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Université Paris-Saclay, F-91191, Gif-sur-Yvette, France

bCEA, DEN, DER, Cadarache, 13115 Saint-Paul-Lez-Durance, France

Abstract

Time or α eigenvalues are key to several applications in reactor physics, en-
compassing start-up analysis and reactivity measurements. In a series of recent
works, a Monte Carlo method has been proposed in order to estimate the ele-
ments of the matrices that represent the discretized formulation of the operators
involved in the α-eigenvalue problem, which paves the way towards the spectral
analysis of time-dependent systems (Betzler, 2014; Betzler et al., 2014, 2015,
2018). In this work, we improve the existing methods in two directions. We
first show that the α-k modified power iteration scheme can be successfully ap-
plied to the estimation of the matrix elements in the direct formulation of the
eigenvalue problem, which removes the bias on the fundamental eigenvalue and
eigenvector of the discretized matrix, similarly to what happens for the fission
matrix in the k-eigenvalue problems. Then, we show that the matrix elements for
the adjoint formulation of the α eigenvalue problem can be estimated by using
the Generalized Iterated Fission Probability method, which we have introduced
in order to compute the fundamental adjoint α eigenfunction. We will verify the
proposed algorithms and probe their convergence as a function of the size of the
discretized matrices on some simplified benchmark configurations where exact
reference solutions can be obtained.
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1. Introduction

The characterization of the time behaviour of the system under analysis is
key to several applications emerging in reactor physics, including pulsed neu-
tron reactivity measurements (Pázsit and Pál, 2008; Cao and Lee, 2010; Hansen,
1985), reactor period analysis (Keepin, 1965; Zoia and Brun, 2016; Zoia et al.,5

2016; Nauchi, 2013), reactor start-up (Pfeiffer et al., 1974), material control and
accountability in critical assemblies (Sanchez and Jaegers, 1998), accelerator-
driven systems (Persson, 2008) and perturbation theory (Yamamoto and Sakamoto,
2019; Favorite, 2018; Yamamoto and Sakamoto, 2019; Jinaphanh and Zoia, 2019).
The time evolution of neutron transport is governed by the Boltzmann equation,10

possibly coupled to the equations for the delayed neutron precursors (Bell and
Glasstone, 1970). Monte Carlo simulation is considered as the gold standard
for the simulation of neutron transport, in that almost no approximations are
introduced, contrary to faster but approximate deterministic methods. Due to
their high computational cost, Monte Carlo methods have been so far mostly de-15

voted to the analysis of stationary systems. However, thanks to the increasing
CPU power, the direct (kinetic) simulation of time-dependent transients includ-
ing neutrons and precursors has become accessible and will establish itself as the
reference verification tool for deterministic solvers in non-stationary regime in
the near future (Sjenitzer and Hoogenboom, 2013; Faucher et al., 2018).20

Beside kinetic simulations, the assessment of the time evolution of the neu-
tron population can be usefully complemented by the spectral analysis of the
Boltzmann operator (Duderstadt and Martin, 1979). This is tantamount to de-
termining the so-called time (or α) eigenvalues and eigenmodes that stem from
supposing variable separation and a time dependence of the kind exp(αt) for both25

the neutron flux and the precursor concentrations. The eigenvalues α, carrying
the units of inverse time, correspond to a set of characteristic reactor frequencies;
the dominant α eigenvalue, i.e., the one having the largest real part, physically
represents the inverse asymptotic reactor period, and the associated dominant
eigenmode

{
ϕα,c1

α, · · · ,c
J
α

}
represents the asymptotic distribution of neutrons and30

precursors (for families 1 to J) within the reactor at long times. Several Monte
Carlo methods exist to determine the dominant α eigenvalue and eigenmode,
encompassing the α-k modified power iteration (Brockway et al., 1985; Cullen,
2003; Zoia et al., 2015), the time-source technique (Shim et al., 2015) and root
finding procedures (Hoogenboom, 2002; Nauchi, 2013; Josey, 2018). Despite35

some successful attempts, direct Monte Carlo simulation of higher α eigenval-
ues and eigenmodes has received only limited attention (Yamamoto, 2011). In
this context, matrix-filling Monte Carlo methods have recently drawn much in-
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terest (Betzler, 2014; Betzler et al., 2014, 2015, 2018): the underlying idea is to
estimate by Monte Carlo simulation the elements of a matrix whose eigenvalues40

and eigenvectors converge to the true α eigenvalues and eigenmodes in the limit
of a sufficiently fine discretization of the phase space (Betzler et al., 2018) 1. This
approach is very similar in spirit to the better-known fission matrix method for
k-eigenvalues (Dufek and Gudowski, 2009; Carney et al., 2014). Although the α
eigenvalues and eigenmodes thus estimated are generally biased because of the45

finite size of the matrix, this method allows obtaining a fairly accurate picture of
the entire spectrum and thus grasping the time evolution of the system (Betzler
et al., 2014, 2015), even for complex three-dimensional configurations (Betzler,
2014; Betzler et al., 2018). Moreover, once the α spectrum and the associated
eigenvectors have been determined from the matrix, the full time-dependent evo-50

lution of the neutron and precursor populations can also be reconstructed, at least
in principle, by using the direct and adjoint matrices (Betzler et al., 2018).

The proposed matrix-filling Monte Carlo method based on a transition rate
method related to the adjoint formulation of the α eigenvalue equation 2 suffers
however from two approximations: the first is due to the fact that the exact ad-55

joint formulation is in practice replaced by a forward formulation, in order to
avoid the explicit simulation of backward random walks (Betzler, 2014; Betzler
et al., 2018). The second is due to the fact that the matrix elements are estimated
and filled in the course of a k-eigenvalue or c-eigenvalue Monte Carlo calcula-
tion, which induces a systematic bias even on the fundamental eigenvalue and60

eigenvector (Betzler, 2014; Betzler et al., 2018). Although both approximations
vanish in the limit of a sufficiently fine discretization of the phase space, for real-
istic systems this might require very large matrix sizes, entailing severe memory
footprint issues: contrary to the fission matrix, where only a spatial discretiza-
tion is required, the matrix associated to α-eigenvalue problems demands a full65

discretization of the phase space, including space, direction and energy (Betzler,
2014).

In this work we will improve the estimation of the matrix elements for α
eigenvalue problems in two directions. First, we will show that it is conve-
nient to fill the elements of the matrix by using the α-k modified power itera-70

1We remark in passing that an independent approach has been recently proposed for α eigen-
value problems, based on a time-discretization of the fission matrix (Josey and Brown, 2019).
However, it appears that such method allows only determining the eigenvalues but not the eigen-
vectors.

2This is required since the authors formally work with the propagator of the underlying ran-
dom walks, which is by construction associated to the adjoint evolution operators (Betzler, 2014;
Betzler et al., 2018).
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tion: this approach allows natively preserving the fundamental eigenvalue and
eigenvector, which will be computed exactly 3. Second, we will show that it is
actually possible to compute the matrix elements corresponding to the adjoint α
eigenvalue equations by using the Generalized Iterated Fission Probability (IFP)
method that we have recently introduced (Terranova et al., 2017): the obtained75

adjoint-weighted matrix will correspondingly preserve the fundamental (adjoint)
eigenvalue and eigenvector, as opposed to building the adjoint operator matrix
by transposing the direct operator matrix.

This paper is organized as follows: in Sec. 2 we will briefly recall the direct
and adjoint formulation of the α eigenvalue problem. In Sec. 3 we will detail the80

Monte Carlo algorithms that allow estimating the matrix elements corresponding
to the discretized formulation of the operators appearing in the α eigenvalue
equations, for both the direct and adjoint problems. Numerical examples for
the verification of the proposed algorithms will be discussed in Sec. 4: for this
purpose we will consider some simplified benchmark configurations where exact85

reference solutions can be obtained. A discussion concerning the obtained matrix
operators and their application to realistic configurations is presented in Sec. 5.
Conclusions will be finally drawn in Sec. 6.

2. The α eigenvalue equations

Time eigenvalue equations are obtained from the Boltzmann equation for the90

time-dependent neutron flux ϕ(r,Ω,E, t) and from the equations for the time-
dependent delayed neutron precursors c j(r, t) by postulating variable separation
of the kind ϕ(r,Ω,E, t) = ϕα(r,Ω,E)exp(αt) and c j(r, t) = c j

α(r)exp(αt) (Bell and
Glasstone, 1970). This leads to the system of eigenvalue equations

α

3
ϕα+Lϕα = Fpϕα+

∑
j

χ
j
d(E)

4π
cα, j

αcα, j = Fd, jϕα−λ jcα, j,

(1)

j = 1, · · · , J. Here L denotes the net disappearance operator

L =Ω · ∇+Σt −

∫ ∫
dΩ′dE′Σs(r,Ω′,E′→Ω,E), (2)

3The same choice appears to have been independently proposed by (Variansyah et al., 2019).
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Fp the prompt fission operator

Fp =
χp(r,E)

4π

∫ ∫
dΩ′dE′νp(E′)Σ f (r,E′), (3)

and Fd, j the delayed fission operator associated to precursor family j

Fd, j =

∫ ∫
dΩ′dE′νd, j(E′)Σ f (r,E′), (4)

where Σx, χ and ν stand respectively for the macroscopic cross section of reaction95

x, fission spectrum and multiplicity, and λ j are the precursor decay constants for
family j. In order to keep notation to a minimum, we consider a single fissile
nucleus. The system in Eqs. (1) can be rewritten in a suggestive matrix form as

Aψα = αBψα (5)

for the generalized eigenfunction vector ψα =
{
ϕα,cα,1, · · · ,cα,J

}T , where we have
defined the matrix operators100

A =


Fp−L λ1

χd,1(E)
4π · · · λJ

χd,J(E)
4π

Fd,1 −λ1 · · · 0
...

...
. . .

...
Fd,J 0 · · · −λJ

 (6)

and

B =


1
3

0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (7)

The spectral properties of the eigenvalue system in Eq. (5) are highly non-trivial
and have attracted intensive research efforts. For a review of the prompt case (i.e.,
when the precursors contributions are neglected), see, e.g., (Larsen and Zweifel,
1974); the general problem including precursors has received comparatively less105

attention (Kaper, 1967). The conditions for the well-posedness of Eqs. (5) have
been extensively analyzed (Larsen and Zweifel, 1974; Duderstadt and Martin,
1979). Under mild assumptions, a dominant discrete eigenvalue α0 exists, which
is simple, real, larger than the real parts of all the other α, and whose associated
eigenfunction is non-negative (Larsen and Zweifel, 1974). This ensures that,110

after a transient, the neutron and precursor population will grow or decay in time
5



as ∝ eα0t. Due to the symmetrical nature of the involved operators, the complex
eigenvalues α (if any) come in conjugate pairs and are typically associated to
oscillatory modes (Larsen and Zweifel, 1974).

The equations adjoint to Eqs. (1) are obtained from the adjoint Boltzmann115

equation for the time-dependent adjoint neutron flux ϕ†(r,Ω,E, t) and from the
equations for the time-dependent adjoint precursor concentrations c†j(r, t) by pos-

tulating again variable separation of the kind ϕ†(r,Ω,E, t) =ϕ†α(r,Ω,E)exp(−α†t)
and c†j(r, t) = c†α, j(r)exp(−α†t) (Bell and Glasstone, 1970). This leads to the sys-
tem120

α†

3
ϕ†α+L†ϕ†α = F

†
pϕα+

∑
j

νd, j(E)Σ f (r,E)c†α, j

α†c†α, j = λ j

∫ ∫
dΩ′dE′

χd, j(E′)
4π

ϕ†α(r,Ω′,E′)−λ jcα, j,

(8)

j = 1, · · · , J. Here L† denotes the adjoint net disappearance operator

L† = −Ω · ∇+Σt −

∫ ∫
dΩ′dE′Σs(r,Ω,E→Ω′,E′) (9)

and F †p the adjoint prompt fission operator

F
†
p = νp(E)Σ f (r,E)

∫ ∫
dΩ′dE′

χp(r,E′)
4π

. (10)

The system in Eqs. (8) can be again rewritten in matrix form as

A†ψ†α = α†B†ψ†α (11)

for the generalized adjoint eigenfunction vector ψ†α =
{
ϕ†α,c

†

α,1, · · · ,c
†

α,J

}T
, where

we have defined the matrix operators

A† =


F
†
p −L

† νd,1(E)Σ f (r,E) · · · νd,J(E)Σ f (r,E)
λ1

∫ ∫
dΩ′dE′ χd,1(E′)

4π −λ1 · · · 0
...

...
. . .

...

λJ
∫ ∫

dΩ′dE′ χd,J(E′)
4π 0 · · · −λJ

 (12)

and B† = B. The adjoint and forward eigenvalue spectra are the complex con-
jugates of each other, i.e., coincide on the complex plane, and the eigenmodes125

satisfy a bi-orthogonality condition (Bell and Glasstone, 1970).
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For given reactor configuration and external source, the full time-dependent
solution ψ = {ϕ,c1 · · · ,cJ}

T can be expanded in terms of the α eigenfunctions as

ψ(r,Ω,E, t) =

I∑
i

wi(t)ψαi(r,Ω,E) + ζ(r,Ω,E, t), (13)

where ζ is a residual non-separable function stemming from the continuum por-
tion of the α spectrum (if any) and I is the total number of eigenvalues αi asso-130

ciated to Eqs. (5) (Bell and Glasstone, 1970; Duderstadt and Martin, 1979). The
coefficients wi of the expansion satisfy the differential equations

dwi(t)
dt

= αiwi(t) +
〈ϕ†αi ,Q〉

〈ϕ†αi ,
1
3
ϕαi〉+

∑
j〈c
†

αi, j
,cαi, j〉

, (14)

involving the adjoint eigenfunctions and the external source Q. The brackets
denote integration over all phase space variables.

3. Monte Carlo estimators for the operators135

In order to derive a numerically tractable formulation of the systems in Eqs. (5)
and (11), we would like to replace the operators by matrices whose elements can
be explicitly computed (Betzler et al., 2018). For this purpose, it is convenient to
discretize the phase space over elements of the kind

∫
Vn

dr
∫
Ωm

dΩ
∫

Eg
dE, where

Vn, Ωm and Eg denote space, angle and energy intervals, respectively. The idea140

is then to approximate any generic operatorH appearing in Eqs. (5) and (11) by
its average over the phase space element n,m,g: this defines the matrix elements

Hn,m,g = 〈H〉n,m,g '
〈H f 〉n,m,g
〈 f 〉n,m,g

, (15)

for an arbitrary weighting function f . Consequently, the eigenvalue problem in
Eq. (5) is replaced by the matrix formulation145

AΨα = αBΨα (16)

and the adjoint problem in Eq. (11) is replaced by

A†Ψ†α = αB†Ψ†α. (17)

Once the matrix elements have been estimated, the spectrum and the eigen-
vectors can be extracted by using standard linear algebra libraries (Betzler, 2014),
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similarly to what is done for the fission matrices for k-eigenvalue problems (Car-
ney et al., 2014). In the limit of a sufficiently fine discretization of the space,150

angle and energy intervals, A,B→A,B and A†→A†, so that the spectrum and
the eigenvectors of the matrices converge to those of the exact formulation. The
accuracy of the introduced approximation and the rate of convergence depend
on the choice of the weighting function. We are thus left with two constraints:
the matrix elements Hn,m,g must correspond to scores that can be practically es-155

timated by Monte Carlo methods, and the weighting function must be chosen so
to minimize the discretization bias.

3.1. Estimating the direct matrix elements
In order to fill the elements of the (direct) fission matrix corresponding to k-

eigenvalue problems, the natural choice is to use the fundamental k-eigenmode,160

which can be estimated by the regular power iteration method in Monte Carlo
criticality calculations (Carney et al., 2014). This approach preserves the fun-
damental eigenvalue and eigenvector that can be computed from the resulting
matrix, in the sense that they are unbiased independently of the size of the dis-
cretization intervals 4.165

By analogy, and in view of obtaining a similar unbiased estimate of the fun-
damental eigenpair, it seems reasonable to choose the fundamental α-eigenmode
as a weighting function for the forward eigenvalue problem in Eq. (5). The
fundamental eigen-pair {α,ψα} can be determined by applying the Monte Carlo
implementation of the α-k power iteration 5, which was originally proposed for170

prompt decay constants (Brockway et al., 1985) and then extended to the gen-
eral case with neutrons and precursors (Hoogenboom, 2002; Nauchi, 2013; Zoia
et al., 2015). The idea is to iteratively seek the dominant α value that makes
Eqs. (1) exactly critical with respect to a fictitious k-eigenvalue applied to the
production terms on the right hand side. For positive α, the term α/3 on the left175

hand side is interpreted as an additional capture cross section in the modified
power iteration (Brockway et al., 1985; Cullen, 2003). For negative α, α/3 is
usually moved to the right hand side of the equation and interpreted as an ad-
ditional production term (Brockway et al., 1985; Cullen, 2003). However, the

4This property however does not carry over to higher eigenvalues and eigenvectors of the
direct fission matrix, nor to the fundamental (and higher) eigenmode of the transposed fission
matrix (Carney et al., 2014).

5As mentioned, a few other methods exist to estimate {α,ψα}, each with distinct merits and
drawbacks (Zoia et al., 2015; Nauchi, 2013; Shim et al., 2015; Josey, 2018). Here we have
chosen the α-k method, which is relatively straightforward and can be conveniently adapted to
adjoint calculations, independently of the sign of the system reactivity (Terranova et al., 2017).
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standard implementation of this algorithm has been shown to be numerically180

unstable, possibly leading to abnormal termination (Hill, 1983). An improved
α-k algorithm has been proposed by introducing a copy operator with associated
cross section −ηα/3, with η > 0 (Zoia et al., 2014, 2015): this overcomes the lim-
itations for the case of negative α by preserving the balance between destructions
and productions (Mancusi and Zoia, 2018). Finally, the term λ j/(λ j +α) acts as185

a positive weight multiplier for the delayed neutrons (the dominant eigenvalue
must satisfy α>−min j[λ j]). For a detailed description of the algorithm, we refer
the reader to (Zoia et al., 2015).

Suppose now that we partition the phase space into N space intervals, M
angle intervals and G energy intervals. The method proposed in this work for the190

direct matrices closely follows the strategy of (Betzler et al., 2018), except for
the choice of ϕα and cα, j as the weighting functions. The corresponding matrix
elements will be thus filled by using the following Monte Carlo estimators. For
the speed matrix, the only non-trivial terms are of the kind 〈3−1ϕα〉n,m,g, which
correspond to the average time spent by a neutron in the interval n,m,g during195

the cycles of the α-k power iteration. For the total collision operator we have
〈Σtϕα〉n,m,g, which can be estimated at each collision event. For the scattering,
prompt and delayed fission operators we have the matrix elements

〈〈Σs(r,Ω′,E′→Ω,E)ϕα(r,Ω′,E′)〉m′,g′〉n,m,g, (18)

〈
χp(r,E)

4π
〈νp(E′)Σ f (r,E′)ϕα(r,Ω′,E′)〉m′,g′〉n,m,g, (19)

and200

〈〈νd, j(E′)Σ f (r,E′)ϕα(r,Ω′,E′)〉m′,g′〉n, (20)

respectively, which can be again computed at collision events. The leakage term
is first transformed by applying the Gauss theorem, and reads

〈Ω · ∇ϕα(r,Ω,E)〉n,m,g = 〈

∫
S n

dr′Ω ·nϕα(r′,Ω,E)〉m,g, (21)

where S n is the surface enclosing the space element n and n is the normal to
the surface. This term can be estimated by computing the current of neutrons
streaming in and out the surfaces of the space element n, projected over the205

flight direction Ω (Betzler, 2014).
As for the terms that must be weighted by the precursor concentrations, ob-

serve that cα, j can be transformed into terms weighted by the neutron flux ϕα by

9



using

cα, j =
1

α+λ j
Fd, jϕα (22)

from Eqs. (1) and noting that α is known at each cycle of the α-k power iteration210

after convergence has been achieved. We have thus the matrix elements

〈
λ j

α+λ j

χd, j(r,E)
4π

〈νd, j(E′)Σ f (r,E′)ϕα(r,Ω′,E′)〉m′,g′〉n, (23)

which have the same structure as those of the prompt fission operator.
Finally, the denominators needed to normalize the matrix elements can be

computed by estimating 〈ϕα〉n,m,g and 〈cα, j〉n.
When including the precursor contributions, the total matrix operator size

is (NMG + N f J)2, where N f ≤ N is the number of fissile regions for which the
precursor contributions must be assigned. Mainly due to the structure of the
gradient operator and of the diagonal matrix associated to the precursor decay
constants (Betzler, 2014), the matrix operator is however considerably sparse.
Assuming a Cartesian grid for the space coordinates, with Nx, Ny and Nz com-
ponents along each axis (N = Nx ×Ny ×Nz), the maximum number of non-null
matrix entries is

MG
[
NMG + NxNy(Nz−1) + NyNz(Nx−1) + NxNz(Ny−1)

]
+ N f J

� (NMG + N f J)2, (24)

which is an important issue when considering real-world applications.215

3.2. Estimating the adjoint matrix elements
Once the discretized matrix A has been filled, the adjoint matrix A† can be

in principle obtained by transposing A (Betzler et al., 2018), similarly as done
for the adjoint fission matrix in k-eigenvalue problems (Carney et al., 2014).
This approach would preserve the spectrum 6 (and in particular the fundamental220

eigenvalue) but would also induce a bias on the fundamental adjoint eigenvector,
since the matrix elements would have been weighted by the forward fundamental
eigenmode ϕα instead of the adjoint fundamental eigenmode ϕ†α (Betzler et al.,
2018). This issue is entirely analogous to what happens for the adjoint fission

6This consideration follows from the spectrum of a transposed real matrix being identical to
the spectrum of the original matrix.
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matrix in k-eigenvalue problems (Carney et al., 2014). Although this bias van-225

ishes in the limit of sufficiently large matrices, for the sake of numerical accuracy
(and in view of reducing the memory footprint) it would be convenient to esti-
mate the adjoint matrix elements directly.

In a recent work, a generalization of the Iterated Fission Probability (IFP)
method has been proposed in order to evaluate ϕ†α (and more generally bi-linear230

forms requiring both ϕα and ϕ†α) by relating the fundamental adjoint eigenfunc-
tion to the neutron importance Iα (Terranova et al., 2017), similarly to what
is done for the regular k-eigenvalue IFP formulation (Nauchi and Kameyama,
2010; Kiedrowski et al., 2011). The Generalized IFP method provides estimates
of the neutron importance Iα in α-eigenvalue problems by recording the descen-235

dants after a given number of latent generations for an ancestor neutron starting
with coordinates r,Ω,E. In practice, Iα is estimated by using a fixed-source
calculation, where neutrons are followed over the latent generations. The funda-
mental α eigenvalue is assumed to be known before running the calculation. For
α > 0, the additional term α/3 acts as a sterile capture, as mentioned above: neu-240

trons can contribute to Iα only being promoted to the next latent generation by
prompt and delayed fission (in this latter case, their weight is assigned a correc-
tion factor λ j/(λ j +α)). For α < 0, neutrons can contribute to Iα also via the copy
operator with associated cross section −ηα/3. The corresponding importance
Iα ∝ ϕ

†
α of the ancestor neutron is estimated at the end of the latent generations245

as
〈ϕ†αQ〉 ∝

∑
i

πi, (25)

where πi is the corresponding statistical weight of the descendants collected at
the end of the Generalized IFP cycle for the neutrons initially sampled from
a fixed source Q, the sum being extended over the ancestors (Terranova et al.,
2017).250

For the direct matrices, the α-k power iteration ensures that particles are sam-
pled according to the fundamental eigenmode distribution and matrix elements
can be constructed as regular reaction rates, as detailed above. For adjoint ma-
trix elements, on the contrary, the idea is to carefully select a source distribution
Q such that Eq. (25) yields the desired adjoint matrix element. Indeed, the ad-255

joint matrix elements illustrated in the previous sections can all be written in
the form of a scalar product involving a ‘source’ weighted by the fundamental
adjoint mode, which can be thus estimated by computing the neutron impor-
tance function by the Generalized IFP method. Bearing in mind these consid-
erations, two cases are encountered: if the source for the matrix element is a260

probability density function (e.g., a fission spectrum), this probability density
11



can be straightforwardly used so as to sample the initial coordinates of the neu-
tron whose importance must be assessed. If the source for the matrix does not
lend itself to be interpreted as a probability density function (e.g., the total cross
section appearing in the adjoint collision matrix 〈Σtϕ

†〉nmg), then an artificial265

uniform coordinate is sampled in the selected bin corresponding to the matrix
element, and the source appearing in the expression of the matrix element will
be used as a final weighting factor for the obtained importance following from
the sampled neutron. For the discretized operators, a uniform meshing of the
phase space is preferred, since the effect of the distribution will vanish when270

normalizing by the bin-integrated adjoint flux 〈ϕ†〉nmg.
Similarly as in the direct case, the non-trivial part of the speed matrix is

represented by a diagonal matrix with element 〈1
3
ϕ†〉nmg. The scattering

〈〈Σs(r,Ω,E→Ω′,E′)ϕ†α(r,Ω′,E′)〉m′,g′〉n,m,g, (26)

and fission

〈νp(E)Σ f (r,E)〈
χp(r,E′)

4π
ϕ†α(r,Ω′,E′)〉m′,g′〉n,m,g, (27)

matrix elements are obtained by uniformly sampling the incident energy and di-
rection, then sampling the scattering (respectively fission) spectrum and finally
computing the adjoint flux by using the Generalized IFP scheme. It is worth not-
ing that the normalization of these elements is performed with respect to the in-275

tegrated adjoint flux 〈ϕ†α〉n,m,g, which requires a separate calculation, as 〈ϕ†α〉n,m,g
stems from a source different from those needed for Eqs. (26) and (27).

The adjoint leakage matrix is expressed by applying again the Gauss theorem
in order to convert the volume integration into a surface integration over the
boundaries of the spatial bin. This leads to280

〈−Ω · ∇ϕ†α(r,Ω,E)〉n,m,g = −〈

∫
S n

dr′Ω ·nϕ†α(r′,Ω,E)〉m,g. (28)

The expression in Eq. (28) can be given a probabilistic interpretation: the integral
over the surface means that the starting points for the neutron ancestors must be
taken uniformly over the boundaries of the spatial bins. The angular factorΩ ·n,
where n is the normal vector of the surface S n, implies that the starting direction
for the ancestors must be sampled by respecting an isotropic incident flux on285

S n
7. This completely defines the source for the importance calculation of the

leakage term.

7The term cosθ0 = Ω0 ·n implies that in polar coordinates ancestors starting on the surface
must enter the domain with θ0 = arcsin(2ξ−1) in two dimensions and θ0 = 1/2arccos(1−2ξ) in
three dimensions, ξ being uniformly distributed in (0,1] (Zoia et al., 2012).

12



The adjoint precursor concentrations 〈c†j〉n can be estimated by resorting
again to the adjoint neutron flux, using

c†α, j =
λ j

α+λ j

∫ ∫
dΩ′dE′

χd, j(E′)
4π

ϕ†α(r,Ω′,E′). (29)

This leads to the following matrix elements290

λ j

α+λ j
〈νd, j(E)Σ f (r,E)〈

χd, j(r,E′)
4π

ϕ†α(r,Ω′,E′)〉m′,g′〉n, (30)

which have the same structure as those of the adjoint prompt fission operator.

4. Numerical simulations

In order to assess the impact of using the α-k power iteration and the Gen-
eralized IFP method in order to fill the matrix elements of the direct and adjoint
α matrices, respectively, we have selected some simplified benchmark configu-295

rations that allow more easily probing the proposed methods by comparing the
obtained results to reference solutions.

4.1. The rod model
The rod model is among the simplest space- and direction-dependent trans-

port problems: neutrons move at constant speed 3 along a line, where only300

two directions of flight are allowed, namely forward (Ω = +) and backward
(Ω = −) (Wing, 1962). We will furthermore assume that scattering and fission
are isotropic. Defining ϕα(x,±) the angular flux in the positive and negative di-
rection, the α eigenvalue equations read

±
∂

∂x
ϕα(x,±) +

[
α

3
+Σt

]
ϕα(x,±) =

ζα
2
ϕα(x), (31)

where we have defined ϕα(x) = ϕα(x,+) +ϕα(x,−), and305

ζα = Σs + νpΣ f +

J∑
j=1

λ j

λ j +α
νd, jΣ f . (32)

Let us consider a segment [0,L], with leakage boundary conditions ϕα(0,+) = 0
and ϕα(L,−) = 0. It is possible to derive an equation for ϕα(x) alone, namely,

−Dα
∂2

∂x2ϕα(x) =
ζαDα−1

Dα
ϕα(x), (33)
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Figure 1: The spectrum of the rod model with neutrons and two precursor fami-
lies, as from Eq. (37). Model parameters are the following: L = 2, 3 = 1, Σs = 2,
Σc = 1, Σ f = 3, ν = 2, β = 0.006, νp = (1−β)ν, λ1 = 0.02, β1 = 0.004, νd,1 = β1ν,
λ2 = 0.4, β1 = 0.002, νd,2 = β2ν.

with Robin boundary conditions ϕα(0)−Dα∂ϕα(0) = 0 and ϕα(L) + Dα∂ϕα(L) =

0, and

Dα =
1

Σt + α
3

. (34)

The general solutions of Eq. (33) can be explicitly derived (Grebenkov and310

Nguyen, 2013), and read

ϕα(x) =
√
ζαDα−1cos

 √
ζαDα−1

Dα
x

+ sin

 √
ζαDα−1

Dα
x

 , (35)

from which we can obtain the angular flux ϕα(x,±) and the precursor concentra-
tion

cα, j =
1

λ j +α
νd, jΣ fϕα(x) (36)

by observing that the particle current Pα(x) = ϕα(x,+)−ϕα(x,−) satisfies Pα(x) =

−Dα∂xϕα(x). The adjoint eigenmodes satisfy the relation ϕ†α(x,±) = ϕα(x,∓).315
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3 Σc Σ f Σs νp L

10 1 0.1 1 2.5 10

Table 1: Parameter values for the rod model.

weighting function α0 α1 α2,3

exact -0.91112104 -1.1402085 -1.5903273 ± 0.46007369i
α-k -0.91112673 -1.1408138 -1.5924502± 0.45965067i

Generalized IFP -0.91102399 -1.1410052 -1.5923255± 0.45948174i
k -0.91103714 -1.1404864 -1.5923147 ± 0.45890215i

fixed-source -0.91135365 -1.1407772 -1.5927331 ± 0.45864404i

Table 2: Rod model. Comparison of the α eigenvalues obtained from the ma-
trices filled with the method shown in the first column, for N = 1024 spatial
meshes.

The α eigenvalues stem from the dispersion law (Zoia et al., 2015)

Λ(α) = 2
√
ζαDα−1cos

 √
ζαDα−1

Dα
L

− ζαDα cos

 √
ζαDα−1

Dα
L

 = 0, (37)

which is obtained by imposing the boundary conditions on the general solutions
in Eq. (35). The zeros of Eq. (37) form the discrete spectrum of the α eigen-
values for the rod model. When the precursor contributions are neglected, Λ(α)
yields a finite number of real eigenvalues, plus a countable infinity of complex320

eigenvalues associated to oscillating modes (Montagnini and Pierpaoli, 1971);
when precursors are taken into account, J additional sets of denumerable real
eigenvalues are introduced by the J singularities at α = −λ j, accumulating at the
right of each −λ j. For an illustration, see Fig. 1. Equation (37) can be solved
numerically by any root tracking algorithm: the direct and adjoint modes can325

be then obtained based on Eq. (35). As such, the rod model is ideally suited to
verify the accuracy of the modal analysis methods described above.

4.1.1. Analysis of the direct eigenpairs
We begin our analysis by considering the case of direct eigenvalues and

eigenfunctions. The physical parameters for the rod model are given in Tab. 1.330

For this example, we have chosen a deep sub-critical configuration and we have
neglected the contributions of precursors. The dominant α-eigenvalue is α0 =

−0.91112 (with corresponding k-eigenvalue k0 = 0.21945). The matrix elements
15
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Figure 2: The first few (angular) eigenmodes ϕα(x,+): the eigenvectors of the
A matrix filled by the Monte Carlo calculation (symbols) are compared to the
exact solutions stemming from Eq. (35) (solid lines). Blue circles: fundamental
eigenmode ϕα0(x,+); red squares: second eigenmode ϕα1(x,+); green triangles:
third eigenmode ϕα2(x,+).

have been computed as described in the previous sections, based on the α-k
power iteration. Since the transport model does not depend on energy and only335

two discrete directions are allowed, the only discretization left is with respect to
the space coordinates, which makes easier the investigation of the convergence
of the proposed methods.

The Monte Carlo matrix-filling calculation based on the α-k power iteration
has been run with 103 inactive cycles, 103 active cycles used for scoring the340

matrix elements, and 105 particles per cycle. The results of the spectral anal-
ysis from the α-weighted matrices are recalled in Tab. 2 for a discretization of
N = 1024 spatial meshes. An excellent agreement is found between the numer-
ical values coming from the A matrix filled by the Monte Carlo calculation and
the exact results stemming from the roots of the dispersion law in Eq. (37). Cor-345

respondingly, the first few eigenfunctions are compared in Fig. 2 for the same
spatial discretization: again, an excellent agreement is found between the eigen-
vectors of the A matrix filled by the Monte Carlo calculation and the exact solu-
tions stemming from Eq. (35).

As discussed in the previous sections, an important issue concerns the con-350

vergence of the eigenvalues and eigenvectors of A with respect to the size of the
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matrix, i.e., the discretization of the viable phase space. The key point is that the
use of the α-k power iteration in order to weight the matrix elements by the fun-
damental ϕα eigenfunction is expected to preserve the fundamental eigenvector
of A for any choice of the matrix size. For the purpose of probing the behaviour355

of A, in addition to the α-weighted matrix we have produced two other matrices
obtained by weighting their respective elements by using the fundamental mode
of the k-eigenvalue power iteration (with 103 inactive cycles, 103 active cycles
used for scoring the matrix elements, and 105 particles per cycle) and by using
the flux resulting from a fixed-source calculation starting from a uniformly dis-360

tributed isotropic source within the domain (with 108 particles). In the limit of
very large N, all these methods are expected to yield comparable results and to
converge to the exact limit A. The corresponding numerical values are recalled
in Tab. 2 for N = 1024 spatial meshes and different weighting functions.

The convergence analysis of the α eigenvalues as a function of the spatial365

discretization N and of the choice of the weighting function for A is shown in
Fig. 3. As conjectured, the fundamental eigenvalue α0 resulting from the α-
weighted matrix A is unbiased with respect to the exact reference root of the
dispersion law in Eq. (37), independently of the discretization N (Fig. 3, left).
On the contrary, the fundamental eigenvalues α0 resulting from the matrix A370

with the two other weighting schemes shows a bias that is progressively reduced
as N increases. Even for this very simple benchmark example, it takes roughly
N = 128 in order for the other schemes to converge to the true fundamental eigen-
value, which motivates the choice of the α-weighting schemes. Concerning the
second and third eigenvalue α1 and α2, as expected the higher-order eigenfunc-375

tions are not preserved and the α-weighting method does not offer any specific
advantage (Fig. 3, right). For higher-order eigenvalues the rate of convergence of
the three schemes is similar, and it requires approximatively N = 256 to achieve
the asymptotic value.

An important issue concerns the impact of the noise intrinsically induced380

by the Monte Carlo method on the elements of the matrices: in particular, we
are interested in assessing the effects of such noise on the derived spectrum and
eigenvectors. For this purpose, we have performed an ensemble of independent
replicas of the α− k power iterations and we have computed the average and
the dispersion of the obtained α spectrum and eigenvectors, as a function of385

the number of simulated particles per cycle. Numerical findings are reported in
Tab. 3 and show that the standard deviation of the first few eigenvalues scales
roughly as 1/

√
P, P being the number of particles per cycle.

In order to perform a similar analysis on the behaviour of the eigenmodes,
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Particles per cycle α0 α1 Re[α2,3] Im[α2,3]

exact -0.91112104 -1.1402085 -1.5903273 ± 0.46007369

103 -0.91112119 -1.1449719 -1.6075309 ± 0.45378447
Average 104 -0.91112275 -1.1450849 -1.6076210 ± 0.45387262

105 -0.91111714 -1.1450994 -1.6076153 ± 0.45386983

103 2.4 ×10−5 4.7 ×10−5 3.3 ×10−5 6.6 ×10−5

Std 104 7.6 ×10−5 1.4 ×10−5 1.0 ×10−5 2.0 ×10−5

105 2.4 ×10−6 4.7 ×10−5 3.1 ×10−6 6.5 ×10−6

Table 3: Rod model. Comparison of the eigenvalues obtained from the matrices
scored during 103 replicas of α − k power iterations, each using 103 inactive
cycles, 103 active cycles and a variable number of particles per cycle.

weighting function R0 R1 R2,3

exact 0.59054194 3.0407604 1.2570206

α− k 0.59067879 3.0393783 1.2640341
k 0.59067531 3.0424330 1.2634575

fixed-source 0.59038753 3.0501619 1.2631744

Table 4: Rod model. Comparison of the firs few estimators Ri obtained from the
matrices filled with the method shown in the first column, for N = 1024 spatial
meshes.

we have introduced an estimator defined as the normalized integral of the i-th390

eigenfunction over the half-domain, namely,

Ri =
|
∫ L

L
2
ϕα,i(x,+)dx|

|
∫ L

0 ϕα,i(x,+)dx|
, (38)

where L is the length of the rod. The reference value for Ri can be computed
based on Eq. (35). The numerical values for the first few Ri are compared to
the exact solutions in Tab. 4 for N = 1024 spatial meshes and different weighting
functions.395

The converge analysis of the estimator Ri estimated by the matrix A as a
function of the spatial discretization N and of the choice of the weighting func-
tion for A is shown in Fig. 4. As conjectured, the estimator R0 associated to the
fundamental eigenfunction resulting from the α-weighted matrix A is unbiased
with respect to the exact solution, independently of the discretization N. On the400
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Particles per cycle R0 R1 R2

exact 0.59054194 3.0407604 1.2570206

103 0.59049101 3.0517314 1.3023678
average 104 0.59052498 3.0530707 1.3020484

105 0.59053354 3.0511973 1.3020092

103 7.7 ×10−5 3.3 ×10−3 2.2 ×10−3

Std 104 2.4 ×10−5 1.0 ×10−3 5.5 ×10−4

105 7.4 ×10−6 3.3 ×10−4 6.2 ×10−5

Table 5: Rod model. Comparison of the estimators Ri obtained from the matrices
scored during 103 replicas of α − k power iterations, each using 103 inactive
cycles, 103 active cycles and a variable number of particles per cycle.

contrary, the estimator R0 resulting from the matrix A with the two other weight-
ing schemes shows a bias that decreases with increasing N. It takes roughly only
N = 8 in order for the k-weighted scheme to converge to the true fundamental
eigenvalue, which can be understood by observing that the deviation between
ϕk,0(x,+) and ϕα,0(x,+) is rather small for the parameters chosen here. For the405

matrix weighted on the fixed-source flux, the deviation is much larger, and con-
vergence is achieved after N = 256. Concerning the estimators R1 and R2 associ-
ated with the second and third eigenfunction, all weighting schemes are biased,
and the rate of convergence of the three schemes is similar, the asymptotic value
being attained after approximatively N = 128.410

In order to assess the impact of the noise induced by the Monte Carlo method
on the eigenvectors, we have performed an ensemble of independent replicas of
the α− k power iterations and we have computed the average and the dispersion
of the obtained α eigenvectors, as a function of the number of simulated particles
per cycle. Numerical findings are reported in Tab. 5 and show that the standard415

deviation of the first few estimators Ri scales approximately as 1/
√

P, P being
the number of particles per cycle.

4.1.2. Analysis of the adjoint eigenpairs
We will now focus on the adjoint matrix A†, whose elements have been filled

by using the Generalized IFP method, as detailed above. For this example, the420

Monte Carlo calculation has been performed with 108 particles, and 15 latent
generations. The α0 value needed for the Generalized IFP algorithm has been
obtained from the direct calculations done in the previous section. The results
of the spectral analysis from the adjoint α-weighted matrix are recalled in Tab. 2
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Weighting function R†0 R†1 R†2,3

exact 4.0945806×10−1 4.0407604 1.654407

Generalized IFP 4.1054467×10−1 4.0016557 1.6529283
α-k and transposition 4.0981832×10−1 4.0324929 1.6583581

Table 6: Rod model. Comparison of the adjoint estimators R†i obtained from the
matrices filled with the method shown in the first column, for N = 1024 spatial
meshes.

for a discretization of N = 1024 spatial meshes. An excellent agreement is found425

between the numerical values coming from the A† matrix filled by the Monte
Carlo calculation and the exact results stemming from the roots of the dispersion
law in Eq. (37). This means that the relation α† = α on the spectrum of the α
eigenvalues is correctly preserved when weighting A† by the fundamental eigen-
function ϕ†α 8. The first few adjoint eigenfunctions are compared in Fig. 5 for430

the same spatial discretization: again, an excellent agreement is found between
the eigenvectors of the A† matrix filled by the Generalized IFP method and the
exact solutions stemming from the eigenfunctions adjoint to Eq. (35). Observe
in particular that ϕ†α satisfies ϕ†α(x,+) = ϕα(x,−), as expected.

The convergence of the eigenvalues associated to the A† matrix is analyzed435

in Fig. 3: not surprisingly, the convergence of the eigenvalues with respect to the
matrix discretization N follows the same pattern as in the direct case. The fun-
damental eigenvalue α0 is similarly preserved by the matrix A†, independently
of N, whereas the higher eigenvalues are not and converge to the true values in
the limit of large N.440

In order to analyze the behaviour of the adjoint eigenmodes, we introduce
the estimator

R†i =
|
∫ L

L
2
ϕ†α,i(x,+)dx|

|
∫ L

0 ϕ†α,i(x,+)dx|
. (39)

The reference value for R†i can be computed based on the adjoint eigenfunctions
derived from Eq. (35). Numerical values corresponding to the generalized IFP
method and to the transposed matrix obtained from the α−k method are recalled445

8This property is also preserved when approximating A† by taking the transposed matrix
AT (although A is weighted by the direct fundamental eigenfunction), since by construction
transposition preserves the spectrum.
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in Tab. 6 for N = 1024 spatial meshes. The converge analysis of the estimator R†i
estimated by the matrix A† as a function of the spatial discretization N is shown
in Fig. 6. As conjectured, the estimator R†0 associated to the fundamental adjoint
eigenfunction resulting from the adjoint α-weighted matrix A† is unbiased with
respect to the exact solution, independently of the discretization N. As for the450

estimator R†1 associated with the second eigenfunction, the adjoint α-weighted
matrix A† yields a biased result, which converges to the exact limit after approx-
imatively N = 32.

In the same figure we also display the estimators of the adjoint eigenfunc-
tions obtained by taking the transposed direct α-weighted matrix AT in order to455

approximate A†. Figure 6 shows that this approach leads to a bias on R†i for
the fundamental and the first eigenfunction. Although the bias vanishes as ex-
pected in the limit of large N, this analysis suggests that it is general preferable
to compute A† rather than approximating the adjoint-weighted matrix by using
the transposed matrix AT .460

4.2. A continuous-energy transport model
We consider now a continuous-energy transport model in an infinite medium.

The model includes scattering with an amnesia kernel (Duderstadt and Martin,
1979), capture and fission with two precursor families. All cross sections Σr are
assumed to have a 1/

√
E behaviour, i.e., Σr(E) = Σ0

r/
√

E. The scattering kernel
M(E) is a Maxwell distribution 9 with average energy Es. The prompt χp(E) and
delayed χd, j(E) fission kernels are also assumed to be Maxwellian distributions
with average Ep and Ed, j, j = 1,2, respectively. The fission multiplicities are
taken constant, for the sake of simplicity. The resulting α eigenvalue problem
reads[

α

3(E)
+Σt(E)

]
ϕα(E) = M(E)

∫
dE′Σs(E′)ϕα(E′)+χp(E)

∫
dE′νpΣ f (E′)ϕα(E′)

+
∑

j

λ j

λ j +α
χd, j(E)

∫
dE′νd, jΣ f (E′)ϕα(E′), (41)

9The normalized Maxwell probability densityM(x) is given by

M(x) =
2
√
π

1
θ3/2

√
xe−x/θ, (40)

where θ is the average of the distribution.
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where 3(E) =
√

E. By virtue of the simple functional forms chosen for this
configuration, the eigenvalues and eigenfunctions can be determined exactly. In
particular, the eigenvalues are the roots of the dispersion law

Λ(α) = α+Σ0
a− νpΣ0

f −
∑

j

λ j

λ j +α
νd, jΣ

0
f = 0, (42)

where Σ0
a = Σ0

t −Σ0
s , and the eigenfunctions read465

ϕα(E) =

√
E

α+Σ0
t

Σ0
s M(E) + νpΣ0

fχp(E) +
∑

j

λ j

λ j +α
νd, jΣ

0
fχd, j(E)

 , (43)

for the values α that satisfy the dispersion law. As for the adjoint eigenvalue
problem, we have the equation[

α

3(E)
+Σt(E)

]
ϕ†α(E) = Σs(E)

∫
dE′M(E′)ϕ†α(E′)+νpΣ f (E)

∫
dE′χp(E′)ϕ†α(E′)

+
∑

j

λ j

λ j +α
νd, jΣ f (E′)

∫
dE′χd, j(E′)ϕ

†
α(E′). (44)

By inspection, the eigenfunctions are ϕ†α(E) = 1, independently of α, with the
same associated spectrum as in the direct problem.

For this example, we have chosen the following parameters: Σ0
c = 0.6, Σ0

s =

0.3, Σ0
f = 0.1; for the fission multiplicities we have set νp = 2 and νd, j = β jνd, with

νd = 0.5, β1 = 0.25 and β2 = 0.75; for the scattering law we have taken Es = 10−5;470

for the prompt and delayed fission kernels we have taken the averages Ep = 1,
Ed,1 = 0.1 and Ed,2 = 0.01, respectively; for the precursor decay constants we
have taken λ1 = 2.5 and λ2 = 5.

The first few eigenvalues obtained from the matrices are compared to the ref-
erence solutions in Tab. 7 for N = 1024 energy meshes. The direct eigenfunctions475

resulting from the matrices filled by α-k power iteration (with 103 inactive cy-
cles, 103 active cycles and 105 particles per cycle) are compared to the analytical
solutions in Fig. 7, for a discretization corresponding to G = 256 energy intervals.
The first few modes are in excellent agreement with the reference solutions. The
numerical findings for the adjoint problem, obtained from the Generalized IFP480

method with 108 particles and 15 latent generations, are shown in Fig. 8: again,
an excellent agreement is found between the eigenvectors stemming from the
matrices and the exact solutions, despite the fact that the adjoint eigenfunctions
for this problem are degenerate.
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weighting function α0 α1 α2

exact -0.44365178 -2.5149493 -5.0413989

α-k -0.4436851 -2.5149039 -5.0414104
Generalized IFP -0.443671223 -2.5149282 -5.0413210

Table 7: Continuous-energy model. Comparison of the first few eigenvalues
obtained from the matrices scored with the method shown in the first column,
with N = 1024 energy groups.

5. Discussion485

The examples discussed in the previous section are very simple and have
been precisely chosen in order to compare the obtained numerical results against
reference solutions. In view of the application of the proposed methods to real-
world reactor configurations, some issues must be carefully examined and taken
into account.490

The first concerns the size of the matrix operators and hence the involved
memory footprint. A first glance to the involved order of magnitudes might
suggest that the overall size of the matrices involved in α-eigenvalue problems
may become too large to work with for any practical case, due to the need of
separately discretizing space, direction and energy (contrary to the k-eigenvalue495

problem, where only a spatial discretization is typically required (Dufek and Gu-
dowski, 2009; Carney et al., 2014)). Consider for instance a three-dimensional
configuration, and assume that each variable is partitioned into 102 bins: this
would lead to a total number of 1010 bins, i.e., to a number of 1020 matrix en-
tries. This applies to both direct and adjoint matrices. Such huge number clearly500

corresponds to an unaffordable memory footprint 10 on current machines (and on
future, at least for a very long time).

In practice, however, the α-eigenvalue matrices have been already applied to
realistic systems, including small research reactors (Betzler, 2014; Betzler et al.,
2018): as discussed in Sec. 3, the involved matrices have a sparse nature, and505

the number of non-null entries is much smaller that the total size of the matrices
(see in particular Eq. (24)). Furthermore, one can often take advantage of the
existing symmetries in order to reduce the dimension of the problem. Moreover,
for the energy and angle variable 102 bins are probably excessive with respect
to most problems of interest. To provide an example, for a two-dimensional510

10Suppose that each entry is represented by a double-precision floating-point number.
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representation of a reactor core, by taking Nx = Ny = 102 for the spatial mesh,
M = 8 for the directions, G = 30 for the energy groups and J = 6 for the precursor
families, we would have ∼ 6×1013 bins for the full matrix, but less than ∼ 6×108

non-null entries. Even in this case, however, and despite all the simplifications,
the memory footprint would be challenging for current machines. Numerical515

tests of convergence should be also performed a posteriori in order to ensure that
at least the spatial shape of the eigenvectors has been correctly captured. The
benchmark configurations examined in this manuscript clearly do not address
these problems, since only a single dimension has been discretized and careful
convergence tests were thus possible.520

The second issue concerns the applicability of these matrices to the analysis
of system changes. The whole α-eigenvalue expansion is based on the assump-
tion that the physical properties of the system under analysis (such as cross sec-
tions, fission spectra, multiplicities, etc.) do not evolve with time: eigenvalues
and eigenvectors are computed for a specific state. In real-world configurations,525

these properties naturally change, due to external actions (control rod move-
ments), physical feedbacks (Doppler effect, etc.), or both. In principle, once the
system changes the computed alpha eigenvalues and eigenvectors are no longer
valid and cannot be used. This leads to two different approaches: one can either
introduce (short) time steps and re-compute the required matrices at each time530

step, or use some clever interpolation between the initial and final configura-
tions of the system. The former method would lead to an unreasonable memory
occupation (and most probably also computation time). The latter method has
been suggested (Laureau et al., 2015) and successfully applied (Laureau et al.,
2017b) for the Transient Fission Matrix approach, and seems thus much more535

promising 11.
In view of these considerations, and based on the increasing availability of

direct time-dependent Monte Carlo simulations for reactor physics problems
(which natively include moving geometries and physical feedbacks (Sjenitzer
and Hoogenboom, 2013; Faucher et al., 2018)), the main interest of the α-eigenvalue540

matrix operators seems for higher-order mode analysis rather than for recon-
structing the time evolution of a system via eigenmode expansion: knowledge
of the first few α-eigenvalues and eigenfunctions for a given reactor state might
help, e.g., in locating the most appropriate detector positions for on-line core
monitoring. Nonetheless, a comparison in terms of performances and accu-545

11In particular, the application of perturbation techniques such as correlated sampling has
been shown to enhance the performances of the interpolation methods in realistic applications,
including multi-physics feedbacks (Laureau et al., 2017a).
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racy with respect to existing matrix-based methods (using time-dependent Monte
Carlo methods as a reference) for the approximation of the reactor kinetics will
deserve further investigation.

6. Conclusions

Knowledge of the α eigenpairs is key to several applications in reactor physics.550

In a series of recent works, it has been proposed to use Monte Carlo methods in
order to estimate the elements of the matrices that represent the discretized for-
mulation of the operators involved in the α-eigenvalue problem. In this work, we
have suggested some strategies to overcome two possible shortcomings of the
existing algorithms. We have shown that the bias possibly appearing on the di-555

rect fundamental eigenvalue and eigenvector for smaller sizes of the discretized
matrix can be removed by using the α-k modified power iteration method as
a weighing function. This corresponds to weighting the matrix elements by the
fundamental mode ϕα, which is expected to preserve the fundamental eigenvalue
and eigenvector of the matrix, similarly to what occurs for the fission matrix in k-560

eigenvalue problems. We have successively shown that the matrix associated to
the adjoint α-eigenvalue problem can be estimated by using the Generalized It-
erated Fission Probability method, which was recently introduced as a reference
Monte Carlo method to compute the fundamental adjoint α eigenfunction. Since
this approach corresponds to weighting the matrix elements by the fundamen-565

tal adjoint eigenfunction, the fundamental adjoint eigenvector of the discretized
matrix will be similarly preserved.

The proposed direct and adjoint methods have been verified on two bench-
mark problems where exact reference solutions were available for both the eigen-
value spectrum and the direct and adjoint eigenfunctions, and their convergence570

and accuracy have been extensively assessed. The impact of alternative weight-
ing schemes (such as the k-eigenvalue fundamental mode or the flux resulting
from solving a fixed-source problem) and the differences between the adjoint
matrix and the transposed direct matrix are most probably emphasized by the
choice of the benchmark problems presented in this paper: future work will be575

aimed at extensively assessing the performances and the robustness of the pro-
posed method for more realistic configurations combining spatial and energy
heterogeneities.

We conclude by observing that the strategy presented in this paper in order
to fill the matrix elements of the adjoint matrix by the Generalized IFP method580

might be easily extended to the k-eigenvalue formulation: instead of using the
transposed direct fission matrix, one could use the regular IFP method (which
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yields the importance function for the k-eigenvalue problems) so as to produce
the adjoint fission matrix, thus avoiding the bias on the fundamental adjoint
eigenvector.585

Acknowledgements

The authors wish to thank Dr. F. Malvagi (CEA/Saclay) for many fruitful
discussions.

G. Bell and S. Glasstone. Nuclear Reactor Theory. Van Nordstrand Reinhold Company, 1970.
B. R. Betzler. Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate590

Matrix Monte Carlo Method. PhD thesis, University of Michigan, 2014.
B. R. Betzler, W. R. Martin, B. C. Kiedrowski, and F. B. Brown. Calculating Alpha Eigenvalues

of One-Dimensional Media with Monte Carlo. Journal of Computational and Theoretical
Transport, 43:3849, 2014.

B. R. Betzler, B. C. Kiedrowski, F. B. Brown, and W. R. Martin. Calculating Infinite-medium595

Alpha-eigenvalue Spectra with Monte Carlo using a Transition Rate Matrix Method. Nuclear
Engineering and Design, 295:639644, 2015.

B. R. Betzler, B. C. Kiedrowski, W. R. Martin, and F. B. Brown. Calculating Alpha Eigenvalues
and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method. Nuclear
Science and Engineering, 192:115152, 2018.600

D. Brockway, P. Soran, and P. Whalen. Monte Carlo alpha calculations. Technical Report LA-
UR-85-1224, Los Alamos National Laboratory, 1985.

Y. Cao and J. C. Lee. Spatial corrections for pulsed-neutron reactivity measurements. Nuclear
Science and Engineering, 165(3):270–282, 2010.

S. Carney, F. Brown, B. Kiedrowski, and W. Martin. Theory and applications of the ssion matrix605

method for continuous-energy Monte Carlo. Annals of Nuclear Energy, 73:423–431, 2014.
D. Cullen. Static and dynamic criticality: are they different? Technical Report UCRL-TR-

201506, University of California Radiation Laboratory, 2003.
J. Duderstadt and W. Martin. Transport theory. J. Wiley and sons, New York, 1979.
J. Dufek and W. Gudowski. Fission matrix based Monte Carlo criticality calculations. Annals of610

Nuclear Energy, 36:1270–1275, 2009.
M. Faucher, D. Mancusi, and A. Zoia. New kinetic simulation capabilities for Tripoli-4: methods

and applications. Annals of Nuclear Energy, 120:74–88, 2018.
J. A. Favorite. SENSMG: First-Order Sensitivities of Neutron Reaction Rates, Reaction-Rate

Ratios, Leakage, keff, and α Using PARTISN. Nuclear Science and Engineering, 192(1):615

80–114, 2018.
D. S. Grebenkov and B. T. Nguyen. Geometrical structure of Laplacian eigenfunctions. SIAM

Review, 55:601–667, 2013.
G. Hansen. Rossi alpha method. Technical Report LA-UR-85-4176, Los Alamos National

Laboratory, 1985.620

T. Hill. Efficient methods for time absorption (alpha) eigenvalue calculations. Technical Report
LA-9602-MS (UC-32), Los Alamos National Laboratory, 1983.

J. Hoogenboom. Numerical calculation of the delayed-alpha eigenvalue using a standard criti-
cality code. In Physor 2002, Seoul, Korea, 2002.

26



A. Jinaphanh and A. Zoia. Perturbation and sensitivity calculations for time eigenvalues using625

the generalized iterated fission probability. Annals of Nuclear Energy, 133:678–687, 2019.
C. Josey and F. B. Brown. Computing alpha eigenvalues using the fission matrix. In M&C2019,

Portland, Oregon, USA, 25-29 August 2019.
C. J. Josey. General Improvements to the MCNP Alpha-Eigenvalue Solver. Technical Report

LA-UR-18-22738, Los Alamos National Laboratory, 2018.630

H. G. Kaper. The initial-value transport problem for monoenergetic neutrons in an infinite slab
with delayed neutron production. Journal of Mathematical Analysis and Applications, 19:
207–230, 1967.

G. Keepin. Physics of Nuclear Kinetics. Addison-Wesley, Reading, UK, 1965.
B. C. Kiedrowski, F. B. Brown, and P. P. H. Wilson. Adjoint-Weighted Tallies for k-Eigenvalue635

Calculations with Continuous-Energy Monte Carlo. Nuclear Science and Engineering, 168
(3):226–241, 2011.

E. Larsen and P. F. Zweifel. On the spectrum of the linear transport operator. Journal of Mathe-
matical Physics, 15:1987–1997, 1974.

A. Laureau, M. Aufiero, P. Rubiolo, E. Merle-Lucotte, and D. Heuer. Transient fission matrix: ki-640

netic calculation and kinetic parameters βe f f and λe f f calculation. Annals of Nuclear Energy,
85:1035 – 1044, 2015.

A. Laureau, L. Buiron, B. Fontaine, and V. Pascal. Fission matrix interpolation for the tfm
approach based on a local correlated sampling technique for fast spectrum heterogeneous
reactors. In M&C2017, Jeju, Korea, 16-20 April 2017a.645

A. Laureau, D. Heuer, E. Merle-Lucotte, P. Rubiolo, M. Allibert, and M. Aufiero. Transient
coupled calculations of the molten salt reactor using the transient fission matrix approach.
Nuclear Engineerign and Design, 316:112 – 124, 2017b.

D. Mancusi and A. Zoia. Chaos in eigenvalue search methods. Annals of Nuclear Energy, 112:
354 – 363, 2018.650

B. Montagnini and V. Pierpaoli. The time-dependent rectilinear transport equation. Transport
Theory and Statistical Physics, 1:59–75, 1971.

Y. Nauchi. Attempt to estimate reactor period by natural mode eigenvalue calculation. In Pro-
ceedings of SNA+MC 2013, Paris, France, 2013.

Y. Nauchi and T. Kameyama. Development of Calculation Technique for Iterated Fission Proba-655

bility and Reactor Kinetic Parameters Using Continuous-Energy Monte Carlo Method. Jour-
nal of Nuclear Science and Technology, 47:977–990, 2010.

I. Pázsit and L. Pál. Neutron Fluctuations: A Treatise on the Physics of Branching Processes.
Elsevier, Oxford, UK, 2008.

C. Persson. Pulsed neutron source measurements in the subcritical ADS experiment YALINA-660

Booster. Annals of Nuclear Energy, 35:2357–2364, 2008.
W. Pfeiffer, J. Brown, and A. Marshall. Fort St. Vrain startup test A-3: Pulsed-Neutron experi-

ments. Technical Report GA-A13079, General Atomic, 1974.
R. Sanchez and P. Jaegers. Prompt neutron decay constants and subcritical measurements for

material control and accountability in SHEBA. In International conference on the physics of665

nuclear science and technology, Long Island, New York, United States, 5-8 October 1998.
H. J. Shim, S. H. Jang, and S. M. Kang. Monte carlo alpha iteration algorithm for a subcritical

system analysis. Science and Technology of Nuclear Installations, 2015:859242 (7 pages),
2015.

B. L. Sjenitzer and J. E. Hoogenboom. Dynamic Monte Carlo Method for Nuclear Reactor670

27



Kinetics Calculations. Nuclear Science and Engineering, 175:94–107, 2013.
N. Terranova, D. Mancusi, and A. Zoia. Generalized Iterated Fission Probability for Monte Carlo

eigenvalue calculations. Annals of Nuclear Energy, 108:57–66, 2017.
I. Variansyah, B. R. Betzler, and W. R. Martin. Alpha-weighted transition rate matrix method.

In M&C2019, Portland, Oregon, USA, 25-29 August 2019.675

G. Wing. An introduction to transport theory. Wiley and sons, New York, 1962.
T. Yamamoto. Higher order alpha mode eigenvalue calculation by Monte Carlo power iteration.

Progress in Nuclear Science and Technology, 2:826–835, 2011.
T. Yamamoto and H. Sakamoto. A Monte Carlo technique for sensitivity analysis of alpha-

eigenvalue with the differential operator sampling method. Annals of Nuclear Energy, 127:680

178–187, 2019.
A. Zoia and E. Brun. Reactor physics analysis of the spert iii e-core with TRIPOLI-4 R© . Annals

of Nuclear Energy, 90:71 – 82, 2016.
A. Zoia, E. Dumonteil, and A. Mazzolo. Properties of branching exponential flights in bounded

domains. EPL, 100:40002, 2012.685

A. Zoia, E. Brun, and F. Malvagi. Alpha eigenvalue calculations with TRIPOLI-4 R© . Annals of
Nuclear Energy, 63:276 – 284, 2014.

A. Zoia, E. Brun, F. Damian, and F. Malvagi. Monte Carlo methods for reactor period calcula-
tions. Annals of Nuclear Energy, 75:627 – 634, 2015.

A. Zoia, Y. Nauchi, E. Brun, and C. Jouanne. Monte carlo analysis of the crocus benchmark on690

kinetics parameters calculation. Annals of Nuclear Energy, 96:377 – 388, 2016.

28



101 102 103

−0.94

−0.92

−0.9

−0.88

N

α
0

101 102 103
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

α2

α1

N

α

Figure 3: Convergence of the first few eigenvalues αi as a function of the number
of spatial meshes N and of the weighting function for the matrix A. Left: the
fundamental eigenvalue α0; right: α1 and α2. Black solid lines correspond to
the exact reference values from the roots of the dispersion law in Eq. (37). Blue
circles correspond to results obtained from the α-weighted A matrix; red squares
to the k-weighted A matrix; green triangles symbols to the matrix A weighted by
a fixed-source flux. Solid lines have been added to guide the eye. In addition,
we display with magenta diamonds the corresponding eigenvalues obtained from
the adjoint matrix A† weighted by the adjoint α-eigenfunction resulting from the
Generalized IFP method.
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Figure 4: Convergence of the first few estimators Ri as a function of the num-
ber of spatial meshes N and of the weighting function for the matrix A. Black
solid lines correspond to the exact reference values based on Eq. (35). Blue cir-
cles correspond to results obtained from the α-weighted A matrix; red squares
correspond to the k-weighted A matrix; green triangles correspond to the ma-
trix A weighted by a fixed-source flux. Left: the estimator R0 associated to the
fundamental eigenfunction ϕα,0(x,+); right: the estimator R1 associated to the
second eigenfunction ϕα,1(x,+) and the estimator R2 associated to the second
eigenfunction ϕα,2(x,+). Solid lines have been added to guide the eye.
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Figure 5: The first few (angular) adjoint eigenmodes ϕ†α(x,+): the eigenvectors
of the A matrix filled by the Monte Carlo calculation (symbols) are compared to
the exact solutions stemming from the equation adjoint to Eq. (35) (solid lines).
Blue circles: fundamental adjoint eigenmode ϕ†α0(x,+); red squares: second ad-
joint eigenmode ϕ†α1(x,+); green triangles: third adjoint eigenmode ϕ†α2(x,+).
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trix. Left: the estimator R†0 associated to the fundamental adjoint eigenfunction
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Figure 7: A continuous-energy transport problem. Comparison of the direct
eigenfunctions resulting from the matrices filled by α-k power iteration (dis-
played as symbols) with the reference solutions given in Eq. 43 (displayed as
solid lines). Left: blue circles denote the fundamental eigenfunction ϕα0(E):
right: red squares the second eigenfunction ϕα1(E) and green triangles the third
eigenfunction ϕα2(E).
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Figure 8: A continuous-energy transport problem. Comparison of the adjoint
eigenfunctions resulting from the matrices filled by Generalized IFP method
(displayed as symbols) with the reference solutions given in Eq. 43 (displayed as
solid lines). Blue circles denote the fundamental adjoint eigenfunction ϕ†α0(E);
red squares the second adjoint eigenfunction ϕ†α1(E); green triangles the third
adjoint eigenfunction ϕ†α2(E).
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