2 ¢ %
C||9$||L22n <5n//uizda:ds> . (4.12)
0o Jr

Remark that when n = 2, the space L7 is replaced by L®. From Proposition 3.3—(d), one gets

IN

IN

1

| < 3,0 > | < Collall 2. (5/5%{1)5’

3n—1

and p3 — 0 because § = o(e” = ).

Finally, p4 is split as

e = W) g — 80 () u [
= pyFpg

where v} = max(0,u;) and u; = max(0, —u,), and we have u, = u} — u, . On the one hand,

T
(<ur0>1 < 8 [ [ 100 ) sl dods
0 R
T
< 06/ /\OU; [tge|™| dads
0 R
T
< Cloll=s [ [ i funa" dods, (4.13)
0 R

and according to Proposition 3.3—(b),
| <py,0>]<CollllL=-

Again, 1" > 0, we have
T
<pg,0> = 7(5/ /Hn/'(u) Uy Uy |" dzds < 0. (4.14)
o Jr

12



Similarly,

T
l<uf, 0> < 5/ /|e\n”(u)u:\um\"dxds
0 R
T
< C’||0||Loo5/ /uqf|um|”dxds
0 R
T
< C||9||Lx5// i [ | dardls, (4.15)
0 JuF
Proposition 3.3—(c) implies
|<uf,0>] < Clloll~ (5/70) %", (4.16)

and pf — 0 because § = 0(5%),

Condition (4.6) is proved and p is non positive bounded measure.

To show (4.3), we follow DiPerna [5] and Szepessy [12] arguments. We check that, for each compact
set K of R,

1 t
lim — / (V(a,s)s U —uo(z)]) deds =
0 JK

lim lim f//|u55x5—u0 |dxds—0
t—0+e—0+ ¢

Thanks to Jensen’s inequality, for m(K) the Lebesgue measure of K,

(o)~ ol dods < (10 (3 // . —m(w))%w)”

- 56 o 2 _
tg%l+a£%l+ t / / (z,) = uo(x))” dwds = 0.

Indeed, let K; C K;41 (i =0,1,...) be an increasing sequence of compact sets such that Ko = K
and U;>oK; = R. Using the identity u? — u? — 2ug(u — up) = (u — ug)?, we get for all i =0, 1,...

// 55 ,8) fuo)z dxds
< t/o (/K| 08 )|2dx—/Kiugdx—Q/Kiuo(uE"s(-,s)—uo) d:c> ds

S/R\K uddx + ~ / (/ [uo (-, )|2dx—/Ru0 da:)

t
+g/ / Ug (u€’5(~,5) —uo) dx
tJo |/k,

Clearly, the first term of the right hand side verifies

and we clalm that

ds. (4.17)

lim u? dr = 0.
1— 00 R\K,

Using (3.22) and (4.5), we obtain

/|1f"5(.,5)|2 dm—/ug dz = /|u575(.,s)\2dx—/(ug’5)2 d:ch/(ug’E)2 d:rf/ug dx
R R R R R R
< [P / () do

—1

< (5/52(% 1)) o

13



and the second term of right hand side goes to zero when € — 0.
To estimate the last term of (4.17), we consider {0y }xen C C§°(R) being such that

lim 0, =uy in L*(R).

k—o0

The Cauchy-Schwarz inequality gives
‘/ ug (u5’5(~, s) — ug) dx| < / |ug — Okl |u5"s(~,s) — ug| du
K; K

+ '/Kl Ok (U(E)»‘S _ uo) + /K’i 0y, (UE’6(~,S) _ ug,é) di

< luo = Okl 2wy (1w’ 8) L2 ) + luollz2(r))

+ H@k||L2(R)||U§’5 — ol z2(r) + ‘/ / Oy Osu® dxdr
0 K;

We deduce from (3.22)
o — Okl L2y (140 (-, 8) || L2y + luoll2w)) < (luoll L2y + C) [luo — Okl L2(w) »

which goes to zero when k — oo because lim._, o4 ||u(5)’5 — upl|z2(r) = 0 from (4.5). It remains to

prove that
/ / Oy Osu® dxdr
0 JK;

/ / On(— f(u")e +eul) +0g@sy),) dudr|
0 JK,

/os/Ki |(01),, f(u")| dxdr

+€// |(6r), us?®|dwdr
0 JK;

—1-5// |(9;€)I g(uif)’ dxdr
0 JK;
=: Il —|—Ig —‘1-13

ds = 0.

1 t
lim lim 7/
t—=0+ e=0+ ¢ g

The equation (1.1) provides

// 05, Osu? dadr
0 JK;

IN

To deal with I;, the function f being such that

0< f"(u) <O+ [ul?),

with 8 < 22, then for m = 3 + 2

[f(w)] < C(L+ |u™).

Thus, Proposition 3.1 witha=m—-1=+1< 4;2" +1< % — % +1< % + 1 is applied

S
/ / |u5,5
0 JK;

S
mdxd7§//|u8’5|mdxdT§Cs. (4.18)
0 JR
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Then we can write

- / / (00, || ()] ddr
0 K;
SC// |(0k)x|d$d7'+0// \(Gk)mHu’
<c / / 1(600), | dzdr + C|| (B), o~ / / ™ d dr
0 Ki 0 Ki

<SCs|(Ok), 21w + Csll (Ok), L)

™ dx dT

(4.19)
Again, thanks to Proposition 3.3—(a) we have
I :s/ / 1(0k), | |u5®| dz dr
0 JK;
1 1
s 9 3 s 512 3
< [5// |(0k), | d:z:dr} {5// |uj| dxdr}
0o JK; 0 JK;
< Ce? st | (01), 2 (4.20)
Finally, we have
I3 —5//|9k |dxd7'
_ / / 5 1(00),| [us?|" dadr
7n ) %
< [// [(6r) |2 n dxdr] [{5”// f dmdrl
L 3
< s | (6k), L2 - ®) [ / / dl‘dT‘|
t:—:é’
and using Proposition 3.3—(d), one gets
L <os (=0 ' 0 4.21
3 =Us 5?’? Il (k). ”Lﬁ(m)' (4.21)

Combining (4.19), (4.20) and (4.21) produces

lim lim -

Gk ud O dadr
t—0+e—0+ ¢

ds

C 2 1 3
< tg%l+sg%1+? (f (I Ox)y 1) + I (Ok) 4 loe®)) + €222 || (Ok), |2 (R)

i [ 5 \?
2 <€3n?1> | (k). |L22n(R)>

. . 1.1 2—n 0 %
< lim lim C(t+ e2t2 +t 2 | 5= )
t—0+ e—0+ g 2

and since § = 0(53'71 ), we obtain the desired conclusion, and Theorem 2.1 is proved.
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