Convergence of a family of perturbed conservation laws with diffusion and non-positive dispersion

N. Bedjaoui*, J. Correia⁺, Y. Mammeri*

 * Laboratoire Amiénois de Mathématique Fondamentale et Appliquée,

CNRS UMR 7352, Université de Picardie Jules Verne,

80069 Amiens, France.

email: nabil.bedjaoui@u-picardie.fr email: youcef.mammeri@u-picardie.fr

⁺DMat, ECT & CIMA, IIFA, Universidade de Évora, Évora, Portugal

CAMGSD, Instituto Superior Técnico, Lisboa, Portugal

email: jmcorreia@uevora.pt

Corresponding author: N. Bedjaoui

Abstract: We consider a family of conservation laws with convex flux perturbed by vanishing diffusion and non-positive dispersion of the form $u_t + f(u)_x = \varepsilon u_{xx} - \delta(|u_{xx}|^n)_x$. Convergence of the solutions $\{u^{\varepsilon,\delta}\}$ to the entropy weak solution of the hyperbolic limit equation $u_t + f(u)_x = 0$, for all real numbers $1 \le n \le 2$ is proved if $\delta = o(\varepsilon^{\frac{3n-1}{2(2n-1)}})$.

Keywords: diffusion, nonlinear dispersion, KdV-Burgers equation, hyperbolic conservation laws, entropy measure-valued solutions.

1 Introduction

We consider the initial value problem

$$u_t + f(u)_x = \varepsilon u_{xx} + \delta g(u_{xx})_x \tag{1.1}$$

$$u(x,0) = u_0(x) \tag{1.2}$$

where f is a convex function, (i.e. $f'' \ge 0$), ϵ and δ are small positive parameters, g is a non-positive function of the form, with $1 \le n \le 2$,

$$g(v) = -|v|^n.$$

When $\delta = 0$, equation (1.1) reduces to the generalized viscous Burgers equation

$$u_t + f(u)_x = \varepsilon u_{xx}$$

and we know, as $\varepsilon \searrow 0$, the corresponding solution $u^{\varepsilon,0}$ converges to the entropy weak solution of the hyperbolic problem (the vanishing viscosity method, see, e.g., Whitham [13] or Kružkov [6])

$$u_t + f(u)_x = 0 (1.3)$$

$$u(x,0) = u_0(x). (1.4)$$

On the other hand, when $\varepsilon = 0$, if we consider the flux function $f(u) = u^2$ and the linear dispersion, i.e., if we consider the Körteweg-de Vries equation

$$u_t + \left(u^2/2\right)_x = \delta \, u_{xxx},$$

the solution $u^{0,\delta}$ does not converge in a strong topology (see Lax-Levermore [7]). We are concerned with singular limits.

In the general case, as parameters $\varepsilon > 0$ and $\delta \neq 0$ vanish, to ensure convergence we wait that a dominant dissipation regime is necessary. The pioneer study of these singular limits was given in 1982 by Schonbek [10] for the generalized Körteweg-de Vries-Burgers equation

$$u_t + f(u)_x = \varepsilon u_{xx} - \delta u_{xxx}.$$

For a convex flux function f(u), she proved the convergence of the solutions $u^{\varepsilon,\delta}$ to the entropy weak solution of (1.3)-(1.4) under the condition $\delta = \mathcal{O}(\varepsilon^3)$ and, for the particular flux function $f(u) = u^2$, under the condition $\delta = \mathcal{O}(\varepsilon^2)$. While for the last case, according to Perthame-Ryzhik [9], the sharp condition could be $\delta = o(\varepsilon)$.

In "From Boltzmann to Euler: Hilbert's 6th problem revisited" (Slemrod [11]) one may see the analogy between the singular limit for the Körteweg-de Vries-Burgers equation and the hydrodynamic limit of the kinetic Boltzmann equation for a rarefied gas to the continuum Euler equations of compressible gas dynamics as the Knudsen number approaches zero.

In 1998, LeFloch-Natalini [8] proved the convergence in the case of a nonlinear viscosity function β and linear capillarity

$$u_t + f(u)_x = \varepsilon \beta(u_x)_x - \delta u_{xxx},$$

and Correia-LeFloch [3] dealt with the multidimensional equation. An up-to-date setting is given in Correia [4]. Whereas in those cases the dominant dissipation regime is ensured by the nonlinear viscosity. In this work we consider the reverse situation, where the nonlinearity concerns the dispersive term .

In general when $\varepsilon=0$, the divergent behaviour is expected as we are considering "pure-dispersive equations" similar to the Körteweg-de Vries equation. Nonetheless, Brenier-Levy [2] studied the nonlinear equation

$$u_t + f(u)_x = \delta g(u_{xx})_x$$

where $g(v) = -|v|^n$ (for n = 1, 2), as a nonlinear generalization of the Körteweg-de Vries equation. Such nonlinear dispersion significantly affects the dispersive behaviour of the solutions. In particular they conjectured in [2] that, with strictly convex flux functions f, the solution of the initial value problem for the equation

$$u_t + f(u)_x = \delta g(u_{xx})_x - \varepsilon u_{xxxx}$$

converges under the condition $\varepsilon = o(\delta)$.

Recently in [1], we have studied the problem (1.1)-(1.2) for the particular values n = 1 and n = 2. In the case of n = 1, *i.e.*

$$u_t + f(u)_x = \varepsilon u_{xx} - \delta |u_{xx}|_x,$$

the convergence to the entropy weak solution of (1.3)-(1.4) is obtained if $\delta = o(\varepsilon^2)$. And in the case of n = 2, *i.e.*

$$u_t + f(u)_x = \varepsilon u_{xx} - \delta(u_{xx}^2)_x,$$

under the convergence rate $\delta = o(\varepsilon^{3/2})$.

In this paper the intermediate power 1 < n < 2 is tackled. The convergence is obtained by combining the estimates obtained in [1], for n = 1 and n = 2. The paper is organized as follows. In Section 2, the main convergence result is stated. In Section 3, we provide uniform estimates for the solutions $u^{\varepsilon,\delta}$ of the perturbed problem (1.1)-(1.2). Finally, Section 4 is devoted to the convergence proof of those $u^{\varepsilon,\delta}$ to the entropy weak solution of problem (1.3)-(1.4) when both ε and δ go down to zero, under suitable conditions.

2 Main Result

The main convergence result is stated. When $g(v) = -|v|^n$ with $1 \le n \le 2$, we prove the following theorem.

Theorem 2.1 Let $\varepsilon > 0$, and $\delta = o(\varepsilon^{\frac{3n-1}{2}}; \varepsilon^{\frac{5n-1}{2(2n-1)}})$, and $f: \mathbb{R} \to \mathbb{R}$ be a flux function satisfying $0 \le f''(u) \le C(1+|u|^{\beta})$, where $0 \le \beta < \frac{4-n}{n^2}$. Then, the family solutions $\{u^{\varepsilon,\delta}\}$ of (1.1)-(1.2) converges to the entropy solution of (1.3)-(1.4).

In the particular cases n=1 and n=2, the convergence is found for $0 \le \beta < 3, \delta = o(\varepsilon^2)$ and $0 \le \beta < \frac{1}{2}, \delta = o(\varepsilon^{5/2})$ respectively. It has been proved in a previous paper [1]. Here, a better rate, equal to $\delta = o(\varepsilon^k)$ with k < 2, is obtained when 1 < n < 5/3. As shown in

Here, a better rate, equal to $\delta = o(\varepsilon^k)$ with k < 2, is obtained when 1 < n < 5/3. As shown in Figure 1, the optimal rate is achieved for $n = \frac{5 + \sqrt{13}}{6}$ and $\delta = o(\varepsilon^{\frac{3 + \sqrt{13}}{6}})$.

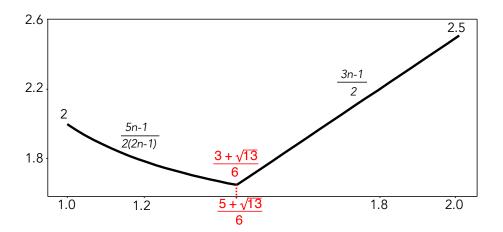


Figure 1: Rate of convergence $\max(\frac{3n-1}{2}; \frac{5n-1}{2(2n-1)})$ for $1 \le n \le 2$.

3 A priori Estimates

Assume that η is a regular function and q a function defined by $q' = \eta' f'$, and let us multiply (1.1) by $\eta'(u)$. We obtain

$$\eta(u)_t + q(u)_x = \varepsilon \left(\eta'(u) u_x\right)_x - \varepsilon \eta''(u) u_x^2 + \delta \left(\eta'(u) g(u_{xx})\right)_x - \delta \eta''(u) u_x g(u_{xx}).$$
(3.1)

Integrate over $\mathbb{R} \times [0,t]$ with $\eta(u) = |u|^{\alpha+1}$. The conservative terms vanish and we obtain the following lemma.

Lemma 3.1 Let $\alpha \geq 1$ and $g : \mathbb{R} \to \mathbb{R}$ be any dispersion function. Each solution of (1.1) satisfies for $t \in [0,T]$

$$\int_{\mathbb{R}} |u(t)|^{\alpha+1} dx + (\alpha+1) \alpha \varepsilon \int_{0}^{t} \int_{\mathbb{R}} |u|^{\alpha-1} u_{x}^{2} dx ds$$

$$+ (\alpha+1) \alpha \delta \int_{0}^{t} \int_{\mathbb{R}} |u|^{\alpha-1} u_{x} g(u_{xx}) dx ds$$

$$= \int_{\mathbb{R}} |u_{0}|^{\alpha+1} dx .$$
(3.2)

Taking $\alpha = 1$ in (3.2), provides a priori L^2 first energy estimates. Nevertheless, this estimate is useless, the sign δu_x can not be controlled.

Let us introduce the functions \mathcal{G} , and G defined by $\mathcal{G}'' = G' = g$, i.e,

$$G(u) = -\frac{1}{n+1}|u|^n u$$
, and $G(u) = -\frac{1}{(n+1)(n+2)}|u|^{n+2}$.

Also, we define for $t \geq 0$ the sets

$$\mathcal{U}_t^+ = \{ x \in \mathbb{R}, \, u_x(x,t) > 0 \},$$

and

$$\mathcal{U}_t^- = \{ x \in \mathbb{R}, \ u_x(x,t) < 0 \}.$$

We obtain the following estimate.

Lemma 3.2 Let q be a odd number. Then, each solution of (1.1) satisfies for $t \in [0,T]$

$$\int_{\mathcal{U}_{t}^{+}} |u_{x}(t)|^{q+2} dx + \varepsilon (q+2)(q+1) \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u_{x}|^{q} u_{xx}^{2} dx ds
+ \delta (q+2)(q+1) q (n+2) n \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u_{x}|^{q-1} |\mathcal{G}(u_{xx})| dx ds
+ (q+1) \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u_{x}|^{q+3} f''(u) dx ds
= \int_{\mathcal{U}_{0}^{+}} |u'_{0}|^{q+2} dx,$$
(3.3)

where the last left hand-side term can be replaced by

$$-(q+2)(q+1)\int_0^t \int_{\mathcal{U}^+} |u_x|^{q+1} f'(u) u_{xx} dx ds.$$
 (3.4)

Proof. Multiplying (1.1) by $(q+2)(|u_x|^q u_x)_x$ we have

$$\begin{aligned} \left((q+2) \, u_t \, |u_x|^q \, u_x \right)_x & - & \left(|u_x|^{q+2} \right)_t \\ & = & -(q+2)(q+1) |u_x|^q \, u_{xx} \, f'(u) \, u_x \\ & + \varepsilon \, (q+2)(q+1) \, |u_x|^q \, u_{xx}^2 \\ & + \delta \, (q+2)(q+1) \, |u_x|^q \, u_{xx} \, g'(u_{xx}) \, u_{xxx} \end{aligned} \\ & = & -(q+1)(|u_x|^{q+2})_x \, f'(u) \\ & + \varepsilon \, (q+2)(q+1) \, |u_x|^q \, u_{xx}^2 \\ & + \delta \, (q+2)(q+1) \, n \, |u_x|^q \, G(u_{xx})_x, \end{aligned}$$

and we get the estimate

$$\begin{aligned}
((q+2) u_t | u_x |^q u_x)_x &- (|u_x|^{q+2})_t \\
&= -((q+1)|u_x|^{q+2} f'(u))_x \\
&+ (q+1)|u_x|^{q+2} u_x f''(u) \\
&+ \varepsilon (q+2)(q+1) |u_x|^q u_{xx}^2 \\
&+ (\delta (q+2)(q+1) n |u_x|^q G(u_{xx}))_x \\
&- \delta (q+2)(q+1) q (n+2) n |u_x|^{q-2} u_x \mathcal{G}(u_{xx}).
\end{aligned} (3.5)$$

Similarly, using the multiplier $(q+2)(u_x^{q+1})_x$ in (1.1), it comes

$$((q+2) u_t u_x^{q+1})_x - (u_x^{q+2})_t$$

$$= -(q+2)(q+1) u_x^{q+1} f'(u) u_{xx}$$

$$+ \varepsilon (q+2)(q+1) u_x^q u_{xx}^2$$

$$+ (\delta (q+2)(q+1) n u_x^q G(u_{xx}))_x$$

$$- \delta (q+2)(q+1) q (n+2) n u_x^{q-1} G(u_{xx}),$$

and one gets

$$((q+2) u_t u_x^{q+1})_x - (u_x^{q+2})_t$$

$$= -((q+1) u_x^{q+2} f'(u))_x$$

$$+ (q+1) u_x^{q+3} f''(u)$$

$$+ \varepsilon (q+2)(q+1) u_x^q u_{xx}^2$$

$$+ (\delta (q+2)(q+1) n u_x^q G(u_{xx}))_x$$

$$-\delta (q+2)(q+1) q (n+2) n u_x^{q-1} \mathcal{G}(u_{xx}).$$
(3.6)

Integrating (3.5) and (3.6) over $\mathbb{R} \times [0, t]$, we obtain respectively

$$\int_{\mathbb{R}} |u_{x}(t)|^{q+2} dx + \varepsilon (q+2)(q+1) \int_{0}^{t} \int_{\mathbb{R}} |u_{x}|^{q} u_{xx}^{2} dx ds \qquad (3.7)$$

$$= \int_{\mathbb{R}} |u'_{0}|^{q+2} dx - (q+1) \int_{0}^{t} \int_{\mathbb{R}} u_{x} |u_{x}|^{q+2} f''(u) dx ds$$

$$+ \delta (q+2)(q+1) q (n+2) n \int_{0}^{t} \int_{\mathbb{R}} u_{x} |u_{x}|^{q-2} \mathcal{G}(u_{xx}) dx ds,$$

and

$$\int_{\mathbb{R}} u_x(t)^{q+2} dx + \varepsilon (q+2)(q+1) \int_0^t \int_{\mathbb{R}} u_x^q u_{xx}^2 dx ds
= \int_{\mathbb{R}} (u_0')^{q+2} dx - (q+1) \int_0^t \int_{\mathbb{R}} u_x^{q+3} f''(u) dx ds
+ \delta (q+2)(q+1) q (n+2) n \int_0^t \int_{\mathbb{R}} u_x^{q-1} \mathcal{G}(u_{xx}) dx ds.$$
(3.8)

Adding (3.8) and (3.7) for q odd, we obtain (3.3).

Combining Lemmas 3.1 and 3.2 we obtain the following estimate.

Proposition 3.1 Let $\varepsilon, \delta > 0$, and $f : \mathbb{R} \to \mathbb{R}$ be a convex flux function, i.e. $f'' \ge 0$. Then, the family solutions $\{u_{\varepsilon,\delta}\}$ of (1.1) - (1.2) satisfies the uniform estimate for all $\frac{5+n}{2n+1} \le \alpha < \frac{4+n}{n}$

$$\int_{\mathbb{R}} |u(t)|^{\alpha+1} dx + \varepsilon \int_{0}^{t} \int_{\mathbb{R}} |u|^{\alpha-1} u_{x}^{2} dx ds + \delta \int_{0}^{t} \int_{\mathbb{R}} |u|^{\alpha-1} |u_{x}| |u_{xx}|^{n} dx ds \le C_{0}.$$
 (3.9)

Proof. When $g(v) = -|v|^n$, equation (3.2) writes

$$\int_{\mathbb{R}} |u(t)|^{\alpha+1} dx + \alpha(\alpha+1) \varepsilon \int_{0}^{t} \int_{\mathbb{R}} |u|^{\alpha-1} u_{x}^{2} dx ds =$$

$$\|u_{0}\|_{\alpha+1}^{\alpha+1} + \alpha(\alpha+1) \delta \int_{0}^{t} \int_{\mathbb{R}} |u|^{\alpha-1} u_{x} |u_{xx}|^{n} dx ds.$$
(3.10)

Since f is convex, inequality (3.3) is rewritten for $q \ge 1$ odd as

$$\int_{\mathcal{U}_{t}^{+}} |u_{x}(t)|^{q+2} dx + \varepsilon \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u_{x}|^{q} u_{xx}^{2} dx ds
+ \delta \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u_{x}|^{q-1} |u_{xx}|^{n+2} dx ds + \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u_{x}|^{q+3} f''(u) dx ds \leq C_{0}.$$
(3.11)

Using Young's inequality, we get

$$\begin{split} \delta \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u|^{\alpha - 1} \, u_{x} \, |u_{xx}|^{n} \, dx ds \\ &= \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} \left(\frac{1}{c \, t^{\frac{\alpha - 1}{\alpha + 1}}} |u|^{\alpha - 1} \right) \, \left(c \, t^{\frac{\alpha - 1}{\alpha + 1}} \, |u_{x}| \right) \, (\delta |u_{xx}|^{n}) \, dx ds \\ &\leq \frac{1}{t \, c^{\frac{\alpha + 1}{\alpha - 1}}} \frac{\alpha - 1}{\alpha + 1} \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u|^{\alpha + 1} \, dx ds + \frac{c^{k} \, t^{k \frac{\alpha - 1}{\alpha + 1}}}{k} \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u_{x}|^{k} \, dx ds \\ &\quad + \frac{n}{n + 2} \delta^{1 + \frac{2}{n}} \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} |u_{xx}|^{n + 2} \, dx ds, \end{split} \tag{3.12}$$

where c and k are two positive constants such that

$$c^{\frac{\alpha+1}{\alpha-1}} = 4\alpha(\alpha-1)$$
, and $\frac{1}{k} + \frac{n}{n+2} + \frac{\alpha-1}{\alpha+1} = 1$.

Thus,

$$k = \frac{(n+2)(\alpha+1)}{(4+n) - n\alpha},$$

and $k\geq 3$ if $\frac{5+n}{2n+1}\leq \alpha<\frac{4+n}{n}$. Now, we choose q odd such that $2+q\geq k$ and

$$|u_x|^k \le |u_x|^3 + |u_x|^{q+2}.$$

From (3.11) with q = 1 and $q \ge k - 2$ odd, we deduce

$$\int_0^t \int_{\mathcal{U}_s^+} |u_x|^k \, dx ds + \delta \int_0^t \int_{\mathcal{U}_s^+} |u_{xx}|^{n+2} \, dx ds \le C_0. \tag{3.13}$$

Integrating (3.10) over [0, t] gives

$$\int_0^t \int_{\mathcal{U}^+} |u|^{\alpha+1} \, dx ds \le \int_0^t \int_{\mathbb{R}} |u|^{\alpha+1} \, dx ds$$

$$\leq t C_0 + \alpha(\alpha + 1) t \delta \int_0^t \int_{\mathcal{U}_s^+} |u|^{\alpha - 1} u_x |u_{xx}|^n dx ds.$$
 (3.14)

Now, injecting (3.13) and (3.14) into (3.12), it comes

$$\delta \int_{0}^{t} \int_{\mathcal{U}^{+}} |u|^{\alpha - 1} u_{x} |u_{xx}|^{n} dx ds \le C_{0} + \frac{1}{4} \delta \int_{0}^{t} \int_{\mathcal{U}^{+}} |u|^{\alpha - 1} u_{x} |u_{xx}|^{n} dx ds \tag{3.15}$$

that yields

$$\delta \int_0^t \int_{\mathcal{U}_s^+} |u|^{\alpha - 1} \, u_x \, |u_{xx}|^n \, dx ds \le C_0. \tag{3.16}$$

Finally, it is enough to merge (3.16) in (3.10) to obtain (3.9).

Now, let us prove the following lemma.

Lemma 3.3 Assume that f satisfies $0 \le f''(u) \le C(1+|u|^{\beta})$, with $0 \le \beta < \frac{4-n}{n^2}$ and $1 \le n \le 2$. Then, we have the estimate

$$\left| \int_{0}^{t} \int_{\mathbb{R}} f'(u) \, u_{x} \, u_{xx} \, dx ds \right| \leq C_{0} \, \delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}} + C_{0}(n-1) \delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}} \left(\int_{0}^{t} \int_{\mathbb{R}} u^{2} \, dx ds + \varepsilon \int_{0}^{t} \int_{\mathbb{R}} u_{x}^{2} \, dx ds \right).$$
(3.17)

In particular, when n = 1, we have

$$\left| \int_0^t \int_{\mathbb{R}} f'(u) \, u_x \, u_{xx} \, dx ds \right| \le \frac{C_0}{\delta}.$$

Proof. Note that, since $f''(u) \leq C(1+|u|^{\beta})$, then

$$|f'(u) - f'(0)| \le C(|u| + |u|^{\beta+1}).$$

Thus, we derive

$$\left| \int_{0}^{t} \int_{\mathbb{R}} f'(u) u_{x} u_{xx} dx ds \right| \leq C \int_{0}^{t} \int_{\mathbb{R}} |u| |u_{x}| |u_{xx}| dx ds$$

$$+ C \int_{0}^{t} \int_{\mathbb{R}} |u|^{\beta+1} |u_{x}| |u_{xx}| dx ds$$

$$\leq \delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}} \int_{0}^{t} \int_{\mathbb{R}} \left(\delta^{\frac{1}{n}} |u|^{\frac{1}{n}} |u_{x}|^{\frac{1}{n}} |u_{xx}| \right) \left(|u|^{\frac{n-1}{n}} \right) \left(\epsilon^{\frac{n-1}{2n}} |u_{x}|^{\frac{n-1}{n}} \right) dx ds$$

$$+ \delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}} \int_{0}^{t} \int_{\mathbb{R}} \left(\delta^{\frac{1}{n}} |u|^{\beta+\frac{1}{n}} |u_{x}|^{\frac{1}{n}} |u_{xx}| \right) \left(|u|^{\frac{n-1}{n}} \right) \left(\epsilon^{\frac{n-1}{2n}} |u_{x}|^{\frac{n-1}{n}} \right) dx ds.$$

Thanks to the Young inequality and the relation

$$\frac{1}{n} + \frac{n-1}{2n} + \frac{n-1}{2n} = 1,$$

one gets

$$\left| \int_{0}^{t} \int_{\mathbb{R}} f'(u) \, u_{x} \, u_{xx} \, dx ds \right| \leq \delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}} \left(C_{0} \, \delta \int_{0}^{t} \int_{\mathbb{R}} |u|^{n \, \beta+1} |u_{x}| |u_{xx}|^{n} \, dx ds \right.$$

$$+ C_{0} \, \delta \int_{0}^{t} \int_{\mathbb{R}} |u| |u_{x}| |u_{xx}|^{n} \, dx ds$$

$$+ C_{0}(n-1) \int_{0}^{t} \int_{\mathbb{R}} u^{2} \, dx ds + C_{0}(n-1) \, \varepsilon \int_{0}^{t} \int_{\mathbb{R}} u_{x}^{2} \, dx ds \right).$$

$$(3.18)$$

It comes from (3.9) with $1 \le n \le 2, \alpha = 2$ and $\alpha = n\beta + 2 < 1 + \frac{4}{n}$

$$\delta \int_{0}^{t} \int_{\mathbb{R}} |u| |u_{x}|^{n} dx ds + \delta \int_{0}^{t} \int_{\mathbb{R}} |u|^{n\beta+1} |u_{x}|^{n} dx ds \le C_{0}.$$
 (3.19)

Finally, inequalities (3.19) and (3.18) allow us to conclude the proof of Lemma 3.3

We will use this lemma to prove the following proposition.

Proposition 3.2 Let $\varepsilon > 0$, $\delta = o(\varepsilon^{\frac{5n-1}{2(2n-1)}})$ and $f : \mathbb{R} \to \mathbb{R}$ be a flux function satisfying $0 \le f''(u) \le C(1+|u|^{\beta})$, where $0 \le \beta < \frac{4-n}{n^2}$. Then the family solutions $\{u_{\varepsilon,\delta}\}$ of (1.1)-(1.2) satisfies the estimates

$$\int_{\mathbb{R}} u_x(t)^2 dx + \varepsilon \int_0^t \int_{\mathbb{R}} u_{xx}^2 dx ds \le C_0 \delta^{-\frac{1}{n}} \varepsilon^{-\frac{n-1}{2n}}, \tag{3.20}$$

$$\delta \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} u_{x} |u_{xx}|^{n} dx ds \leq C_{0} \left(\frac{\delta}{\varepsilon^{\frac{5n-1}{2(2n-1)}}} \right)^{\frac{2n-1}{2n}}, \tag{3.21}$$

$$\int_{\mathbb{R}} u(t)^2 dx + \varepsilon \int_0^t \int_{\mathbb{R}} u_x^2 dx ds + \delta \int_0^t \int_{\mathbb{R}} |u_x| |u_{xx}|^n dx ds \le ||u_0||_2^2 + C_0 \left(\frac{\delta}{\varepsilon^{\frac{5n-1}{2(2n-1)}}}\right)^{\frac{2n-1}{2n}}$$
(3.22)

Proof. First, equality (3.2) for $1 \le n \le 2$ and $\alpha = 1$ reads as

$$\int_{\mathbb{R}} u(t)^2 dx + 2\varepsilon \int_0^t \int_{\mathbb{R}} u_x^2 dx ds = \|u_0\|_2^2 + 2\delta \int_0^t \int_{\mathbb{R}} u_x |u_{xx}|^n dx ds.$$
 (3.23)

Since $1 \le n \le 2$, we have

$$\delta \int_{0}^{t} \int_{\mathcal{U}_{+}^{\pm}} u_{x} |u_{xx}|^{n} dx ds \leq \delta \int_{0}^{t} \int_{\mathcal{U}_{+}^{\pm}} u_{x} |u_{xx}| dx ds + \delta \int_{0}^{t} \int_{\mathcal{U}_{+}^{\pm}} u_{x} u_{xx}^{2} dx ds. \tag{3.24}$$

From (3.3) with q = 1, we get

$$\varepsilon \int_0^t \int_{\mathcal{U}_s^+} u_x u_{xx}^2 \, dx ds \le C_0, \tag{3.25}$$

which is equivalent to

$$\delta \int_0^t \int_{\mathcal{U}^+} u_x u_{xx}^2 \, dx ds \le C_0 \, \frac{\delta}{\varepsilon}. \tag{3.26}$$

We can also write

$$\delta \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} u_{x} |u_{xx}| dxds = \delta^{\frac{2n-1}{2n}} \varepsilon^{-\frac{n-1}{4n}} \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} u_{x} \left(\delta^{\frac{1}{2n}} \varepsilon^{\frac{n-1}{4n}} |u_{xx}|\right) dxds.$$

$$\leq \frac{\delta^{\frac{2n-1}{2n}} \varepsilon^{-\frac{n-1}{4n}}}{2\varepsilon} \left(\varepsilon \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} u_{x}^{2} dxds + \varepsilon \delta^{\frac{1}{n}} \varepsilon^{\frac{n-1}{2n}} \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} u_{xx}^{2} dxds\right)$$

$$\leq \frac{\delta^{\frac{2n-1}{2n}}}{\varepsilon^{\frac{5n-1}{4n}}} \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} \varepsilon u_{x}^{2} dxds + \delta^{\frac{2n+1}{2n}} \varepsilon^{\frac{n-1}{4n}} \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} u_{xx}^{2} dxds. \tag{3.27}$$

Putting (3.27) and (3.26) in (3.24) produces

$$\delta \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} u_{x} |u_{xx}|^{n} dxds \leq C_{0} \frac{\delta}{\varepsilon} + C_{0} \delta^{\frac{2n+1}{2n}} \varepsilon^{\frac{n-1}{4n}} \int_{0}^{t} \int_{\mathbb{R}} u_{xx}^{2} dxds$$

$$+ C_{0} \frac{\delta^{\frac{2n-1}{2n}}}{\varepsilon^{\frac{5n-1}{4n}}} \int_{0}^{t} \int_{\mathbb{R}} \varepsilon u_{x}^{2} dxds. \tag{3.28}$$

Since $\delta = o(\varepsilon^{\frac{5n-1}{2(2n-1)}})$, by injecting (3.28) in (3.23), we obtain

$$\int_{\mathbb{R}} u(t)^2 dx + \varepsilon \int_0^t \int_{\mathbb{R}} u_x^2 dx ds \le ||u_0||_2^2 + C_0 \frac{\delta}{\varepsilon} + C_0 \delta^{\frac{2n+1}{2n}} \varepsilon^{\frac{n-1}{4n}} \int_0^t \int_{\mathbb{R}} u_{xx}^2 dx ds.$$
 (3.29)

Inequality (3.7) is rewritten with q = 0 as

$$\int_{\mathbb{R}} u_x(t)^2 dx + 2\varepsilon \int_0^t \int_{\mathbb{R}} u_{xx}^2 dx ds
= \int_{\mathbb{R}} (u_0')^2 dx + 2 \int_0^t \int_{\mathbb{R}} f'(u) u_x u_{xx} dx ds.$$
(3.30)

Lemma 3.3 points to

$$\int_{\mathbb{R}} u_x(t)^2 dx + 2\varepsilon \int_0^t \int_{\mathbb{R}} u_{xx}^2 dx ds \le C_0 + C_0 \delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}}
+ C_0(n-1)\delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}} \left(\int_0^t \int_{\mathbb{R}} u^2 dx ds + \varepsilon \int_0^t \int_{\mathbb{R}} u_x^2 dx ds \right),$$
(3.31)

and inequality (3.29) implies

$$\int_{\mathbb{R}} u_x(t)^2 dx + 2\varepsilon \int_0^t \int_{\mathbb{R}} u_{xx}^2 dx ds \le C_0 + C_0 \delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}}
+ C_0 (n-1) \delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}} \left(\|u_0\|_2^2 + C_0 \frac{\delta}{\varepsilon} + C_0 \delta^{\frac{2n+1}{2n}} \varepsilon^{\frac{n-1}{4n}} \int_0^t \int_{\mathbb{R}} u_{xx}^2 dx ds \right).$$
(3.32)

Note that if $\delta = o(\varepsilon)$, this inequality reduces to

$$\int_{\mathbb{R}} u_{x}(t)^{2} dx + 2 \varepsilon \int_{0}^{t} \int_{\mathbb{R}} u_{xx}^{2} dx ds \leq C_{0} \delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}} + C_{0} \delta^{\frac{2n-1}{2n}} \epsilon^{-\frac{5n-1}{4n}} \left(\varepsilon \int_{0}^{t} \int_{\mathbb{R}} u_{xx}^{2} dx ds \right).$$
(3.33)

Here, $\delta = o(\varepsilon^{\frac{5n-1}{2(2n-1)}})$ which is equivalent to $\delta^{\frac{2n-1}{2n}} = o(\varepsilon^{\frac{5n-1}{4n}})$ offers (3.20).

Now, injecting (3.20) in (3.29) gives

$$\int_{\mathbb{R}} u(t)^{2} dx + \varepsilon \int_{0}^{t} \int_{\mathbb{R}} u_{x}^{2} dx ds \leq \|u_{0}\|_{2}^{2} + C_{0} \frac{\delta}{\varepsilon} + C_{0} \delta^{\frac{2n+1}{2n}} e^{\frac{n-1}{4n}} \left(\frac{\delta^{-\frac{1}{n}} e^{-\frac{n-1}{2n}}}{\varepsilon} \right) \\
\leq \|u_{0}\|_{2}^{2} + \frac{\delta^{\frac{2n-1}{2n}}}{\varepsilon^{\frac{5n-1}{4n}}} \\
\leq \|u_{0}\|_{2}^{2} + C_{0} \left(\delta / \varepsilon^{\frac{5n-1}{2(2n-1)}} \right)^{\frac{2n-1}{2n}} \\
\leq C_{0}. \tag{3.34}$$

Finally, combining (3.20), (3.34) and (3.28), we have

$$\delta \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} u_{x} |u_{xx}|^{n} dx ds \leq C_{0} \frac{\delta}{\varepsilon} + C_{0} \delta^{\frac{2n+1}{2n}} \epsilon^{\frac{n-1}{4n}} \left(\frac{\delta^{-\frac{1}{n}} \epsilon^{-\frac{n-1}{2n}}}{\varepsilon} \right) + C_{0} \frac{\delta^{\frac{2n-1}{2n}}}{\varepsilon^{\frac{5n-1}{4n}}} \\
\leq C_{0} \frac{\delta}{\varepsilon} + 2 C_{0} \frac{\delta^{\frac{2n-1}{2n}}}{\varepsilon^{\frac{5n-1}{4n}}} \\
\leq C_{0} \frac{\delta^{\frac{2n-1}{2n}}}{\varepsilon^{\frac{5n-1}{4n}}} \left(2 + \varepsilon^{\frac{n-1}{4n}} \delta^{\frac{1}{2n}} \right), \tag{3.35}$$

and δ and ε being bounded, inequality (3.21) is found.

Inequality (3.22) directly follows from (3.21) and (3.23), and this achieves the proof of Proposition 3.2.

Proposition 3.3 Let $\varepsilon > 0$, and $\delta = o(\varepsilon^{\frac{5n-1}{2(2n-1)}})$, and $f : \mathbb{R} \to \mathbb{R}$ be a flux function satisfying $0 \le f''(u) \le C(1+|u|^{\beta})$, where $0 \le \beta < \frac{4-n}{n^2}$. Then, the family solutions $\{u^{\varepsilon,\delta}\}$ of (1.1)-(1.2) satisfies

$$(a) \qquad \varepsilon \int_{0}^{t} \int_{\mathbb{R}} u_{x}^{2} dx ds \leq C_{0},$$

$$(b) \qquad \delta \int_{0}^{t} \int_{\mathbb{R}} u_{x}^{-} |u_{xx}|^{n} dx ds \leq C_{0},$$

$$(c) \qquad \delta \int_{0}^{t} \int_{\mathcal{U}_{s}^{+}} u_{x} |u_{xx}|^{n} dx ds \leq C_{0} \left(\delta/\varepsilon^{\frac{5n-1}{2(2n-1)}}\right)^{\frac{2n-1}{2n}},$$

$$(d) \qquad \delta^{\frac{2}{n}} \int_{0}^{t} \int_{\mathbb{R}} u_{xx}^{2} dx ds \leq C_{0} \left(\delta/\varepsilon^{\frac{3n-1}{2}}\right)^{\frac{1}{n}},$$

where $u_x^- = \max(0, -u_x)$.

Proof. Assertions (a) and (b) come from (3.22), while (c) corresponds to (3.21). Thanks to (3.20), we have

$$\delta^{\frac{2}{n}} \int_0^t \int_{\mathbb{R}} u_{xx}^2 \, dx ds \leq C_0 \, \delta^{\frac{2}{n}} \varepsilon^{-1} \delta^{-\frac{1}{n}} \varepsilon^{-\frac{n-1}{2n}}$$
$$\leq C_0 \, \delta^{\frac{1}{n}} \varepsilon^{-\frac{3n-1}{2n}},$$

that is (d).

4 Proof of convergence

We have now all the tools to prove the main result given in Theorem 2.1. We first remind the notion of entropy measure-valued solution [5].

Definition 4.1 Assume that $u_0 \in L^1(\mathbb{R}) \cap L^q(\mathbb{R})$ and $f \in \mathcal{C}(\mathbb{R})$ satisfies the growth condition

$$|f(u)| \le \mathcal{O}(|u|^m) \text{ as } |u| \to \infty, \qquad \text{for some } m \in [0, q).$$
 (4.1)

A Young measure ν is called an entropy measure-valued (e.m.-v.) solution of (1.3)-(1.4) if

$$\langle \nu, | u - k | \rangle_t + \langle \nu, \operatorname{sgn}(u - k)(f(u) - f(k)) \rangle_x \le 0, \quad \text{for all } k \in \mathbb{R},$$
 (4.2)

in the sense of distributions on $\mathbb{R} \times (0,T)$, and

$$\lim_{t\to 0^+} \frac{1}{t} \int_0^t \int_K \langle \nu_{(x,s)}, |u-u_0(x)| \rangle \, dx ds = 0, \quad \text{for all compact set } K \subseteq \mathbb{R}.$$
 (4.3)

We will apply the following Young measure representation theorem [10] in a suitable L^q space to show that ν satisfies (4.2).

Lemma 4.1 Let $\{u_n\}_{n\in\mathbb{N}}$ be a bounded sequence in $L^{\infty}((0,T);L^q(\mathbb{R}))$. Then there exists a subsequence denoted by $\{\tilde{u}_n\}_{n\in\mathbb{N}}$ and a weakly- \star measurable mapping $\nu:\mathbb{R}\times(0,T)\to Prob(\mathbb{R})$ such that, for all functions $h\in\mathcal{C}(\mathbb{R})$ satisfying (4.1), $\langle\nu_{(x,t)},h\rangle$ belongs to $L^{\infty}((0,T);L^{q/m}_{loc}(\mathbb{R}))$ and the following limit representation holds:

$$\iint_{\mathbb{R}\times(0,T)} \langle \nu_{(x,t)}, h \rangle \ \phi(x,t) \ dxdt = \lim_{n \to \infty} \iint_{\mathbb{R}\times(0,T)} h(\tilde{u}_n(x,t)) \ \phi(x,t) \ dxdt, \tag{4.4}$$

for all $\phi \in L^1(\mathbb{R} \times (0,T)) \cap L^\infty(\mathbb{R} \times (0,T))$.

Conversely, given ν , there exists a sequence $\{u_n\}$ satisfying the same conditions as above and such that (4.4) holds for any h satisfying (4.1).

Let us start proving (4.2) thanks to Proposition 3.3 and assuming that, in the regime $\delta = o(\varepsilon^{\frac{3n-1}{2}}; \varepsilon^{\frac{5n-1}{2(2n-1)}})$, initial data $u_0^{\varepsilon,\delta}$ converge to u_0 as follows

$$\begin{cases} \lim_{\varepsilon \to 0} u_0^{\varepsilon, \delta} = u_0 & \text{in } L^1(\mathbb{R}) \cap L^q(\mathbb{R}) \\ ||u_0^{\varepsilon, \delta}||_{L^2} \le ||u_0||_{L^2}. \end{cases}$$
(4.5)

Standard regularizations of $\operatorname{sgn}(u-k)(f(u)-f(k))$ and |u-k| $(k \in \mathbb{R})$ are used, to show that it is enough to prove the existence of a bounded measure $\mu \leq 0$ such that

$$\eta(u)_t + q(u)_x \longrightarrow \mu \quad \text{in} \quad \mathcal{D}'(\mathbb{R} \times (0, T))$$
 (4.6)

for an arbitrary convex function η (we assume that η' and η'' are bounded on \mathbb{R}). To prove (4.6), we rewrite the formula (3.1) as

$$\eta(u)_t + q(u)_x = \mu_1 + \mu_2 + \mu_3 + \mu_4, \tag{4.7}$$

with

$$\mu_1 := \varepsilon \left(\eta'(u) u_x \right)_x,$$

$$\mu_2 := -\varepsilon \eta''(u) u_x^2,$$

$$\mu_3 := \delta \left(\eta'(u) g(u_{xx}) \right)_x,$$

$$\mu_4 := -\delta \eta''(u) u_x g(u_{xx}).$$

Let's $\theta \in C_0^{\infty}(\mathbb{R} \times (0,T))$ a test function. We have

$$|\langle \mu_{1}, \theta \rangle| \leq \varepsilon \int_{0}^{T} \int_{\mathbb{R}} |\theta_{x} \eta'(u) u_{x}| dx ds$$

$$\leq C \varepsilon \int_{0}^{T} \int_{\mathbb{R}} |\theta_{x} u_{x}| dx ds$$

$$\leq C ||\theta_{x}||_{L^{2}} \varepsilon^{1/2} \left(\varepsilon \int_{0}^{T} \int_{\mathbb{R}} u_{x}^{2} dx ds \right)^{1/2}$$

$$\leq C ||\theta_{x}||_{L^{2}} \varepsilon^{1/2} \left(\varepsilon \int_{0}^{T} \int_{\mathbb{R}} u_{x}^{2} dx ds \right)^{1/2}. \tag{4.8}$$

According to Proposition 3.3-(a),

$$|\langle \mu_1, \theta \rangle| \le C||\theta_x||_{L^2} \varepsilon^{1/2}$$
 (4.9)

and $\mu_1 \to 0$ when $\varepsilon \to 0$. Thereafter,

$$|\langle \mu_2, \theta \rangle| \leq \varepsilon \int_0^T \int_{\mathbb{R}} |\theta \eta''(u) u_x^2| dx ds$$

$$\leq \varepsilon C ||\theta||_{L^{\infty}} \int_0^T \int_{\mathbb{R}} u_x^2 dx ds. \tag{4.10}$$

and μ_2 is bounded thanks to Proposition 3.3–(a). Moreover, since η is convex, we have for a non negative function θ

$$<\mu_2, \theta> = -\varepsilon \int_0^T \int_{\mathbb{D}} \theta \, \eta''(u) \, u_x^2 \, dx ds \le 0.$$
 (4.11)

Concerning μ_3 , we have

$$|\langle \mu_{3}, \theta \rangle| \leq \delta \int_{0}^{T} \int_{\mathbb{R}} |\theta_{x} \eta'(u)| u_{xx}|^{n} |dxds$$

$$\leq C \delta \int_{0}^{T} \int_{\mathbb{R}} |\theta_{x}| |u_{xx}|^{n} dxds$$

$$\leq C ||\theta_{x}||_{L^{\frac{2}{2-n}}} \left(\delta^{\frac{2}{n}} \int_{0}^{t} \int_{\mathbb{R}} u_{xx}^{2} dxds \right)^{\frac{n}{2}}.$$

$$(4.12)$$

Remark that when n=2, the space $L^{\frac{2}{2-n}}$ is replaced by L^{∞} . From Proposition 3.3–(d), one gets

$$|<\mu_3, \theta>| \le C_0 ||\theta_x||_{L^{\frac{2}{2-n}}} \left(\delta/\varepsilon^{\frac{3n-1}{2}}\right)^{\frac{1}{2}},$$

and $\mu_3 \to 0$ because $\delta = o(\varepsilon^{\frac{3n-1}{2}})$.

Finally, μ_4 is split as

$$\mu_4 = \delta \eta''(u) u_x^+ |u_{xx}|^n - \delta \eta''(u) u_x^- |u_{xx}|^n.$$

=: $\mu_4^+ + \mu_4^-$

where $u_x^+ = \max(0, u_x)$ and $u_x^- = \max(0, -u_x)$, and we have $u_x = u_x^+ - u_x^-$. On the one hand,

$$|\langle \mu_{4}^{-}, \theta \rangle| \leq \delta \int_{0}^{T} \int_{\mathbb{R}} |\theta \, \eta''(u) \, u_{x}^{-} |u_{xx}|^{n} |dx ds$$

$$\leq C \delta \int_{0}^{T} \int_{\mathbb{R}} |\theta \, u_{x}^{-} |u_{xx}|^{n} |dx ds$$

$$\leq C ||\theta||_{L^{\infty}} \delta \int_{0}^{T} \int_{\mathbb{R}} u_{x}^{-} |u_{xx}|^{n} dx ds, \tag{4.13}$$

and according to Proposition 3.3-(b).

$$|<\mu_4^-, \theta>| \le C_0 ||\theta||_{L^{\infty}}.$$

Again, $\eta'' \geq 0$, we have

$$<\mu_4^-, \theta> = -\delta \int_0^T \int_{\mathbb{R}} \theta \, \eta''(u) \, u_x^- |u_{xx}|^n \, dx ds \le 0.$$
 (4.14)

Similarly,

$$| < \mu_{4}^{+}, \theta > | \leq \delta \int_{0}^{T} \int_{\mathbb{R}} |\theta| \, \eta''(u) \, u_{x}^{+} |u_{xx}|^{n} \, dx ds$$

$$\leq C \, ||\theta||_{L^{\infty}} \delta \int_{0}^{T} \int_{\mathbb{R}} u_{x}^{+} |u_{xx}|^{n} \, dx ds$$

$$\leq C \, ||\theta||_{L^{\infty}} \delta \int_{0}^{T} \int_{\mathcal{U}_{s}^{+}} u_{x} |u_{xx}|^{n} \, dx ds. \tag{4.15}$$

Proposition 3.3-(c) implies

$$|<\mu_4^+,\theta>| \le C ||\theta||_{L^{\infty}} (\delta/\varepsilon^{\frac{5n-1}{2(2n-1)}})^{\frac{2n-1}{2n}},$$
 (4.16)

and $\mu_4^+ \to 0$ because $\delta = o(\varepsilon^{\frac{n(n+1)}{2}})$.

Condition (4.6) is proved and μ is non positive bounded measure.

To show (4.3), we follow DiPerna [5] and Szepessy [12] arguments. We check that, for each compact set K of \mathbb{R} ,

$$\lim_{t \to 0+} \frac{1}{t} \int_0^t \int_K \langle \nu_{(x,s)}, |u - u_0(x)| \rangle dx ds =$$

$$\lim_{t \to 0+} \lim_{\varepsilon \to 0+} \frac{1}{t} \int_0^t \int_K \left| u^{\varepsilon, \delta}(x, s) - u_0(x) \right| dx ds = 0.$$

Thanks to Jensen's inequality, for m(K) the Lebesgue measure of K,

$$\frac{1}{t} \int_0^t \int_K \left| u^{\varepsilon,\delta}(x,s) - u_0(x) \right| \, dx ds \le m(K)^{1/2} \left(\frac{1}{t} \int_0^t \int_K \left(u^{\varepsilon,\delta}(x,s) - u_0(x) \right)^2 \, dx ds \right)^{1/2}$$

and we claim that

$$\lim_{t \to 0+} \lim_{\varepsilon \to 0+} \frac{1}{t} \int_0^t \int_K \left(u^{\varepsilon, \delta}(x, s) - u_0(x) \right)^2 dx ds = 0.$$

Indeed, let $K_i \subset K_{i+1}$ (i=0,1,...) be an increasing sequence of compact sets such that $K_0=K$ and $\bigcup_{i\geq 0}K_i=\mathbb{R}$. Using the identity $u^2-u_0^2-2u_0(u-u_0)=(u-u_0)^2$, we get for all i=0,1,...

$$\frac{1}{t} \int_{0}^{t} \int_{K} \left(u^{\varepsilon,\delta}(\cdot,s) - u_{0} \right)^{2} dx ds$$

$$\leq \frac{1}{t} \int_{0}^{t} \left(\int_{K_{i}} |u^{\varepsilon,\delta}(\cdot,s)|^{2} dx - \int_{K_{i}} u_{0}^{2} dx - 2 \int_{K_{i}} u_{0} \left(u^{\varepsilon,\delta}(\cdot,s) - u_{0} \right) dx \right) ds$$

$$\leq \int_{\mathbb{R} \setminus K_{i}} u_{0}^{2} dx + \frac{1}{t} \int_{0}^{t} \left(\int_{\mathbb{R}} |u^{\varepsilon,\delta}(\cdot,s)|^{2} dx - \int_{\mathbb{R}} u_{0}^{2} dx \right)$$

$$+ \frac{2}{t} \int_{0}^{t} \left| \int_{K_{i}} u_{0} \left(u^{\varepsilon,\delta}(\cdot,s) - u_{0} \right) dx \right| ds. \tag{4.17}$$

Clearly, the first term of the right hand side verifies

$$\lim_{i \to \infty} \int_{\mathbb{R} \setminus K_i} u_0^2 \ dx = 0.$$

Using (3.22) and (4.5), we obtain

$$\begin{split} \int_{\mathbb{R}} |u^{\varepsilon,\delta}(\cdot,s)|^2 \, dx - \int_{\mathbb{R}} u_0^2 \, dx &= \int_{\mathbb{R}} |u^{\varepsilon,\delta}(\cdot,s)|^2 \, dx - \int_{\mathbb{R}} (u_0^{\delta,\varepsilon})^2 \, dx + \int_{\mathbb{R}} (u_0^{\delta,\varepsilon})^2 \, dx - \int_{\mathbb{R}} u_0^2 \, dx \\ &\leq \int_{\mathbb{R}} |u^{\varepsilon,\delta}(\cdot,s)|^2 \, dx - \int_{\mathbb{R}} (u_0^{\delta,\varepsilon})^2 \, dx \\ &\leq C_0 \, (\delta/\varepsilon^{\frac{5n-1}{2(2n-1)}})^{\frac{2n-1}{2n}}, \end{split}$$

and the second term of right hand side goes to zero when $\varepsilon \to 0$. To estimate the last term of (4.17), we consider $\{\theta_k\}_{k\in\mathbb{N}} \subset \mathcal{C}_0^{\infty}(\mathbb{R})$ being such that

$$\lim_{k \to \infty} \theta_k = u_0 \quad \text{in} \quad L^2(\mathbb{R}).$$

The Cauchy-Schwarz inequality gives

$$\left| \int_{K_{i}} u_{0} \left(u^{\varepsilon,\delta}(\cdot,s) - u_{0} \right) dx \right| \leq \int_{K_{i}} \left| u_{0} - \theta_{k} \right| \left| u^{\varepsilon,\delta}(\cdot,s) - u_{0} \right| dx$$

$$+ \left| \int_{K_{i}} \theta_{k} \left(u^{\varepsilon,\delta}_{0} - u_{0} \right) + \int_{K_{i}} \theta_{k} \left(u^{\varepsilon,\delta}(\cdot,s) - u^{\varepsilon,\delta}_{0} \right) dx \right|$$

$$\leq \| u_{0} - \theta_{k} \|_{L^{2}(\mathbb{R})} \left(\| u^{\varepsilon,\delta}(\cdot,s) \|_{L^{2}(\mathbb{R})} + \| u_{0} \|_{L^{2}(\mathbb{R})} \right)$$

$$+ \| \theta_{k} \|_{L^{2}(\mathbb{R})} \| u^{\varepsilon,\delta}_{0} - u_{0} \|_{L^{2}(\mathbb{R})} + \left| \int_{0}^{s} \int_{K_{i}} \theta_{k} \, \partial_{s} u^{\varepsilon,\delta} \, dx d\tau \right|.$$

We deduce from (3.22)

$$||u_0 - \theta_k||_{L^2(\mathbb{R})} \left(||u^{\varepsilon,\delta}(\cdot,s)||_{L^2(\mathbb{R})} + ||u_0||_{L^2(\mathbb{R})} \right) \le \left(||u_0||_{L^2(\mathbb{R})} + C \right) ||u_0 - \theta_k||_{L^2(\mathbb{R})},$$

which goes to zero when $k \to \infty$ because $\lim_{\varepsilon \to 0+} \|u_0^{\varepsilon,\delta} - u_0\|_{L^2(\mathbb{R})} = 0$ from (4.5). It remains to prove that

$$\lim_{t \to 0+} \lim_{\varepsilon \to 0+} \frac{1}{t} \int_0^t \left| \int_0^s \int_{K_i} \theta_k \, \partial_s u^{\varepsilon, \delta} \, dx d\tau \right| \, ds = 0.$$

The equation (1.1) provides

$$\left| \int_{0}^{s} \int_{K_{i}} \theta_{k} \, \partial_{s} u^{\varepsilon, \delta} \, dx d\tau \right| = \left| \int_{0}^{s} \int_{K_{i}} \theta_{k} \left(-f(u^{\varepsilon, \delta})_{x} + \varepsilon \, u_{xx}^{\varepsilon, \delta} + \delta \, g(u_{xx}^{\varepsilon, \delta})_{x} \right) dx d\tau \right|$$

$$\leq \int_{0}^{s} \int_{K_{i}} \left| (\theta_{k})_{x} \, f(u^{\varepsilon, \delta}) \right| \, dx d\tau$$

$$+ \varepsilon \int_{0}^{s} \int_{K_{i}} \left| (\theta_{k})_{x} \, u_{x}^{\varepsilon, \delta} \right| dx d\tau$$

$$+ \delta \int_{0}^{s} \int_{K_{i}} \left| (\theta_{k})_{x} \, g(u_{xx}^{\varepsilon, \delta}) \right| \, dx d\tau$$

$$=: I_{1} + I_{2} + I_{3}.$$

To deal with I_1 , the function f being such that

$$0 \le f''(u) \le C(1 + |u|^{\beta}),$$

with $\beta < \frac{4-n}{n^2}$, then for $m = \beta + 2$

$$|f(u)| \le C(1 + |u|^m).$$

Thus, Proposition 3.1 with $\alpha = m - 1 = \beta + 1 < \frac{4-n}{n^2} + 1 < \frac{4}{n^2} - \frac{1}{n} + 1 < \frac{4}{n} + 1$ is applied

$$\int_0^s \int_{K_i} |u^{\varepsilon,\delta}|^m \, dx \, d\tau \le \int_0^s \int_{\mathbb{R}} |u^{\varepsilon,\delta}|^m \, dx \, d\tau \le C \, s. \tag{4.18}$$

Then we can write

$$I_{1} = \int_{0}^{s} \int_{K_{i}} \left| (\theta_{k})_{x} \right| \left| f \left(u^{\varepsilon, \delta} \right) \right| dx d\tau$$

$$\leq C \int_{0}^{s} \int_{K_{i}} \left| (\theta_{k})_{x} \right| dx d\tau + C \int_{0}^{s} \int_{K_{i}} \left| (\theta_{k})_{x} \right| \left| u^{\varepsilon, \delta} \right|^{m} dx d\tau$$

$$\leq C \int_{0}^{s} \int_{K_{i}} \left| (\theta_{k})_{x} \right| dx d\tau + C \left\| (\theta_{k})_{x} \right\|_{L^{\infty}(\mathbb{R})} \int_{0}^{s} \int_{K_{i}} \left| u^{\varepsilon, \delta} \right|^{m} dx d\tau$$

$$\leq C s \left\| (\theta_{k})_{x} \right\|_{L^{1}(\mathbb{R})} + C s \left\| (\theta_{k})_{x} \right\|_{L^{\infty}(\mathbb{R})}. \tag{4.19}$$

Again, thanks to Proposition 3.3-(a) we have

$$I_{2} = \varepsilon \int_{0}^{s} \int_{K_{i}} \left| (\theta_{k})_{x} \right| \left| u_{x}^{\varepsilon, \delta} \right| dx d\tau$$

$$\leq \left[\varepsilon \int_{0}^{s} \int_{K_{i}} \left| (\theta_{k})_{x} \right|^{2} dx d\tau \right]^{\frac{1}{2}} \left[\varepsilon \int_{0}^{s} \int_{K_{i}} \left| u_{x}^{\varepsilon, \delta} \right|^{2} dx d\tau \right]^{\frac{1}{2}}$$

$$\leq C \varepsilon^{\frac{1}{2}} s^{\frac{1}{2}} \| (\theta_{k})_{x} \|_{L^{2}(\mathbb{R})}. \tag{4.20}$$

Finally, we have

$$\begin{split} I_{3} &= \delta \int_{0}^{s} \int_{K_{i}} \left| \left(\theta_{k} \right)_{x} g\left(u_{xx}^{\varepsilon, \delta} \right) \right| \, dx d\tau \\ &= \int_{0}^{s} \int_{K_{i}} \delta \left| \left(\theta_{k} \right)_{x} \right| \left| u_{xx}^{\varepsilon, \delta} \right|^{n} \, dx d\tau \\ &\leq \left[\int_{0}^{s} \int_{K_{i}} \left| \left(\theta_{k} \right)_{x} \right|^{\frac{2}{2-n}} \, dx d\tau \right]^{\frac{2-n}{2}} \left[\delta^{\frac{2}{n}} \int_{0}^{s} \int_{K_{t, \varepsilon, \delta^{-}}} \left| u_{xx}^{\varepsilon, \delta} \right|^{2} \, dx d\tau \right]^{\frac{n}{2}} \\ &\leq s^{\frac{2-n}{2}} \left\| \left(\theta_{k} \right)_{x} \right\|_{L^{\frac{2}{2-n}}(\mathbb{R})} \left[\delta^{\frac{2}{n}} \int_{0}^{s} \int_{K_{t, \varepsilon, \delta^{-}}} \left| u_{xx}^{\varepsilon, \delta} \right|^{2} \, dx d\tau \right]^{\frac{n}{2}} \end{split}$$

and using Proposition 3.3-(d), one gets

$$I_3 \qquad \leq C \, s^{\frac{2-n}{2}} \left(\frac{\delta}{\varepsilon^{\frac{3n-1}{2}}} \right)^{\frac{1}{2}} \left\| \left(\theta_k \right)_x \right\|_{L^{\frac{2}{2-n}}(\mathbb{R})}. \tag{4.21}$$

Combining (4.19), (4.20) and (4.21) produces

$$\begin{split} \lim_{t \to 0+} \lim_{\varepsilon \to 0+} \frac{1}{t} \int_0^t \left| \int_0^s \int_{K_i} \theta_k \, u_s^{\varepsilon, \delta} \, dx d\tau \right| ds \\ & \leq \lim_{t \to 0+} \lim_{\varepsilon \to 0+} \frac{C}{t} \left(t^2 \left(\left\| \left(\theta_k \right)_x \right\|_{L^1(\mathbb{R})} + \left\| \left(\theta_k \right)_x \right\|_{L^\infty(\mathbb{R})} \right) + \varepsilon^{\frac{1}{2}} t^{\frac{3}{2}} \left\| \left(\theta_k \right)_x \right\|_{L^2(\mathbb{R})} \\ & + t^{\frac{4-n}{2}} \left(\frac{\delta}{\varepsilon^{\frac{3n-1}{2}}} \right)^{\frac{1}{2}} \left\| \left(\theta_k \right)_x \right\|_{L^{\frac{2}{2-n}}(\mathbb{R})} \right) \\ & \leq \lim_{t \to 0+} \lim_{\varepsilon \to 0+} C \left(t + \varepsilon^{\frac{1}{2}} t^{\frac{1}{2}} + t^{\frac{2-n}{2}} \left(\frac{\delta}{\varepsilon^{\frac{3n-1}{2}}} \right)^{\frac{1}{2}} \right), \end{split}$$

and since $\delta = o(\varepsilon^{\frac{3n-1}{2}})$, we obtain the desired conclusion, and Theorem 2.1 is proved.

Acknowledgements

This work is part of the research project DeDiLHar, support by the PICS 2019-2021 CNRS-FCT France-Portugal. J.M.C. Correia was also partially supported by UID/MAT/04674/2019, FCT, Portugal.

References

- [1] Bedjaoui, N., Correia, J. M. C., Mammeri, Y. On a limit of perturbed conservation laws with diffusion and non-positive dispersion, *Commun. Math. Sci.*, 14; 2016, no. 6, pp. 1501-1516.
- [2] Brenier Y., Levy D. Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations. *Physica D* 137, 2000, pp. 277-294.
- [3] Correia J.M.C., LeFloch P.G. Nonlinear Diffusive-Dispersive Limits for Multidimensional Conservation Laws, in *Nonlinear Partial Differential Equations*. World Scientific, Singapore, 1998.
- [4] Correia J.M.C. Zero Limit for Multi-D Conservation Laws with Nonlinear Diffusion and Dispersion, in A.A.Pinto and D. Zilberman, editors, Modeling, Dynamics, Optimization and Bioeconomics II, vol. 195 of Springer Proceedings in Mathematics & Statistics, pp. 147-163. Springer Intern. Publ., Cham, 2017.
- [5] DiPerna R.J. Measure-Valued Solutions to Conservation Laws. Arch. Rat. Mech. Anal., 88(3) 1985, pp.223-270.
- [6] Kružkov S.N. First order quasilinear equations in several independent variables. *Mat. Sb.*, 81; 1970, p.285; *Math. USSR Sb.*, 10; 1970, p.217.
- [7] Lax P.D., Levermore C.D. The small dispersion limit of the Korteweg-de Vries equation. Comm. Pure Appl. Math., 36; 1983, I, p.253, II, p.571, III, p.809.
- [8] P. G. LeFloch and R. Natalini. Conservation laws with vanishing nonlinear diffusion and dispersion, *Nonlinear Analysis* 36, 1999, pp. 213–230
- [9] Perthame B., Ryzhik L. Moderate Dispersion in Conservation Laws with Convex Fluxes, Comm. Math. Sci. 5(2), 2007, pp. 473–484.
- [10] Schonbek M. Convergence of Solutions to Nonlinear Dispersive Equations. Comm. Part. Diff. Equa., 7; 1982, p.959.
- [11] Slemrod M. From Boltzmann to Euler: Hilbert's 6th problem revisited, Computers and Mathematics with Applications 65, 2013, pp. 1497-1501.
- [12] Szepessy A. An Existence Result for Scalar Conservation Laws using Measure-Valued Solutions. Comm. Part. Diff. Equa., 14; 1989, p.1329.
- [13] Whitham G.B. Linear and Nonlinear Waves. Pure & Appl. Math., Wiley-Interscience Publ., New York, 1974.