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. In this work, we improve the existing methods in two directions. We first show that the α-k modified power iteration scheme can be successfully applied to the estimation of the matrix elements in the direct formulation of the eigenvalue problem, which removes the bias on the fundamental eigenvalue and eigenvector of the discretized matrix, similarly to what happens for the fission matrix in the k-eigenvalue problems. Then, we show that the matrix elements for the adjoint formulation of the α eigenvalue problem can be estimated by using the Generalized Iterated Fission Probability method, which we have introduced in order to compute the fundamental adjoint α eigenfunction. We will verify the proposed algorithms and probe their convergence as a function of the size of the discretized matrices on some simplified benchmark configurations where exact reference solutions can be obtained.

Introduction

The characterization of the time behaviour of the system under analysis is key to several applications emerging in reactor physics, including pulsed neutron reactivity measurements [START_REF] Pázsit | Neutron Fluctuations: A Treatise on the Physics of Branching Processes[END_REF][START_REF] Cao | Spatial corrections for pulsed-neutron reactivity measurements[END_REF][START_REF] Hansen | Rossi alpha method[END_REF], reactor period analysis [START_REF] Keepin | Physics of Nuclear Kinetics[END_REF]Zoia and Brun, 2016;Zoia et al., 2016;[START_REF] Nauchi | Attempt to estimate reactor period by natural mode eigenvalue calculation[END_REF], reactor start-up [START_REF] Pfeiffer | Fort St. Vrain startup test A-3: Pulsed-Neutron experiments[END_REF], material control and accountability in critical assemblies [START_REF] Sanchez | Prompt neutron decay constants and subcritical measurements for material control and accountability in SHEBA[END_REF], acceleratordriven systems [START_REF] Persson | Pulsed neutron source measurements in the subcritical ADS experiment YALINA-Booster[END_REF] and perturbation theory [START_REF] Yamamoto | A Monte Carlo technique for sensitivity analysis of alphaeigenvalue with the differential operator sampling method[END_REF][START_REF] Favorite | SENSMG: First-Order Sensitivities of Neutron Reaction Rates, Reaction-Rate Ratios, Leakage, keff, and α Using PARTISN[END_REF][START_REF] Yamamoto | A Monte Carlo technique for sensitivity analysis of alphaeigenvalue with the differential operator sampling method[END_REF][START_REF] Jinaphanh | Perturbation and sensitivity calculations for time eigenvalues using the generalized iterated fission probability[END_REF]. The time evolution of neutron transport is governed by the Boltzmann equation, possibly coupled to the equations for the delayed neutron precursors [START_REF] Bell | Nuclear Reactor Theory[END_REF]. Monte Carlo simulation is considered as the gold standard for the simulation of neutron transport, in that almost no approximations are introduced, contrary to faster but approximate deterministic methods. Due to their high computational cost, Monte Carlo methods have been so far mostly devoted to the analysis of stationary systems. However, thanks to the increasing CPU power, the direct (kinetic) simulation of time-dependent transients including neutrons and precursors has become accessible and will establish itself as the reference verification tool for deterministic solvers in non-stationary regime in the near future [START_REF] Sjenitzer | Dynamic Monte Carlo Method for Nuclear Reactor Kinetics Calculations[END_REF][START_REF] Faucher | New kinetic simulation capabilities for Tripoli-4: methods and applications[END_REF].

Beside kinetic simulations, the assessment of the time evolution of the neutron population can be usefully complemented by the spectral analysis of the Boltzmann operator [START_REF] Duderstadt | Transport theory[END_REF]. This is tantamount to determining the so-called time (or α) eigenvalues and eigenmodes that stem from supposing variable separation and a time dependence of the kind exp(αt) for both the neutron flux and the precursor concentrations. The eigenvalues α, carrying the units of inverse time, correspond to a set of characteristic reactor frequencies; the dominant α eigenvalue, i.e., the one having the largest real part, physically represents the inverse asymptotic reactor period, and the associated dominant eigenmode ϕ α , c 1 α , • • • , c J α represents the asymptotic distribution of neutrons and precursors (for families 1 to J) within the reactor at long times. Several Monte Carlo methods exist to determine the dominant α eigenvalue and eigenmode, encompassing the α-k modified power iteration [START_REF] Brockway | Monte Carlo alpha calculations[END_REF][START_REF] Cullen | Static and dynamic criticality: are they different?[END_REF][START_REF] Zoia | Monte Carlo methods for reactor period calculations[END_REF], the time-source technique [START_REF] Shim | Monte carlo alpha iteration algorithm for a subcritical system analysis[END_REF] and root finding procedures [START_REF] Hoogenboom | Numerical calculation of the delayed-alpha eigenvalue using a standard criticality code[END_REF][START_REF] Nauchi | Attempt to estimate reactor period by natural mode eigenvalue calculation[END_REF][START_REF] Josey | General Improvements to the MCNP Alpha-Eigenvalue Solver[END_REF]. Despite some successful attempts, direct Monte Carlo simulation of higher α eigenvalues and eigenmodes has received only limited attention [START_REF] Yamamoto | Higher order alpha mode eigenvalue calculation by Monte Carlo power iteration[END_REF]. In this context, matrix-filling Monte Carlo methods have recently drawn much in-terest [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF][START_REF] Betzler | Calculating Alpha Eigenvalues of One-Dimensional Media with Monte Carlo[END_REF][START_REF] Betzler | Calculating Infinite-medium Alpha-eigenvalue Spectra with Monte Carlo using a Transition Rate Matrix Method[END_REF][START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF]: the underlying idea is to estimate by Monte Carlo simulation the elements of a matrix whose eigenvalues and eigenvectors converge to the true α eigenvalues and eigenmodes in the limit of a sufficiently fine discretization of the phase space [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF] 1 . This approach is very similar in spirit to the better-known fission matrix method for k-eigenvalues [START_REF] Dufek | Fission matrix based Monte Carlo criticality calculations[END_REF][START_REF] Carney | Theory and applications of the ssion matrix method for continuous-energy Monte Carlo[END_REF]. Although the α eigenvalues and eigenmodes thus estimated are generally biased because of the finite size of the matrix, this method allows obtaining a fairly accurate picture of the entire spectrum and thus grasping the time evolution of the system [START_REF] Betzler | Calculating Alpha Eigenvalues of One-Dimensional Media with Monte Carlo[END_REF][START_REF] Betzler | Calculating Infinite-medium Alpha-eigenvalue Spectra with Monte Carlo using a Transition Rate Matrix Method[END_REF], even for complex three-dimensional configurations [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF][START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF]. Moreover, once the α spectrum and the associated eigenvectors have been determined from the matrix, the full time-dependent evolution of the neutron and precursor populations can also be reconstructed, at least in principle, by using the direct and adjoint matrices [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF].

The proposed matrix-filling Monte Carlo method based on a transition rate method related to the adjoint formulation of the α eigenvalue equation 2 suffers however from two approximations: the first is due to the fact that the exact adjoint formulation is in practice replaced by a forward formulation, in order to avoid the explicit simulation of backward random walks [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF][START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF]. The second is due to the fact that the matrix elements are estimated and filled in the course of a k-eigenvalue or c-eigenvalue Monte Carlo calculation, which induces a systematic bias even on the fundamental eigenvalue and eigenvector [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF][START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF]. Although both approximations vanish in the limit of a sufficiently fine discretization of the phase space, for realistic systems this might require very large matrix sizes, entailing severe memory footprint issues: contrary to the fission matrix, where only a spatial discretization is required, the matrix associated to α-eigenvalue problems demands a full discretization of the phase space, including space, direction and energy [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF].

In this work we will improve the estimation of the matrix elements for α eigenvalue problems in two directions. First, we will show that it is convenient to fill the elements of the matrix by using the α-k modified power itera-tion: this approach allows natively preserving the fundamental eigenvalue and eigenvector, which will be computed exactly3 . Second, we will show that it is actually possible to compute the matrix elements corresponding to the adjoint α eigenvalue equations by using the Generalized Iterated Fission Probability (IFP) method that we have recently introduced [START_REF] Terranova | Generalized Iterated Fission Probability for Monte Carlo eigenvalue calculations[END_REF]: the obtained adjoint-weighted matrix will correspondingly preserve the fundamental (adjoint) eigenvalue and eigenvector, as opposed to building the adjoint operator matrix by transposing the direct operator matrix.

This paper is organized as follows: in Sec. 2 we will briefly recall the direct and adjoint formulation of the α eigenvalue problem. In Sec. 3 we will detail the Monte Carlo algorithms that allow estimating the matrix elements corresponding to the discretized formulation of the operators appearing in the α eigenvalue equations, for both the direct and adjoint problems. Numerical examples for the verification of the proposed algorithms will be discussed in Sec. 4: for this purpose we will consider some simplified benchmark configurations where exact reference solutions can be obtained. A discussion concerning the obtained matrix operators and their application to realistic configurations is presented in Sec. 5. Conclusions will be finally drawn in Sec. 6.

The α eigenvalue equations

Time eigenvalue equations are obtained from the Boltzmann equation for the time-dependent neutron flux ϕ(r, Ω, E, t) and from the equations for the timedependent delayed neutron precursors c j (r, t) by postulating variable separation of the kind ϕ(r, Ω, E, t) = ϕ α (r, Ω, E) exp(αt) and c j (r, t) = c j α (r) exp(αt) [START_REF] Bell | Nuclear Reactor Theory[END_REF]. This leads to the system of eigenvalue equations

α ϕ α + Lϕ α = F p ϕ α + j χ j d (E) 4π c α, j αc α, j = F d, j ϕ α -λ j c α, j , (1) 
j = 1, • • • , J.
Here L denotes the net disappearance operator

L = Ω • ∇ + Σ t - dΩ dE Σ s (r, Ω , E → Ω, E), (2) 
F p the prompt fission operator

F p = χ p (r, E) 4π dΩ dE ν p (E )Σ f (r, E ), (3) 
and F d, j the delayed fission operator associated to precursor family j

F d, j = dΩ dE ν d, j (E )Σ f (r, E ), (4) 
where Σ x , χ and ν stand respectively for the macroscopic cross section of reaction

x, fission spectrum and multiplicity, and λ j are the precursor decay constants for family j. In order to keep notation to a minimum, we consider a single fissile nucleus. The system in Eqs.

(1) can be rewritten in a suggestive matrix form as

Aψ α = αBψ α (5)
for the generalized eigenfunction vector

ψ α = ϕ α , c α,1 , • • • , c α,J
T , where we have defined the matrix operators

A =                  F p -L λ 1 χ d,1 (E) 4π • • • λ J χ d,J (E) 4π F d,1 -λ 1 • • • 0 . . . . . . . . . . . . F d,J 0 • • • -λ J                  (6) 
and

B =                  1 0 • • • 0 0 1 • • • 0 . . . . . . . . . . . . 0 0 • • • 1                  (7) 
The spectral properties of the eigenvalue system in Eq. ( 5) are highly non-trivial and have attracted intensive research efforts. For a review of the prompt case (i.e., when the precursors contributions are neglected), see, e.g., [START_REF] Larsen | On the spectrum of the linear transport operator[END_REF]; the general problem including precursors has received comparatively less attention [START_REF] Kaper | The initial-value transport problem for monoenergetic neutrons in an infinite slab with delayed neutron production[END_REF]. The conditions for the well-posedness of Eqs. ( 5) have been extensively analyzed [START_REF] Larsen | On the spectrum of the linear transport operator[END_REF][START_REF] Duderstadt | Transport theory[END_REF]. Under mild assumptions, a dominant discrete eigenvalue α 0 exists, which is simple, real, larger than the real parts of all the other α, and whose associated eigenfunction is non-negative [START_REF] Larsen | On the spectrum of the linear transport operator[END_REF]. This ensures that, after a transient, the neutron and precursor population will grow or decay in time as ∝ e α 0 t . Due to the symmetrical nature of the involved operators, the complex eigenvalues α (if any) come in conjugate pairs and are typically associated to oscillatory modes [START_REF] Larsen | On the spectrum of the linear transport operator[END_REF].

The equations adjoint to Eqs. (1) are obtained from the adjoint Boltzmann equation for the time-dependent adjoint neutron flux ϕ † (r, Ω, E, t) and from the equations for the time-dependent adjoint precursor concentrations c † j (r, t) by postulating again variable separation of the kind ϕ † (r, Ω, [START_REF] Bell | Nuclear Reactor Theory[END_REF]. This leads to the system

E, t) = ϕ † α (r, Ω, E) exp(-α † t) and c † j (r, t) = c † α, j (r) exp(-α † t)
α † ϕ † α + L † ϕ † α = F † p ϕ α + j ν d, j (E)Σ f (r, E)c † α, j α † c † α, j = λ j dΩ dE χ d, j (E ) 4π ϕ † α (r, Ω , E ) -λ j c α, j , (8) 
j = 1, • • • , J.
Here L † denotes the adjoint net disappearance operator

L † = -Ω • ∇ + Σ t - dΩ dE Σ s (r, Ω, E → Ω , E ) (9) 
and F † p the adjoint prompt fission operator

F † p = ν p (E)Σ f (r, E) dΩ dE χ p (r, E ) 4π . ( 10 
)
The system in Eqs. (8) can be again rewritten in matrix form as

A † ψ † α = α † B † ψ † α (11)
for the generalized adjoint eigenfunction vector

ψ † α = ϕ † α , c † α,1 , • • • , c † α,J T
, where we have defined the matrix operators

A † =                    F † p -L † ν d,1 (E)Σ f (r, E) • • • ν d,J (E)Σ f (r, E) λ 1 dΩ dE χ d,1 (E ) 4π -λ 1 • • • 0 . . . . . . . . . . . . λ J dΩ dE χ d,J (E ) 4π 0 • • • -λ J                    (12) 
and B † = B. The adjoint and forward eigenvalue spectra are the complex conjugates of each other, i.e., coincide on the complex plane, and the eigenmodes satisfy a bi-orthogonality condition [START_REF] Bell | Nuclear Reactor Theory[END_REF].

For given reactor configuration and external source, the full time-dependent solution ψ = {ϕ, c 1 • • • , c J } T can be expanded in terms of the α eigenfunctions as

ψ(r, Ω, E, t) = I i w i (t)ψ α i (r, Ω, E) + ζ(r, Ω, E, t), ( 13 
)
where ζ is a residual non-separable function stemming from the continuum portion of the α spectrum (if any) and I is the total number of eigenvalues α i associated to Eqs. ( 5) [START_REF] Bell | Nuclear Reactor Theory[END_REF][START_REF] Duderstadt | Transport theory[END_REF]. The coefficients w i of the expansion satisfy the differential equations

dw i (t) dt = α i w i (t) + ϕ † α i , Q ϕ † α i , 1 ϕ α i + j c † α i , j , c α i , j , (14) 
involving the adjoint eigenfunctions and the external source Q. The brackets denote integration over all phase space variables.

Monte Carlo estimators for the operators

In order to derive a numerically tractable formulation of the systems in Eqs. ( 5) and (11), we would like to replace the operators by matrices whose elements can be explicitly computed [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF]. For this purpose, it is convenient to discretize the phase space over elements of the kind V n dr Ω m dΩ E g dE, where V n , Ω m and E g denote space, angle and energy intervals, respectively. The idea is then to approximate any generic operator H appearing in Eqs. ( 5) and (11) by its average over the phase space element n, m, g: this defines the matrix elements

H n,m,g = H n,m,g H f n,m,g f n,m,g , (15) 
for an arbitrary weighting function f . Consequently, the eigenvalue problem in Eq. ( 5) is replaced by the matrix formulation

AΨ α = αBΨ α ( 16 
)
and the adjoint problem in Eq. ( 11) is replaced by

A † Ψ † α = αB † Ψ † α . (17) 
Once the matrix elements have been estimated, the spectrum and the eigenvectors can be extracted by using standard linear algebra libraries [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF], similarly to what is done for the fission matrices for k-eigenvalue problems [START_REF] Carney | Theory and applications of the ssion matrix method for continuous-energy Monte Carlo[END_REF]. In the limit of a sufficiently fine discretization of the space, angle and energy intervals, A, B → A, B and A † → A † , so that the spectrum and the eigenvectors of the matrices converge to those of the exact formulation. The accuracy of the introduced approximation and the rate of convergence depend on the choice of the weighting function. We are thus left with two constraints: the matrix elements H n,m,g must correspond to scores that can be practically estimated by Monte Carlo methods, and the weighting function must be chosen so to minimize the discretization bias.

Estimating the direct matrix elements

In order to fill the elements of the (direct) fission matrix corresponding to keigenvalue problems, the natural choice is to use the fundamental k-eigenmode, which can be estimated by the regular power iteration method in Monte Carlo criticality calculations [START_REF] Carney | Theory and applications of the ssion matrix method for continuous-energy Monte Carlo[END_REF]. This approach preserves the fundamental eigenvalue and eigenvector that can be computed from the resulting matrix, in the sense that they are unbiased independently of the size of the discretization intervals4 .

By analogy, and in view of obtaining a similar unbiased estimate of the fundamental eigenpair, it seems reasonable to choose the fundamental α-eigenmode as a weighting function for the forward eigenvalue problem in Eq. ( 5). The fundamental eigen-pair {α, ψ α } can be determined by applying the Monte Carlo implementation of the α-k power iteration5 , which was originally proposed for prompt decay constants [START_REF] Brockway | Monte Carlo alpha calculations[END_REF] and then extended to the general case with neutrons and precursors [START_REF] Hoogenboom | Numerical calculation of the delayed-alpha eigenvalue using a standard criticality code[END_REF][START_REF] Nauchi | Attempt to estimate reactor period by natural mode eigenvalue calculation[END_REF][START_REF] Zoia | Monte Carlo methods for reactor period calculations[END_REF]. The idea is to iteratively seek the dominant α value that makes Eqs. (1) exactly critical with respect to a fictitious k-eigenvalue applied to the production terms on the right hand side. For positive α, the term α/ on the left hand side is interpreted as an additional capture cross section in the modified power iteration [START_REF] Brockway | Monte Carlo alpha calculations[END_REF][START_REF] Cullen | Static and dynamic criticality: are they different?[END_REF]. For negative α, α/ is usually moved to the right hand side of the equation and interpreted as an additional production term [START_REF] Brockway | Monte Carlo alpha calculations[END_REF][START_REF] Cullen | Static and dynamic criticality: are they different?[END_REF]. However, the standard implementation of this algorithm has been shown to be numerically unstable, possibly leading to abnormal termination [START_REF] Hill | Efficient methods for time absorption (alpha) eigenvalue calculations[END_REF]). An improved α-k algorithm has been proposed by introducing a copy operator with associated cross section -ηα/ , with η > 0 [START_REF] Zoia | Alpha eigenvalue calculations with TRIPOLI-4 R[END_REF][START_REF] Zoia | Monte Carlo methods for reactor period calculations[END_REF]: this overcomes the limitations for the case of negative α by preserving the balance between destructions and productions [START_REF] Mancusi | Chaos in eigenvalue search methods[END_REF]. Finally, the term λ j /(λ j + α) acts as a positive weight multiplier for the delayed neutrons (the dominant eigenvalue must satisfy α >min j [λ j ]). For a detailed description of the algorithm, we refer the reader to [START_REF] Zoia | Monte Carlo methods for reactor period calculations[END_REF].

Suppose now that we partition the phase space into N space intervals, M angle intervals and G energy intervals. The method proposed in this work for the direct matrices closely follows the strategy of [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF], except for the choice of ϕ α and c α, j as the weighting functions. The corresponding matrix elements will be thus filled by using the following Monte Carlo estimators. For the speed matrix, the only non-trivial terms are of the kind -1 ϕ α n,m,g , which correspond to the average time spent by a neutron in the interval n, m, g during the cycles of the α-k power iteration. For the total collision operator we have Σ t ϕ α n,m,g , which can be estimated at each collision event. For the scattering, prompt and delayed fission operators we have the matrix elements

Σ s (r, Ω , E → Ω, E)ϕ α (r, Ω , E ) m ,g n,m,g , (18) 
χ p (r, E)

4π ν p (E )Σ f (r, E )ϕ α (r, Ω , E ) m ,g n,m,g , (19) 
and

ν d, j (E )Σ f (r, E )ϕ α (r, Ω , E ) m ,g n , (20) 
respectively, which can be again computed at collision events. The leakage term is first transformed by applying the Gauss theorem, and reads

Ω • ∇ϕ α (r, Ω, E) n,m,g = S n dr Ω • nϕ α (r , Ω, E) m,g , (21) 
where S n is the surface enclosing the space element n and n is the normal to the surface. This term can be estimated by computing the current of neutrons streaming in and out the surfaces of the space element n, projected over the flight direction Ω [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF].

As for the terms that must be weighted by the precursor concentrations, observe that c α, j can be transformed into terms weighted by the neutron flux ϕ α by using

c α, j = 1 α + λ j F d, j ϕ α (22) 
from Eqs.

(1) and noting that α is known at each cycle of the α-k power iteration after convergence has been achieved. We have thus the matrix elements

λ j α + λ j χ d, j (r, E) 4π ν d, j (E )Σ f (r, E )ϕ α (r, Ω , E ) m ,g n , (23) 
which have the same structure as those of the prompt fission operator.

Finally, the denominators needed to normalize the matrix elements can be computed by estimating ϕ α n,m,g and c α, j n .

When including the precursor contributions, the total matrix operator size is (N MG + N f J) 2 , where N f ≤ N is the number of fissile regions for which the precursor contributions must be assigned. Mainly due to the structure of the gradient operator and of the diagonal matrix associated to the precursor decay constants [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF], the matrix operator is however considerably sparse. Assuming a Cartesian grid for the space coordinates, with N x , N y and N z components along each axis (N = N x × N y × N z ), the maximum number of non-null matrix entries is

MG N MG + N x N y (N z -1) + N y N z (N x -1) + N x N z (N y -1) + N f J (N MG + N f J) 2 , ( 24 
)
which is an important issue when considering real-world applications.

Estimating the adjoint matrix elements

Once the discretized matrix A has been filled, the adjoint matrix A † can be in principle obtained by transposing A [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF], similarly as done for the adjoint fission matrix in k-eigenvalue problems [START_REF] Carney | Theory and applications of the ssion matrix method for continuous-energy Monte Carlo[END_REF]. This approach would preserve the spectrum6 (and in particular the fundamental eigenvalue) but would also induce a bias on the fundamental adjoint eigenvector, since the matrix elements would have been weighted by the forward fundamental eigenmode ϕ α instead of the adjoint fundamental eigenmode ϕ † α [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF]. This issue is entirely analogous to what happens for the adjoint fission matrix in k-eigenvalue problems [START_REF] Carney | Theory and applications of the ssion matrix method for continuous-energy Monte Carlo[END_REF]. Although this bias vanishes in the limit of sufficiently large matrices, for the sake of numerical accuracy (and in view of reducing the memory footprint) it would be convenient to estimate the adjoint matrix elements directly.

In a recent work, a generalization of the Iterated Fission Probability (IFP) method has been proposed in order to evaluate ϕ † α (and more generally bi-linear forms requiring both ϕ α and ϕ † α ) by relating the fundamental adjoint eigenfunction to the neutron importance I α [START_REF] Terranova | Generalized Iterated Fission Probability for Monte Carlo eigenvalue calculations[END_REF], similarly to what is done for the regular k-eigenvalue IFP formulation [START_REF] Nauchi | Development of Calculation Technique for Iterated Fission Probability and Reactor Kinetic Parameters Using Continuous-Energy Monte Carlo Method[END_REF][START_REF] Kiedrowski | Adjoint-Weighted Tallies for k-Eigenvalue Calculations with Continuous-Energy Monte Carlo[END_REF]. The Generalized IFP method provides estimates of the neutron importance I α in α-eigenvalue problems by recording the descendants after a given number of latent generations for an ancestor neutron starting with coordinates r, Ω, E. In practice, I α is estimated by using a fixed-source calculation, where neutrons are followed over the latent generations. The fundamental α eigenvalue is assumed to be known before running the calculation. For α > 0, the additional term α/ acts as a sterile capture, as mentioned above: neutrons can contribute to I α only being promoted to the next latent generation by prompt and delayed fission (in this latter case, their weight is assigned a correction factor λ j /(λ j + α)). For α < 0, neutrons can contribute to I α also via the copy operator with associated cross section -ηα/ . The corresponding importance I α ∝ ϕ † α of the ancestor neutron is estimated at the end of the latent generations

as ϕ † α Q ∝ i π i , (25) 
where π i is the corresponding statistical weight of the descendants collected at the end of the Generalized IFP cycle for the neutrons initially sampled from a fixed source Q, the sum being extended over the ancestors [START_REF] Terranova | Generalized Iterated Fission Probability for Monte Carlo eigenvalue calculations[END_REF].

For the direct matrices, the α-k power iteration ensures that particles are sampled according to the fundamental eigenmode distribution and matrix elements can be constructed as regular reaction rates, as detailed above. For adjoint matrix elements, on the contrary, the idea is to carefully select a source distribution Q such that Eq. ( 25) yields the desired adjoint matrix element. Indeed, the adjoint matrix elements illustrated in the previous sections can all be written in the form of a scalar product involving a 'source' weighted by the fundamental adjoint mode, which can be thus estimated by computing the neutron importance function by the Generalized IFP method. Bearing in mind these considerations, two cases are encountered: if the source for the matrix element is a probability density function (e.g., a fission spectrum), this probability density can be straightforwardly used so as to sample the initial coordinates of the neutron whose importance must be assessed. If the source for the matrix does not lend itself to be interpreted as a probability density function (e.g., the total cross section appearing in the adjoint collision matrix Σ t ϕ † nmg ), then an artificial uniform coordinate is sampled in the selected bin corresponding to the matrix element, and the source appearing in the expression of the matrix element will be used as a final weighting factor for the obtained importance following from the sampled neutron. For the discretized operators, a uniform meshing of the phase space is preferred, since the effect of the distribution will vanish when normalizing by the bin-integrated adjoint flux ϕ † nmg . Similarly as in the direct case, the non-trivial part of the speed matrix is represented by a diagonal matrix with element 1 ϕ † nmg . The scattering

Σ s (r, Ω, E → Ω , E )ϕ † α (r, Ω , E ) m ,g n,m,g , (26) 
and fission

ν p (E)Σ f (r, E) χ p (r, E ) 4π ϕ † α (r, Ω , E ) m ,g n,m,g , (27) 
matrix elements are obtained by uniformly sampling the incident energy and direction, then sampling the scattering (respectively fission) spectrum and finally computing the adjoint flux by using the Generalized IFP scheme. It is worth noting that the normalization of these elements is performed with respect to the integrated adjoint flux ϕ † α n,m,g , which requires a separate calculation, as ϕ † α n,m,g stems from a source different from those needed for Eqs. ( 26) and ( 27).

The adjoint leakage matrix is expressed by applying again the Gauss theorem in order to convert the volume integration into a surface integration over the boundaries of the spatial bin. This leads to

-Ω • ∇ϕ † α (r, Ω, E) n,m,g = - S n dr Ω • nϕ † α (r , Ω, E) m,g . (28) 
The expression in Eq. ( 28) can be given a probabilistic interpretation: the integral over the surface means that the starting points for the neutron ancestors must be taken uniformly over the boundaries of the spatial bins. The angular factor Ω • n, where n is the normal vector of the surface S n , implies that the starting direction for the ancestors must be sampled by respecting an isotropic incident flux on S n7 . This completely defines the source for the importance calculation of the leakage term.

The adjoint precursor concentrations c † j n can be estimated by resorting again to the adjoint neutron flux, using

c † α, j = λ j α + λ j dΩ dE χ d, j (E ) 4π ϕ † α (r, Ω , E ). ( 29 
)
This leads to the following matrix elements

λ j α + λ j ν d, j (E)Σ f (r, E) χ d, j (r, E ) 4π ϕ † α (r, Ω , E ) m ,g n , (30) 
which have the same structure as those of the adjoint prompt fission operator.

Numerical simulations

In order to assess the impact of using the α-k power iteration and the Generalized IFP method in order to fill the matrix elements of the direct and adjoint α matrices, respectively, we have selected some simplified benchmark configurations that allow more easily probing the proposed methods by comparing the obtained results to reference solutions.

The rod model

The rod model is among the simplest space-and direction-dependent transport problems: neutrons move at constant speed along a line, where only two directions of flight are allowed, namely forward (Ω = +) and backward (Ω = -) [START_REF] Wing | An introduction to transport theory[END_REF]. We will furthermore assume that scattering and fission are isotropic. Defining ϕ α (x, ±) the angular flux in the positive and negative direction, the α eigenvalue equations read

± ∂ ∂x ϕ α (x, ±) + α + Σ t ϕ α (x, ±) = ζ α 2 ϕ α (x), (31) 
where we have defined ϕ α (x) = ϕ α (x, +) + ϕ α (x, -), and

ζ α = Σ s + ν p Σ f + J j=1 λ j λ j + α ν d, j Σ f . ( 32 
)
Let us consider a segment [0, L], with leakage boundary conditions ϕ α (0, +) = 0 and ϕ α (L, -) = 0. It is possible to derive an equation for ϕ α (x) alone, namely, 37). Model parameters are the following:

-D α ∂ 2 ∂x 2 ϕ α (x) = ζ α D α -1 D α ϕ α (x), ( 33 
L = 2, = 1, Σ s = 2, Σ c = 1, Σ f = 3, ν = 2, β = 0.006, ν p = (1 -β)ν, λ 1 = 0.02, β 1 = 0.004, ν d,1 = β 1 ν, λ 2 = 0.4, β 1 = 0.002, ν d,2 = β 2 ν.
with Robin boundary conditions ϕ α (0) -D α ∂ϕ α (0) = 0 and ϕ α (L) + D α ∂ϕ α (L) = 0, and

D α = 1 Σ t + α . ( 34 
)
The general solutions of Eq. ( 33) can be explicitly derived (Grebenkov and 310 Nguyen, 2013), and read

ϕ α (x) = ζ α D α -1 cos        ζ α D α -1 D α x        + sin        ζ α D α -1 D α x        , (35) 
from which we can obtain the angular flux ϕ α (x, ±) and the precursor concentration

c α, j = 1 λ j + α ν d, j Σ f ϕ α (x) (36) 
by observing that the particle current The α eigenvalues stem from the dispersion law [START_REF] Zoia | Monte Carlo methods for reactor period calculations[END_REF])

P α (x) = ϕ α (x, +) -ϕ α (x, -) satisfies P α (x) = -D α ∂ x ϕ α (x). The adjoint eigenmodes satisfy the relation ϕ † α (x, ±) = ϕ α (x, ∓). 315 Σ c Σ f Σ s ν p L 10 1 0.1 1 2.5 10
Λ(α) = 2 ζ α D α -1 cos        ζ α D α -1 D α L        -ζ α D α cos        ζ α D α -1 D α L        = 0, (37) 
which is obtained by imposing the boundary conditions on the general solutions in Eq. ( 35). The zeros of Eq. (37) form the discrete spectrum of the α eigenvalues for the rod model. When the precursor contributions are neglected, Λ(α) yields a finite number of real eigenvalues, plus a countable infinity of complex eigenvalues associated to oscillating modes [START_REF] Montagnini | The time-dependent rectilinear transport equation[END_REF]; when precursors are taken into account, J additional sets of denumerable real eigenvalues are introduced by the J singularities at α = -λ j , accumulating at the right of each -λ j . For an illustration, see Fig. 1. Equation ( 37) can be solved numerically by any root tracking algorithm: the direct and adjoint modes can be then obtained based on Eq. ( 35). As such, the rod model is ideally suited to verify the accuracy of the modal analysis methods described above.

Analysis of the direct eigenpairs

We begin our analysis by considering the case of direct eigenvalues and eigenfunctions. The physical parameters for the rod model are given in Tab. 1.

For this example, we have chosen a deep sub-critical configuration and we have neglected the contributions of precursors. The dominant α-eigenvalue is α 0 = -0.91112 (with corresponding k-eigenvalue k 0 = 0.21945). The matrix elements 15 35) (solid lines). Blue circles: fundamental eigenmode ϕ α 0 (x, +); red squares: second eigenmode ϕ α 1 (x, +); green triangles: third eigenmode ϕ α 2 (x, +). have been computed as described in the previous sections, based on the α-k power iteration. Since the transport model does not depend on energy and only two discrete directions are allowed, the only discretization left is with respect to the space coordinates, which makes easier the investigation of the convergence of the proposed methods.

The Monte Carlo matrix-filling calculation based on the α-k power iteration has been run with 10 3 inactive cycles, 10 3 active cycles used for scoring the matrix elements, and 10 5 particles per cycle. The results of the spectral analysis from the α-weighted matrices are recalled in Tab. 2 for a discretization of N = 1024 spatial meshes. An excellent agreement is found between the numerical values coming from the A matrix filled by the Monte Carlo calculation and the exact results stemming from the roots of the dispersion law in Eq. ( 37). Correspondingly, the first few eigenfunctions are compared in Fig. 2 for the same spatial discretization: again, an excellent agreement is found between the eigenvectors of the A matrix filled by the Monte Carlo calculation and the exact solutions stemming from Eq. ( 35).

As discussed in the previous sections, an important issue concerns the convergence of the eigenvalues and eigenvectors of A with respect to the size of the matrix, i.e., the discretization of the viable phase space. The key point is that the use of the α-k power iteration in order to weight the matrix elements by the fundamental ϕ α eigenfunction is expected to preserve the fundamental eigenvector of A for any choice of the matrix size. For the purpose of probing the behaviour of A, in addition to the α-weighted matrix we have produced two other matrices obtained by weighting their respective elements by using the fundamental mode of the k-eigenvalue power iteration (with 10 3 inactive cycles, 10 3 active cycles used for scoring the matrix elements, and 10 5 particles per cycle) and by using the flux resulting from a fixed-source calculation starting from a uniformly distributed isotropic source within the domain (with 10 8 particles). In the limit of very large N, all these methods are expected to yield comparable results and to converge to the exact limit A. The corresponding numerical values are recalled in Tab. 2 for N = 1024 spatial meshes and different weighting functions.

The convergence analysis of the α eigenvalues as a function of the spatial discretization N and of the choice of the weighting function for A is shown in Fig. 3. As conjectured, the fundamental eigenvalue α 0 resulting from the αweighted matrix A is unbiased with respect to the exact reference root of the dispersion law in Eq. ( 37), independently of the discretization N (Fig. 3, left). On the contrary, the fundamental eigenvalues α 0 resulting from the matrix A with the two other weighting schemes shows a bias that is progressively reduced as N increases. Even for this very simple benchmark example, it takes roughly N = 128 in order for the other schemes to converge to the true fundamental eigenvalue, which motivates the choice of the α-weighting schemes. Concerning the second and third eigenvalue α 1 and α 2 , as expected the higher-order eigenfunctions are not preserved and the α-weighting method does not offer any specific advantage (Fig. 3, right). For higher-order eigenvalues the rate of convergence of the three schemes is similar, and it requires approximatively N = 256 to achieve the asymptotic value. An important issue concerns the impact of the noise intrinsically induced by the Monte Carlo method on the elements of the matrices: in particular, we are interested in assessing the effects of such noise on the derived spectrum and eigenvectors. For this purpose, we have performed an ensemble of independent replicas of the αk power iterations and we have computed the average and the dispersion of the obtained α spectrum and eigenvectors, as a function of the number of simulated particles per cycle. Numerical findings are reported in Tab. 3 and show that the standard deviation of the first few eigenvalues scales roughly as 1/ √ P, P being the number of particles per cycle. In order to perform a similar analysis on the behaviour of the eigenmodes, Particles per cycle 1.4 ×10 -5 1.0 ×10 -5 2.0 ×10 -5 10 5

α 0 α 1 Re[α 2,3 ] Im[α 2,3 ] exact -0.
2.4 ×10 -6 4.7 ×10 -5 3.1 ×10 -6 6.5 ×10 -6 we have introduced an estimator defined as the normalized integral of the i-th eigenfunction over the half-domain, namely,

R i = | L L 2 ϕ α,i (x, +)dx| | L 0 ϕ α,i (x, +)dx| , ( 38 
)
where L is the length of the rod. The reference value for R i can be computed based on Eq. ( 35). The numerical values for the first few R i are compared to the exact solutions in Tab. 4 for N = 1024 spatial meshes and different weighting functions.

The converge analysis of the estimator R i estimated by the matrix A as a function of the spatial discretization N and of the choice of the weighting function for A is shown in Fig. 4. As conjectured, the estimator R 0 associated to the fundamental eigenfunction resulting from the α-weighted matrix A is unbiased with respect to the exact solution, independently of the discretization N. On the 1.0 ×10 -3 5.5 ×10 -4 10 5 7.4 ×10 -6 3.3 ×10 -4 6.2 ×10 -5

Table 5: Rod model. Comparison of the estimators R i obtained from the matrices scored during 10 3 replicas of αk power iterations, each using 10 3 inactive cycles, 10 3 active cycles and a variable number of particles per cycle.

contrary, the estimator R 0 resulting from the matrix A with the two other weighting schemes shows a bias that decreases with increasing N. It takes roughly only N = 8 in order for the k-weighted scheme to converge to the true fundamental eigenvalue, which can be understood by observing that the deviation between ϕ k,0 (x, +) and ϕ α,0 (x, +) is rather small for the parameters chosen here. For the matrix weighted on the fixed-source flux, the deviation is much larger, and convergence is achieved after N = 256. Concerning the estimators R 1 and R 2 associated with the second and third eigenfunction, all weighting schemes are biased, and the rate of convergence of the three schemes is similar, the asymptotic value being attained after approximatively N = 128.

In order to assess the impact of the noise induced by the Monte Carlo method on the eigenvectors, we have performed an ensemble of independent replicas of the αk power iterations and we have computed the average and the dispersion of the obtained α eigenvectors, as a function of the number of simulated particles per cycle. Numerical findings are reported in Tab. 5 and show that the standard deviation of the first few estimators R i scales approximately as 1/ √ P, P being the number of particles per cycle.

Analysis of the adjoint eigenpairs

We will now focus on the adjoint matrix A † , whose elements have been filled by using the Generalized IFP method, as detailed above. For this example, the Monte Carlo calculation has been performed with 10 8 particles, and 15 latent generations. The α 0 value needed for the Generalized IFP algorithm has been obtained from the direct calculations done in the previous section. The results of the spectral analysis from the adjoint α-weighted matrix are recalled in Tab. 2

Weighting function i obtained from the matrices filled with the method shown in the first column, for N = 1024 spatial meshes.

R † 0 R † 1 R † 2,3
for a discretization of N = 1024 spatial meshes. An excellent agreement is found between the numerical values coming from the A † matrix filled by the Monte Carlo calculation and the exact results stemming from the roots of the dispersion law in Eq. ( 37). This means that the relation α † = α on the spectrum of the α eigenvalues is correctly preserved when weighting A † by the fundamental eigenfunction ϕ † α8 . The first few adjoint eigenfunctions are compared in Fig. 5 for the same spatial discretization: again, an excellent agreement is found between the eigenvectors of the A † matrix filled by the Generalized IFP method and the exact solutions stemming from the eigenfunctions adjoint to Eq. ( 35). Observe in particular that ϕ † α satisfies ϕ † α (x, +) = ϕ α (x, -), as expected. The convergence of the eigenvalues associated to the A † matrix is analyzed in Fig. 3: not surprisingly, the convergence of the eigenvalues with respect to the matrix discretization N follows the same pattern as in the direct case. The fundamental eigenvalue α 0 is similarly preserved by the matrix A † , independently of N, whereas the higher eigenvalues are not and converge to the true values in the limit of large N.

In order to analyze the behaviour of the adjoint eigenmodes, we introduce the estimator

R † i = | L L 2 ϕ † α,i (x, +)dx| | L 0 ϕ † α,i (x, +)dx| . ( 39 
)
The reference value for R † i can be computed based on the adjoint eigenfunctions derived from Eq. ( 35). Numerical values corresponding to the generalized IFP method and to the transposed matrix obtained from the αk method are recalled in Tab. 6 for N = 1024 spatial meshes. The converge analysis of the estimator R † i estimated by the matrix A † as a function of the spatial discretization N is shown in Fig. 6. As conjectured, the estimator R † 0 associated to the fundamental adjoint eigenfunction resulting from the adjoint α-weighted matrix A † is unbiased with respect to the exact solution, independently of the discretization N. As for the estimator R † 1 associated with the second eigenfunction, the adjoint α-weighted matrix A † yields a biased result, which converges to the exact limit after approximatively N = 32.

In the same figure we also display the estimators of the adjoint eigenfunctions obtained by taking the transposed direct α-weighted matrix A T in order to approximate A † . Figure 6 shows that this approach leads to a bias on R † i for the fundamental and the first eigenfunction. Although the bias vanishes as expected in the limit of large N, this analysis suggests that it is general preferable to compute A † rather than approximating the adjoint-weighted matrix by using the transposed matrix A T .

A continuous-energy transport model

We consider now a continuous-energy transport model in an infinite medium. The model includes scattering with an amnesia kernel [START_REF] Duderstadt | Transport theory[END_REF], capture and fission with two precursor families. All cross sections Σ r are assumed to have a 1/ √ E behaviour, i.e., Σ r (E) = Σ 0 r / √ E. The scattering kernel M(E) is a Maxwell distribution9 with average energy E s . The prompt χ p (E) and delayed χ d, j (E) fission kernels are also assumed to be Maxwellian distributions with average E p and E d, j , j = 1, 2, respectively. The fission multiplicities are taken constant, for the sake of simplicity. The resulting α eigenvalue problem reads

α (E) + Σ t (E) ϕ α (E) = M(E) dE Σ s (E )ϕ α (E )+χ p (E) dE ν p Σ f (E )ϕ α (E ) + j λ j λ j + α χ d, j (E) dE ν d, j Σ f (E )ϕ α (E ), (41) 
where (E) = √ E. By virtue of the simple functional forms chosen for this configuration, the eigenvalues and eigenfunctions can be determined exactly. In particular, the eigenvalues are the roots of the dispersion law

Λ(α) = α + Σ 0 a -ν p Σ 0 f - j λ j λ j + α ν d, j Σ 0 f = 0, ( 42 
)
where Σ 0 a = Σ 0 t -Σ 0 s , and the eigenfunctions read

ϕ α (E) = √ E α + Σ 0 t          Σ 0 s M(E) + ν p Σ 0 f χ p (E) + j λ j λ j + α ν d, j Σ 0 f χ d, j (E)          , (43) 
for the values α that satisfy the dispersion law. As for the adjoint eigenvalue problem, we have the equation

α (E) + Σ t (E) ϕ † α (E) = Σ s (E) dE M(E )ϕ † α (E )+ν p Σ f (E) dE χ p (E )ϕ † α (E ) + j λ j λ j + α ν d, j Σ f (E ) dE χ d, j (E )ϕ † α (E ). ( 44 
)
By inspection, the eigenfunctions are ϕ † α (E) = 1, independently of α, with the same associated spectrum as in the direct problem.

For this example, we have chosen the following parameters: Σ 0 c = 0.6, Σ 0 s = 0.3, Σ 0 f = 0.1; for the fission multiplicities we have set ν p = 2 and ν d, j = β j ν d , with ν d = 0.5, β 1 = 0.25 and β 2 = 0.75; for the scattering law we have taken E s = 10 -5 ; for the prompt and delayed fission kernels we have taken the averages E p = 1, E d,1 = 0.1 and E d,2 = 0.01, respectively; for the precursor decay constants we have taken λ 1 = 2.5 and λ 2 = 5.

The first few eigenvalues obtained from the matrices are compared to the reference solutions in Tab. 7 for N = 1024 energy meshes. The direct eigenfunctions resulting from the matrices filled by α-k power iteration (with 10 3 inactive cycles, 10 3 active cycles and 10 5 particles per cycle) are compared to the analytical solutions in Fig. 7, for a discretization corresponding to G = 256 energy intervals. The first few modes are in excellent agreement with the reference solutions. The numerical findings for the adjoint problem, obtained from the Generalized IFP method with 10 8 particles and 15 latent generations, are shown in Fig. 8: again, an excellent agreement is found between the eigenvectors stemming from the matrices and the exact solutions, despite the fact that the adjoint eigenfunctions for this problem are degenerate. Table 7: Continuous-energy model. Comparison of the first few eigenvalues obtained from the matrices scored with the method shown in the first column, with N = 1024 energy groups.

Discussion

The examples discussed in the previous section are very simple and have been precisely chosen in order to compare the obtained numerical results against reference solutions. In view of the application of the proposed methods to realworld reactor configurations, some issues must be carefully examined and taken into account.

The first concerns the size of the matrix operators and hence the involved memory footprint. A first glance to the involved order of magnitudes might suggest that the overall size of the matrices involved in α-eigenvalue problems may become too large to work with for any practical case, due to the need of separately discretizing space, direction and energy (contrary to the k-eigenvalue problem, where only a spatial discretization is typically required [START_REF] Dufek | Fission matrix based Monte Carlo criticality calculations[END_REF][START_REF] Carney | Theory and applications of the ssion matrix method for continuous-energy Monte Carlo[END_REF]). Consider for instance a three-dimensional configuration, and assume that each variable is partitioned into 10 2 bins: this would lead to a total number of 1010 bins, i.e., to a number of 10 20 matrix entries. This applies to both direct and adjoint matrices. Such huge number clearly corresponds to an unaffordable memory footprint 10 on current machines (and on future, at least for a very long time).

In practice, however, the α-eigenvalue matrices have been already applied to realistic systems, including small research reactors [START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF][START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF]: as discussed in Sec. 3, the involved matrices have a sparse nature, and the number of non-null entries is much smaller that the total size of the matrices (see in particular Eq. ( 24)). Furthermore, one can often take advantage of the existing symmetries in order to reduce the dimension of the problem. Moreover, for the energy and angle variable 10 2 bins are probably excessive with respect to most problems of interest. To provide an example, for a two-dimensional representation of a reactor core, by taking N x = N y = 10 2 for the spatial mesh, M = 8 for the directions, G = 30 for the energy groups and J = 6 for the precursor families, we would have ∼ 6 × 10 13 bins for the full matrix, but less than ∼ 6 × 10 8 non-null entries. Even in this case, however, and despite all the simplifications, the memory footprint would be challenging for current machines. Numerical tests of convergence should be also performed a posteriori in order to ensure that at least the spatial shape of the eigenvectors has been correctly captured. The benchmark configurations examined in this manuscript clearly do not address these problems, since only a single dimension has been discretized and careful convergence tests were thus possible.

The second issue concerns the applicability of these matrices to the analysis of system changes. The whole α-eigenvalue expansion is based on the assumption that the physical properties of the system under analysis (such as cross sections, fission spectra, multiplicities, etc.) do not evolve with time: eigenvalues and eigenvectors are computed for a specific state. In real-world configurations, these properties naturally change, due to external actions (control rod movements), physical feedbacks (Doppler effect, etc.), or both. In principle, once the system changes the computed alpha eigenvalues and eigenvectors are no longer valid and cannot be used. This leads to two different approaches: one can either introduce (short) time steps and re-compute the required matrices at each time step, or use some clever interpolation between the initial and final configurations of the system. The former method would lead to an unreasonable memory occupation (and most probably also computation time). The latter method has been suggested [START_REF] Laureau | Transient fission matrix: kinetic calculation and kinetic parameters β e f f and λ e f f calculation[END_REF] and successfully applied (Laureau et al., 2017b) for the Transient Fission Matrix approach, and seems thus much more promising 11 .

In view of these considerations, and based on the increasing availability of direct time-dependent Monte Carlo simulations for reactor physics problems (which natively include moving geometries and physical feedbacks [START_REF] Sjenitzer | Dynamic Monte Carlo Method for Nuclear Reactor Kinetics Calculations[END_REF][START_REF] Faucher | New kinetic simulation capabilities for Tripoli-4: methods and applications[END_REF]), the main interest of the α-eigenvalue matrix operators seems for higher-order mode analysis rather than for reconstructing the time evolution of a system via eigenmode expansion: knowledge of the first few α-eigenvalues and eigenfunctions for a given reactor state might help, e.g., in locating the most appropriate detector positions for on-line core monitoring. Nonetheless, a comparison in terms of performances and accu-racy with respect to existing matrix-based methods (using time-dependent Monte Carlo methods as a reference) for the approximation of the reactor kinetics will deserve further investigation.

Conclusions

Knowledge of the α eigenpairs is key to several applications in reactor physics.

In a series of recent works, it has been proposed to use Monte Carlo methods in order to estimate the elements of the matrices that represent the discretized formulation of the operators involved in the α-eigenvalue problem. In this work, we have suggested some strategies to overcome two possible shortcomings of the existing algorithms. We have shown that the bias possibly appearing on the direct fundamental eigenvalue and eigenvector for smaller sizes of the discretized matrix can be removed by using the α-k modified power iteration method as a weighing function. This corresponds to weighting the matrix elements by the fundamental mode ϕ α , which is expected to preserve the fundamental eigenvalue and eigenvector of the matrix, similarly to what occurs for the fission matrix in keigenvalue problems. We have successively shown that the matrix associated to the adjoint α-eigenvalue problem can be estimated by using the Generalized Iterated Fission Probability method, which was recently introduced as a reference Monte Carlo method to compute the fundamental adjoint α eigenfunction. Since this approach corresponds to weighting the matrix elements by the fundamental adjoint eigenfunction, the fundamental adjoint eigenvector of the discretized matrix will be similarly preserved.

The proposed direct and adjoint methods have been verified on two benchmark problems where exact reference solutions were available for both the eigenvalue spectrum and the direct and adjoint eigenfunctions, and their convergence and accuracy have been extensively assessed. The impact of alternative weighting schemes (such as the k-eigenvalue fundamental mode or the flux resulting from solving a fixed-source problem) and the differences between the adjoint matrix and the transposed direct matrix are most probably emphasized by the choice of the benchmark problems presented in this paper: future work will be aimed at extensively assessing the performances and the robustness of the proposed method for more realistic configurations combining spatial and energy heterogeneities.

We conclude by observing that the strategy presented in this paper in order to fill the matrix elements of the adjoint matrix by the Generalized IFP method might be easily extended to the k-eigenvalue formulation: instead of using the transposed direct fission matrix, one could use the regular IFP method (which yields the importance function for the k-eigenvalue problems) so as to produce the adjoint fission matrix, thus avoiding the bias on the fundamental adjoint eigenvector. 37). Blue circles correspond to results obtained from the α-weighted A matrix; red squares to the k-weighted A matrix; green triangles symbols to the matrix A weighted by a fixed-source flux. Solid lines have been added to guide the eye. In addition, we display with magenta diamonds the corresponding eigenvalues obtained from the adjoint matrix A † weighted by the adjoint α-eigenfunction resulting from the Generalized IFP method. 35). Blue circles correspond to results obtained from the α-weighted A matrix; red squares correspond to the k-weighted A matrix; green triangles correspond to the matrix A weighted by a fixed-source flux. Left: the estimator R 0 associated to the fundamental eigenfunction ϕ α,0 (x, +); right: the estimator R 1 associated to the second eigenfunction ϕ α,1 (x, +) and the estimator R 2 associated to the second eigenfunction ϕ α,2 (x, +). Solid lines have been added to guide the eye. (displayed as symbols) with the reference solutions given in Eq. 43 (displayed as solid lines). Blue circles denote the fundamental adjoint eigenfunction ϕ † α 0 (E); red squares the second adjoint eigenfunction ϕ † α 1 (E); green triangles the third adjoint eigenfunction ϕ † α 2 (E).

Figure 1 :

 1 Figure1: The spectrum of the rod model with neutrons and two precursor families, as from Eq. (37). Model parameters are the following:L = 2, = 1, Σ s = 2, Σ c = 1, Σ f = 3, ν = 2, β = 0.006, ν p = (1 -β)ν, λ 1 = 0.02, β 1 = 0.004, ν d,1 = β 1 ν, λ 2 = 0.4, β 1 = 0.002, ν d,2 = β 2 ν.

Figure 2 :

 2 Figure2: The first few (angular) eigenmodes ϕ α (x, +): the eigenvectors of the A matrix filled by the Monte Carlo calculation (symbols) are compared to the exact solutions stemming from Eq. (35) (solid lines). Blue circles: fundamental eigenmode ϕ α 0 (x, +); red squares: second eigenmode ϕ α 1 (x, +); green triangles: third eigenmode ϕ α 2 (x, +).

  and transposition 4.0981832×10 -1 4.0324929 1.6583581

Figure 3 :

 3 Figure3: Convergence of the first few eigenvalues α i as a function of the number of spatial meshes N and of the weighting function for the matrix A. Left: the fundamental eigenvalue α 0 ; right: α 1 and α 2 . Black solid lines correspond to the exact reference values from the roots of the dispersion law in Eq. (37). Blue circles correspond to results obtained from the α-weighted A matrix; red squares to the k-weighted A matrix; green triangles symbols to the matrix A weighted by a fixed-source flux. Solid lines have been added to guide the eye. In addition, we display with magenta diamonds the corresponding eigenvalues obtained from the adjoint matrix A † weighted by the adjoint α-eigenfunction resulting from the Generalized IFP method.

Figure 4 :

 4 Figure4: Convergence of the first few estimators R i as a function of the number of spatial meshes N and of the weighting function for the matrix A. Black solid lines correspond to the exact reference values based on Eq. (35). Blue circles correspond to results obtained from the α-weighted A matrix; red squares correspond to the k-weighted A matrix; green triangles correspond to the matrix A weighted by a fixed-source flux. Left: the estimator R 0 associated to the fundamental eigenfunction ϕ α,0 (x, +); right: the estimator R 1 associated to the second eigenfunction ϕ α,1 (x, +) and the estimator R 2 associated to the second eigenfunction ϕ α,2 (x, +). Solid lines have been added to guide the eye.

Figure 7 :

 7 Figure7: A continuous-energy transport problem. Comparison of the direct eigenfunctions resulting from the matrices filled by α-k power iteration (displayed as symbols) with the reference solutions given in Eq. 43 (displayed as solid lines). Left: blue circles denote the fundamental eigenfunction ϕ α 0 (E): right: red squares the second eigenfunction ϕ α 1 (E) and green triangles the third eigenfunction ϕ α 2 (E).

Figure 8 :

 8 Figure8: A continuous-energy transport problem. Comparison of the adjoint eigenfunctions resulting from the matrices filled by Generalized IFP method (displayed as symbols) with the reference solutions given in Eq. 43 (displayed as solid lines). Blue circles denote the fundamental adjoint eigenfunction ϕ † α 0 (E); red squares the second adjoint eigenfunction ϕ † α 1 (E); green triangles the third adjoint eigenfunction ϕ † α 2 (E).

Table 1 :

 1 Parameter values for the rod model.

	weighting function	α 0	α 1	α 2,3
	exact	-0.91112104 -1.1402085 -1.5903273 ± 0.46007369i
	α-k	-0.91112673 -1.1408138 -1.5924502± 0.45965067i
	Generalized IFP	-0.91102399 -1.1410052 -1.5923255± 0.45948174i
	k	-0.91103714 -1.1404864 -1.5923147 ± 0.45890215i
	fixed-source	-0.91135365 -1.1407772 -1.5927331 ± 0.45864404i

Table 2 :

 2 Rod model. Comparison of the α eigenvalues obtained from the matrices filled with the method shown in the first column, for N = 1024 spatial meshes.

Table 3 :

 3 Rod model. Comparison of the eigenvalues obtained from the matrices scored during 10 3 replicas of αk power iterations, each using 10 3 inactive cycles, 10 3 active cycles and a variable number of particles per cycle.

	weighting function	R 0	R 1	R 2,3
	exact	0.59054194 3.0407604 1.2570206
	α -k	0.59067879 3.0393783 1.2640341
	k	0.59067531 3.0424330 1.2634575
	fixed-source	0.59038753 3.0501619 1.2631744

Table 4 :

 4 Rod model. Comparison of the firs few estimators R i obtained from the matrices filled with the method shown in the first column, for N = 1024 spatial meshes.

Table 6 :

 6 Rod model. Comparison of the adjoint estimators R †

We remark in passing that an independent approach has been recently proposed for α eigenvalue problems, based on a time-discretization of the fission matrix(Josey and Brown

, 2019). However, it appears that such method allows only determining the eigenvalues but not the eigenvectors.2 This is required since the authors formally work with the propagator of the underlying random walks, which is by construction associated to the adjoint evolution operators[START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF][START_REF] Betzler | Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method[END_REF].

The same choice appears to have been independently proposed by[START_REF] Variansyah | Alpha-weighted transition rate matrix method[END_REF].

This property however does not carry over to higher eigenvalues and eigenvectors of the direct fission matrix, nor to the fundamental (and higher) eigenmode of the transposed fission matrix[START_REF] Carney | Theory and applications of the ssion matrix method for continuous-energy Monte Carlo[END_REF].

As mentioned, a few other methods exist to estimate {α, ψ α }, each with distinct merits and drawbacks[START_REF] Zoia | Monte Carlo methods for reactor period calculations[END_REF][START_REF] Nauchi | Attempt to estimate reactor period by natural mode eigenvalue calculation[END_REF][START_REF] Shim | Monte carlo alpha iteration algorithm for a subcritical system analysis[END_REF][START_REF] Josey | General Improvements to the MCNP Alpha-Eigenvalue Solver[END_REF]. Here we have chosen the α-k method, which is relatively straightforward and can be conveniently adapted to adjoint calculations, independently of the sign of the system reactivity[START_REF] Terranova | Generalized Iterated Fission Probability for Monte Carlo eigenvalue calculations[END_REF].

This consideration follows from the spectrum of a transposed real matrix being identical to the spectrum of the original matrix.

The term cos θ 0 = Ω 0 • n implies that in polar coordinates ancestors starting on the surface must enter the domain with θ 0 = arcsin(2ξ -1) in two dimensions and θ 0 = 1/2 arccos(1 -2ξ) in three dimensions, ξ being uniformly distributed in (0, 1][START_REF] Zoia | Properties of branching exponential flights in bounded domains[END_REF].

This property is also preserved when approximating A † by taking the transposed matrix A T (although A is weighted by the direct fundamental eigenfunction), since by construction transposition preserves the spectrum.

The normalized Maxwell probability density M(x) is given byM(x) = 2 √ π 1 θ 3/2 √ xe -x/θ , (40)where θ is the average of the distribution.

Suppose that each entry is represented by a double-precision floating-point number.

In particular, the application of perturbation techniques such as correlated sampling has been shown to enhance the performances of the interpolation methods in realistic applications, including multi-physics feedbacks(Laureau et al., 2017a).

Acknowledgements

The authors wish to thank Dr. F. Malvagi (CEA/Saclay) for many fruitful discussions.

Figure 5: The first few (angular) adjoint eigenmodes ϕ † α (x, +): the eigenvectors of the A matrix filled by the Monte Carlo calculation (symbols) are compared to the exact solutions stemming from the equation adjoint to Eq. (35) (solid lines). Blue circles: fundamental adjoint eigenmode ϕ † α 0 (x, +); red squares: second adjoint eigenmode ϕ † α 1 (x, +); green triangles: third adjoint eigenmode ϕ † α 2 (x, +). 35). Blue circles correspond to results obtained from the adjoint α-weighted A † matrix; red squares correspond to the direct α-weighted A T matrix. Left: the estimator R † 0 associated to the fundamental adjoint eigenfunction ϕ † α,0 (x, +); right: the estimator R † 1 associated to the second adjoint eigenfunction ϕ † α,1 (x, +) and the estimator R † 2 associated to the second adjoint eigenfunction ϕ † α,2 (x, +). Solid lines have been added to guide the eye.