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The equivalent Dancoff-factor cell (EDC) method was implemented in APOLLO3 R and was coupled to the newly developed subgroup method based on mathematical probability tables and on SPH corrections. The EDC method reduces a factor up to 50 in the self-shielding time in PWR assembly calculations, compared with the Multi-Cell Approximation (MCA) of the collision probability method. The EDC method avoids the similar material assumption (SMA), which can cause the MCA calculation an error of more than 600 pcm in k eff in assembly calculations with totally different resonant materials. In UOX and MOX cell depletion calculations, the errors due to the SMA in both the EDC and MCA methods are limited to less than 50 pcm. This work demonstrates that the EDC-based subgroup method is accurate and efficient for PWR fuel cell and assembly calculations.

Introduction

Resonance self-shielding is a primary step in the solution of the multigroup transport equation, since the precision of the solution is principally dependent on the accuracy of self-shielding models. Recently a new subgroup method, which is based on mathematical probability tables [START_REF] Ribon | Les tables de probabilités. Application au traitement des sections efficaces pour la neutronique[END_REF][START_REF] Hébert | Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes[END_REF], and which applies the super-homogenization (SPH) method to account for the angular dependence of multigroup cross sections, was developed in APOLLO3 R [START_REF] Mao | Application of the SPH method to account for the angular dependence of multigroup resonant cross sections in thermal reactor calculations[END_REF], which is denoted hereafter the SG+SPH method.

In the preliminary numerical results presented in the previous study [START_REF] Mao | Application of the SPH method to account for the angular dependence of multigroup resonant cross sections in thermal reactor calculations[END_REF], this method gives precise results in the calculations of PWR fuel cells and assemblies: the errors in multiplication factors are less than 60 pcm compared with the Monte Carlo references. However, the SG+SPH method takes excessively long CPU time in assembly depletion calculations, because of its mixture treatment: with the ring division of the fuel pins, there appears a large number of mixtures of resonant isotopes during the depletion; In our current implementation of the subgroup method, mixtures have to be computed one-by-one by applying the similar material assumption (SMA), i.e. the other mixtures are supposed similar to the one being treated, thus the probability tables of the current mixture are applied to the others. As a consequence, the CPU time at a burnup step can be several hundreds times that at burnup zero, because of the large number of mixtures. Therefore, the assembly depletion calculation with the SG+SPH method becomes prohibitive.

The equivalent Dancoff-factor cell (EDC) method was originally proposed by [START_REF] Liu | The pseudoresonant-nuclide subgroup method based globallocal self-shielding calculation scheme[END_REF], where it was named global-local self-shielding calculation scheme and was applied to the pseudo-resonant-nuclide subgroup method based on the physical probability tables. The name "equivalent Dancoff-factor cell model" was employed in the study of [START_REF] Yamaji | Ultrafine-group resonance treatment using equivalent Dancoff-factor cell model in lattice physics code GALAXY[END_REF], where the method was applied to ultra-fine-group resonance treatment.

The objective of the EDC method is to transform the initial global geometry into a set of one-dimensional (1D) cylindrical cells by preserving the Dancoff factor of each resonant cell in two-dimensional (2D) global geometry. Subsequently, the self-shielding calculation is carried out only on the 1D cylindrical cells. By replacing the 2D geometry by a set of 1D cylindrical cells, we can expect a drastic reduction in execution time, since the collision probability (CP) calculation of 1D cylindrical cells is much faster than 2D collision probability or method of characteristic calculations.

In this study, the EDC method was implemented in the APOLLO3 code and then the SG+SPH method, which is based on the mathematical probability tables, was applied subsequently to self-shield the 1D equivalent Dancoff-factor cylindrical cells. Our preliminary study showed that the EDC based SG+SPH method obtained similar numerical precision than the SG+SPH method based on 2D collision probability method with multi-cell approximation (MCA), while reducing the CPU time by a factor up to 50, in the case where several fuel materials are present in assembly.

In the situation where the material of control rods is completely different from fuel materials, for example an assembly with the AIC rods, by calculating independently the fuel rods and AIC rods, the calculation by the EDC method avoids making approximation in the subgroup method; while the calculation by the MCA method suffers from the SMA. Therefore, the EDC calculation is in good agreement to TRIPOLI-4 R reference, while the MCA calculation has an error of more than 600 pcm in k eff .

In the depletion calculations of UOX and MOX cells, the errors in k eff are similar and limited to less than 50 pcm, but the error varies during the depletion procedure due to the SMA. The CPU time spent in computing mixture probability tables becomes very important. We will search a better solution of mixture treatment and parallelize the self-shielding of the EDCs and the computation of mixture probability tables.

Section 2 presents the theory of the methods. First we recall the theory of the SG+SPH method, followed by an analysis of its strengths and weaknesses. Then the theory, implementation and discussion of the EDC method are given. Section 3 shows the numerical results of the EDC method in PWR assembly calculations and fuel cell depletion calculations. Section 4 outlines the conclusions.

Theory

A subgroup method based on the fine-structure assumption

To describe neutron behaviors in a heterogeneous system and in the resonance energy range, the collision probability equation is employed,

Σ i (u)V i Φ i (u) = j P ij (u)V j (R 0j Φ j (u) + R 1j Φ j (u)), (1) 
where i, j are region indexes. R is the scattering operator and the indexes 0 and 1 represent the resonant and moderator isotopes, respectively. P ij is the probability for a neutron born in region j to have its first collision in region i, Φ is the region-averaged scalar flux, V is the region volume and Σ is the total cross section.

The fine-structure method, proposed by [START_REF] Livolant | Autoprotection des résonances dans les réacteurs nucléaires -application aux isotopes lourds[END_REF], is based on the separation of global and local effects,

Φ(u) = χ(u)φ(u), (2) 
where

χ(u) = R 1 Φ(u)/Σ s1 (u), (3) 
is a global macroscopic flux [START_REF] Sanchez | Le code APOLLO II[END_REF] and φ(u) is a local fine structure of the flux created by resonances.

In a heterogeneous system, the definition in Eq. ( 2) becomes space-dependent,

Φ i (u) = χ i (u)φ i (u). ( 4 
)
Two additional assumptions are applied:

(a) The macroscopic flux can be extracted from the scattering operator,

R 0i [χ i (u)φ i (u)] ≈ χ i (u)R 0i φ i (u); (5) (b)
The macroscopic flux is space-independent,

χ i (u) ≈ χ(u). (6) 
Then we obtain the fine-structure equation,

Σ i (u)V i φ i (u) = j P ij (u)V j (N 0j r 0j φ j (u) + Σ s1j (u)), ( 7 
)
where r is the microscopic scattering operator for resonant isotopes and it is 75 defined as r 0i = R 0i /N 0i with N the number density of the resonant isotope.

The subgroup method is applied accompanied with a fine energy mesh. In this case, the energy-dependent scattering sources can be replaced by the groupaveraged values,

r 0 φ(u) ≈ (r 0 φ) g = 1 ∆u g g dur 0 φ(u), (8) 
which is also valid in the unresolved resonance domain. Then, the "Toutes Résonances" (TR) approximation [START_REF] Coste-Delclaux | Modélisation du phénomène d'autoprotection dans le code de transport multigroupe APOLLO2[END_REF], which means "General Resonances", is utilized,

(r 0 φ) g ≈ (r 0 φ) T R g = g (r 0 φ) g →g , (9) 
where

(r 0 φ) g →g = x a x p g →g x τ s0x,g , (10) 
τ s0x,g = 1 ∆u g g duσ s0x (u)φ(u). ( 11 
)
a x = N 0x /N 0 is the number density proportion of resonant isotope x in the mixture, τ s0 is the resonant scattering rate, p g →g is the probability for a neutron to scatter from group g to group g after the collision.

The mathematical probability table [START_REF] Ribon | Les tables de probabilités. Application au traitement des sections efficaces pour la neutronique[END_REF][START_REF] Hébert | Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes[END_REF] is employed to compute the group-averaged quantities. The probability table for a mixture containing X resonant isotopes is

{p k , σ t,k , σ ρx,k , k = 1, . . . , K, x = 1, . . . , X} , (12) 
where p, σ t and σ ρ are the probability, the total cross section and the partial cross section for reaction ρ, respectively. K is the order of the probability table.

Accordingly, the partial reaction rate of isotope x is calculated by

τ ρx,g ≈ K k=1 p k σ ρx,k φ k . (13) 
Finally, the equation based on the fine-structure assumption for a subgroup k in group g is derived from Eq. ( 7),

[Σ t1i + N 0i σ t,k ] V i φ i,k = j P ij,k V j   N 0j x a x p g→g x K l=1 p l σ s0x,l φ j,l + N 0j g =g (r 0 φ) g →g j + Σ s1j   . (14)

Improved Direct Method for solving the subgroup equation

The subgroup equation Eq. ( 14) is solved by the Improved Direct Method (IDM) [START_REF] Mao | Considering the up-scattering in resonance interference treatment in APOLLO3 R . In M&C[END_REF], which is developed from the Direct Method (Coste-Delclaux & [START_REF] Coste-Delclaux | New resonant mixture self-shielding treatment in the code APOLLO2[END_REF][START_REF] Coste-Delclaux | Modélisation du phénomène d'autoprotection dans le code de transport multigroupe APOLLO2[END_REF] of the APOLLO2 code.

The self-shielding regions [START_REF] Sanchez | A model for calculating multigroup selfshielded cross-sections for a mixture of resonance absorbers in heterogeneous media[END_REF] are defined in the IDM.

A self-shielding region regroups regions in similar pin cells of similar environment, which are assigned the same volume-averaged material and have the same flux.

The fine-structure equation, Eq. ( 7),can be written into matrix-vector form,

φ(u) = C(u)r 0 φ(u) + s(u), ( 15 
)
where φ is the scalar flux vector. s is the source vector, the element of which is the source in a self-shielding region α and is written as

s α (u) = i∈α j P ij (u)Σ s1,j (u)V j i∈α x Σ 0xi (u) + Σ 1i (u) V i , ( 16 
)
where x is the resonant isotope index. The elements of the matrix C are defined as

C αβ (u) = i∈α j∈β P ij (u)V j N 0j i∈α x Σ 0xi (u) + Σ 1i (u) V i , (17) 
where α and β are self-shielding region indexes, and N 0j = x N 0xj is the total number density of resonant isotopes in region j. The dimensions of the matrix C are (N α , N α ), with N α the total number of self-shielding regions.
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In matrix-vector form, the scattering source vector is

r 0 φ(u) ≈ (r 0 φ) g ≈ g (r 0 φ) g →g = g x A x p g →g x τ s0x,g , if u ∈ g, (18) 
where A x is a diagonal matrix with elements a xα , p g →g x is the transfer probability for a neutron being scattered from group g to group g, and the element of the scattering rate vector τ s0x,g is defined by Eq. ( 11). Finally, the within-group scattering sources of group g is written

(r 0 φ) g→g = x A x p g→g x 1 ∆u g g duσ s0x (u)φ(u). ( 19 
)
Inserting Eq. ( 18) in Eq. ( 15) and Eq. ( 15) in Eq. ( 19), we obtain

(r 0 φ) g→g = 1 - x A x p g→g x 1 ∆u g g duσ s0x (u)C(u) -1 × x A x p g→g x 1 ∆u g g duσ s0x (u)C(u) g =g (r 0 φ) g →g + x A x p g→g x 1 ∆u g g duσ s0x (u)s(u) . (20) 
In Eq. ( 20), the transfer sources from up-scattering and down-scattering, g =g (r 0 φ) g →g , are assumed known when group g is being calculated. This is true for the down-scattering sources from the higher-energy groups g < g.

However, the up-scattering sources from the lower-energy groups g > g are unknown. In APOLLO3, the Statistical scattering model is utilized to compute the up-scattering sources in advance [START_REF] Mao | Application of the SPH method to account for the angular dependence of multigroup resonant cross sections in thermal reactor calculations[END_REF], since the source term (r 0 φ) g→g,ST can be computed independently of other groups.

Once the within-group scattering sources are solved by Eq. ( 20), we obtain the total resonant scattering sources from Eq. ( 18). The flux of each subgroup k is then determined by

φ k = C k (r 0 φ) g + s k , (21) 
where C k and s k are the values of matrix C and vector s at subgroup k by setting the total cross section of the resonant mixture to σ t,k .

Finally, the group-averaged flux and reaction rates are obtained by using the probability tables, This angular dependence issue was noticed a long time ago [START_REF] Davison | Nuclear Transport Theory[END_REF][START_REF] Bell | Multitable Treatments of Anisotropic Scattering in SN Multigroup Transport Calculations[END_REF] in the context of the transport equation solution, where the transport corrections were proposed as a remedy. However, it was completely ignored in resonance self-shielding calculations. Recently, [START_REF] Gibson | Novel Resonance Self-shielding Methods for Nuclear Reactor Analysis[END_REF][START_REF] Park | Practical resolution of angle dependency of multigroup resonance cross sections using parametrized spectral superhomogenization factors[END_REF][START_REF] Mao | Application of the SPH method to account for the angular dependence of multigroup resonant cross sections in thermal reactor calculations[END_REF] have showed that the errors introduced by the scalar flux collapsing can be significant, even when the continuous-energy Monte Carlo spectrum is utilized for collapsing.

φ g ≈ K k=1 p k φ k , (22) 
τ ρ0x,g ≈ K k=1 p k σ ρ0x,k φ k . ( 23 
The superhomogenization (SPH) method was proposed as a practical solution for the angular dependence issue [START_REF] Gibson | Novel Resonance Self-shielding Methods for Nuclear Reactor Analysis[END_REF][START_REF] Park | Practical resolution of angle dependency of multigroup resonance cross sections using parametrized spectral superhomogenization factors[END_REF][START_REF] Boyd | An analysis of condensation errors in multi-group cross section generation for fine-mesh neutron transport calculations[END_REF][START_REF] Mao | Application of the SPH method to account for the angular dependence of multigroup resonant cross sections in thermal reactor calculations[END_REF]. The SPH method is to apply the SPH corrections in order that the subsequent flux calculation reproduces the reference reaction rates.

A SPH method consists of two steps. The first step is to carry out a reference calculation to obtain the reference parameters. The second step is to solve iteratively the low-order equation to get the SPH correction factors.

When applying the SPH method to the subgroup method based on the finestructure assumption, the reference equation is the subgroup equation, Eq. ( 14).

The quantities preserved are the arrival sources

Q † g,i = N 0i (r 0 φ) g,α + Σ s1i , if i ∈ α, (24) 
and the total reaction rates

τ † t0,g,i = x a xα τ t0x,g,α = x a xα ρ τ ρ0x,g,α , if i ∈ α. ( 25 
)
The SPH calculations also require the group-averaged flux from the subgroup solution

φ † g,i = φ g,α , if i ∈ α, (26) 
and the total cross section from the subgroup solution

Σ † t,g,i = N 0i τ † t0,g,α φ † g,α + Σ t1,i , if i ∈ α. (27) 

Solving the low-order equation for SPH corrections

The SPH factors µ's are defined per group and per region and applied to multigroup cross sections as

Σt,g,i = µ g,i Σ † t,g,i , (28) 
Then, the SPH factors can be obtained by solving the low-order equation, which is a one-group source equation

Σt,g,i V i φg,i = j P ij,g ( Σt,g )V j Q † g,j . (29) 
The SPH factors are calculated by

µ g,i = φ † g,i φg,i . (30) 
We remark that Tt,g,i = Σt,g,i φg,i = µ g,i Σ † t,g,i φg,i = T † t,g,i ,

the macroscopic region-wise total reaction rates are actually preserved by the SPH method.

The SPH factors can be obtained by the iterative solution of Eq. ( 29): 2. At the k th iteration, the following equation is solved

µ (k) g,i Σ † t,g,i V i φ(k+1) g,i = j P ij,g (µ (k) g Σ † t,g )V j Q † g,j , (32) 
we get the new SPH factors by

µ (k+1) g,i = φ † g,i φ(k+1) g,i . ( 33 
)
3. The iteration stops, once the convergence criteria

max i µ (k+1) g,i µ (k) g,i -1 < , (34) 
are attained. In our implementation, was set to 10 -5 .

Once the SPH factors have been calculated, they are applied to the microscopic cross sections of all resonant isotopes in the resonance regions.

Strengths and weaknesses of the subgroup method with SPH corrections

In our previous study, the subgroup method with SPH corrections gave precise results in the fuel cell and fuel assembly calculations [START_REF] Mao | Application of the SPH method to account for the angular dependence of multigroup resonant cross sections in thermal reactor calculations[END_REF]. For fuel cells with UOX, MOX or Gd-UOX fuel, the errors in multiplication factors are less than 30 pcm. For fuel assemblies, with UOX pins, or mixed UOX and Gd-UOX pins, or several types of MOX pins, the errors in the multiplication factor are less than 60 pcm.

Nevertheless, this subgroup method is accompanied of rather long CPU running time. The first reason is that the mixture treatment is mandatory by using the mixture probability tables, in order to fully consider resonance interference and to achieve an effective SPH correction. An important CPU time was observed in mixture probability table (Mix-PT) calculations, especially when the number of resonant isotopes of a mixture exceeds five or six.

When several mixtures present in the geometry being considered, the subgroup solution and the SPH correction will be repeated for each mixture. When one mixture is being treated, the Similar Material Assumption (SMA) is applied.

With this assumption, the CPU time of the subgroup calculation increases lin-

early with the number of mixtures.

The number of mixtures increases with fuel material types present in the geometry. In a depletion calculation of a fuel pin cell or a fuel assembly, new mixtures appear in different fuel pins or rings, if the fuel pins are divided into rings to account for the rim effect. A fuel assembly depletion calculation becomes prohibitive because of a large number of mixtures present in a depleted assembly.

The second reason why the SG+SPH method needs a longer CPU time is that a fine-energy mesh, for instance the 383 group mesh [START_REF] Mengelle | Private Communication[END_REF], is required for a subgroup method without resorting to the heterogeneoushomogeneous equivalence and multigroup equivalence, as done in the Fine Structure Method [START_REF] Mao | Considering the up-scattering in resonance interference treatment in APOLLO3 R . In M&C[END_REF], where the SHEM 281-group mesh [START_REF] Hfaiedh | Determination of the optimised SHEM mesh for neutron transport calculations[END_REF]) is adopted. Consequently, the increase of the CPU time is proportional to the increase of the number of groups, in the calculations of mixture probability tables, the subgroup solution, and the flux solution.

The third reason for the long CPU time of the SG+SPH method is that several hundreds of thousands of collision probability (CP) computations are required, and the CP calculations are carried out with the Multi-Cell Approximation (MCA). Moreover, each MCA calculation on an assembly geometry is not trivial. Therefore, most of the CPU time is spent in the collision probability MCA calculations.

Remedying the CPU time issue by the equivalent Dancoff-factor cell method

Amongst the above-mentioned three reasons responsible for the long CPU time, one possibility is to reduce the time in collision probability calculations with the MCA, thus decreasing the overall CPU time.

Two spatial self-shielding phenomenons should be accounted for by selfshielding methods in lattice calculations: the first is the self-shielding inside a fuel rod and the second is the shadowing effects of neighboring fuel rods. In our subgroup method, the self-shielding inside a fuel rod is treated by the subgroup and SPH calculations; while the shadowing effects are dealt with by utilizing the collision probabilities computed by the MCA for the whole lattice geometry.

The collision probability method with the MCA is much more efficient than the direct collision probability method [START_REF] Mao | Resonance Self-Shielding Methods for Fast Reactor Calculations -Comparison of a New Tone's Method with the Subgroup Method in APOLLO3 R[END_REF]. However, the CP-MCA calculation has to be repeated tens of thousands and up to hundreds of thousands times in the self-shielding calculation of one static criticality calculation, therefore the total time spent in CP-MCA calculations becomes very important. This time increases with the size of the lattice geometry and with the number of resonant mixtures being considered. As a result, the important CPU time prevents the subgroup method from being applied to a large lattice system or to a depletion calculation of an assembly.

The equivalent Dancoff-factor cell (EDC) method was newly proposed by [START_REF] Liu | The pseudoresonant-nuclide subgroup method based globallocal self-shielding calculation scheme[END_REF]. It adopted the concept of separating the shadowing effects of neighboring fuel rods from the spatial self-shielding inside the fuel rod. It was shown that shadowing effects can be sufficiently dealt with by defining a cylindrical fuel cell that preserves the Dancoff factor of the same fuel rod in the lattice geometry.

The outcome of the EDC method is a set of independent one-dimensional cylindrical fuel cells relative to fuel rods in different position in the lattice sys-tem. The self-shielding of the large lattice geometry is then converted into the self-shielding of a batch of cylindrical fuel cells. Since the collision probabilities of a cylindrical cell can be computed much more efficiently than those of a two-dimensional assembly, the CPU time in the collision probability calculation is largely reduced, so is the subgroup and SPH calculation time. Moreover, since the cylindrical fuel cell calculations are completely independent of one another, the CPU time could be reduced still further if we parallelize the fuel cell calculations. Consider the two heterogeneous systems in Figure 1: one is the isolated system with a fuel pin surrounded by an infinite homogeneous moderator medium;

The definition of the Dancoff factor

the other is the lattice system with an infinite lattice of fuel cells. The escape probability P esc of a fuel pin is defined as the first-flight probability that a neutron born uniformly in the fuel pin escapes from it. In the isolated system, a neutron escaping from the fuel pin will make its next collision in the moderator.

But in the lattice system, a neutron escaping from the fuel pin can also make its next collision in another fuel pin. In other words, the presence of the neighboring fuel pins decreases the effective escape probability P * esc of a fuel pin in the lattice system compared with that in the isolated system. This is the so-called "shadowing effect" in a lattice system.

In the traditional equivalence theory, the Dancoff factor D is utilized to handle the shadowing effect. In Stamm'ler's book [START_REF] Stamm'ler | Methods of Steady-State Reactor Physics in Nuclear Design[END_REF], the Dancoff factor is defined as the reduction factor of the fuel escape probability in the lattice system compared with that in the isolated system, when the fuel total cross section approaches infinity,

D * = lim Σ f →∞ P * esc P esc , (35) 
where the escape probability is the probability for neutrons uniformly and isotropically born in the fuel pin to have their first collision in the moderator, P * esc and P esc are, respectively, the escape probabilities for the pin in the lattice and for the isolated pin. For the simple lattice defined by the isolated system, there is no shadowing effect and we have P * esc = P esc so that D * = 1.

For a fuel pin in a lattice, the shadowing effect resulting from the neighboring fuel pins diminishes the pin's escape probability, P * esc < P esc , and therefore its Dancoff factor is also smaller, D * < 1.

Because the definition of the Dancoff factor rests on first-flight probabilities and in the asymptotic setting of an infinitely absorbing fuel material, one can apply simple collision probability concepts to its analysis. We shall prove that the Dancoff factor has a simple geometrical interpretation and that the physical effect is produced by a singular source on the surface of the pin which results in an uniform and isotropic angular flux leaving the pin.

First-flight probabilities are equivalent to neglect scattering sources and therefore correspond to a simple description of neutron transport where all materials are purely absorbing. We consider first the case of an isolated pin surrounded by an infinite, purely absorbing moderator (this might include a finite purely absorbing clad covering the fuel pin). The escape probability for a homogeneous and purely absorbing convex fuel pin is the number of neutron exiting without collisions from an uniform and isotropic unit source in the volume of the pin. For this simple problem the familiar collision (P ), escape (E), incoming (I) and transmission (T ) probabilities obey the following conservation and reciprocity relations

1 = P + E, 1 = I + T, E = 1 < τ > I. (36) 
In these equations, I and T are the probabilities for neutrons entering uniformly and isotropically through the surface of the pin for having a first collision in the fuel or for escaping the fuel without collisions, respectively. Also < τ >=< > Σ f is the mean optical length of the chords across the fuel, where < >= 4πV f /A f is the mean chord length of the fuel pin and A f and V f are, respectively, the area and volume of the pin. Next, we consider the asymptotic case for Σ f → ∞. From the expression for the transmission probability

T = ∞ 0 e -Σ f p( )d , (37) 
where p( ) is the density distribution for the chord of length , one sees that T → 0 exponentially with Σ f → ∞. This entails in turn that the incoming probability I → 1 exponentially with Σ f . Then, the reciprocity relation and the conservation relation between P and E yield

Σ f → ∞ : E ∼ 1 < τ > , P ∼ 1 - 1 < τ > . ( 38 
)
Finally, we demonstrate that at the limit of infinite fuel absorption, the neutrons escaping the fuel are produced at the pin's surface and correspond to an angular flux that is uniform over the surface of the pin and isotropic over the half unit sphere of the exiting angular directions. The angular flux exiting in direction Ω at position r on the surface Γ f of the fuel pin is given by the expression

ψ(r, Ω) = Q 0 dxe -xΣ f = Q Σ f (1 -e -Σ f ) ∼ Q Σ f , (39) 
where Q = 1/(4πV f ) is the intensity of the volume source and the rightmost expression on the right-hand-side gives the behavior for Σ f → ∞.

This result proves that at the asymptotic limit of an infinitely absorbing fuel, the neutrons escaping the fuel rod result from a skin effect and produce a constant angular flux emerging from the surface of the rod. The escaping probability is the total number of neutrons exiting the rod:

Γ f dS (2π)+ dΩ(Ω • n + )ψ(r, Ω)
, where n + is the outward normal to the pin surface. Using the asymptotic expression for the exiting angular flux in (39) one obtains again the asymptotic expression for E in Eq. ( 38).

We turn now to an interpretation of the Dancoff factor as a geometric factor.

If we note by E l the probability for neutrons born uniformly and isotropically in fuel pin l of escaping the fuel without collisions we can write

P * esc,l = E l P * m←Γ l , (40) 
where P * m←Γ l is the probability for a first collision in the moderator for the neutrons escaping fuel rod l via its surface Γ l . Noticing also that E l is nothing else but the escape probability for the isolated fuel pin, for which P iso m←Γ l = 1, we obtain

D = lim Σ f →∞ P * m←Γ l . (41) 
Since at the limit for Σ f → ∞ every neutron entering a fuel element is absorbed, one can write

D = lim Σ f →∞ P * m←Γ l = 1 πA f Γ l dS (2π)+ dΩ(Ω • n + )(1 -e -τm(r,Ω) ). ( 42 
)
In this formula we integrate over all trajectories emanating uniformly and isotropically from the fuel pin, and each trajectory is continued through non fuel materials until it reaches a fuel pin or goes to infinity without ever entering a fuel pin. Hence, τ m (r, Ω) is the optical length of the chord length of the trajectory until it reaches a fuel pin or, otherwise, for an infinite length. The optical length is thus measured using strictly non fuel material cross sections. The geometrical interpretation and the explanation for the expression "shadowing effect" comes when one looks at the neutrons exiting the fuel rod as light rays which are then stopped when they enter another fuel rod in the lattice (accounting for the eventual prolongation of the trajectories when they reach the reflected boundary of the lattice or domain).

Calculating the equivalent Dancoff-factor cell

With the EDC method, one essential step is defining the equivalent Dancofffactor cells. This is done by an equivalence procedure: to each fuel pin in the lattice, say the pin in fuel cell l, one associates a one-dimensional (1D) cylindrical isotropically-reflected cell with the same fuel pin as cell l but with an external moderator radius R l such that the cylindrical cell has the same Dancoff factor as the lattice one:

D 1D (R l ) = D 2D l . (43) 
However, because the Dancoff factors for both the lattice cell and the 1D reflected cell are defined with respect to the same reference system (that of the isolated cell with an infinite moderator), the above equation reduces to the equality of the escape probabilities P 1D esc (R l ) = P 2D esc,l or, equivalently, to that of the pin-to-fuel collision probabilities,

P 1D F l ←F l (R l ) = P 2D F ←F l , (44) 
where F denotes the set of all fuel pins.

Thus, we need first to compute the pin-to-fuel collision probabilities for all fuel pins in the 2D lattice system. Then, for each fuel pin the outer moderator radius of the equivalent 1D cylindrical cell is iteratively searched from Eq. ( 44).

An example of EDC is depicted in Figure 2. 

Computing the collision probabilities

The collision probabilities of the 2D lattice system are computed with the CP-MCA method, by setting the total cross section of all fuel regions to Σ f = 10 5 cm -1 and that of the other regions to Σ m = Σ p , where Σ p is the potential cross section for the region.
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For the general case when the fuel pins are subdivided into one or more fuel concentric regions, the lattice collision probability for the fuel pin in cell l is given by the expression:

P 2D F ←F l = j∈F i∈F l P 2D ji V i i∈F l V i , (45) 
where l = 1 to L denotes the fuel cell, V i is the volume of region i and P 2D ji is the first-flight collision probability for a neutron born uniformly in fuel region i to undergo its first collision in fuel region j.

The calculation for the 1D equivalent reflected cell with outer moderator radius R l yields a similar formulation:

P 1D F l ←F l (R l ) = j∈F l i∈F l P 1D ji (R l )V i i∈F l V i . ( 46 
)
These 1D calculations are based on the same values of the cross sections used for the lattice calculation but, because of the 1D cylindrica model, are much 265 faster than the lattice calculation.

Computing the radii of the equivalent Dancoff-factor cells

Clearly, the self-collision probability of the fuel pin in the 1D isotropically reflected cylindrical cell decreases with increasing cell radius. This is due to the fact that increasing the outer moderator radius diminishes the probability for neutrons escaping the fuel pin to reach the reflective boundary and have a chance to collide again with the pin. This effect is compounded by the fact that the probability, for the neutrons that reach the boundary and are reflected back into the cell to have a first collision in the fuel, also diminishes with increasing cell radius. These effects can be quantified by adding to the self-collision probability for the bare fuel pin, 1 -E l , the sum for n = 1 to n = ∞ of the contributions from the neutrons that re-enter the cell at the n -th reflection. The result is

P 1D F l ←F l (R l ) = 1 -E l + E Γ←F l (R l ) β 1 -βT (R l ) I F l ←Γ (R l ), ( 47 
)
where E Γ←F l is the probability for the source neutrons in the fuel pin to reach without collisions the outer moderator surface Γ, and I F l ←Γ and T are, respectively, the probability for neutrons entering uniformly and isotropically the cell surface to have a first collision in the fuel and to exit the cell without collisions.

Note that (47) is the exact expression used to compute the collision probabilities for the 1D cylindrical cell with isotropic reflection.

In Eq. ( 47) we have introduced a surface albedo β to denote the fraction of reflected neutrons. This albedo could also be used as an adjusting parameter to force the fuel cell with fixed cell radius to be the equivalent Dancoff-factor cell.

However, in this paper we have chosen to use the cell radius as the adjusting parameter and will not pursue further this issue.1 

We note that the incoming and escape probabilities in Eq. ( 47) satisfy the

reciprocity relation E Γ←F l (R l ) = I F l ←Γ (R l )/ < τ > with < τ >=< > Σ f ,
but now < > is the mean chord length across the fuel for trajectories entering uniformly and isotropically the external moderator surface. We can still write < >= 4πV f /A but A is now the area of the cell surface Γ and not the smaller area A f of the fuel pin.

The interest of Eq. ( 47) is that it shows separately the different ways in which the cell radius affects the pin self-collision probability for the reflected cell. The three probabilities, E Γ←F l , I F l ←Γ and T , which mediate the contribution of the reflected neutrons to the self-collision fuel probability, decrease with increasing cell radius and therefore the overall reflected contribution diminishes.

We have already mentioned the behavior of the probabilities E Γ←F l and I F l ←Γ with increasing cell radius, but the formula also shows that a further reduction results from the decrease in the number of reflected neutrons that re-enter the cell, because the increase in moderator size decreases the cell transmission probability T .

Since the self-collision probability P 1D F l ←F l (R l ) is a monotone decreasing func-tion of R l , one can apply a simple but efficient dichotomy technique to find the root of Eq. ( 44). We note R V l the cell radius of the equivalent-volume cell (EVC) which preserves the moderator volume of the initial fuel cell in the lattice. The initial interval for the search [R 1 , R 2 ] is constructed so as to contain the radius of the EVC and to satisfy the condition,

P 2D F ←F l ∈ P 1D F l ←F l (R 2 ), P 1D F l ←F l (R 1 ) . ( 48 
)
The root search is repeated for each fuel cell in the lattice. As an example we give in Figure 3 the Dancoff factors and the ratios of the EDC radius versus the EVC radius, R l /R V l for the PWR assemblies in LWR benchmark problem suit [START_REF] Yamamoto | Benchmark Problem Suite for Reactor Physics Study of LWR Next Generation Fuels[END_REF]. We note that the Dancoff factors are influenced by the fuel cell position relative to the tube guide: fuel cells with a common side with a tube guide cell have similar Dancoff factor, while those that don't have a another similar value. The same applies to the ratios of the EDC radius to the EVC radius. Clearly, because of the increased absorption in the closer tube guide, the first group of cells have a greater Dancoff factor than the second. 

Studies of the behaviors of the Dancoff factor

In Dancoff factor calculations we set the fuel macroscopic total cross sections to a value near the black limit, Σ f = 10 5 cm -1 , and those for moderator and cladding to the potential cross sections. As a result, Dancoff factors and EDCs are calculated only once and utilized later for all the self-shielding calculations

In order to quantify the possible discrepancies resulting from this approximation, the Dancoff factors of Yamamoto's PWR assembly benchmark [START_REF] Yamamoto | Benchmark Problem Suite for Reactor Physics Study of LWR Next Generation Fuels[END_REF] were calculated by employing the group-dependent total cross sections for moderators and cladding, while setting the fuel cross sections to 10 5 cm -1 . Figure 4 shows the Dancoff factor and the EDC radius for Cell 23, the position of which is shown in Figure 7, as a function of energy. The spikes in the Dancoff factor are due to resonances of the different isotopes of zirconium.

In the thermal and epithermal domains up to 10 4 eV, the Dancoff factor and the EDC radius, obtained by using the potential cross sections of moderators and cladding, are in good agreement with those using the realistic cross sections. Above 10 4 eV, the values obtained by the potential cross sections start to diverge from the realistic values. The fast decrease of the Dancoff factor in this domain is due to the fact that the total cross section for water steadily decreases in the high energy range at the energy increases and becomes smaller than the potential cross section for the moderator.2 This divergence will have negligible significance in a thermal spectrum calculation, however, it could have an impact in an intermediate or fast spectrum calculation.

To verify the impact of the fuel total cross section on the Dancoff factor, we defined a 3 × 3 assembly, shown in Figure 5, where the UOX cell and the tube guide cell are the same as those defined in Yamamoto's benchmark. We carried out the calculations by setting the total cross sections of moderators and cladding to potential cross sections, and varying the fuel cross section from 10 -3 to 10 6 cm -1 . The results for the corner cell (cell 2) are shown in Fig. 6.

The interpretation of these results for low values of the fuel cross section has to be done with Eq. (41) but without taking the limit for Σ f → ∞. Since the Dancoff factor is a continuous function of the fuel cross section one would expect a smooth variation of the Dancoff factor, but that is not what the figure shows. The explanation for the shape of the numerically determined factor has to do with the finite tabulation of the Bickley-Naylor functions which is set at τ max ∼ 8-10 mean free path; in the range of small values of Σ f the fuel is nearly transparent and therefore neutron trajectories become infinite but they are numerically truncated at τ max , as a consequence the variation is not as fast as it should be in this range and this explain the fast drop of D that can be seen in the figure. Finally, Fig. 6 shows that in the regime of moderated to large fuel cross sections, between 1 and 10 5 cm -1 , the Dancoff factor and the EDC radius are nearly stable, which justifies the choice Σ f = 10 5 which we use in our calculational scheme. The figure also shows that, since the Dancoff factor is nearly constant in the interval 10 3 , 10 5 , it is possible to choose any value of Σ f in that interval. 

Numerical results

PWR fuel assemblies

We chose the PWR fuel assemblies defined in the LWR benchmark problem suit [START_REF] Yamamoto | Benchmark Problem Suite for Reactor Physics Study of LWR Next Generation Fuels[END_REF]. We selected the PWR UO 2 and MOX fuel assemblies, which have similar geometrical configuration as that of a 17×17 type PWR fuel design. A one-eighth of the PWR UO 2 fuel assembly contains 34 UO 2 fuel rods and 5 UO 2 -Gd 2 O 3 fuel rods. To obtain a simplified assembly test, we defined a UOX assembly by replacing all the UO 2 -Gd 2 O 3 rods by the 355 UO 2 rods and named it as "UOX assembly" in the present study. The original PWR UO 2 fuel assembly was called "Gd-UOX assembly".

The calculations were carried out at burnup 0 with Hot and 0% void fraction conditions. To avoid the interpolation of nuclear data utilized in both TRIPOLI-4 and APOLLO3 calculations, the tabulation temperatures of the library were chosen, 974 K for fuel regions and 574 K for both structural and moderator regions, which were close to those specified in the benchmark suit. Figure 7 shows the one-eighth geometries of the three assemblies. In the self-shielding calculations of APOLLO3, all the fuel pins were subdivided into 10 rings, corresponding to 20%, 20%, 10%, 10%, 10%, 10%, 5%, 5%, 5%, 5% of the fuel volume, respectively. In the flux calculations, each of the 10 rings was further subdivided into eight sectors. Figure 8 shows the spatial meshes adopted in the calculations for the MOX assembly, those for the UOX and Gd-UOX assemblies are similar.

As mentioned in Sections 2.1 and 2.2, with the TR approximation, the upscattering sources are naturally taken into account by the SG+SPH method, 1975[START_REF] Sanchez | A Transport Multicell Method for Two-Dimensional Lattices of Hexagonal Cells[END_REF]; the second using the newly implemented EDC method.

The APOLLO3 flux calculations were carried out by the two-dimensional 390 TDT method of characteristics (MOC) solver [START_REF] Sanchez | A Synthetic Acceleration for a Two-Dimensional Characteristic Method in Unstructured Meshes[END_REF][START_REF] Santandrea | A Neutron Transport Characteristics Method for 3D Axially Extruded Geometries Coupled with a Fine Group Self-Shielding Environment[END_REF]. The tracking parameters for the TDT MOC solver were 32 azimuthal angles, 4 polar angles defined by the Bickley formula [START_REF] Sanchez | Treatment of Boundary Conditions in Trajectory-Based Deterministic Transport Methods[END_REF], and a transverse integration step of 0.01 cm. The anisotropic scattering order was set to P3 for flux calculations. Table 1 shows the results of the UOX assembly. Using the EDC approximation, the CPU time spent in self-shielding is reduced by a factor of 18 compared 29 (a) MCA -0.12-0.11 -0.13-0.12 -0.13-0.07 -0.23-0.26-0.13-0.23-0.24-0.14-0.27-0.12 -0.25-0.13-0.25-0.24-0.11-0.26-0.13 -0.12-0.15 -0.11-0.13 -0.33-0.27-0.25-0.22-0.16 -0.10-0.14-0.12 -0.24-0.13-0.09 -0.08-0.12 -0.12 (b) EDC with that of the MCA method; Moreover, the precision in k eff remains almost unchanged: only 14 pcm of difference separating the two methods. Table 2 shows the results of the Gd-UOX assembly. Two types of fuel pin cells are present in this assembly: one is the UOX cell and the other is the Gd-UOX cell. We need to carry out the self-shielding for the mixture of UOX probability calculations from 2D assembly to 1D cylinder, the EDC method reduces the self-shielding time by a factor of 41 compared with the MCA method.

We also remark that the precision in k eff of the EDC method is better than 415 that of the MCA method. To explain the reason, we have to understand that the MCA calculation, treats the inter-pin interactions almost exactly by using the assembly CP calculations, while the EDC method treats the inter-pin interactions approximately.

However, as mentioned in Section 2.4, the SMA is adopted in the current subgroup solver of APOLLO3. Therefore, due to the presence of two different mixtures, UOX and Gd-UOX, the MCA calculation of this assembly was impacted by the SMA, consequently the assembly-level subgroup calculation was inexact. On the contrary, the EDC method was not impacted by the SMA approximation, because of the independent self-shielding of each fuel pin, where only one mixture was present.

In the UOX assembly calculation, where only one resonant mixture presents in the assembly geometry, both MCA and EDC methods are free of the SMA.

The 14 pcm difference in k eff is due to the approximate treatment of the inter-pin effect by the EDC method, which is nearly negligible.

In the Gd-UOX assembly calculation, the MCA method becomes less precise than the EDC method, due to the impact of the SMA. Suppose that the EDC inter-pin effect is the same as that of the UOX assembly calculation, 14 pcm, we can estimate roughly that the SMA effect in the Gd-UOX assembly MCA calculation is about -32 pcm.

Fig. 12 shows that the similarity of the discrepancies in absorption rates, which are less than 0.22% for both MCA and EDC methods. Fig. 13 shows that the discrepancies in production rates of the EDC method are slightly more important than those of the MCA method, but they are still limited to less than 0.4%.

Fig. 14 highlights the discrepancies in 238 U absorption rates. With both methods, the absorption rates are overestimated in the Gd-UOX cells and underestimated in the UOX cells. With the EDC method, the maximum error of 238 U absorption rates is double that of the total absorption rates, which reaches 0.3%. However, with the MCA method, the errors in the Gd-UOX cells increase significantly, with the maximum reaching 0.72%. It means that using the SMA to treat the Gd-UOX cells may cause noticeable errors in 238 U absorption rates. The EDC method is also more precise in k eff than the MCA method, due to the impact of the SMA in the MCA calculation. Suppose that the EDC inter-pin effect is the same as that of the UOX assembly calculation, 14 pcm, the SMA impact in the MOX assembly MCA calculation is around -23 pcm.

The pin-wise absorption and production rates of both MCA and EDC calculations are in good agreement with the Monte Carlo references, where the discrepancies are less than 0.2% (Figs. 15 and 16). When focusing on the 238 U absorption rates, they are generally underestimated, and the maximum error, 0.45%, is approximately double that of the total absorption rates (Figs. 17).

PWR assembly with AIC control rods

We calculated an assembly with fuel of 1.6% enrichment in 235 U and with AIC control rods in MIT BEAVRS benchmark [START_REF] Horelik | Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS)[END_REF]. Fig. 18 shows the one-eighth of the assembly. To avoid the data interpolation in both TRIPOLI-4 and APOLLO3 calculations, the isothermal temperature was chosen to be 574 K, which is one of the tabulation temperatures of the libraries, for all the assembly. Both TRIPOLI-4 and APOLLO3 calculations utilized the CEA V512 library that is based on JEFF-3.1 nuclear data evaluation [START_REF] Santamarina | The JEFF-3.1.1 Nuclear Data Library[END_REF].

The spatial meshes for self-shielding and flux calculation in APOLLO3 are similar to those employed for the PWR fuel assembly calculations (Fig. 8). As in the PWR assembly calculations, the EDC method reduces the selfshielding time by a factor of 15 compared with the MCA method (Table 4). We see that the EDC method is in good agreement with the Monte Carlo reference, while the MCA method over-estimates the multiplication factor k eff of almost 600 pcm. The failure of the MCA method is caused by the SMA, mentioned in Section 2.4. In this AIC-rod assembly, the fuel material is completely different from the AIC material. Therefore, the neutron spectra in fuel cells are so 480 different from those in AIC cells, that using the SMA causes a large error. We estimate that error introduced by the SMA is about 604 pcm. On the other hand, thanks to the EDC technique, the EDC calculation does not suffer from the SMA. Fig. 19 compares the discrepancies in absorption rates. In the MCA calcula-485 tion, the absorption rates in the UOX fuel pin are under-estimated of -3.7% to -2.7%, while those in the AIC rods are over-estimated of 1.1% to 1.7%. In the -2.51-6.85-6.93-6.77-6.72-6.79-6.51-6.38 -2.20-6.93-6.65-6.62-6.70-6.35-6.21 -6.89-6.84 -6.49-6.13 -2.14-7.01-6.79-6.22-6.08 -6.52-6.02-5.99 EDC calculation, the discrepancies in the absorption rates are less than 0.3%.

The discrepancies in production rates of the MCA calculation are limited to 0.7% (Fig. 20), which signifies that the errors caused by the SMA have less

The discrepancies in 238 U absorption rates of the MCA calculation are much more significant than those for the total absorption rates (Fig. 21), with the maximum error reaching 7%. With the EDC method, the errors in 238 U absorption rates are equivalent to those of the total absorption rates.

Fuel cell depletion calculations

In this section we compare the MCA and EDC methods in fuel cell depletion calculations. The UOX cell geometry is from Yamamoto's benchmark [START_REF] Yamamoto | Benchmark Problem Suite for Reactor Physics Study of LWR Next Generation Fuels[END_REF] and the fuel composition is changed to 4.2% enriched fuel (Table 5). The MOX cell is defined in Yamamoto's benchmark. The fuel temperature was chosen to be 924 K and that for the moderator and cladding was 624 K. The CEA V512 library based on the JEFF-3.1 nuclear data evaluation [START_REF] Santamarina | The JEFF-3.1.1 Nuclear Data Library[END_REF] was utilized in the calculations. In self-shielding calculations, both UOX and MOX pins were subdivided into six rings, corresponding to 40%, 30%, 10%, 10%, 5%, 5% of the fuel volume, respectively. In flux calculations, each of the six rings was further subdivided into eight sectors.

The depletion calculations were carried out by using the MCA or EDC options of the SG+SPH method for self-shielding and TDT solver of method of characteristics for flux solution. A total number of 75 burnup points were calculated which covered the burnup ranging from 0. to 37.5 GWd/t. To verify the calculations at different burnup points, the isotopic inventories were exported at 25 representative burnup points from the depletion calculation with the MCA method, which were then utilized in TRIPOLI-4 verifying calculations. The standard deviations of the TRIPOLI-4 calculations are less than 6 pcm. ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ The MCA calculated k eff variations are depicted in Fig. 22a. The verification of APOLLO3 compared with TRIPOLI-4 at different burnup points is given in Fig. 22b. We observe that there is a quasi constant difference of less than 15 pcm between the MCA and EDC calculations during the entire burnup range, the order of magnitude is the same as the difference between the MCA and EDC methods in the UOX assembly calculation (Table 1). The discrepancies in k eff for both methods are less than 50 pcm. The discrepancy is not a constant as a function of burnup, which varies from 50 to -20 pcm.

We believe that the reason for this variation is related to isotopic burnand-build during the depletion. The isotopic concentration of each ring varied differently due to the rim effect during the depletion, and we obtain a mixture per fuel ring. In consequence, the SMA had to be activated in both methods.

The impact of the SMA at each burnup point is different since the isotopic proportions per ring change differently. In the case of the UOX cell calculation, the variation caused in k eff by the SMA reaches 70 pcm.

To diminish the impact of the SMA in depletion calculation, a better treatment of mixture is under investigation.

The results of the MOX cell is similar to those of the UOX cell (Fig. 23).

We note that the variation in the errors of k eff due to the SMA is smaller than 535 that in the UOX cell calculation. 
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▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ The CPU times are given in Table 6. The EDC method reduces a half of the self-shielding time compared with the MCA method, even in case of a simple cell geometry. Table 6 also raises a worrying point about the CPU time in computing the mixture probability tables, which is about 22 to 25 times of 540 the CPU time of self-shielding and exceeds that of the flux calculation. The calculation of mixture probability tables or the mixture treatment becomes a blocking point for applying the EDC method to the depletion calculation of assemblies or larger geometries.

Conclusions

We have implemented an equivalent Dancoff-factor cell (EDC) method that is coupled to the subgroup plus SPH method, which is based on the mathematical probability tables. In Yamamoto's PWR assembly calculations, both the EDC and the Multi-Cell Approximation (MCA) methods obtained similar precision in multiplication factor and reaction rates; However, the EDC method reduced the CPU time in self-shielding by a factor varying from 18 to 52 compared with the MCA method.

The Similar Material Approximation (SMA) is utilized in the current implementation of the subgroup method in APOLLO3. The impacts of the SMA in the PWR Gd-UOX and MOX assemblies are around -30 pcm, since in both cases, the fuel pins are different however similar. On the contrary, in BEAVRS AIC assembly calculation, the assumption that the materials are similar is no longer valid for the UOX and AIC pins. Therefore, the SMA caused an error of more than 600 pcm in k eff in the MCA calculation. Thanks to the separate calculation of each cell, the EDC method avoids the SMA in these PWR assembly benchmark calculations and obtains results in good agreement to Monte Carlo references.

In the depletion calculations of UOX and MOX cells, because of the presence of the intra-pellet fuel composition profile, both EDC and MCA methods were impacted by the SMA. The errors are limited to less than 50 pcm compared with Monte Carlo references. But the error in k eff varies about -70 pcm from the beginning to the end of depletion. Therefore we still have room for improvement
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 1 Figure 1: An isolated fuel rod surrounded by an infinite homogeneous moderator medium (left) and an infinite lattice of fuel rods (right).
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 2552 Figure 2: An equivalent Dancoff-factor cell (EDC) with an outer moderator radius R.
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 3 Figure 3: The Dancoff factors (left) and the ratios of EDC radius to the EVC radius (right) of PWR assemblies in Yamamoto's benchmark.
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 4 Figure 4: The Dancoff factor (left) and the radius of EDC (right) of Cell 23 by using the group-dependent total cross sections of moderators and cladding.
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 56 Figure 5: The UOX 3 × 3 assembly with a tube guide cell in the center.
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 7 Figure 7: The three PWR fuel assembly geometries.
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 9 Figure 9: The pin-wise percent errors in absorption rates in the UOX assembly.
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 10 Figure 10: The pin-wise percent errors in production rates in the UOX assembly.
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 11 Figure 11: The pin-wise percent errors in 238 U absorption rates in the UOX assembly.
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 12 Figure 12: The pin-wise percent errors in absorption rates in the Gd-UOX assembly.
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 1314 Figure 13: The pin-wise percent errors in production rates in the Gd-UOX assembly.
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 15 Figure 15: The pin-wise percent errors in absorption rates in the MOX assembly.
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 1617 Figure 16: The pin-wise percent errors in production rates in the MOX assembly.
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 18 Figure 18: The assembly with AIC rods in BEAVRS benchmark.

  TRIPOLI-4 reference k eff is 0.61887 ± 1 pcm; (b) CPU time on one processor; (c) CPU time on eight processors.
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 19 Figure 19: The pin-wise percent errors in absorption rates in the BEAVRS Assembly with AIC rods.
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 20 Figure 20: The pin-wise percent errors in production rates in the BEAVRS Assembly with AIC rods.
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 21 Figure 21: The pin-wise percent errors in 238 U absorption rates in the BEAVRS Assembly with AIC rods.

  The k eff discrepancies compared with TRIPOLI-4 references with the same isotopic concentrations.
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 22 Figure 22: The UOX cell depletion calculation.

  The k eff discrepancies compared with TRIPOLI-4 references with the same isotopic concentrations.

Figure 23 :

 23 Figure 23: The MOX cell depletion calculation.
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 1 PWR UOX assembly: k eff discrepancies and CPU times
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 2 PWR Gd-UOX assembly: k eff discrepancies and CPU times

Table 3 :

 3 PWR MOX assembly: k eff discrepancies and CPU times

  Table 3 presents the results of the MOX assembly. Three types of MOX cells are present in this assembly, therefore three self-shielding calculations are required. The CPU time in mixture probability table computation is important
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	because of the large number of resonant isotopes in MOX mixture. The EDC
	method reduces the self-shielding time by a factor of 52 compared with the MCA
	method.

Table 4 :

 4 The BEAVRS assembly with AIC rods: k eff discrepancies and CPU times

Table 5 :

 5 The UOX fuel composition

	Isotope Number density
		(/barn/cm)
	234 U	4.6498 × 10 -7
	235 U	9.7229 × 10 -4
	236 U	2.3051 × 10 -7
	238 U	2.1874 × 10 -2
	16 O	4.5693 × 10 -2

An advantage of using the surface albedo to control the change in the escape probability is that, contrarily of what happens when one uses the cell radius R l as a control parameter, the calculation of the optimal albedo does not require any iterations

The value of the potential cross section used in the calculation of the Dancoff factor is defined as 4πR 2 , the outer surface area of the target nucleus.
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see Eqs. ( 14) and ( 20). Due to the important number of results presented in this paper, we would limit ourselves to the calculations without considering the up-scattering phenomenon. According to our preliminary tests, the precision and the running time obtained by the EDC method are similar with or without the resonant up-scattering. The resonant up-scattering will be the subject of our next extensive study.

Consequently, in the reference TRIPOLI-4 continuous-energy calculations, the traditional SVT (Sampling of the velocity of the target nucleus) model (Zoia et al., 2013) was employed. The calculations were carried out by using TRIPOLI-4 version 4.9.0 and the CEA V6 library based on JEFF-3.2 nuclear data evaluation (OECD/NEA Data Bank, 2014).

The APOLLO3 calculations used the CEA V6 383-group library based on JEFF-3.2 nuclear data evaluation. The self-shielding was applied to groups 43 to 351, which covered the energy range from 0.55549 eV to 111.535 keV.

The resonant isotopes in the same medium were self-shielded as one mixture.

Two options of the SG+SPH method were compared: the first using the 2D collision probability method with Multi-Cell Approximation (MCA) (Sanchez, impacted the production rates. The discrepancies in production rates of the EDC calculation are limited to 0.5%. in the treatment of the intra-pellet fuel composition profile.

The treatment of the intra-pellet fuel temperature profile is not objective of this study. However, our preliminary tests show that the SMA is no longer valid in presence of the intra-pellet temperature profile, since the neutron spectra are different in fuels of different temperatures. We believe that both the intra-pellet profiles of fuel composition and fuel temperature can be treated in a similar way.

Work is undergoing in APOLLO3 on a solution to these two situations.

An issue raised in the fuel cell depletion calculations is the excessive CPU time spent in computing mixture probability tables, which will be worsened in assembly depletion calculations. We will consider the parallelization of the selfshielding of the 1D EDCs and the computation of mixture probability tables.

We also notice the important CPU times spent in the 2D transport solutions in the assembly calculations. The main reason is the usage of the fine 383-group mesh required by the subgroup method employing the mathematical probability tables. However, using a fine energy mesh is not obligatory in the stage of transport solution. Accordingly, we consider condensing the effective cross sections to a coarse energy mesh of less than 100 groups, and carry out the transport calculation on the coarse energy mesh. We can expect an important reduction of the running time in transport solution by this change.

APOLLO3 R and TRIPOLI-4 R are registered trademarks of CEA. We gratefully acknowledge EDF and Framatome for their long term partnership and their support.
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