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We consider a family of conservation laws with convex flux perturbed by vanishing diffusion and non-positive dispersion of the form

Convergence of the solutions {u ε,δ } to the entropy weak solution of the hyperbolic limit equation

; ε 5n-1 2(2n-1) ).

Introduction

We consider the initial value problem

u t + f (u) x = εu xx + δg(u xx ) x (1.1) u(x, 0) = u 0 (x) (1.2)
where f is a convex function, (i.e. f ≥ 0), and δ are small positive parameters, g is a non-positive function of the form, with 1 ≤ n ≤ 2, g(v) = -|v| n .

When δ = 0, equation (1.1) reduces to the generalized viscous Burgers equation

u t + f (u) x = εu xx
and we know, as ε 0, the corresponding solution u ε,0 converges to the entropy weak solution of the hyperbolic problem (the vanishing viscosity method, see, e.g., Whitham [13] or Kružkov [START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF])

u t + f (u) x = 0
(1.3) u(x, 0) = u 0 (x).

(1.4) the solution u 0,δ does not converge in a strong topology (see Lax-Levermore [START_REF] Lax | The small dispersion limit of the Korteweg-de Vries equation[END_REF]). We are concerned with singular limits.

In the general case, as parameters ε > 0 and δ = 0 vanish, to ensure convergence we wait that a dominant dissipation regime is necessary. The pioneer study of these singular limits was given in 1982 by Schonbek [START_REF] Schonbek | Convergence of Solutions to Nonlinear Dispersive Equations[END_REF] for the generalized Körteweg-de Vries-Burgers equation

u t + f (u) x = ε u xx -δ u xxx .
For a convex flux function f (u), she proved the convergence of the solutions u ε,δ to the entropy weak solution of (1.3)- (1.4) under the condition δ = O(ε 3 ) and, for the particular flux function f (u) = u 2 , under the condition δ = O(ε 2 ). While for the last case, according to Perthame-Ryzhik [START_REF] Perthame | Moderate Dispersion in Conservation Laws with Convex Fluxes[END_REF], the sharp condition could be δ = o(ε).

In "From Boltzmann to Euler: Hilbert's 6th problem revisited"(Slemrod [START_REF] Slemrod | From Boltzmann to Euler: Hilbert's 6th problem revisited[END_REF]) one may see the analogy between the singular limit for the Körteweg-de Vries-Burgers equation and the hydrodynamic limit of the kinetic Boltzmann equation for a rarefied gas to the continuum Euler equations of compressible gas dynamics as the Knudsen number approaches zero.

In 1998, LeFloch-Natalini [START_REF] Lefloch | Conservation laws with vanishing nonlinear diffusion and dispersion[END_REF] proved the convergence in the case of a nonlinear viscosity function β and linear capillarity

u t + f (u) x = ε β(u x ) x -δ u xxx ,
and Correia-LeFloch [START_REF] Correia | Nonlinear Diffusive-Dispersive Limits for Multidimensional Conservation Laws[END_REF] dealt with the multidimensional equation. An up-to-date setting is given in Correia [START_REF] Correia | Zero Limit for Multi-D Conservation Laws with Nonlinear Diffusion and Dispersion[END_REF]. Whereas in those cases the dominant dissipation regime is ensured by the nonlinear viscosity. In this work we consider the reverse situation, where the nonlinearity concerns the dispersive term .

In general when ε = 0, the divergent behaviour is expected as we are considering "puredispersive equations" similar to the Körteweg-de Vries equation. Nonetheless, Brenier-Levy [START_REF] Brenier | Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations[END_REF] studied the nonlinear equation

u t + f (u) x = δg(u xx ) x ,
where g(v) = -|v| n (for n = 1, 2), as a nonlinear generalization of the Körteweg-de Vries equation. Such nonlinear dispersion significantly affects the dispersive behaviour of the solutions. In particular they conjectured in [START_REF] Brenier | Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations[END_REF] that, with strictly convex flux functions f , the solution of the initial value problem for the equation

u t + f (u) x = δg(u xx ) x -ε u xxxx converges under the condition ε = o(δ).
Recently in [START_REF] Bedjaoui | On a limit of perturbed conservation laws with diffusion and non-positive dispersion[END_REF], we have studied the problem (1.1)-(1.2) for the particular values n = 1 and n = 2. In the case of n = 1, i.e.

u t + f (u) x = εu xx -δ|u xx | x , the convergence to the entropy weak solution of (1.3)-(1.4) is obtained if δ = o(ε 2 ). And in the case of n = 2, i.e. u t + f (u) x = εu xx -δ(u 2 xx ) x , under the convergence rate δ = o(ε 3/2 ).
In this paper the intermediate power 1 < n < 2 is tackled. The convergence is obtained by combining the estimates obtained in [START_REF] Bedjaoui | On a limit of perturbed conservation laws with diffusion and non-positive dispersion[END_REF], for n = 1 and n = 2. The paper is organized as follows. In Section 2, the main convergence result is stated. In Section 3, we provide uniform estimates for the solutions u ε,δ of the perturbed problem (1.1)-(1.2). Finally, Section 4 is devoted to the convergence proof of those u ε,δ to the entropy weak solution of problem (1.3)-(1.4) when both ε and δ go down to zero, under suitable conditions.

Main Result

The main convergence result is stated. When g(v) = -|v| n with 1 ≤ n ≤ 2, we prove the following theorem.

Theorem 2.1 Let ε > 0, and δ = o(ε 3n-1 2

; ε 5n-1 2(2n-1) ), and f : R → R be a flux function satisfying

0 ≤ f (u) ≤ C(1 + |u| β ), where 0 ≤ β < 4-n n 2 .
Then, the family solutions {u ε,δ } of (1.1) -(1.2) converges to the entropy solution of (1.3) -(1.4).

In the particular cases n = 1 and n = 2, the convergence is found for 0 ≤ β < 3, δ = o(ε 2 ) and 0 ≤ β < 1 2 , δ = o(ε 5/2 ) respectively. It has been proved in a previous paper [START_REF] Bedjaoui | On a limit of perturbed conservation laws with diffusion and non-positive dispersion[END_REF]. Here, a better rate, equal to δ = o(ε k ) with k < 2, is obtained when 1 < n < 5/3. As shown in Figure 1, the optimal rate is achieved for n = 5+ and δ = o(ε

3+ √ 13 6 
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Figure 1: Rate of convergence max( 3n-1 2 ; 5n-1 2(2n-1) ) for 1 ≤ n ≤ 2.

A priori Estimates

Assume that η is a regular function and q a function defined by q = η f , and let us multiply (1.1) by η (u). We obtain

η(u) t + q(u) x = ε (η (u) u x ) x -ε η (u) u 2 x (3.1) + δ η (u) g(u xx ) x -δ η (u) u x g(u xx ) .
Integrate over R × [0, t] with η(u) = |u| α+1 . The conservative terms vanish and we obtain the following lemma.

Lemma 3.1 Let α ≥ 1 and g : R → R be any dispersion function. Each solution of (1.1)

satisfies for t ∈ [0, T ] R |u(t)| α+1 dx + (α + 1) α ε t 0 R |u| α-1 u 2 x dxds (3.2) + (α + 1) α δ t 0 R |u| α-1 u x g(u xx ) dxds = R |u 0 | α+1 dx .
Taking α = 1 in (3.2), provides a priori L 2 first energy estimates. Nevertheless, this estimate is useless, the sign δu x can not be controlled. Let us introduce the functions G, and G defined by G = G = g, i.e,

G(u) = - 1 n + 1 |u| n u, and G(u) = - 1 (n + 1)(n + 2) |u| n+2 .
Also, we define for t ≥ 0 the sets

U + t = {x ∈ R, u x (x, t) > 0},
and

U - t = {x ∈ R, u x (x, t) < 0}
. We obtain the following estimate. Lemma 3.2 Let q be a odd number. Then, each solution of (1.1) satisfies for t ∈ [0, T ]

U + t |u x (t)| q+2 dx + ε (q + 2)(q + 1) t 0 U + s |u x | q u 2 xx dxds (3.3)
+δ (q + 2)(q + 1) q (n + 2)

n t 0 U + s |u x | q-1 |G(u xx )| dxds + (q + 1) t 0 U + s |u x | q+3 f (u) dxds = U + 0 |u 0 | q+2 dx ,
where the last left hand-side term can be replaced by

-(q + 2)(q + 1) t 0 U + s |u x | q+1 f (u) u xx dxds . (3.4) 
Proof. Multiplying (1.1) by (q + 2)(|u x | q u x ) x we have

(q + 2) u t |u x | q u x x -(|u x | q+2 ) t = -(q + 2)(q + 1)|u x | q u xx f (u) u x + ε (q + 2)(q + 1) |u x | q u 2 xx + δ (q + 2)(q + 1) |u x | q u xx g (u xx ) u xxx = -(q + 1)(|u x | q+2 ) x f (u) +ε (q + 2)(q + 1) |u x | q u 2 xx +δ (q + 2)(q + 1) n |u x | q G(u xx ) x ,
and we get the estimate

(q + 2) u t |u x | q u x x -(|u x | q+2 ) t (3.5) = -(q + 1)|u x | q+2 f (u) x +(q + 1)|u x | q+2 u x f (u) +ε (q + 2)(q + 1) |u x | q u 2 xx + δ (q + 2)(q + 1) n |u x | q G(u xx ) x -δ (q + 2)(q + 1) q (n + 2) n |u x | q-2 u x G(u xx ).
Similarly, using the multiplier (q + 2)(u q+1 x ) x in (1.1), it comes

(q + 2) u t u q+1 x x -(u q+2 x ) t = -(q + 2)(q + 1) u q+1 x f (u) u xx +ε (q + 2)(q + 1) u q x u 2 xx + δ (q + 2)(q + 1) n u q x G(u xx ) x -δ (q + 2)(q + 1) q (n + 2) n u q-1 x G(u xx ),
and one gets

(q + 2) u t u q+1 x x -(u q+2 x ) t (3.6) = -(q + 1) u q+2 x f (u) x +(q + 1) u q+3 x f (u) +ε (q + 2)(q + 1) u q x u 2 xx + δ (q + 2)(q + 1) n u q x G(u xx ) x -δ (q + 2)(q + 1) q (n + 2) n u q-1 x G(u xx ). Integrating (3.5) and (3.6) over R × [0, t], we obtain respectively R |u x (t)| q+2 dx + ε (q + 2)(q + 1) t 0 R |u x | q u 2 xx dxds (3.7) = R |u 0 | q+2 dx -(q + 1) t 0 R u x |u x | q+2 f (u) dxds +δ (q + 2)(q + 1) q (n + 2) n t 0 R u x |u x | q-2 G(u xx ) dxds , and R u x (t) q+2 dx + ε (q + 2)(q + 1) t 0 R u q x u 2 xx dxds (3.8) = R (u 0 ) q+2 dx -(q + 1) t 0 R u q+3 x f (u) dxds +δ (q + 2)(q + 1) q (n + 2) n t 0 R u q-1 x G(u xx ) dxds .
Adding (3.8) and (3.7) for q odd, we obtain (3.3).

Combining Lemmas 3.1 and 3.2 we obtain the following estimate.

Proposition 3.1 Let ε, δ > 0, and f : R → R be a convex flux function, i.e. f ≥ 0. Then, the family solutions {u ε,δ } of (1.1)

-(1.2) satisfies the uniform estimate for all 5+n 2n+1 ≤ α < 4+n n R |u(t)| α+1 dx + ε t 0 R |u| α-1 u 2 x dxds + δ t 0 R |u| α-1 |u x | |u xx | n dxds ≤ C 0 . (3.9) Proof. When g(v) = -|v| n , equation (3.2) writes R |u(t)| α+1 dx + α(α + 1) ε t 0 R |u| α-1 u 2 x dxds = u 0 α+1 α+1 + α(α + 1) δ t 0 R |u| α-1 u x |u xx | n dxds. (3.10)
Since f is convex, inequality (3.3) is rewritten for q ≥ 1 odd as

U + t |u x (t)| q+2 dx + ε t 0 U + s |u x | q u 2 xx dxds (3.11) + δ t 0 U + s |u x | q-1 |u xx | n+2 dxds + t 0 U + s |u x | q+3 f (u) dxds ≤ C 0 .
Using Young's inequality, we get

δ t 0 U + s |u| α-1 u x |u xx | n dxds = t 0 U + s 1 c t α-1 α+1 |u| α-1 c t α-1 α+1 |u x | (δ|u xx | n ) dxds ≤ 1 t c α+1 α-1 α -1 α + 1 t 0 U + s |u| α+1 dxds + c k t k α-1 α+1 k t 0 U + s |u x | k dxds + n n + 2 δ 1+ 2 n t 0 U + s |u xx | n+2 dxds, (3.12) 
where c and k are two positive constants such that c α+1 α-1 = 4α(α -1), and

1 k + n n + 2 + α -1 α + 1 = 1.
Thus,

k = (n + 2)(α + 1) (4 + n) -n α ,
and k ≥ 3 if 5+n 2n+1 ≤ α < 4+n n . Now, we choose q odd such that 2 + q ≥ k and

|u x | k ≤ |u x | 3 + |u x | q+2 .
From (3.11) with q = 1 and q ≥ k -2 odd, we deduce

t 0 Us + |u x | k dxds + δ t 0 Us + |u xx | n+2 dxds ≤ C 0 .
(3.13)

Integrating (3.10) over [0, t] gives t 0 U + s |u| α+1 dxds ≤ t 0 R |u| α+1 dxds ≤ t C 0 + α(α + 1) t δ t 0 U + s |u| α-1 u x |u xx | n dxds. (3.14)
Now, injecting (3.13) and (3.14) into (3.12), it comes

δ t 0 Us + |u| α-1 u x |u xx | n dxds ≤ C 0 + 1 4 δ t 0 Us + |u| α-1 u x |u xx | n dxds (3.15)
that yields

δ t 0 Us + |u| α-1 u x |u xx | n dxds ≤ C 0 . (3.16)
Finally, it is enough to merge (3.16) in (3.10) to obtain (3.9). Now, let us prove the following lemma.

Lemma 3.3 Assume that f satisfies 0 ≤ f (u) ≤ C(1 + |u| β ), with 0 ≤ β < 4-n n 2 and 1 ≤ n ≤ 2.
Then, we have the estimate

t 0 R f (u) u x u xx dxds ≤ C 0 δ -1 n -n-1 2n + C 0 (n -1)δ -1 n -n-1 2n t 0 R u 2 dxds + ε t 0 R u 2
x dxds .

(3.17)

In particular, when n = 1, we have

t 0 R f (u) u x u xx dxds ≤ C 0 δ . Proof. Note that, since f (u) ≤ C(1 + |u| β ), then |f (u) -f (0)| ≤ C(|u| + |u| β+1 ).
Thus, we derive

t 0 R f (u) u x u xx dxds ≤ C t 0 R |u||u x ||u xx | dxds +C t 0 R |u| β+1 |u x ||u xx | dxds ≤ δ -1 n -n-1 2n t 0 R δ 1 n |u| 1 n |u x | 1 n |u xx | |u| n-1 n n-1 2n |u x | n-1 n dxds + δ -1 n -n-1 2n t 0 R δ 1 n |u| β+ 1 n |u x | 1 n |u xx | |u| n-1 n n-1 2n |u x | n-1 n dxds.
Thanks to the Young inequality and the relation

1 n + n -1 2n + n -1 2n = 1, one gets t 0 R f (u) u x u xx dxds ≤ δ -1 n -n-1 2n C 0 δ t 0 R |u| n β+1 |u x ||u xx | n dxds + C 0 δ t 0 R |u||u x ||u xx | n dxds + C 0 (n -1) t 0 R u 2 dxds + C 0 (n -1) ε t 0 R u 2 x dxds . (3.18) It comes from (3.9) with 1 ≤ n ≤ 2, α = 2 and α = n β + 2 < 1 + 4 n δ t 0 R |u||u x ||u xx | n dxds + δ t 0 R |u| n β+1 |u x ||u xx | n dxds ≤ C 0 . (3.19)
Finally, inequalities (3.19) and (3.18) allow us to conclude the proof of Lemma 3.3

We will use this lemma to prove the following proposition.

Proposition 3.2 Let ε > 0, δ = o(ε 5n-1 2(2n-1)
) and f : R → R be a flux function satisfying 0 ≤ f (u) ≤ C(1 + |u| β ), where 0 ≤ β < 4-n n 2 . Then the family solutions {u ε,δ } of (1.1)

-(1.2) satisfies the estimates R u x (t) 2 dx + ε t 0 R u 2 xx dxds ≤ C 0 δ -1 n ε -n-1 2n , (3.20) 
δ t 0 U + s u x |u xx | n dxds ≤ C 0 δ ε 5n-1 2(2n-1) 2n-1 2n , (3.21) R u(t) 2 dx + ε t 0 R u 2 x dxds + δ t 0 R |u x | |u xx | n dxds ≤ u 0 2 2 + C 0 δ ε 5n-1 2(2n-1) 2n-1 2n . (3.22) Proof. First, equality (3.2) for 1 ≤ n ≤ 2 and α = 1 reads as R u(t) 2 dx + 2 ε t 0 R u 2 x dxds = u 0 2 2 + 2 δ t 0 R u x |u xx | n dxds. (3.23) Since 1 ≤ n ≤ 2, we have δ t 0 U + s u x |u xx | n dxds ≤ δ t 0 U + s u x |u xx | dxds + δ t 0 U + s u x u 2 xx dxds. (3.24)
From (3.3) with q = 1, we get

ε t 0 U + s u x u 2 xx dxds ≤ C 0 , (3.25) 
which is equivalent to

δ t 0 Us + u x u 2 xx dxds ≤ C 0 δ ε . (3.26)
We can also write 

δ t 0 U + s u x |u xx | dxds = δ 2n-1 2n ε -n-1 4n t 0 U + s u x δ 1 2n ε n-1 4n |u xx | dxds. ≤ δ 2n-1 2n ε -n-1 4n 2ε ε t 0 Us + u 2 x dxds + εδ 1 n ε n-1 2n t 0 U + s u 2 xx dxds ≤ δ 2n-1 2n ε 5n-1 4n t 0 U + s ε u 2 x dxds + δ 2n+1 2n ε n-1 4n t 0 U + s u 2 xx dxds. ( 3 
δ t 0 U + s u x |u xx | n dxds ≤ C 0 δ ε + C 0 δ 2n+1 2n ε n-1 4n t 0 R u 2 xx dxds +C 0 δ 2n-1 2n ε 5n-1 4n t 0 R ε u 2 x dxds. (3.28) Since δ = o(ε 5n-1 2(2n-1)
), by injecting (3.28) in (3.23), we obtain

R u(t) 2 dx + ε t 0 R u 2 x dxds ≤ u 0 2 2 + C 0 δ ε + C 0 δ 2n+1 2n ε n-1 4n t 0 R u 2 xx dxds. (3.29) Inequality (3.7) is rewritten with q = 0 as R u x (t) 2 dx + 2 ε t 0 R u 2 xx dxds (3.30) = R (u 0 ) 2 dx + 2 t 0 R f (u) u x u xx dxds. Lemma 3.3 points to R u x (t) 2 dx + 2 ε t 0 R u 2 xx dxds ≤ C 0 + C 0 δ -1 n -n-1 2n + C 0 (n -1)δ -1 n -n-1 2n t 0 R u 2 dxds + ε t 0 R u 2 x dxds , (3.31) 
and inequality (3.29) implies 

R u x (t) 2 dx + 2 ε t 0 R u 2 xx dxds ≤ C 0 + C 0 δ -1 n -n-1 2n + C 0 (n -1)δ -1 n -n-1 2n u 0 2 2 + C 0 δ ε + C 0 δ 2n+1 2n ε n-1 4n t 0 R u 2 xx dxds . (3.32) Note that if δ = o(ε), this inequality reduces to R u x (t) 2 dx + 2 ε t 0 R u 2 xx dxds ≤ C 0 δ -1 n -n-1 2n + C 0 δ 2n-1 2n -5n-1 4n ε t 0 R u 2 xx dxds . ( 3 
u(t) 2 dx + ε t 0 R u 2 x dxds ≤ u 0 2 2 + C 0 δ ε + C 0 δ 2n+1 2n n-1 4n δ -1 n -n-1 2n ε ≤ u 0 2 2 + δ 2n-1 2n ε 5n-1 4n ≤ u 0 2 2 + C 0 δ/ε 5n-1 2(2n-1) 2n-1 2n ≤ C 0 . (3.34)
Finally, combining (3.20), (3.34) and (3.28), we have

δ t 0 U + s u x |u xx | n dxds ≤ C 0 δ ε + C 0 δ 2n+1 2n n-1 4n δ -1 n -n-1 2n ε + C 0 δ 2n-1 2n ε 5n-1 4n (3.35) ≤ C 0 δ ε + 2 C 0 δ 2n-1 2n ε 5n-1 4n ≤ C 0 δ 2n-1 2n ε 5n-1 4n 2 + ε n-1 4n δ 1 2n
, and δ and ε being bounded, inequality (3.21) is found. 

≤ f (u) ≤ C(1 + |u| β ), where 0 ≤ β < 4-n n 2 .
Then, the family solutions {u ε,δ } of (1.1)

-(1.2) satisfies (a) ε t 0 R u 2 x dxds ≤ C 0 , (b) δ t 0 R u - x |u xx | n dxds ≤ C 0 , (c) δ t 0 U + s u x |u xx | n dxds ≤ C 0 δ/ε 5n-1 2(2n-1) 2n-1 2n , (d) δ 2 n t 0 R u 2 xx dxds ≤ C 0 δ/ε 3n-1 2 1 n ,
where u - x = max(0, -u x ).

Proof. Assertions (a) and (b) come from (3.22), while (c) corresponds to (3.21).

Thanks to (3.20), we have

δ 2 n t 0 R u 2 xx dxds ≤ C 0 δ 2 n ε -1 δ -1 n ε -n-1 2n ≤ C 0 δ 1 n ε -3n-1 2n ,
that is (d).

Proof of convergence

We have now all the tools to prove the main result given in Theorem 2.1. We first remind the notion of entropy measure-valued solution [START_REF] Diperna | Measure-Valued Solutions to Conservation Laws[END_REF].

Definition 4.1 Assume that u 0 ∈ L 1 (R) ∩ L q (R) and f ∈ C(R) satisfies the growth condition |f (u)| ≤ O(|u| m ) as |u| → ∞, for some m ∈ [0, q). ( 4 

.1)

A Young measure ν is called an entropy measure-valued (e.m.-v.) solution of

(1.3)-(1.4) if ν, |u -k| t + ν, sgn(u -k)(f (u) -f (k)) x ≤ 0, for all k ∈ R, (4.2) 
in the sense of distributions on R × (0, T ), and

lim t→0 + 1 t t 0 K ν (x,s) , |u -u 0 (x)| dxds = 0, for all compact set K ⊆ R. (4.3) 
We will apply the following Young measure representation theorem [START_REF] Schonbek | Convergence of Solutions to Nonlinear Dispersive Equations[END_REF] in a suitable L q space to show that ν satisfies (4.2).

Lemma 4.1 Let {u n } n∈N be a bounded sequence in L ∞ ((0, T ); L q (R)). Then there exists a subsequence denoted by {ũ n } n∈N and a weakly-measurable mapping ν : R × (0, T ) → Prob(R) such that, for all functions h ∈ C(R) satisfying (4.1), ν (x,t) , h belongs to L ∞ ((0, T ); L q/m loc (R)) and the following limit representation holds:

R×(0,T ) ν (x,t) , h φ(x, t) dxdt = lim n→∞ R×(0,T ) h(ũ n (x, t)) φ(x, t) dxdt, (4.4 
)

for all φ ∈ L 1 (R × (0, T )) ∩ L ∞ (R × (0, T )).
Conversely, given ν, there exists a sequence {u n } satisfying the same conditions as above and such that (4.4) holds for any h satisfying (4.1).

Let us start proving (4.2) thanks to Proposition 3.3 and assuming that, in the regime δ = o(ε 3n-1 2

; ε 5n-1 2(2n-1) ), initial data u ε,δ 0 converge to u 0 as follows

lim ε→0 u ε,δ 0 = u 0 in L 1 (R) ∩ L q (R) ||u ε,δ 0 || L 2 ≤ ||u 0 || L 2 . (4.5) 
Standard regularizations of sgn(u -k)(f (u) -f (k)) and |u -k| (k ∈ R) are used, to show that it is enough to prove the existence of a bounded measure µ ≤ 0 such that

η(u) t + q(u) x -→ µ in D (R × (0, T )) (4.6) 
for an arbitrary convex function η (we assume that η and η are bounded on R).

To prove (4.6), we rewrite the formula (3.1) as

η(u) t + q(u) x = µ 1 + µ 2 + µ 3 + µ 4 , (4.7) 
with

µ 1 : = ε η (u) u x x , µ 2 : = -ε η (u) u 2 x , µ 3 : = δ η (u) g(u xx ) x , µ 4 : = -δ η (u) u x g(u xx ). Let's θ ∈ C ∞ 0 (R × (0, T )) a test function. We have | < µ 1 , θ > | ≤ ε T 0 R |θ x η (u) u x | dxds ≤ C ε T 0 R |θ x u x | dxds ≤ C||θ x || L 2 ε 1/2 ε T 0 R u 2 x dxds 1/2 ≤ C||θ x || L 2 ε 1/2 ε T 0 R u 2 x dxds 1/2 . ( 4.8) 
According to Proposition 3.3-(a),

| < µ 1 , θ > | ≤ C||θ x || L 2 ε 1/2 (4.9)
and µ 1 → 0 when ε → 0. Thereafter,

| < µ 2 , θ > | ≤ ε T 0 R |θ η (u) u 2 x | dxds ≤ ε C||θ|| L ∞ T 0 R u 2 x dxds. (4.10)
and µ 2 is bounded thanks to Proposition 3.3-(a). Moreover, since η is convex, we have for a non negative function θ

< µ 2 , θ > = -ε T 0 R θ η (u) u 2 x dxds ≤ 0. (4.11)
Concerning µ 3 , we have

| < µ 3 , θ > | ≤ δ T 0 R |θ x η (u) |u xx | n | dxds ≤ C δ T 0 R |θ x | |u xx | n dxds ≤ C||θ x || L 2 2-n δ 2 n t 0 R u 2 xx dxds n 2 . ( 4.12) 
Remark that when n = 2, the space L ).

Finally, µ 4 is split as

µ 4 = δ η (u) u + x |u xx | n -δ η (u) u - x |u xx | n . =: µ + 4 + µ - 4
where u + x = max(0, u x ) and u - x = max(0, -u x ), and we have u x = u + x -u - x . On the one hand,

| < µ - 4 , θ > | ≤ δ T 0 R |θ η (u) u - x |u xx | n | dxds ≤ C δ T 0 R |θ u - x |u xx | n | dxds ≤ C||θ|| L ∞ δ T 0 R u - x |u xx | n dxds, (4.13) 
and according to Proposition 3.3-(b),

| < µ - 4 , θ > | ≤ C 0 ||θ|| L ∞ .
Again, η ≥ 0, we have

< µ - 4 , θ > = -δ T 0 R θ η (u) u - x |u xx | n dxds ≤ 0. (4.14) Similarly, | < µ + 4 , θ > | ≤ δ T 0 R |θ| η (u) u + x |u xx | n dxds ≤ C ||θ|| L ∞ δ T 0 R u + x |u xx | n dxds ≤ C ||θ|| L ∞ δ T 0 U + s u x |u xx | n dxds. (4.15) Proposition 3.3-(c) implies | < µ + 4 , θ > | ≤ C ||θ|| L ∞ (δ/ε 5n-1 2(2n-1) ) 2n-1 2n , (4.16 
)

and µ + 4 → 0 because δ = o(ε n(n+1) 2 
). Condition (4.6) is proved and µ is non positive bounded measure.

To show (4.3), we follow DiPerna [START_REF] Diperna | Measure-Valued Solutions to Conservation Laws[END_REF] and Szepessy [START_REF] Szepessy | An Existence Result for Scalar Conservation Laws using Measure-Valued Solutions[END_REF] arguments. We check that, for each compact set K of R,

lim t→0+ 1 t t 0 K ν (x,s) , |u -u 0 (x)| dxds = lim t→0+ lim ε→0+ 1 t t 0 K u ε,δ (x, s) -u 0 (x) dxds = 0.
Thanks to Jensen's inequality, for m(K) the Lebesgue measure of K,

1 t t 0 K u ε,δ (x, s) -u0(x) dxds ≤ m(K) 1/2 1 t t 0 K u ε,δ (x, s) -u0(x) 2 dxds 1/2
and we claim that

lim t→0+ lim ε→0+ 1 t t 0 K u ε,δ (x, s) -u 0 (x) 2 dxds = 0.
Indeed, let K i ⊂ K i+1 ( i = 0, 1, ... ) be an increasing sequence of compact sets such that K 0 = K and ∪ i≥0 K i = R. Using the identity u 2 -u 2 0 -2u 0 (u -u 0 ) = (u -u 0 ) 2 , we get for all i = 0, 1, . . . 

1 t t 0 K u ε,δ (•, s) -u 0 2 dxds ≤ 1 t t 0 Ki |u ε,δ (•, s)| 2 dx - Ki u 2 0 dx -2 Ki u 0 u ε,δ (•, s) -u 0 dx ds ≤ R\Ki u 2 0 dx + 1 t t 0 R |u ε,δ (•, s)| 2 dx - R u 2 0 dx + 2 t t 0 Ki u 0 u ε,δ (•, s) -u 0 dx ds. ( 4 
R |u ε,δ (•, s)| 2 dx - R u 2 0 dx = R |u ε,δ (•, s)| 2 dx - R (u δ,ε 0 ) 2 dx + R (u δ,ε 0 ) 2 dx - R u 2 0 dx ≤ R |u ε,δ (•, s)| 2 dx - R (u δ,ε 0 ) 2 dx ≤ C 0 (δ/ε 5n-1 2(2n-1) ) 2n-1 2n ,
and the second term of right hand side goes to zero when ε → 0.

To estimate the last term of (4.17), we consider

{θ k } k∈N ⊂ C ∞ 0 (R) being such that lim k→∞ θ k = u 0 in L 2 (R).
The Cauchy-Schwarz inequality gives

Ki u 0 u ε,δ (•, s) -u 0 dx ≤ Ki |u 0 -θ k | u ε,δ (•, s) -u 0 dx + Ki θ k u ε,δ 0 -u 0 + Ki θ k u ε,δ (•, s) -u ε,δ 0 dx ≤ u 0 -θ k L 2 (R) u ε,δ (•, s) L 2 (R) + u 0 L 2 (R) + θ k L 2 (R) u ε,δ 0 -u 0 L 2 (R) + s 0 Ki θ k ∂ s u ε,δ dxdτ .
We deduce from (3.22) ), we obtain the desired conclusion, and Theorem 2.1 is proved.

u 0 -θ k L 2 (R) u ε,δ (•, s) L 2 (R) + u 0 L 2 (R) ≤ ( u 0 L 2 (R) + C) u 0 -θ k L 2 (R) , which goes to zero when k → ∞ because lim ε→0+ u ε,δ 0 -u 0 L 2 (R) = 0 from (4.
≤ lim t→0+ lim ε→0+ C t t 2 ( (θ k ) x L 1 (R) + (θ k ) x L ∞ (R) ) + ε 1 2 t 3 2 (θ k ) x L 2 (R) + t 4-n 2 δ ε 3n-1 2 1 2 (θ k ) x L

  .27) Putting (3.27) and (3.26) in (3.24) produces

  (3.20) in (3.29) gives R

Inequality ( 3 . 2 . 3 . 3 1 2

 32331 22) directly follows from (3.21) and (3.23), and this achieves the proof of Proposition 3.Proposition Let ε > 0, and δ = o(ε 5n-(2n-1) ), and f : R → R be a flux function satisfying 0

2 2 -and µ 3 →

 23 n is replaced by L ∞ . From Proposition 3.3-(d), one gets| < µ 3 , θ > | ≤ C 0 ||θ x || 0 because δ = o(ε 3n-1 2

0 0 0 =: I 1 + I 2 + I 3 . 2 + 1 < 4 n 2 - 1 n + 1 < 4 n + 1 is applied s 0 C s 0 C s 0 0

 0001232121140000 Ki θ k ∂ s u ε,δ dxdτ ds = 0. The equation (1.1) provides s Kiθ k ∂ s u ε,δ dxdτ = s Ki θ k -f (u ε,δ ) x + ε u ε,δ xx + δ g u ε,δ xx x dxdτ ≤ s Ki (θ k ) x f u ε,δ dxdτ ) x g u ε,δ xx dxdτTo deal with I 1 , the function f being such that0 ≤ f (u) ≤ C(1 + |u| β ), with β < 4-n n 2 , then for m = β + 2 |f (u)| ≤ C(1 + |u| m ).Thus, Proposition 3.1 with α = m -1 = β + 1 < 4-n n Ki |u ε,δ | m dx dτ ≤ s 0 R |u ε,δ | m dx dτ ≤ C s. k ) x | f u ε,δ dx dτ ≤ Ki |(θ k ) x | dx dτ + C s 0 Ki |(θ k ) x | |u ε,δ | m dx dτ ≤ Ki |(θ k ) x | dx dτ + C (θ k ) x L ∞ (R) s Ki |u ε,δ | m dx dτ ≤ C s (θ k ) x L 1 (R) + C s (θ k ) x L ∞ (R) .

,

  and since δ = o(ε 3n-1 2
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