N
N

N

HAL

open science

Recursive computation of invariant distributions of

Feller processes

Gilles Pages, Clément Rey

» To cite this version:

Gilles Pages, Clément Rey. Recursive computation of invariant distributions of Feller processes.
Stochastic Processes and their Applications, 2020, 130, pp.328 - 365. 10.1016/j.spa.2019.03.008 .

hal-03488737

HAL Id: hal-03488737
https://hal.science/hal-03488737
Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://hal.science/hal-03488737
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304414919301498
Manuscript_cb60a280167b9¢30615dbbbea5d35cS5e

Recursive Computation of Invariant Distributions of Feller
Processes

Gilles Pages! and Clément Rey?

1Université Pierre et Marie Curie, LPMA, 4 Place Jussieu, 75005 Paris, France
2Ecole Polytechnique, CMAP, Route de Saclay, 91128 Palaiseau, France

Abstract

This paper provides a general and abstract approach to compute invariant distributions for Feller
processes. More precisely, we show that the recursive algorithm presented in [10] and based on
simulation algorithms of stochastic schemes with decreasing steps can be used to build invariant
measures for general Feller processes. We also propose various applications: Approximation of
Markov Brownian diffusion stationary regimes with a Milstein or an Euler scheme and approxima-
tion of a Markov switching Brownian diffusion stationary regimes using an Euler scheme.
Keywords : Ergodic theory, Markov process, Invariant measure, Limit theorem, Stochastic ap-
proximation.
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1 Introduction

In this paper, we propose a generic method to compute (recursively) the invariant distribution
(denoted v) of an ergodic homogeneous Feller processes X = (X¢);>0 with semi-group of transi-
tions (P;)¢>0. Invariant distributions are crucial objects in the study of the long term behavior of
continuous dynamical systems like, among others, (mean-reverting) SDE with or without jumps,
regimes switching SDEs, PDMP, etc, which all share a homogeneous Markov property. We in-
vite the reader to refer to [9] and [5] for an overview of the subject. Usually, no closed forms for
invariant distributions are available with the noticeable exceptions of one dimensional Brownian
diffusions (see [6]), dissipative gradient diffusions with a constant diffusion coefficient. Other exam-
ples, typically borrowed from Hamiltonian Mechanics, see [23], lead to explicit exact expressions of
the invariant density distribution for some solutions of Stochastic Differential Equations are given.
However, in many cases there is no explicit formula for v and even there some, computing it by
remains a serious issue especially in higher dimension like for dissipative gradients SDEs.

For a continuous time ergodic Feller process (X¢);>0 with (unique) invariant distribution v,
pointwise Birkhoff’s ergodic theorem implies that

1

¢
v(dr)-a.s. P(dw)-a.s. v(dr,w):= 1/ Oxr(w)(dr)ds L_(”Q v(dx)
0

e-mails : gilles.pages@upmec.fr, clement.rey@polytechnique.edu. This research benefited from the support of the
"Chaire Risques Financiers”.

1

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/


https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304414919301498
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304414919301498
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0304414919301498

1 INTRODUCTION

where X} denotes the process starting from x at time 0. Under more stringent assumptions of
mean-reverting nature, one shows that this convergence holds for every x € R% and not only v(dx)-
a.s and, usually, one even obtains that, P(dw)-a.s., Wp(v(w,dx),v) — 0 as t — +oo for some
p > 1. Such a property is often called stability of the Markov process. If the semi-group FP; is
strongly Feller, i.e. P,f is continuous for every bounded Borel function f : R¢ — R, then

P(dw)-a.s. v(w, f) = v(f) as t— 4oo.

For more details we refer to [15] and the references therein. As for the (weak) rate of this conver-
gence, let us me-cite in the framework of Brownian diffusions Bhattacharia’s Central Limit Theorem
(CLT, see [2]) which shows that for functions fwhich are smooth enough v-coboundaries of the in-
finitesimal generator A of the diffusion — i.e. such that the Poisson equation Ag = f — v(f) has a
solution — , the following CLT holds

Vi) = v(h) = Vin(Ag) 5 N (0 / %)

where o denotes the diffusion coefficient of the diffusion.

A first natural approach to approximate v, in a weak sense, that is through the integrals v(f) for
a wide class of functions f, relies on the following two facts: X} 2 vast — 400 or, equivalently,
Pi(x,dy) = v. For weak convergence results of X; toward v (and rates) we refer e.g. to [7].

Then, for a large enough fixed T', on may assume that X7 'i v and perform a regular Monte Carlo
simulation to compute E[f(X7)]. This approach introduces two errors: an approximation one and a
statistical one, not to mention the fact that exact simulation of X} is non standard situation (think
about diffusions). If X7 is not simulable, it can be replaced by its Euler (or any other) scheme,
inducing a third source of error.

In |24], is introduced, still in a Brownian diffusion framework, a potentially more generic method
still based on a standard time discretization scheme (Euler or higher order schemes) (X7°),>0 with
step 7o (so that at iteration n, time is I',, = nyp) but which takes advantage of the pathwise
properties of stability. If g is small enough, it is shown that the scheme shares stability properties
properties with the diffusion (X[)¢>0 so that

i BN N w,
Up(dx,w) = - Z 5XZO(W) (dz) = T Z'yod)gzow)(dx) — v7°(dz) P(dw)-a.s.
k=1 k=1

This means that, taking advantage of the ergodic properties of the dynamics (and of its time dis-
cretization), it is possible to approximate the invariant distribution v using a long enough simulation
of a single path of the scheme and, with the possibility to do it recursively. Moreover, it is shown,
still in [24], that 27°(f) — v(f) at a O(yp)-rate (for the Euler scheme) for a wide class of smooth
test functions f. Then

on(f) = v(f) = (@u(f) = 7°(f)) + (77°(f) = v(f) ).
O(70)

If a CLT (and/or an L?-convergence) rules the convergence of the first bracket on the right hand
side at rate /I';, = \/70m, then one has to make the balance between these two errors i.e. minimize
(in 70) a term of the form

Cy

/10

This leads to set, n being fixed, 7o =< n~/3 which of course annihilates the recursive feature of the
method.

+ Cov0, with C1, Cy > 0 real constants.
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Another way to exploit the mean-reverting properties of a diffusion was proposed in [1], still
for Brownian diffusions, and can be used as a numerical method. The authors directly prove that
the Euler scheme with decreasing step (Xgn)nENa with step sequence 7 = (Vn)nen going to 0 and
Iy =71+ ...+ v, weakly converges toward the invariant distribution v, supposed to be unique,
of X. It avoids the asymptotic analysis between "' and v but the the resulting error is still made
of two terms. The first one is due to the rate of this weak convergence and the second one to the
Monte Carlo error involved in the computation of the law of X{f , for a fixed large enough n and
the recursiveness is lost. For recent result of convergence in total variation of X 2 toward v in the
case of the Langevin over damped diffusion, we refer to e.g. [4].

In the above two approaches the results are established under a strong mean-reversion assump-
tion of the form AV < f—aV (a > 0) where A denotes the infinitesimal generator of the diffusion
and V : R? — R, is an essentially sub-quadratic C? function with a bounded Hessian going to
infinity at infinity often called Lyapunov function of the dynamics (here a diffusion).

To take full advantage of both the ergodicity/stability properties and preserve the recursiveness
of the algorithm, it was necessary to have v — in practice v(f) — as a direct target of the procedure
and consider a single path. In the early 2000’s, emerged the idea to directly mimic the Ergodic
theorem by considering the empirical /occupation measure of this Euler scheme with decreasing
step. Doing so, one preserves this recursiveness like in [24] and has now v itself as a target instead
of 7. This lead to investigate the a.s. convergence properties of the weighted empirical measure
of the Euler scheme with decreasing step (Xgﬂ JneN at discretization times, namely

I
VweQ, Vn>1, v)(w, Z’Yk‘SXV w(dz) =

1 Fn ) 5X;/(w)(dl')d8,

n

where I'), = > v and s = I'y_1 on [['y_1,0'x). Then, the stability of this non-homogeneous
k=1

Markov chain is proved under various mean-reverting assumptions and frameworks. This approach

was first introduced for strongly mean-reverting diffusions in [10] and then developed in a series of
papers [11] (weakly mean-reverting setting of the form AV < f—aV*%, a€ (0,1)), [13] (exponential
convergence), [19] (jump diffusions), [16] (functional versions), [17] (functional convergence rate)
or [14] (regime switching diffusions), see also [15] for a review... One important asset of this
approach is that it does not require uniqueness of the invariant measure since it is shown that,
under appropriate mean-reverting assumptions, v, (dz,w) always a.s. weakly converges to the non
empty set weakly compact V of invariant distributions of the underlying SDFE, proc-bing on its
way the existence of at least an invariant distributions, all sharing some moment finiteness of
polynomial of even exponential nature (see [13]). In case of uniqueness of v, making these power
moments converge implies the above (a.s.) weak convergence holds for the LP-Wasserstein distance
for some p > 1.

The aim of this paper is to extend the above purely ergodic approach based on a Langevin Monte
Carlo estimator to a wider class of Feller processes. To this end, we will establish a somewhat
abstract version inspired by the the above convergence result of the empirical measure of an Euler
scheme with decreasing step.

The starting idea is to consider a non-homogeneous discrete time Markov process which can be
simulated using a family of simulable transitions kernels (Q.),>0 approximating the transitions P,
of the Feller process X as v — 0 in a sense involving its infinitesimal generator A to be specified
later on. Usually — think about the Euler transitions with step v > 0 — the price to be paid for the
simulability of @ (z,dy) is that the family (Q~),>0 no longer makes up a semi-group.

Then, we introduce the weighted empirical measure

v, (dz) Z%(SX”’ d:v) r, = Z%’ (1)
k=1
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and aim at proving its a.s. weak /Wasserstein convergence toward the set V of invariant distributions
of X under some mean-reverting assumptions. For convenience (see further on), this condition will
be specified on the pseudo-infinitesimal generators A, = w associated to the family (Q,)y>0
rather than on the generator A of X itself. In fact we will introduce more general weights 7, than
n and deal with the random measures v in prevision on future works on the (weak) convergence
rate which require the convergence of such random measures for weights of the form n, =~/ for

some r > 0.

The paper is organized as follows. In a first step, we present an abstract framework adapted to
the computation of invariant distributions for Feller processes under general mean-reverting assump-
tions (including weakly mean-reverting assumptions). Then, we establish a.s weak convergence of
(Un)nen+- Moreover, when the invariant distribution v is unique we obtain lirrln unf =vf a.s. for a

generic class of continuous test functions f (adapted among other to polynomial and exponential
test functions f).

Then, in a second step, we apply this abstract results to concrete cases and obtain original results.
Notice that the existing results mentioned above can be recovered from our abstract framework. We
begin by providing Wasserstein convergence results concerning Euler and Milstein schemes of Brow-
nian diffusion processes in a weakly mean-reverting setting. Then, we propose a detailed application
concerning the Euler scheme of a Markov Switching diffusion for test functions f with polynomial
growth (Wasserstein convergence) or exponential growth. Here, we extend the convergence results
from [14] where the authors adapted the algorithm from [10] under strong ergodicity assumptions
for the Wasserstein convergence. Notice that this generic aproach is used in the companion paper
[18] where we study the Milstein scheme for Brownian diffusions and the Euler scheme for Jump
diffusion processes with censored jumps (that extend Levy jump processes). The Milstein study
is the first one out of the scope of the Euler scheme while the censored jump study extends re-
sults from [20| concerning the Levy processes. A main interest of censored jump diffusions is that,
controversly to Levy processes, the intensity of jumps may depend on the spatial position of the
underlying process.

NOTATIONS.

e Let (E,|.|) be a locally compact separable metric space. C(E) will denote the set of continuous
functions on E and Cy(E) the set of continuous functions that vanish at infinity. We equip this
space with the sup norm || f||cc = sup,cg |f(z)| so that (Co(E),|| - ||eo) is a Banach space. B(E)
will denote the o-algebra of Borel subsets of E' and P(F) the family of Borel probability measures
on E. We will denote by Kg the set of compact subsets of F.

e Convergence of a Borel function f : E — R at infinity should be understood with respect to the
convergence filter base made up with complements of compact sets.

2 Convergence to invariant distributions: a general ap-
proach

In this section, we present the framework devised to show that the empirical measures formally
defined by (1) and built from a numerical scheme with decreasing step (X'{f")neN of a Feller process
(Xt)t>0 (which are not specified explicitly), where the step sequence v = (75 )nen+ converges to 0,
a.s. weakly converges to the set V of the invariant distributions of (X;)¢>0. To this end, we will
provide as weak as possible mean-reverting assumptions on the pseudo-generator of (Xgn)neN on
the one hand and appropriate rate conditions on the step sequence (vy,)nen+ on the other hand.
We first develop an abstract framework. Then, we establish the abstract convergence results
of the empirical measures. Finally, we provide convergence results for the specific but nevertheless

classic case of the Euler scheme of a SDE.
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2.1 Presentation of the abstract framework
2.1.1 Construction of the random measures

Let (2,G,P) be a probability space. We consider a Feller process (Xt):>o (see [6] for details) on
(Q,G,P) taking values in a locally compact and separable metric space E. We denote by (P;)i>0
the Feller semi-group (see |21]) of this process. We recall that (P;)¢>¢ is a family of linear operators
from Co(FE) to itself such that Pof = f, Pisf = PPsf, t, s > 0 (semi-group property) and
711_]()]((1) |P:f — flloo = O (Feller property). Using this semi-group, we can introduce the infinitesimal

generator of (X;);>0 as a linear operator A defined on a subspace D(A) of Cy(FE), satisfying: For
every f € D(A),

Pf—
Af = lim (i
t—0 t
exists for the |.|[co-norm. The operator A : D(A) — Co(F) is thus well defined and D(A) is
called the domain of A. From the Echeverria-Weiss theorem (see Theorem 2.1), the set of invariant
distributions for (X;);>0 can be characterized in the following way:

V={vePE)Vt>0,Pv=uvt={vePE)VfecDA),v(Af) =0}

The starting point of our reasoning is thus to consider an approximation of A. First, we introduce
the family of transition kernels (Q,),>0 from Co(E) to itself. Now, let us define the family of linear
operators A := (A,)y>0 from Cy(E) into itself, as follows

Q. f-f

VfeC(E), v>0, A f= .

The family A is usually called the pseudo-generator of the transition kernels (Q,),>o and is an
approximation of A as v tends to zero. From a practical viewpoint, the main interest of our
approach is that we can consider that there exists 4 > 0 such that for every z € E and every
v € [0,%], Qy(z,dy) is simulable at a reasonable computational cost. We use the family (Q)+>0,
to build (XT, )nen (this notation replaces (Xgn)neN from now on for clarity in the writing) as the
non-homogeneous Markov approximation of the Feller process (X;)i>o. It is defined at times grid
n
'y = > v, n€ N with the sequence v := (7, )nen+ of time steps satisfying
k=1

Vne N*, 0<~, <¥:=supy, < +oo, limvy, =0 and limI, = +oco.
neN* n n

Its transition probability distributions are given by Q. (z,dy),n € N*, z € E, i.e. :
P(Xrn+1 G dy ’ Xrn) = Q"/n+1(XFn7 dy)7 n 6 N

We can canonically extend (X1, )nen into a cadlag process by setting X (¢, w) = Xrn(i) (w) with
n(t) = inf{n € N,T,,41 > t}. Then (Xr,)nen is a simulable (as soon as Xg is) non-homogeneous
Markov chain with transitions

vm g n, PFM7Fn (x7 dy) = Q'7m+1 0:-0 Q'Yn (x7 dy)7
and law
L(Xr, | Xo=2) = Pp,(,dy) = Qy, 0+ 0Qy, (z,dy).

We use (X1, )nen to design a Langevin Monte Carlo algorithm. Notice that this approach is generic
since the approximation transition kernels (Q)+~0 are not explicitly specified and then, it can be
used in many different configurations including among others, weak numerical schemes or exact



2 CONVERGENCE TO INVARIANT DISTRIBUTIONS: A GENERAL APPROACH

simulation i.e. (X1, )nen = (X1, )nen. In particular, using high weak order schemes for (Xt)i=0
may lead to higher rates of convergence for the empirical measures. The approach we use to build
the empirical measures is quite more general than in (1) as we consider some general weights which
are not necessarily equal to the time steps. We define this weight sequence. Let 7 := (1, )nen+ be
such that

n
Vne N*, n,>0, limH, = +oo, with  H, = an.
" k=1

Now we present our algorithm adapted from the one introduced in [10] designed with a Euler scheme
with decreasing steps (Xt )nen of a Brownian diffusion process (Xy);>o. For x € E, let 0, denote
the Dirac mass at point . For every n € N*, we define the random weighted empirical random

measures as follows
n

1
n - ,
i) = 5 > mx,,  (da). 2
k=1
This paper is dedicated to show that a.s. every weak limiting distribution of (4),en+ belongs
to V. In particular when the invariant measure of (X;);>o is unique, i.e. V = {v} so that P-
a.s. limu, f = vf, for a generic class of continuous test functions f.
n

2.1.2 Assumptions on the random measures

In this part, we present the necessary assumptions on the pseudo-generator A= (g,y),po in order
to prove the convergence of the empirical measures (v )nens -

Our approach consists in two parts. First, we consider a mean-reverting control assumption satisfied
by the pseudo-generators fL and a Lyapunov function to show the a.s. tightness of the empirical
measures. Secondly, we consider an infinitesimal generator approximation assumption used to
characterize these weak limiting distributions as invariant distributions of the Markov process of
interest X. To be more precise, we will show that any such limiting distribution, say v, satisfies
J Agdv = 0 for test functions g € D(A) which is a characterization of invariant distributions
following Echeveria-Weiss Theorem (see [5], Theorem 2.1). In both steps, it is necessary to prove
convergence of martingale which will be obtain using growth control and step-weight assumptions
presented at the end of this section.

Mean-reverting recursive control The mean-reverting assumption reads as follows: There
exists a Borel function V' such that

Ly = V:E—v,+00),v.>0 and lim V(z)= +oo. (3)

T—r00

Let 4 >0, s> 1 and let ¢, ¢ : [vs,00) — (0,+00) Borel functions, let « > 0 and 5 € R. We assume

(i) 271/1 oV exists for every v € (0, 7],
RCov (b, Bys) =14 ({)Ve€E, supcoq Ao V() < PP (B—adoV(), (4
S _ 4 and lim+inf¢(v) > f/a.
v—r+00

v

I
A function V' is a Lyapunov function for transitions (Q.)>o if it satisfies Assumption RCq v (¢, ¢, o, ),
which in turn is called the (weakly) mean-reverting recursive control assumption of the pseudo-
generators (by V).

COMMENTS.
e The assumption RCq v (¥, ¢, o, B, s) is devised to be directly checked on the transitions of the
time discretization schemes with decreasing steps -, of the Feller process X. This can be seen as a
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variant of an a.s. tightness criterion for the occupation measure %fot dxzds in which (i) would be

replaced by oV (@)
oV(x

o <

VreFE, WE?O?W]A@D V(z) < V)

which appears as a very general tightness criterion for the above continuous time empirical measure

(see [15] for a review). Thus if we set ¢ = Idj,, o) and ¢(v) = v°, for some a € (0, 1], then the
mean-reverting condition (5) reduces to

(B8 —agoV(z)). (5)

AV < B —aVe,

which is a classical mean-reverting condition (see [9], [5] or [15], for a review) to establish the
existence of an invariant distribution for a Feller process. It is also extensively used to control
the Euler scheme with decreasing steps of Brownian diffusions with infinitesimal generator A and
its weighted empirical measures : see, when a = 1, the seminal paper [10] when a = 1 (see
also [1]) and [11] when a€ (0,1)). When a = 1 this condition is known as a strong mean-reverting
assumption, whereas it is called weak when a € (0, 1) or, more generally when lim,_, - ¢(v)/v = 0.
In fact, in these papers the measures v, are investigated under (5) rather than (4). It turns out
that RCq,v (¢, ¢, o, B, s) is more convenient for an abstract result and more flexible to cope with
a wide range of examples. However, under the generator approximation condition (7) given later,
one easily checks that (4) follows from (5).
e The condition RCq v (vP, I4, @, B, 5)(i), p,s > 1, is considered — for A — in the seminal paper [10]
(and then in [11] with ¢(v) = v%, a € (0, 1], v € [v4, 00)) concerning the Wasserstein convergence of
the weighted empirical measures of the Fuler scheme with decreasing steps of a Brownian diffusions.
When ¢ = I, the Euler scheme is also studied for Markov switching Brownian diffusions in [14].
Notice also that RCq,v (14, ¢, @, 3,s)(ii) with ¢ concave appears in [3| to prove sub-geometrical
ergodicity of Markov chains. In [12], a similar hypothesis to RCq v (14, ¢, v, 8, s)(4i) (with ¢ not
necessarily concave and ;lvy replaced by A), is also used to study the Wasserstein but also exponential
convergence of the weighted empirical measures (2) for the Euler scheme of a Brownian diffusions.
Finally, in [20] similar properties as RCq,v (vP,v*, o, 8, 5)(14), a € (0,1], p > 0, are developed in the
study of the Euler scheme for Lévy processes.
e The function 9 is related to the set of possibly unbounded (v-a.s.) continuous functions f for
which the convergence v, (f) — v(f) a.s. holds, when v is the unique invariant distribution of the
underlying Feller process. Let us be more specific on that point: for an s > 1 — which is related to
step-weight assumption on the sequences v and n — we will prove in Theorem 2.4 point B. that the
sets of functions for which this above a.s. convergence holds contains:

v (B ={fecm), 1f@)] = o (Vypala)}, ©)
7 =~ o o /s
where Vit E — R, is defined by Vi s(z) = © V(f"sz(x)v(l’)l '

Infinitesimal generator approximation We present now the main assumption that enables
to characterize the limiting distributions of the a.s. tight sequence (v (dz,w))nen+. The strategy
is to show that, a.s., any limiting distribution ve(w,dz) of the sequence of random measures
(Vn(w, dx))n>1 satisfies [ A, f(x)vn(w,dz) — 0, then derive that [ A, f(x)veo(w,dz) = 0 for
every f in a dense subspace of the domain of A and conclude by the Echeveria-Weiss Theorem that
Voo(w, dx) is invariant for the semi-group (P;)>0.

We thus introduce a hypothesis concerning the distance between (27)7>0, the pseudo-generator
of (Q4)y>0, and A, the infinitesimal generator of (P;);>0. We assume that there exists D(A)y C D(A)
with D(A) dense in Co(E) such that:

E(A,A,D(A)) = VYve(0,7], Vfe D(A)yVze E,
Ay f (@) — Af(2)] < Ag(z,7), (7)
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where Ay : E x Ry — Ry can be represented in the following way: Let ((~2, g, ]T”) be a probability
space. Let g : F — R‘i, g € N, be a locally bounded Borel measurable function and let Ay :
(E xRy xQ,B(F)®B(Ry)®G) = RY be a measurable function such that

sup IE[sup sup Kfvi(x,’y,fu)] < 400,
i€{l,...,q} z€E v€(0,9]

and

Vre E,Vy € (07:)/]7 Af(xaf)/) - <g(x>7E[Kf($77aa)]>Rq'

Moreover, we assume that for every i € {1,...,q}, sup,en- Vn(gi,w) < +00, P(dw) — a.s., and that
A 1. satisfies one of the following two properties:
There exists a measurable function + : (€,G) — ((0,7], B((0,7])) such that:
(i) VK €Kg, hnb sup Afz(:c v,w) =0,

7 3~ €K
D P(dw)-a.s (i) lim  sup Af’z(x v,w) =0, (8)
7 ye(0n(@)]
or
I) P(d®)—a.s lim sup Afz(ac v,w)gi(z) = 0. (9)

7—=0zeE

Remark 2.1. Notice that assumption E(A, A, D(A)o) 1) (i) (see (8)) controls the behavior of the
error function 1~\f as the time goes to zero. It is crucial to obtain weak convergence towards the
expected target. Hypothesis (7) may indeed be seen as a small time weak approzimation that will
lead to the result using concatenation techniques. In some specific cases we can obtain the assumption
in a uniform way (for the space variable) that is E(A, A, D(A)) II) (see (9)). However in most
cases, it is only possible to obtain this convergence on compact sets (for the space variable) that
is £(A, A, D(A o) I) (i) (see (8)). In this case, it is necessary to introduce the supplementary
assumption E(A, A, D(A)o) 1) (ii) (see (8)) in order to control the behavior of the error outside
those compact sets.

Remark 2.2. Let (F,F,)\) be a measurable space. Using the evact same approach, the results
we obtain hold_when we replace the probability space (Q Q ]P’) by the product measurable space
(X F,G®F,P®\) in the representation of Ay and in (8) and (9) but we restrict to that case for
sake of clarity in the writing. This observation can be useful when we study jump process where A
can stand for the jump intensity.

This representation assumption benefits from the fact that the transition functions (Q,(x, dy))~e(0,5),
x € E, can be represented using distributions of random variables which are involved in the com-
putation of (X, )nen+. In particular, this approach is well adapted to stochastic approximations
associated to a time grid such as numerical schemes for stochastic differential equations with a
Brownian part or/and a jump part. We propose in Appendix A an example of checking of condi-
tion £(A, A, D(A)y)(I) to a (scalar) Brownian diffusion. This case already solved in the original
paper [10] can be viewed as a first user guide. In the companion paper [18] devoted to applica-
tions of our results to the diffusion processes with switching regimes and to jump diffusions which
extend [14] and [20] respectively. However, we can describe a standard approach that can be used
to check this assumption. Assume A is local operator of order m (meaning Af involves derivatives
of order m of the function f) with form Af(x) Y%, To(z)0' f(z). Assume E = R and (Xr, )nen
follows the same law under P, as the Markov chain defined by the random recurrence

Xrn+l = F(XF»,H C’yn+1)7 n e N, IF) — a.s.
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under P, with F' a smooth function (at least continuous) satisfying F(z,0) = z,2 € E, and (Cyn Jnen
a sequence of 7.7.d random variable distributed under the law of ¢,, with ({y),>0 a random process
satisfying lim, 0 ¢, = 0 P — a.s. with appropriate uniform integrability conditions (for Brownian
diffusions one may set ¢, = /7 Z Z~N (0;1)). Then we have, for f smooth enough with compact
support (e.g. 02 for Brownian diffusions corresponding to m = 1 in what follows),
m l
B[f o Fla,¢,)] = 7(x) + B[S T8 22)
(=1

! F(z,(y) —2)™ .(m
+/0 | ((M—F)l)') f( H)(x"’_u(F(xan)—l’))du}

O ()

and then, we have the following writing

. I (Fr. G — )
A f@) - af) =E[Y E0S 29 g0,

¢!
=1
1 €T — )"
“f (F(wn?iu) J Do ul P, G) = ))du] = Af(@)
m $ xf
g
=1

+

= 2 [( (@ <V —x)l fem - 1€§m+1T£(x)>f(€) ($+ﬂf:m+1é(F($’C7) _x))}

where O is uniformly distributed on the intervaL[O, 1] under P. Now, we have this representation that
is well adapted to our framework we check £(A, A,D(A)o) I) (see (8)). To prove E(A, A, D(A)o) I)

(i), the idea is to show that P(d&) — a.s., (F(x’C”)_ig)fiﬂe:mH — 1y—m+1Te(z) (when the expectation
of this term is not null) converges to 0 as 7 tends to 0 as soon as the approximation is well chosen
and using the fact that lim,_,o F'(z,{,) = x, P(d&) — a.s.. The assumption (A, A, D(A)o) T) (ii)
can then be checked studying (2 + Ly—pm410O(F(x, ¢y) —x)). As f is vanishing at infinity, it is
trivial when £ € {1,...,m}. When £ = m + 1 the idea is to introduce y(w) such that P(d&) — a.s.,
limy 00 SUDPy<y(z) T + O(X)(F(x, ¢ (@) — ) = 400 and to conclude using the fact that f vanishes

at infinity. This is possible as soon as we can find ¢ > 0 such that sup|ej<¢ [F(z, Q) —z| < (1 —¢€)lz],
for every x € E and some € € (0, 1).

Growth control and step-weight assumptions We conclude with hypothesis concerning
the control of the martingale part of one step of our approximation. Those will be crucial to prove
the convergence of the martingale array terms which appear in the study of the weak error.

Let pe€ [1,2] and let ez : Ry — Ry be an increasing function. For F C {f,f : (E,B(E)) —
(R,B(R))} and g : E — R4 a Borel function, we assume that, for every n € N,

GCq(F,g,p,ez) = P-as.VfeF,
E[|f(XFn+1) - Q'Yn+1f(XFn)|p|XFn] < Cf€I(7n+1)g(XFn)7 (10)
with C'y > 0 a finite real constant which may depend on f.

Remark 2.3. The reader may notice that GCq(F, g, p,ez) holds as soon as (10) is satisfied with
an ]-"é( = O'(A_)Z[‘k, k < n)-adapted sequence (Xy)nen instead of Q- ., f(Xr,), since Q, ., f(Xr,) =

B[ f(Xr,y1) = Qo F (X)X, ] < B[ £(Xr, ) — Xl | X1, for every X, € LP(FyY).
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We will combine this assumption with the following step-weight related ones:

P —
>

and

SWrrog(F) = Pas VR, 30 Ul (g ) < v, (12)
n>0 n+

with the convention 79/70 = 1. Notice that this last assumption holds as soon as the sequence
(Mn/Vn)nen+ is non-increasing.

2.2 A.s. weak convergence of the empirical measures

In the beginning of this Section, we present some general results that we use in our approach. Then,
we provide convergence results through Theorem 2.3 and Theorem 2.4. The first one establishes
almost sure tightness and then the existence of a weak limit for the empirical measures. In The-
orem 2.4, we establish the identification of every weak limit with an invariant distribution of the
Feller process (X;)¢>o with infinitesimal generator A.

2.2.1 Background and preliminary results

In this section, we recall standard general results we employ to study the convergence. Our approach
will rely on a specific version of the Martingale problem characterizing the existence of a Feller
Markov process which directly provides the existence of a steady regime ¢.e. an invariant distribution.
This is the object of the Echeverria-Weiss theorem.

Theorem 2.1. (a) (Echeverria- Weiss (see [5, Theorem 9.17)). Let E be a locally compact and
separable metric space and let A : D(A) C Co(E) — Co(E) be a linear operator satisfying the positive
mazimum principle!, such that D(A) is dense in Co(E) and that there exists a sequence of functions
©n € D(A) such that liTrln on =1 and hrl;n Ay, =0 with sup,,cy ||Aen|lco < +00.

If ve P(E) satisfies

vf € D(A), /EAfdy:O, (13)

then there exists a stationary solution to the martingale problem (A,v).

(b) (Hille-Yoshida (see [22] (Chapter VII, Propositions 1.3 and 1.5) or [5] (Chapter IV, Theorem
2.2))). The infinitesimal generator of a Feller process satisfies the hypothesis from item (a) except
for (13).

This paper is devoted to the proof of the existence of a measure v which satisfies (13). Using
this result, property (13) is sufficient to prove that v is an invariant measure for the process with
infinitesimal generator A. To be more specific, the measure v is built as the limit of a sequence
of random empirical measures (v, )pen+- When (13) holds for this limit, we say that the sequence
(U )nen+ converges towards an invariant distribution of the Feller process with generator A. We
begin with some preliminary results.

Lemma 2.1 ((Kronecker). Let (an)nen+ and (bp)nen+ be two sequences of real numbers. If (by)pen-

is non-decreasing, strictly positive, with limb,, = 400 and Y a, /by, converges in R, then
n n=>1

n

liﬁnbiz:akzo.

" k=1

Wf e D(A), f(zo) = sup{f(z),z € E} > 0,20 € E = Af(z0) <0.



2 CONVERGENCE TO INVARIANT DISTRIBUTIONS: A GENERAL APPROACH

Theorem 2.2 (Chow, (see [8], Theorem 2.17)). Let (My)nen+ be a real valued martingale with
respect to some filtration F = (Fp)nen. Then

lim M,, = M, € R a.s. on the event U {ZEHMn — My, |"T" | Fld] < +oo}.
rel0,1] n=1

2.2.2 Almost sure tightness

From the recursive control assumption, the following Theorem establish the a.s. tightness of the
sequence (v )pen+ and also provides a uniform control of (1) ),en+ on a generic class of test functions.

Theorem 2.3. Lets > 1, p € [1,2], vs > 0, and let us consider the Borel functions V : E — [vs, 00),
g:E =Ry, ¢ [vg,00) = Ry and ez : Ry — Ry an increasing function. We have the following
properties:

A. Assume that A:,n(on)l/s exists for every n€ N*, and that GCq((YoV)Y*, g, p,ez) (see (10)),
SWz.n(g,p,€z) (see (11)) and SWrz (1 0 V)V/®) (see (12) hold. Then

P-a.s. sup ——anA% (o V)l/s(ka ) < +oo. (14)
neN*

B. Let a > 0 and € R. Let ¢ : [vs,00) = R% be a continuous function such that Cy :=
SUPyc(u, 00) P(V) /v < 00. Assume that (14) holds and

(i) RCov (¥, ¢, a,B,s) (see (4)) holds.
(i) Ly (see (8)).
Then,

P-a.s. sup 1/,71’(‘7@[,@,3) < +00. (15)
neN*

with ‘7¢7¢’S defined in (6). Therefore, the sequence (vy)nen+ is P-a.s. tight.

Proof. A. For ne N*, we write

“(( o V)V (Xr,) = (o V)V* (X))

NE

2 [=

- angw (Yo V)l/S(XFk—l) = -
k=1 k

I
_

+ ((wov)l/s(XFk) ,Yk(on)l/s(kail)).

NE
2 [F

b
Il
—

We study the first term of the r.h.s. First, an Abel transform yields

Il

nk:

(o V)V (X )= (v 0 V) (Xr, )

Q‘d

it ° 1/s/v .\ Ui o 1/s( %
i (0 VYA (Ko) = (0 V)V (Kr,

Mk—1 s
H Z(% V- 1) Yo V) (X, ).

We recall that (¢ o V)'/# is non negative. From SWrz.~,((1) 0 V)1/#) (see (12)), we have

E[ sup Z 1 (% - %) (Yo V)1/8<er71) < 400,

11
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so that

n
1 _ _
P-a.s. sup —(@ — M) (¢ o V)l/S(ka_l) < +o0.
neN* = He Ny ve-1/+
By Kronecker’s lemma, we deduce that

n

.1 Mk NMk—1 1/s/
P-a.s. lim — E <— — 7) o VVs(X =0.

This concludes the study of the first term and now we focus on the second one. From Kronecker
lemma, it remains to prove the almost sure convergence of the martingale (M,),en+ defined by
My := 0 and

My =3 B (o V)Vo(Kr,) — (w0 V) VH(Xr, ), ne N,

Using the Chow’s theorem (see Theorem 2.2), this a.s. convergence is a direct consequence of the
a.s. finiteness of the series

Z (%)pEUW o V)5 (Xp,) — Q,, (o VIY(Xr, )P | Xty 4],

n=1
which follows from GCo((v o V)%, g, p,ez) (see (10)) and SWr ., (g, p, ez) (see (11)).
B. Using RCq v (¢, ¢, o, 3, 5)(it) (see (4)), there exists ng € N*, such that for every n > ng, we have

Yo V(Xr,)

B—agoV(Xr,)
V(Xr,)

Xrn] <1+ Y41

Since the function defined on R* by v ~ v'/% is concave and Cj, := SUPy e[, 00) P(V) /v < +00, for
n large enough we use the Jensen’s inequality and we derive

YoV X 1 /8| _ . 3 ) B
s[(evr) ] <(rnn =)
<14 ’7n+1(ﬂ — Ozgzio V(Xl“n))
) sV (Xr,)

Now when 5 > 0, by RCq,v (¢, ¢, o, B, 5)(1ii) (see (4)), there exists A € (0,1) and vy € (0, +00) such
that for every v > vy, then ¢(v) > B/(Aa). It follows that the Borel function C) s : [vs, +00) —
R, v = COys(v) := v~ 1h(v)Y/5(8 — Aap(v)) is locally bounded on [v,,+00) and non positive on
[ux; +00), hence O s := SUPyefy, +o0) Ors(v) < +00. When 3 < 0, since ¢ and 4 are positive
functions, then the function C) s is non positive and it follows that

Qi (o V) (Xp,) (4o V)V*(Xp,)
+ L (O 0 V(D) = (1= NaVys.(Xr, ),

which yields, ~
S C’/\,5 VO
a(l—N) a(l—N)

Consequently (15) follows from (14). The tightness of (v))nen+ is a straightforward consequence
of (15) and lir+n M = 400 (see RCq.v (¥, ¢, o, B, 5)(ii7)) since we then have li_)m 171/,7(75,5(:5) =
v—>+00 r—00
+00. O

Vs (Xr,) < — A (o V)V (Xp,) +
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2.2.3 Identification of the limit

In Theorem 2.3, we obtained the tightness of (v, )nen+. It remains to show that every limiting point
of this sequence is an invariant distribution of the Feller process with infinitesimal generator A. This
is the interest of the following Theorem which relies on the infinitesimal generator approximation.

Theorem 2.4. Let p€ [1,2]. We have the following properties:

A. Let D(A)y C D(A), with D(A)y dense in Co(E). We assume that g%f exists for every
f € D(A)y and every n € N*. Also assume that there exists g : E — R4 a Borel function
and ez : Ry — Ry an increasing function such that GCo(D(A)o, g,p,€ez) (see (10)) and
SWz (g, p,€z) (see (11)) hold and that

n

. 1
hganfZ Met1/ Vi1 — M/ 1| = 0. (16)
" k=1
Then
ol s
P-a.s. Vf€D(A),  lim T ;nkA%f(kal) =0. (17)

We assume that (17) and E(A, A, D(A)o) (see (7)) hold. Then

P-a.s. Vf e D(A)o, limy(Af) = 0.
It follows that, P-a.s., every weak limiting distribution vl of the sequence (Vg )nen+ belongs to

V, the set of the invariant distributions of (X¢)i>0. Finally, if the hypothesis from Theorem 2.3
point B. hold and (X;)i>0 has a unique invariant distribution, i.e. ¥V = {v}, then

P-a.s. Vfe C%’M(E), liTILnl/g(f) =v(f), (18)
with C% M(E) defined in (6).

In the particular case where the function 1 is polynomial, (18) also reads as the a.s. convergence

of the empirical measures for some LP-Wasserstein distances, p > 0, that we will study further in
this paper for some numerical schemes of some diffusion processes. From the liberty granted by
the choice of v in this abstract framework, where only a recursive control with mean-reverting is
required, we will also propose an application for functions ¢ with exponential growth.

Proof. A. We write

=N A F(Xr ) == 3 B (X)) — F(Xr, L)

k=1 k=1
Tk >
+ 7(f(XFk) - Q’kaf(XFk71))'
k=1 'k

We study the first term of the r.h.s. We derive by an Abel transform that

1« Mk S - n M
_H;%(f(er)—f(Xr“))z L (K0) - i p ()

n Hn’Yl Hn n
1 &~/ 7
k k—1 -
+ — (* — 7) Xr,_
an Yoo Ve—1 (Xri-)

13
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Since f is bounded and hm M/ (Hpvn) = 0, we deduce that hm nf(Xr,)/(Hyvn) 0 and, on the
other hand, we deduce from (16) that

tim - 3 P (F(Xr,) — F(Kr, ) =0.

This completes the study of the first term. To treat the second term, the approach is quite sim-
ilar to the one in the proof of Theorem 2.3 point A. using GCQ(D(A), g,p,ez) (see (10)) with
SWz.n(9,p,€z) (see (11)). Details are left to the reader.

B. First we write

S A F (K ) VAN = 7 S (A f (R, ) — AF(Kr, ).
" k=1 k=1

n

Now we use the short time approximation £(A, A, D(A)g) (see (7)) and it follows that,
1 &~ . 1 ¢ >
‘Hin Z nk’(A’ka(XFk71) - Af(XFk71))‘ < E Z nk’Af(Xkalaf)/k‘)'
k=1 k=1

Moreover, we have the following decomposition:
Vf € D(A)o,Vze E¥y€(0,9],  Ag(z,7) = (9(x), E[As (2, 7)])ra

with g : (E,B(E)) = R%, ¢ € N, a locally bounded Borel measurable function and 1~Xf (Ex Ry x

Q, B(E)®B(R4)®G) — R% ameasurable function such that sup;eqy gy E [ SUD, e SUD,e(04] Af, (z,7)] <
+o0. Slnce for every i € {1 -y q}, SUPpen+ Vn(gisw) < +00, P(dw) — a.s., the P(dw) — a.s. conver-
gence of - Ek LN (Xr,_,, k) towards zero for every f € D(A), will follow from the following

result: Let (Xy)nen € BN If

n

1 _
sup  sup - > mkgi(Xe—1) < +oo,
i€{1,...,q} neN* =1

then, for every f € D(A)p, lim % Sy A f(Xk—1,7) = 0. In order to obtain this result, we first
n n
show that, for every f € D(A)g, every i € {1,...,q}, and every (X,)nen € E®Y, then

]ﬁ(d@)—a.s. hm—anAf, (Xk—1, 7 @)gi(Xg—1) = 0,
" =1

and the result will follow from the Dominated Convergence theorem since, for every ne€ N*,

I «— ~ - - ~
FanAf,i(Xk—1>'Ykaw)gi(Xk—l) Ssup sup Agy(z,7,0) sup - angz Xjp—1) < +o0.
i z€FE v€(0,7] neN* n

with E[sup,cp SUD.¢ (0, }/~\f~( ,N)] < 400 and sup,,cy- }} S Megi(Xg—1) < +oo. We fix
f € DAy, ie{l,...q and (Xp)nen € E®N and we assume that E(A, A, D(A)o) 1) (see (8))
holds for Ay; and g;. If instead E(A, A, D(A)o) II) (see (9)) is satisfied, the proof is similar but sim-
pler so we leave it to the reader. By assumption £(A, A, D(A)o) 1)(ii) (see (9 ), P P(d&) — a.s,
for every R > 0, there exists Kr(w) € Kg such that SUD e e (@) SUPAe(0.4(@)) M. (x,v,w0) <

1/R. Then from (A, A, D(A)y) I) (i)(see (8)), we derive that, P(d@) — a.s, for every R > 0,
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hm Afz( ne1sVn, )]IKR( )(Xk 1) =0, Then, since g; is a locally bounded function, as a straight-

forward consequence of Césaro’s lemma, we obtain

P(d&) — a.s. VR >0,

llm*Zle/\f@ X1, Y0 @) 95 (K1) L e ) (Xpm1) = 0
" k=1
< 7(@)}. By the assumption E(A, A, D(A)o) 1)(ii) (see (8)), we
have, P(d&) — a.s, lim SUPp, >0 (@) 7\ i(z,9m,w) = 0, Moreover,

|z| =400

Let n(w) := inf{n € N*,supy., 1 <

SU?)F Z A i (Xk—1, 7, D)9 (X)L xs, @) (Xk-1)
n=>n(w k— n(w)

< sup  sup  Agi(e,7,@) sup onkgz Xpo1).
2K g (W) v€(0,7(@)] neN+ H,
We let R tends to infinity and since sup,, e« I}n Sor_ i mgi(Xg—1) < +oo, the l.h.s. of the above

equation converges P(d&) — a.s. to 0. Finally, since n(@) is P(d@) — a.s. finite, we also have

P(d@) — a.s. YR >0,
n@-1. - B
li}LﬂFn Z M 1, (X1, 7, @) 9 (Xp—1) L e (@) (X—1) = 0.
=1

Applying the same approach for every i € {1,...,q}, the Dominated Convergence Theorem yields:
1 n
V(Xn)new € E¥NVF € D(A)g,  lm— > mpAs(Xp_1,%) =0,
n Hnp k=1

and since for every i € {1,...,q}, sup,en+ Vn(gi,w) < +00, P(dw) — a.s., then

n

Plde) s, VPED(A), 7 S melAy f(Xr, )~ AF(Xe, ) =0,
" k=1

It follows that, P(dw)-a.s., for every f € D(A)g, limuv,(Af) = 0. The conclusion follows from
n

the Echeverria-Weiss theorem (see Theorem 2.1). Simply notice that we maintain the assumptions
of this theorem when D(A) is replaced by D(A)g, since D(A)g C D(A) and D(A)y is dense in
Co(E). O

2.3 About growth control and step-weight assumptions

The following Lemma presents a L'-finiteness property that can be obtained under recursive con-
trol hypothesis and strongly mean-reverting assumptions (¢ = I;). This result is thus useful to
prove SWz ~.n(g,p, ez) (see (11)) or SWrz n(F) (see (12)) for well chosen F' and g in this specific
situation.

Lemma 2.2. Let v, >0, V : E — [vy,00), ¥ : [vi,00) = Ry, such that /Nl%w oV exists for every
ne N*. Let a >0, S € R and s > 1. We assume that RCq,v (¢, 14, o, B,5) (see (4)) holds and that
E[ o V(Xr,,)] < 400 for every ng € N*. Then

sugE[w o V(Xr,)] < +oo. (19)
ne

15
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In particular, let p € [1,2] and let ez : Ry — Ry be an increasing function. It follows that if
p ; n n

Yoy ‘HZ’% ez(n) < +00, then SWr (v oV, p,er) holds and if 3-,,~ 77n+1/%ﬁ:+1n [t o { oo

then SWzz y(1 o V) is satisfied

Proof. First, we deduce from RCq v (1, 14, @, B, s)(i) that there exists ng € N such that for n > ny,
we have

o V(Xpn)

VXr) (B — aV(Xr,)).

[w o V(Xrn+1 ’XFH] <w © V(Xrn) + ’Y’”«‘i‘l

Now, let A € (0,1) and vy = v, V (B/(Aa)). It follows that the Borel function C} : [vs, +00) = R,
v = Oy\(v) := v~ 1(v)(B — Aaw) is locally bounded on [v,,+00) and non positive on [vy, +00),
hence C) := SUPycfu, vy ) Or(v) < +oo (with the convention sup,cg Cx(v) = 0) and

Vs , U

E[¢ o V(Xr,,,)|Xr,] <¥ o V(XT,) +Ynt1(Cr o V(Xr,) — (1 — A)agp o V(Xr,)),
<Y o V(Xr,)(1 = ms1(1 = A)a) +1m4+1Ch.

Applying a simple induction we deduce that E[i) o V(XT, )] < E[¢) o V(X,,,)] V (1§§\)a. O

Now, we provide a general way to obtain SWz - (g, p, €z) and SWrz 5 ,(F) for some specific g

and F' as soon as a recursive control with weakly mean reversion assumption holds.

Lemma 2.3. Let v, > 0, V : E — [v4,00), ¥, ¢ : [vs,00) = Ry, such that qu/) oV exists
for every ne N*. Let a > 0, B8 € R and s > 1. We also introduce the non-increasing sequence
(On)nen+ such that 3~ Onyn < +00. We assume that RCqv (¥, ¢, , B, s) (see (4)) holds and that
E[ o V(Xr,, )] < 400 for every ng € N*. Then

Z%%E[Vw@,l(xmfﬂ] < +oo

n=1
with ‘71/,,(7571 defined in (6). In particular, let p € [1,2] and let ez : Ry — R4 be an increasing

function. If we also assume

_ — TIn \p . . .
SW , = ( 1 = ) - d
T (P €7) Yr ez(fyn)(Hn%) e is mon-increasing an

> (g2-) exlm) < +oc, (20)

n=1

then we have SWL%n(YZp@,l,p, er) (see (11)). Finally,if

Gt It
SWizhn = (W;#)new is non-increasing and
. / /)
Z (Mn+1 '7n+1 MIn/Tn)+ < 400, (21)

TL

then we have SWIIWW(‘N/M,@J) (see (12)).

Proof. First assume that 5 > 0. By RCq,v (¥, ¢, o, B, s)(iti) (see (4)), there exists A € (0,1) and
vy € (0,+00) such that for every v > vy, then ¢(v) > 5/(Aa). It follows that the Borel function
Cy : [vs,+00) = R, v = Ox(v) := v 1 (v)(B — Aag(v)) is locally bounded on [v,,+00) and non
positive on [vy, +00), hence Cy := SUPyc(v, +o00) Ca(v) < +00. When 8 < 0, since ¢ and ¢ are
positive functions, then the function C is non positive. Using the same approach as in the proof of

16
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Theorem 2.3 point B., we deduce that there exists ng € N such that we have the following telescopic

decomposition:

w (¢] V(Xpn) — E[l/} o V(XF
a(l =)

| Xr,]

n+1)

Vn = nyg, 9n+17n+1‘7¢,¢,1(5(rn) <Ony1

C)
a(l—N)
ntpo V(Xr,) = Op1E[p o V(Xr, )| Xr,]
h a(l—=N)
Ch
a(l—N)’

+ Yn+1 9n+1

+ Ynt10n+1

where the last inequality follows from the fact that the sequence (6,,)nen+ is non-increasing. Taking
expectancy and summing over n yields the result as ¢ takes positive values and E[¢poV (X,,,)] < 400
for every ng € N*. O

This result concludes the general approach in a generic framework to prove convergence. The
next part of this paper is dedicated to various applications.

2.4 Example: the decreasing step Euler scheme of a diffusion

Using this abstract approach, we can recover the results obtained in [10] and [11] for the Euler scheme
of a d-dimensional Brownian diffusion. We do not provide proof in this example, but it is actually
similar, though less technical, to the Markov Switching case (see Section 3.2. Notice however, that
the approach to obtain infinitesimal approximation assumption is explained in Appendix A for the
one-dimensional case. In this part of the paper, our aim is to illustrate how the generic assumptions
fit in our general framework.

We consider an N-dimensional Brownian motion (W;);>9. We are interested in the strong
solution - assumed to exist and to be unique - of the d-dimensional stochastic equation

Xie=x+ /t b(Xs)ds + /t o(Xs)dWs (22)
0 0

where b : R? — R? g : R? = RN Tet V : R — [1,+00), the Lyapunov function of this system
such that Ly (see (3)) holds with £ = R%, and

IVV > < Oy, [ D*V oo < +00.

Moreover, we assume that for every z € R, |b(x)|> + Tr[oo*(x)] < V%(z) for some a € (0,1].
Finally, for p > 1, we introduce the following LP-mean-reverting property of V,

1
Ja >0, BeR,VzeR, (VV(z),b(z))+ 5\|Apuoo2<2p—3>+Tr[aa*(x)} < B —aVi(z)

with for every z € RY, \,(z) := sup{A,1(2),..., \pa(z),0}, with X\, ;(z) the i-th eigenvalue of the
matrix D2V (z) + 2(p — 1)VV (2)®2/V(z). We now introduce the Euler scheme of (X;);>o. Let
p€ [1,2] and ez(v) = 7*/? and assume that (16), SWz.,,(p,ez) (see (20)) and SWrz.,., (see (21))
hold. Let (Uy), be a sequence of RN-valued centered independent and identically distributed
random variables with covariance identity and bounded moments of order 2p. We define the Euler
scheme with decreasing steps (Vn)nen+; (X1, Jnen of (X¢)i=0 (22) by

vn €N, Xr,,, =Xr, + Wm+16(Xr,) + V10 Xr, ) Uns1,  Xo =z,

where T';, = Y7, vk, n € N. We consider (v (dz,w))nen+ defined as in (2) with (Xr, )nen defined
above. Now, we specify the measurable functions ¢,¢ : [1,400) — [1,+00) as ¥(v) = vP and

17
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$(v) = v®. Moreover, let s > 1 such that app/s < p+a—1, p/s+a—1 > 0and Tr[oo*] < CVP/sta—1,
Then, we can show that £(A, A,C2%(R?)) (see (7)) holds (the proof is similar but simpler than its
counterpart (see Proposition 3.3 for the one state case in the Markov Switching framework) with
gw and A denoting respectively the infinitesimal generator of the diffusion (22) and the pseudo-
generators of the Euler scheme. Then, it follows from Theorem 2.4 that there exists an invariant
distribution v for (Xt)s=0. Moreover, (v (dr,w))nens a.s. weakly converges toward V), the set of
invariant distributions of (X;)¢>¢ and when it is unique i.e. V = {v}, we have

lim v(f) = (),

for every v-a.s. continuous function f € C%A(bys(Rd) defined in (6). Notice that this result was
initially obtained in [10] when a = 1 and in [11] when a € (0,1] and in both cases s = p = 2.
Afterwards, the study was extended in the case function ¥ with polynomial growth in [13]. We do
not recall this result. However, in the sequel we prove the convergence of the empirical measures for
both polynomial growth and exponential growth of ¢ for the Euler scheme of a Brownian Markov
switching diffusions and those mentioned results can be recovered from a simplified version of our
approach.

3 Applications

In this section, we propose some concrete applications which follow from the results presented in
Section 2. We first give Wasserstein convergence results concerning the Milstein scheme of a weakly
mean-reverting Brownian diffusion. Then, we propose a detailed application for the Euler scheme
of a Markov Switching diffusion for test functions with polynomial or exponential growth. As a
preliminary, we give some standard notations and properties that will be used extensively in the
sequel.

NOTATIONS.

e For a € (0,1] and f an a-Holder function we denote [f]a = sup,, [f(y) — f(2)|/|ly — z|*.

e Let d € N. For any R**%-valued symmetric matrix S, we define \g := sup{As1,...,Asd,0}, with
As,; the i-th eigenvalue of S.

3.1 Wasserstein convergence for the Milstein scheme

In this section, we provide Wasserstein convergence results for the empirical measures (2) built with
the Milstein approximation scheme of a one-dimensional weakly mean-reverting Brownian diffusion.
The framework presented in Section 2 is well suited this scheme and we present the result that we
obtain in this case.

The Milstein scheme has not been investigated until now but the convergence results are similar
to the Euler case that is why, even if the proofs are more technical, we simply state them. Moreover,
looking at £(A, A, D(A)o) (see (7)), the approximation of A seems to rely on the weak order of the
scheme. As a consequence, even from a rate of convergence viewpoint, intuitively, it is not possible
to achieve a better rate of convergence of (v )nen+ with the Milstein scheme than with the Euler
scheme. We will give the proof of this result in a further paper.

We consider a one dimensional Brownian motion (W;):>o. We are interested in the strong
solution - assumed to exist and to be unique - of the one dimensional stochastic equation

X, =+ / b )ds + / (X)W, (23)
0 0

where b, o, 0,0 : R — R. Moreover, we assume that for every z € R, |b(z)|>+|o(2)|>+|oo’(z)|? <
C(1 + |z|?®) for some a € (0,1]. Finally, for p > 1, we introduce the following LP-mean-reverting
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property:

Ja>0,5€R, VreR, 2zb(z)+ (4p —3)2F+0%(z) < B — alz|®.

We now introduce the Milstein scheme for (X¢);s0. Let p € [1,2] and ez(y) = 7/ and assume
that (16), SWzn(p,ez) (see (20)) and SWzz ., (see (21)) hold. Let (U,)n be a sequence of
centered independent and identically distributed random variables with variance one and bounded
moments of order 2p. We define the Milstein scheme with decreasing steps (Vn)nen+, (Xr, )nen of
(Xt)t>0 (23) by: XO =ux,Vn €N,

X, =Xr, + Yas1b(X1,) + VAns10(Xr, ) Uns1 + Yng100’ (X1, ) (|Unga | = 1).

Then V : R — [1,+00),  + 1+ 22 is a Lyapunov function for this scheme. We consider
(n(dr,w))pen+ defined as in (2) with (Xt )nen defined above. Now, we specify the measurable
functions 9, ¢ : [1,+00) — [1,+00) as ¢(v) = vP and ¢(v) = v*. Moreover, let s > 1 such that
app/s < p+a—1and p/s+a—1> 0. Then, it follows from Theorem 2.4 that there exists an
invariant distribution v for (X¢)¢>o. Moreover, (v (dx,w))nen a.s. weakly converges toward V), the
set of invariant distributions of (X;)¢>o and when it is unique i.e. V = {v}, we have

lim () = (),

for every v-a.s. continuous function f : R — R such that, for every z € R, |f(z)| < C(1 + |z|P),
with p < p/s +a — 1. In other words (v))nen+ converges towards v (as n tends to infinity) for the
Lp Wasserstein distances.

3.2 The Euler scheme of a Markov switching diffusion

In this part of the paper, we study invariant distributions for Markov switching Brownian diffusions.
The framework presented in Section 2 is well suited to this case. Our results extend the convergence
results obtained in [14] and inspired by [10]. More particularly, in [14], the convergence of (vy))nen
is established under a strongly mean-reverting assumption that is ¢ = I;. In this paper, we do not
restrict to that case and consider a weakly mean-reverting setting, namely ¢(v) = v, a € (0, 1] for
every v € [vy,00). As a first step, we consider polynomial test functions that is ¥(v) = vP, p > 1
for every v € [vs,00) like in [14] (where p > 4 is required). As a second step, still under a weakly
mean-reverting setting (but where ¢ is not explicitly specified), we extend those results to functions
1 with exponential growth which enables to obtain convergence of the empirical measures for much
wider class of test functions.

Now, we present the Markov switching model, its decreasing step Euler approximation and the
hypothesis necessary to obtain the convergence of (v, )nen+. We consider a d-dimensional Brownian
motion (W;)i>0 and ((;)i=0 a continuous time Markov chain taking values in the finite state space
{1,..., Mo}, My € N* with generator Q = (¢z,w)zwe{1,..,M,} and independent from W. We are
interested in the strong solution - assumed to exist and to be unique - of the d-dimensional stochastic
equation

t t
Xi=x+ / b(X57 Cs)ds + / U(XS7 Cs)dWS
0 0

where for every z € {1,..., Mo}, b(.,2) : R? — R% and o(., 2) — R?*? are locally bounded functions.

My
We recall that g, > 0 for z # w, z,w € {1,..., Mo} and ) ¢., = 0 for every z € {1,..., Mo}

w=1
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The infinitesimal generator of this process reads

d

Af(a,2) =(bla, 2), Vel (@, 2) + 5 O (00")is(a,2)

1,j=1

_r

61’i81‘j (.r’ z)

My
+ Z q,z,wf(xv w),

w=1

for every (z,2) € E := R% x {1,...,My}. Moreover, the domain D(A) of A contains D(A)y =
{f defined on E,Vz € {1,..., Mo}, f(.,2z) €}. Notice that D(A)p is dense in Co(E). The reader
may refer to [25] for more details concerning Markov switching diffusion processes where properties
such as recurrence, ergodicity and stability are established. We consider the Euler genuine scheme
of this process for every n € N and every ¢ € [[',, ', 41], defined by

X; =Xr, + (t —Tn)b(Xr,, Cr,) + o(Xr,, ¢, ) (W — Wr,). (24)
We will also denote AX,, 1 = )_(pnﬂ — Xr, and
AX, i1 = Yn1b(Xr,, Cr,), AXE L =o(Xr,, ) (Wr,,, — Wr,), (25)

and )_(f

n+1
Wr,). Finally, we consider a Lyapunov function V : R? x {1,..., My} — [v4,00), v, > 0, which
satisfies Ly (see (3)) with E =R x {1,..., My}, and

= Xr, + Zé-:l AX} . In the sequel we will use the notation U, = ’y;i{Q(WrnH -

|VmV|2 <CVV, sup ||D926V(w,z)|\ < 4o00. (26)
(z,2)€E

Its mean-reverting properties will be defined further depending on the set of ‘test functions’ f. We
also define

Vre Rd, A {1, ce ,Mg}, )\¢(IL’, Z) = )‘D%V(x,z)—l—QVmV(m,z)®2w”oV(az,z)w’oV(m,z)*1' (27)

When 9(v) = 9p(v) = vP, p > 0, we will also use the notation X, instead of A\,,. We suppose that
there exists C' > 0 such that b and o satisfy

B(p) = VeeRIVze {1,..., My}, |b(z, 2)|*+ Tr[oo*(z,2)] < CooV(z,z) (28)

Test functions with polynomial growth.

Having in mind Wasserstein convergence, we introduce a weaker assumption on the sequence
(Up)nen+ than Gaussian distribution. Let ¢ € N*) p > 0. We suppose that (Uy,)nen 1S a sequence
of i.i.d. random variables such that

Myo(U) = VneNVge{l,....q}, E[U.)*7] =E[WN(0,14))] (29)
M,U) = sg£*E[|Un|2p]<+oo. (30)

We assume that

Jey > 1,Vze RY, sup  V(z,z)<cy inf  V(z,z). (31)
z€{1,...,Mo} ze{1,..., Mo}

Let a > 0 and g € R. We introduce the mean-reverting property of the scheme for the Lyapunov
function V. We assume that limlnfqb(v) > [/« and that there exists ey > 0, such that we have
V—+00

Ry(a,B,6,V) = VaxeRVze{l,..., M},
(VV(x,z),b(x,z)) + %XP(ZL‘,Z) < B - O‘¢ © V(I‘,Z), (32)
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with

Xp(@, 2) =[Aplloc2®P "+ Troo™ (2, 2)]
Mo
+ VI (@,2) ) (e + ) VP (). (33)
w=1
Theorem 3.1. Let p > 1 ,a€ (0,1], s > 1, pe [1,2], ¥p(v) = o7, d(v) = v* and ez(y) = y*/2. Let
a >0 and f€ R.

Assume that (Uy,)nen+ satisfies My o(U) (see (29)) and My(U) (see (30)).
Also assume that (26), B(¢) (see (28)), Rp(a,B,¢,V) (see (32)), Lv (see (3)), SWrn(p:€ez)
(see (20)), SWrz .y (see (21)), (16) and (31) hold and that pp/s < p+a — 1.

Then, if p/s+a—1> 0, () )nen (built with (X;)i>o0 defined in (24)) is P-a.s. tight and

P-a.s. sup v(VP/*H071) < o0, (34)
neN*
Assume also that for every z € {1,..., My}, b(., 2) and o (., z) have sublinear growth and Trloo™*(x, z)] <

CVP/ste=l(z 2). Then every weak limiting distribution v of (vn)nen+ is an invariant distribution
of (X¢)i=0 and when v is unique, we have

P-a.s. Vf e C%IO@’S(E), liTILn vl(f) =v(f), (35)

with Cpr,¢,s(E> defined in (6).

Test functions with exponential growth.
We modify the hypothesis concerning the Lyapunov function V in the following way. First, we
assume that

Vze {l,...,My},Vze R V(z,z)=V(z1), (36)
and we will use the notation V(x) := V(x,1). We assume that

VeeRIVze {1,..., My},
Teloo™ (2, 2)]Ib(@)| [TV (@)] + b(z, 2)[) < CVIP(2)d 0V (2). (37)

Now let p < 1 and let a > 0 and 8 € R. We assume that lir_rgnf(ﬁ(v) > B4 /a, B+ =0V 3, and

Rorla,B,0,V) = VzeRIVze{l,..., My},

(VV(x),b(x, z) + Kkp(x, 2)) + %Xp(x, 2) < B—apoV(x), (38)

with
-1
kp(z,2) = )\pMUU* (x,2)VV(x)
and
V1i=p(z)

In(det(3(z, 2)))

Xp(®,2) = Cgo V(z)Cy(z, 2)

with ¥ : R? x {1,..., M}, — Si*, Si* being the set of a positive definite matrix, defined by
(z,2) — B(x,2) := Iy — |D*V||Co (2, 2) VP~ (2)0*0 (2, 2), where Cy : R? x {1,... My} — R%
satisfies inf, cgainf,cry  agy Co(z,2) > 0.
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Theorem 3.2. Let p € [0,1],A >0, s > 1, pe [1,2], let ¢ : [vy,00) — Ry be a continuous function
such that Cy := Sup,cpy, 4o0) ¢(v)/v < +00 and 1iminf¢(v) = +o00, let P(v) = exp(MP), y € Ry
’ V—+00

and let ez(y) = v*/? and ez(v) = 4*®P /2. Let a > 0 and B € R.

Assume that p < s, (36), (26), B(¢) (see (28)), Rp(a, 5,0, V) (see (38)) and Ly (see (3)) hold.
Also suppose that SWz ».n(p, €1), SWz ~n(p,€z) (see (20)), SWzz~n (see (21)), (16) and (37) hold.

Then (U nen+ (built with (Xy)¢=o defined in (24)) is P-a.s. tight and

oV

P-a.s. sup ug(¢ exp ()\/SVP)> < +o0. (39)

neN*

Assume also that for every z € {1,..., My}, b(., z) and o(.,z) have sub-linear growth. Then, every
weak limiting distribution v of (v nen 48 an invariant distribution of (X¢)i=0 and if v is unique,

P-as. Vf€Cp  (E), Lmvi(f) =u(f), (40)

with Cs E) defined in (6).
Vip,o.s

3.2.1 Proof of the recursive mean-reverting control
Test functions with polynomial growth
Proposition 3.1. Let v, > 0, and let ¢ : [v.,00) — R% be a continuous function such that
Cy = SUDPyc[y, 00) P(V) /v < +00. Now let p > 1 and define yp(v) =vP, vE Ry.
Assume that the sequence (Up)nen+ satisfies My 2(U) (see (29)) and My(U) (see (30)).

Also suppose that (26), (31), B(¢) (see (28)), Rp(a,,0,V) (see (32)) for some o > 0 and
B € R, are satisfied.

Then, for every a € (0,«), there exists ng € N*, such that

Vn > ng, Yze RV ze {1,..., My},

~ PpoV(x,2) -

Ay, bpoVi(z, 2) < pV(Tz)p(ﬂ_aﬁbov(%Z))' (41)
Then RCq,v (¢p, ¢, pa, pB, s) (see (4)) holds for every o € (0,a) and s > 1 such that lig}_nfqﬁ(v) >
B/a and BIE v p(v)ahy (v)/* = +o00. Moreover, when ¢ = Id, we have

sup B[y, o V(Xr,, (r,)] < +o0. (42)

neN

Proof. First we write

Vp<XFn+17 CFn+1) - Vp(Xrna Crn> :VP(XFm.p CFn) - Vp()?rn? Crn) (43)
+ Vp(XFn+17CFn+1) - Vp(XFn+17CFn)'

We study the first term of the r.h.s. of the above equality. From the second order Taylor expansion
and the definition of Ay, = A, (see (27)), we derive

Up o V(Xr, .1, Cr,) = ¥p o V(Xr,, Cr,) + (X, — X1, Vi V(X Cr, )Y, 0 VI(XT,, Cry)
DRV (Y, G, )V (T, ) (K — X1, )2
4 SVl (T, Ge) %20 0 V (X, o) (R, — X, )%
<p o V(Xr,, (r,) + (Xr,p — X1, Va V(X ()Y, 0 VX, Cr,)
ML G ) © V(T G, ) K, — X 2 (44)
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with Tp41 € (Xr,, Xr,.,,). First, from (26), we have SUDe(1,..., Mo} SUPzerd Ap(T, 2) < +00. Now,
since (Up)nen- is i.i.d. and satisfies Mpr1(U) (see (29)), we compute
E[|Xr, — X, X1, ¢r, ] = Wi Tr[oo™(Xr,,, ¢r,)] + v (X, G,

We focus on the study of the last term of the r.h.s of (44), also called the “remainder”.

Case p=1.  Assume first that p = 1. Using B(¢) (see (28)), for every a € (0, «), there exists
no(a@) such that, for every n > no(@),

1 = - _
g lloevasa[b(Xr,, Co)* < (@ = @) 0 V(Xr,,, () (45)

From assumption R, (e, 8,6, V) (see (32) and (33)), we gather all the terms of (44) together and
we conclude that

Mo
Y EV(Xr,,,Cr,) = V(Xr,, (o)1 Xr, ¢+ > (g, = + €)V(Xr,, 2)

z=1

<B—agoV(Xr,,(r,).

Case p > 1. Assume now that p > 1 so that ¢ (v) = pv?~!. Since [VV|* < CyV (see (26)),
then v/V is Lipschitz. Now, we use the following inequality: Let [ € N*. We have

l l
Va > 0,Yu; e R i=1,...,1, 1> ] 1O g (46)
=1 =1

It follows that

VP Y (Y, Cr) S(VV(Xr, Gry) + VYV X, — X, )P0

<
eI (VPN (Xr,, Cr,) + VYT, — X, [P0).

n+1

To study the ‘remainder’ of (44), we multiply the above inequality by |Xr, , — Xr,|*. First, we
study the second term which appears in the r.h.s. and using B(¢) (see (28)), for any p > 1,

| Xr,00 = Xp, [ <O 100 VI(Xr,, (0, )P (14 [Unia] ).

Let & € (0, ). Therefore, we deduce from My,(U) (see (30)) that there exists ng(&) € N such that
for any n > ng(&), we have

< Mmr160 V(Xr,, Cr, )

a—&

CE I Mplloo2CP=3+ [VV]3P 2

To treat the other term of the ‘remainder’ of (44), we proceed as in (45) with ||A1]|e replaced by
||)\p||0022p_3[\/7ﬁp_2, a replaced by & and a € (0, &). We gather all the terms of (44) together and
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using Rp(a, B, ¢, V) (see (32) and (33)), for every n > ng(a) V ng(&), we obtain

E[VP(XFTL+1 Y Crn ) _Vp(XFrﬂ CFTL ) ’XFn’ CFWL]
Mo
+ VP () Z(‘Krmz +OVP(Xr,, 2)

z=1

< Yng1pVP N (Xr,. () (B — ag o V(Xr, . Cr,))
+ Yn1pVP (X1, () (</5 o V(Xr,,(r, ) (@ — a)

VI=r(Xp,,(r,)d o0 V(Xr,, CFn)p>
crt

< Vg1 VP (X, Cr,) (Bp — dpg o V(Xr,, Cr,)).-

+(a— @)

Now, we focus on the second term of the r.h.s. of (43). First, since ¢ and W are independent, it
follows, with notations (25), that

E[Vp(Xrn+1 ’ Crn+1>_vp(XFn+l ) CFn) |Xan CFn? AXTL-H]

My
= Ynt1 Zl(qun,z + 0 (m))VP(Xr,,2).
=

Now, using the same reasoning as for the first term of the r.h.s. of (43) and (31), since p > 1, we
derive, for every z € {1,..., My},

[E[V?(Xr,,,,2)~V?(Xr,.2)| X, ol
<CO/2ZVP N (Xr,, 2)po V(Xr,, () + 1160 V(Xr,, G, )P
T A VP2 (X, 260 V(Er, . Gr,)
<Cy/AVP(Xr, ()

where C' > 0 is a constant which may change from line to line. We deduce that there exists
e : Ry — Ry satisfying lir% g(y) = 0, such that we have
Y—

E[Vp(Xrn+1 ’ CFn+1 )_VP(XF7L+1 Y CFTL) ‘Xrn Y grn:l
Mo - ~
=1 Y (der, = + 0(yr1)) EVP(Xr,0 2) | X, G

z=1
My
<1 3 (e, = + (i) VP(Xr,, 2).

z=1

This yields (41) as a direct consequence of R,(c, 3,¢,V) (see (32) and (33)). The proof of (42) is
a straightforward application of Lemma 2.2 as soon as we notice that the increments of the Euler
scheme (for Markov Switching diffusions) have finite polynomial moments which implies (19). O

Test functions with exponential growth
In this section we do not relax the assumption on the Gaussian structure of the increment as we
do in the polynomial case with hypothesis (29) and (30). In particular, it leads the following result:

Lemma 3.1. Let A € R4 and U ~ N(0,1;). We define ¥ € R4 by 3 = I; — 2A*A. Assume
that ¥ € Sff_’*. Then, for every h € (0,1),

v € RY, E{exp (ﬁ@, U) + h\AU\Qﬂ < exp (2(1hh)’”|2> det(x)~h/2. (47)
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Proof. A direct computation yields

Elexp(|AU|?)] —/ %(—ZA*Au + u,u))du = det(x)~ V2.

]Rd(27r)*d/2 exp ( -

Now, (47) follows from the Holder inequality since

E[exp(\/ﬁ(v, U) + h|AUP)] < ]E[exp (1{1
h

mm?) det ()2,

w.0))] " Elexp(AUP)

=exp (

Using those results, we deduce the recursive control for exponential test functions.

Proposition 3.2. Let v, > 0, and let ¢ : [v.,00) — Ry be a continuous function such that
Cp 1= SUPyep, o0) $(v) /v < +00. Now let p € [0,1], A > 0 and define 1(v) = exp(MF), y € R4

Suppose that (26), (36), B(¢) (see (28)) and Ry (v, B, ¢, V) (see (38)) are satisfied.

Then, for every a € (0, ), there exists E € Ry and ng € N*, such that

Vn > ng,Vze R?, g%w oV(x) < Wp(g— ag o V(ac)) (48)

Then, RCQy(q/J,gb,p&,pg, s) (see (4)) holds for every s > 0, as soon as liminf ¢(v) = +oo. More-

v—+00
over, when ¢ = Id we have

supE[y o V(Xr,)] < +00. (49)
neN

Proof. When p = 0, the result is straightforward. Since p < 1, the function defined on Ry by
y — vP is concave. Using then the Taylor expansion at order 2 of the function V', we have, for every
z,ye R,

VP(y) = VP(z) <pVP~H(x) (V(y) — V(@)

<pVP N 2)((VV (2),y — o) + %HD2V\|<><>|?J —al?).

Using this inequality with 2 = X, and y = Xr,,, = X, + AX},; + AX?2, |, with notations (25),
we derive

VP(Xr, + AXpy1) - VP(XT,)
<pVPH(Xp, (VV(Xr,), AXp 4 + AXZ )

4 PV (K, 1DV (AKX P+ [AXZ P + 2AAK], AXZ,)).
It follows that
Elexp(A\VP(X1,,,.))|X1,., Cr,) < Hy,o (Xr,, €0y ) Loy (X1, Cry)
with, for every € R?, every z € {1,..., My} and every v € R,
H,(z,2) =exp(A\VP(z) + yA\pVP 1 (2)(VV (2), b(z, 2))

1 .
+72§/\pHD2VHooV” Ha)lb(z, 2) )
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and
Ly (z, ) =E[exp(y VP~ () (VV (2) + 7| D?V]|ob(, 2), 0 (2, 2)U)
LI DV VP (@) o (2, 2)UP)]
where U ~ /\/(O 1;). In order to compute L ( ,z), we use Lemma 3.1 (see (47)) with parameters
h = Cy(z,2) Y Ap, v = /Co(z) \pVP~Y( 7, 2)(VV(x) + v||D*V||b(x, 2)) and the matrix
Y(x,2) =1 — HD2VHOO oz, 2) VP (2)o* o (z, 2)

where inf,cpainf,c1 a3 Co(,2) > 0 and S(x, 2) €€ ST .. It follows from (47) and h/(2—2h) <
h for h € (0,1/2], that for every v < inf, cgpainf.cqy ) Co(w,2)/(22p),

YApCo (T, Z)_l
2(1 = y\pCo(,2)7)
<exp (’y/\ng(:c, 2) vl - %fyApCJ(:E, 2) " In(det (X (x, z))))

L, (xz,z) <exp ( lv|? — %'y)\pCa(x, 2) " In(det (X (z, z))))

At this point, we focus on the first term inside the exponential. We have

|v|? éCJ(:L“,z))\pV2p_2($)((aa*(:p,z)VV(x),VV(JU))
+ Tr[oo™ (2, 2)| (7| D*V[|02{VV (2),b(z, 2)) + 7*| D*V || % [b(x, 2)[*))

Using B(¢) (see (28)), (37) and Ry (a,B,¢, V) (see (38)), it follows that there exists C' > 0 such
that

H(z,2)Ly(z,z) <exp (AVP(z) + APV Hz)(B — ap o V() + CH* VP H(z)p o V(z))

which can be rewritten

¢oV(x)
H.,(x,z)Ly(z,z) <exp ((1 — VpaW)AVp(x)
poV(x) AB ~
e V@) (o 0 ) )
Using the convexity of the exponential function, we have for every ypaCy < 1,
H.,(x,z)L(x,2) <exp ()\Vp ) — vpa(b(‘;()w) exp (AVP(z))
V(z) A8 ~
+ 72904 V( ) exp (Vp( )(W ‘1‘70/(019)))-

It remains to study the last term of the r.h.s of the above inequality. The function defined on
[V, +00) by v — exp(vp(oé:\b(ﬁv) + vC/(ap))) is continuous and locally bounded. Moreover, by
Rp(a, B,¢,V) (see (38)), we have li}gg.lof ¢(v) > B4+ /a. Hence, there exists 6 € (0,1) and vg > v,

such that ¢(v) > B4 /(af) for every v > vg. Consequently, as soon as v < OAap/C, for every
a€ (0,a) there exists 5 > 0 such that

¢oV(z) » \B - B exp(AVP(x))
Vi) P (V) <a¢ sV (z) T 10/(en)) < V(2)
+2 ; agoViz) ;E;()x) exp(AVP(z))

and the proof of the recursive control (48) is completed. Finally (49) follows from (19), which follow
from the equation above, and Lemma 2.2. O
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3.2.2 Infinitesimal control

Proposition 3.3. Suppose that the sequence (Uy)nen+ satisfies Mpro(U) (see (29)). Also assume
that for every z € {1,..., Mo}, b(., 2) and o (., z) have sublinear growth and that sup,,cy- vn (Tr[oc*]) <
+00, a.s.

Then, E(A, A, D(A)o) (see (7)) is fulfilled.
Proof. First we recall that D(A)g = {f : R¢x {1,..., Mo},Vz€ {1,..., Mo}, f(.,2) € C4(R%)} and
we write, for f € D(A)o,

f(XFn+17CFn+1) - f(Xan Cl‘n) :f(XF,,Hrla CFV,L+1) - f()_(rn+17<rn)
+ (X1 Cr) — F(X1,, ()

We study the first term of the r.h.s. of the above equation. Since U and ( are independent, we
have, with notation (25),

My
E[f(XFn+17 CFnJ,-l) - f(XFn+17€Fn)‘XFn7 Cl“m AXn-i—l] = Yn+1 Z (qun,z + 0(7n+1))f(XFn+17z)'

z=1

Using Taylor expansions at order one and two, for every z € {1,..., My} and the fact that the
sequence (Up)pen+ 18 i.i.d., we obtain

E[f(XFn+1az) - f(XFna Z)’Xl—‘n =, Cl_‘n]
= E[f(XFn + AXrlleJ Z) - f(XFn7 Z)|X1“n =, Cl“n]
+ E[f(XFn+1az) - f(XFn + AXTlH»l? z)’XFn =, CFn]

1
< /0 Vo (a4 00, o, Vs 2) 1B, Co, Vs |6
1 o~
i /0 1D (@ + b, o, Vst + 00, G, )Tt 2) |y /Amiio @, G, JuP 6By (du)

where ﬁU denotes the distribution of U;. Combining the two last inequalities, we derive

7§i1E[f(XFn+1>CFn+1> - f(XFn+17€Fn)’XFn7 CF”]

Mo
<Y e, 2 (X, 2) + oY1) flloo
z=1

My
+ ) (laer, =l + 0lmi1)) (Apa(Xr,, Cons i) IB(XT,, G,

z=1

+ Aga(Xr,, Cr,, Yns1) Tr[oo™ (X, Cr,)]) -

We study each term in the r.h.s. of the above inequality. First, we have As;(z, 2,7) = |b(z, z)\IE[Kfl (x,2,7)]
where Ay 1(z,2,7) = Rya(w, 2,7, 0) with © ~ Uy, under P, and
Rr1 REx{l,.... Mo} xRy x [0,1] — Ry
My
(@,2,7,0) = v 2 [Vof(z+0b(z,2)y,w)|.

w=1
We are going to prove that (A, A, D(A)g) I) (see (8)) holds.

Since b has sublinear growth w.r.t. its first variable, there exists C, > 0 such that |b(z, 2z)| <
Cy(1+|z|) for every x € R?and z € {1,..., My}. Therefore, since f has a compact support, it follows
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that there exists 7o > 0 and R > 0 such that we have sup|,s g e{1,... My} SUPy<y ﬁf,l(l’, z,7,0) =0
for every 0 € [0, 1] which implies (A, A, D(A)o) I)(ii).
Since V, f is bounded, it is straightforward that £(A, A, D(A)o) I) (i) holds. N
Finally, b is locally bounded and defining and g1 (x, z) = 1.<g|b(z, )|, the couple (A1, g1) satisfies
E(A, A, D(A)o) 1).

Now, we have Afo(x, z,7) = gao(z, z)I~E[1~\f72(x, z,7)] where /N\f,g(:v7 z,7y) = ﬁ,fg(a:, z,7,U, ©) with
U~ Py, © ~ Uy, under P and go(z, 2) = Tr[oo*(z, 2)] and

Rio REIx{1,.... My} xRy xR¥x[0,1] — Ry
(x,2,7,u,0) ﬁf,g(a:,z,*y,u,ﬁ),
My
with ﬁf’Q(aj, 2,7, u,0) = |/ul? Z |D2f(z + b(x, 2)y + 0o (z, 2)/yu, w)||.

w=1

We are going to prove that £(A, A, D(A)o) 1) (see (8)) holds for the couple (Kﬂg,gg). We fix u € RN
and 6 € [0,1].

Since the functions b and o have sublinear growth, there exists Cp, > 0 such that [b(z, z)| +
lo(z,2)] < Cpo(l+ |z|) for every z € R? and z € {1,..., My}. Therefore, since f has compact
support, there exists 7y(u,) > 0 and R > 0 such that

sup sup |Rf,2($72773u5 0)| = 0.
|z|>R,z€{1,...,Mo} v<7v(u,0)

It follows that (A, A, D(A)o) I)(ii) holds.

Moreover since D2f is bounded, it is straightforward that (A, A, D(A)o) 1) (i) is also satisfied.
Finally, we recall that sup,,cy- v (Tr[oo*]) < 400, a.s. and U is bounded in L? and then E(A, A, D(A)) 1)
holds for (Kfvg, g2).

Moreover, it is straightforward to show that (A, A, D(A)g) II) (see 9)) holds for every couple
of functions of the form ( o (Yn+1) || flloos 1) which concludes the study of the first term.
n—

[e.9]

It remains to study E[f(Xr,,,,(r,)— f (X1, ¢, )| X1, ¢r,.]. Using once again Taylor expansions
at order one and two, we derive

77:41-1 (E [f(XFnJrvaFn)_f(XFn? CFn)|XFn =z, CFn = Z]
1< 9?
(Va0 2). 0w 2) — 5 3 (0 2 5 ,2)

ij=1

1
< /0 Vo f (@ + 002, 2 v, 2) — Vo f (@) [bla, 2)]d0

1
4 [ I+ b2 + 00, 2) i, )
0
— D f(@)[lo(x, 2)ul*dOpy (du).
Using a similar reasoning as before, one can show that (A, A, D(A)g) I) holds for (Kﬁg,gl) and

(Asa,92) where Ays(x,2,7) = Rya(,2,7,0) and Apa(z,2,9) = Rpale,2,7,U,0) with U ~ p,
and © ~ Ujp ) under P,

Rps RIx{l,.... Mo} xRy x[0,1] — R,
(z,2,7,0) = [Vof(x+0b(z,2)7,2) = Vaf(z,2)],
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and

Rra REx{l,... Mo} xRy x R4 x [0,1] — Ry
(,2,7v,u,0) = Ryralz,z,7v,u,0),

with
Rya(z,z,7,u,0) = | D2f(x + b(w, 2)y + 00 (2, 2)y/Fu, 2) — D2f(x)||ul*.

We gather all the terms together noticing that Kqu = /N\_qu, q € {1,...,4}, and the proof is
completed. ]

3.2.3 Proof of Growth control and step-weight assumptions

Test functions with polynomial growth.

Lemma 3.2. Letp > 1, a€ (0,1], p€ [1,2], s > 1 and let ¢, (v) = vP and ¢(v) = v*. We suppose
that the sequence (Up)nen+ satisfies M(,/9)v(pp/s)(U) (see (30)). Then, for every n € N, we have

Vf € D(A)o, E[f(Xrosy,Cona)—F (XD, Co)P1 XD, Gl
< CpPi2 1V Trloo™(Xr,, )2, (50)

with notations (25). In other words, we have GCqo(D(A)o, 1V Tr[oa*|P/?, p,ez) (see (10)) with
ez(y) = P/% for every v € R,

Moreover, if (26), (31) and B(p) (see (28)) hold and pp/s < p+ a — 1, then, for every n € N, we
have

]EHVP/S (XF'rH»l Y <Fn+1) - Vp/s (Xrn7 Crn)|p|XFn7 (Fn] < C’Y:;flvp—‘ra_l()zrn’ Crn)7 (51)

In other words, we have QCQ(VP/S, Vete=l 5 er) (see (10)) with ez(y) = v*/? for every v € R.

Proof. We begin by noticing that, with notations (25),

— — 1 2 * —
X,y — Xb | < Ol2 Teloo™ (X, Go)] Y2 U

n+1

Let f € D(A)g. We employ this estimation and since for f € D(A)y then f(.,2) is uniformly
Lipschitz in z € {1, ..., My}, it follows that

E[|f(Xr,.0Cra) = F(XE, Co)lP X, Cra] < O3 Joo* (R, o) 12

Moreover,

E[‘f<XFn+l7<Fn+l) - f(XFn+1v CFn)|p|Xan Crn]

—+o00

My
= 7n+1 Z(qCFn,Z + n Y (7n+1)>E[‘f(XFn+l ? Z) - f(Xr'rH—l Y CF’IL)‘p’XF7L7 CFWL]
z=1

< C'Yn+1||f”go

Gathering both terms concludes the study for f € D(A)y.
We focus now on the case f = VP/5. We notice that B(¢) (see (28)) implies that for any n € N,

[Krps — X, < Crf20/6 0 V(Rr, o) (4 Una).
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We rewrite the term that we study as follows
VP (Xt 00 Cr) — VP (X1, Cr,) =VPP (X1, 4,0 Cr,) = VP (XT,, )
+ VXD s o) = VPP (X )
We study the first term of the r.h.s. of the equality above. Using the following inequality
Vu,v € Ry, Va > 1, [u® — v <2 (W Hu — v] + [u — v|%), (52)
with a = 2p/s, it follows from (26) that /V(., 2) is Lipschitz uniformly in z € {1,..., My} and

\VP/3(Xp, .\, 2)—VP/*(XT,, 2)|
< 22p/5p/s(Vp/571/2(X'pn, z)}\/V(XrnH,z) — \/V(Xrn, z)‘
+ VV(Xr,.,2) = VV(Xr,, 2)P%)
< 2%/op/s(WVVPE=V2(Xp, L 2)| Xr
+ [VVIPP|Xr, ,, — X, [2279).

- Xr,|

n+1

We use the assumption pp/s < p+a—1, a € (0,1, p > 1 and it follows from B(¢) (see (28))
and (31) when z # (1, that

EHVP/S(XFnH ) Z) - Vp/S(XFna Z)|p’Xan CFn] < C’erzflvp+a_1(Xan Z)

In order to treat the first term, we put z = (1, in this estimation. It remains to study the second
term. We notice that since pp/s < p+a — 1, it is straightforward from the previous inequality that
for every z € {1,..., My}, we have

E[VP/*(Xr,,,,2)|XT,, 2] < OVPF Y (Xr,, 2).
We focus on the term to estimate and using this inequality, we obtain

EHVP/S (XFn-H 7<Fn+1) - Vp/s (XFn+17 an)|p’XFn7 Crn]
My
= Tn+1 Z (qCFn,z + O(Vn—i-l)) X E[‘VP/S(XFn+1’Z) - Vp/s(XFn-H ) CFn)|p|XF"’ CF”]

z=1
My
< C’Yn—i—l Z (‘QCpn,z
z=1

< C’Yn+1 Vp_HL_l (XFn ) Cl“n )a

+ Ynp1) (VYN (X, 2) + VPN (X, ()

where the last inequality follows from (31). We rearrange the terms and the proof of (51) is
completed. ]

Test functions with exponential growth.

Lemma 3.3. Let pc [0,1], A > 0, s > 1, pe€ [1,2] and let ¢ : [vi,00) — Ry be a continuous
function such that Cy := Supycp, o) @(v)/0 < +00 and let P(v) = exp(AovP). We assume that
p <s, (26), (36) and B(p) (see (28)) hold, and that
YA<A3C >0n €N,
Elexp(\V?(Xr, ;)| Xr,, Cr,] < Cexp(AVP(Xr,)). (53)

30
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Then, for every n € N, we have

E[| exp(\/sV? (X, ., ))—exp(\/sVP(Xr,))’| X, Cr,]

¢ © V X n v
<ot L2 T VT (X, ). 654)

In other words, we have GCo(exp(\/sVP), V=L.goV.exp(AVP), p, e1) (see (10)) and ez(vy) = PP /2)
for every v € Ry

Proof. When p = 0 the result is straightforward. We begin by noticing that B(¢) (see (28)) implies

that for every n € N,
X,y — Xr,| < C/*\ /6o V(Xr,) (1 + [Unsa ).

Let z,y € R% From Taylor expansion at order one, we derive,
| exp(A/sVP(y)) — exp(A/sVP(2))]
A
< " (exp(A/sVP(y)) + exp(A/sVP(x))) |[VP(y) — VP(z)|. (55)

First, let p € [1/2,1] we use (52) with o = 2p and since v/V is Lipschitz, we obtain

VP(y) = VP ()| 2p(VP~ 2 (@) VWV (y) = VV (@) + [VV (y) = VV (2)]P)
<2p(VP 2 (@) [VVily — ol + [VVITly — af*P).

When p € [0,1/2]. We notice that from (26), the function V? is a-Hélder for every « € [2p, 1] (see
Lemma 3. in [20]) and then V? is 2p-Hélder that is

VP(y) = VP ()] <[VV]gply — x|,

We focus on the case p € [1/2,1]. When p < 1/2 the proof is similar and left to the reader.
Using (55), we derive from the Holder inequality that

E[lexp(\/sVP(Xr,,,)) — exp(A/sVP(Xr,))?| X, Cr, ]
< Cexp(\p/sVP(Xr.)) (Vpp—p/Q(XFn)EUXFHH — Xr,|”|Xr,. (r, ]
FE[| K., — Xr,[7|X1, Cr,] )
+ CE| exp(Ap/sV?(Xr,.,)) (Vpp_p/2(XFn)|XFn+1 - Xr,|”
Xr,, Crn}
< Cexp(Ap/sV?(Xr,)) (VP ~/2(Xr, B[ X, ,, — Xr,IP|Xr, . Cr]
FE[|Xr,, — Xr,[#|Xr,. )
+ OV (X, E [ exp(\of/sVP (X)) [ Xr,, Gr,|Y?
x E[|Xr,,, — Xr, [0V Xp,, ¢, ] O
+ CE[exp(A\pf/sVP(Xr,,,))| X, Cr, )7
< E[|Xr,, — Xr, PP/ X, 0,107,

+ |Xrn+l - Xrn’2pp)

n+1

for every 6 > 1. From (53) and since p < s, we take 6 € (1, p/s| and we get

E [exp(Ap@/SVp(erq ) ’XFTL7 CFn] gc eXp()\ep/SVp(XFn7 Crn ))

31
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Rearranging the terms and since p < s, we conclude from B(¢) (see (28)) that

E[l exp(A/sVP(Xr,.,))— exp(A/sVP(Xp, )I”| Xr, .0 Cr,]
<Cexp(Ap/sVP(Xr,)) (3 2VPP =P (Xr,)|¢ o V(Xr, )P + 90 ¢ o V (Xr, ) [P?)

W eXp(/\Vp(XFn))7

and the proof of (55) is completed. O

3.2.4 Proof of Theorem 3.1

This result follows from Theorem 2.3 and Theorem 2.4. The proof consists in showing that the
assumptions from those theorems are satisfied.

Step 1. Mean-reverting recursive control First, we show that RCq v (¥p, ¢, p&, pg, s)
(see (4)) is satisfied for every a € (0, ) and s > 1 such that p/s+a—1> 0.

Since (26), B(¢) (see (28)) and R,(a, 5,¢,V, s) (see (32)) hold, it follows from Proposition 3.1
that RCq.v (¥p, ¢, pa, pf, s) (see (4)) is satisfied for every & € (0, ) and s > 1 such that p/s+a—1 >
0 since we have then liminf, ,; ¢(v) > §/a and Ein vl (), (V) = oo

Step 2. Step-weight assumption Now, we show that SWz . ,(VPT*1 p er) (see (11)) and
SWrz~(VPT21) (see (12)) hold.

First we recall that RCq v (¢p, ¢, pa, pB,s) (see (4)) is satisfied for every a € (0,a) and s >
1 such that p/s +a —1 > 0. Then, using SWz . ,(p,ez) (see (20)) with Lemma 2.3 gives
SWr . n(VPTe™1 pe7) (see (11)). Similarly, SWrz ., (VPTe™1) (see (12) follows from SWrz .,
(see (21)) and Lemma 2.3.

Step 3. Growth control assumption Now, we prove GCqo(F,V*P~1 p er) (see (10)) for
F =D(A) and F = {VP/5},

This is a consequence of Lemma 3.2. We notice that p < 2p and p/s < 1. Consequently
Mp2)v(pp)s)(U) (see (30)) follows from M,(U). Now, we notice that Lemma 3.2 and the fact that
under B(¢) (see (28)) and p > 1, we have Tr[oo*] < CVPT*~L imply that for F = D(A)o and
F = {VP/*}, then GCo(F,V*P~! p er) (see (10)) holds.

Step 4. Conclusion
i. The first part of Theorem 3.1 (see (34)) is a consequence of Theorem 2.3. Let us observe that
assumptions from Theorem 2.3 indeed hold.
On the one hand, we observe that from Step 2. and Step 3. the assumptions QCQ(Vp/S, Vatr=l per)
(see (10)), SWrz (VP p e7) (see (11)) and SWrz ., (VPT41) (see (12)) hold which are
the hypothesis from Theorem 2.3 point A. with g = VP+e—1,

On the other hand, from Step 1. the assumptionRCq v (¢, ¢, pc, pB, s) (see (4)) is satisfied
for every a € (0,a) and s > 1 such that p/s +a — 1 > 0. Moreover, since Ly (see (3)) holds,
then the hypothesis from Theorem 2.3 point B. are satisfied.

We thus conclude from Theorem 2.3 that (vy))nen+ (built with (X;);>0 defined in (24)) is P-a.s.
tight and (34) holds which concludes the proof of the first part of Theorem 3.1.

ii. Let us now prove the second part of Theorem 3.1 (see (35)) which is a consequence of Theo-
rem 2.4.
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On the one hand,we observe that from Step 2. and Step 3. the assumptions GCq(D(A)o, Vatr=l s er)
(see (10)) and SWr,(VPTe=1 p er) (see (11)) hold which are the hypothesis from Theo-

rem 2.4 point A. with g = VPte-1

On the other hand, since z € {1,..., My}, b(.,z) and o(.,2) have sublinear growth and
Tr[oo*] < CVP/5Ta71 50 that P-a.s. sup,en- v (Tr[oo*]) < 400, it follows from Proposi-

tion 3.3 that £(A, A, D(A)o) (see (7)) is satisfied. Then, the hypothesis from Theorem 2.4

point B. hold and (35) follows from (18).

3.2.5 Proof of Theorem 3.2

This result follows from Theorem 2.3 and Theorem 2.4. The proof consists in showing that the
assumptions from those theorems are satisfied.

Step 1. Mean-reverting recursive control First, we show that for every a € (0, @), there
exists ﬁ € R, such that RCQ V(w gb,pa pﬁ, s) (see (4)) is satisfied for every function 1 : [vs, 00) —
R such that w( ) = exp()\vp) with A < A and every s > 1. Notice that this property and the fact
that ¢ has sublinear growth imply (53).

We begin by noticing that Ry, x(c, 8,0, V) (see (38)) implies Rp;(a,ﬁ,qﬁ, V) for every A< A
Since (26), B(¢) (see (28)), Rpa(a, B,0,V) (see (38)) and (37) hold, it follows from Proposi-
tion 3.2 with lim, 4o ¢(v) = +oo, that that for every a € (0,a), there exists B € Ry such
that RCqv (¢, ¢, pa, pB,s) (see (4)) is satisfied for every function ¢ : [vs,00) — Ry such that
¥(v) = exp(AvP?) with A < A and every s > 1.

Step 2. Step-weight assumption Now, we show that SWz ., (V~1.¢ o V.exp(AV?), p, 1),
SWz4n(V g o Viexp(AVP), p,er) (see (11)) and SWrz . (exp(A/sVP)) (see (12)) hold.

First we recall that that there exists @ € (0,«) and B € R, such that RCoyv (¥, 0, a, )
(see (4)) is satisfied for every s > 1. Then, using SWz . n(p,€z) and SWz,(p,ez) (see ( ))
with Lemma 2.3 gives SWz (V" L.¢ o V.exp(AVP), p,e7) and SWr (VL. o V.exp(AVP), p, e7)
(see (11)). Similarly, SWzz.,(V L.¢oV.exp(AVP)) (see (12) follows from SWrz ., (see (21)) and
Lemma 2.3.

Step 3. Growth control assumption Now, we prove GCqo(F,V~1.¢ o V.exp(AVP), p,ez)
(see (10)) for FF = D(A)y and F = {exp(\/sVP)}.

This is a consequence of Lemma 3.2 and Lemma 3.3. We notice indeed that B(¢) (see (28))
gives Tr[oo*]?/? < (¢ o V)P. Moreover, we have already shown that (53) is satisfied in Step
1. These observations combined with (54) imply that GCo(D(A)o, V¢ o V exp(AV?), p,er) and
GCo(exp(A/sVP), VLo V.exp(AVP), p,ez) (see (10)) hold.

Step 4. Conclusion
i. The first part of Theorem 3.2 (see (39)) is a consequence of Theorem 2.3. Let us observe that
assumptions from Theorem 2.3 indeed hold.

On the one hand, we observe that from Step 2. and Step 3. the assumptions GCq(exp(A/sVP), V" 1gpo
Vexp(AVP), p,ez) (see (10)), SWr (V" LpoV exp(AVP), p, ez) (see (11)) and SWrz ., (V "o

V exp(AVP)) (see (12)) hold which are the hypothesis from Theorem 2.3 point A. with g =
V=1poVexp(AVP).

On the other hand, from Step 1. for every a € (0,a), there exists B € Ry such that
RCqv (¥, p,pa,pB,s) (see (4)) is satisfied for every s > 1. Moreover, since Ly (see (3))
holds, then the hypothesis from Theorem 2.3 point B. are satisfied.
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ii.

We thus conclude from Theorem 2.3 that (vy))nen+ (built with (X;):>0 defined in (24)) is P-a.s.
tight and (39) holds which concludes the proof of the first part of Theorem 3.2.

Let us now prove the second part of Theorem 3.2 (see (40)) which is a consequence of Theo-
rem 2.4.

On the one hand,we observe that from Step 2. and Step 3. the assumptions GCq(D(A)o, V "' ¢o
Vexp(AV?P), p,er) (see (10)) and SWr (V1o V exp(AVP), p,er) (see (11)) hold which are
the hypothesis from Theorem 2.4 point A. with g = V"1¢ o V exp(AVP).

On the other hand, since z € {1,...,Mop}, b(.,z) and o(.,z) have sublinear growth and
Trjoo*] < CV~1¢ o Vexp(N\/sVP), so that P-a.s. sup,en« vn(Tr[oo*]) < +oo, it follows
from Proposition 3.3 that (A, A, D(A)) (see (7)) is satisfied. Then, the hypothesis from
Theorem 2.4 point B. hold and (40) follows from (18).
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A Infinitesimal approximation: Example of a Brownian
diffusion and user guide

We consider a scalar Brownian diffusion (d = ¢ = 1) with Lipschitz continuous drifts b and diffusion
coefficient 0. Hence E = R and there exists a real constant C' > 1 such that [b(z)|V |o(z)| < C(1+ |z|) (set

e.g. C = [bripV[o]Lip V|b(0)] V]o(0)] V1). We will show how to check Assumption £(A, A, D(A)o) (see (7)).
We define the Euler operator with step v > 0 by €, (z, 2) = 2 +~b(z) + /70 (x)z and we consider the Euler
scheme with decreasing steps and and Brownian increments. We set D(A)g = C% (R, R) (twice differentiable

functions with compact support). Let Z : (Q,G,P) — R and N/(0, 1)-distributed random variable so that

O (f)(x) = ]E[f(@f,y(:c,g))] Elementary computations based on a second order Taylor expansion with
integral remainder show that, for every fe C%(R,R),

Ay f(x) — Af(x) = Bg [As(z,7,0)]
with (note that g = 1)

(&, (2, 2) — )

Ap(z,7,@) = 5

/1 (7 (& + (€4 (@, Z(@)) - @)u) = ["(@)] du.
0

We now check £(A, A, D(A)o) I).
(7). Let K be a compact set of R. For every v€ (0,7], ue [0,1] and z € K,

~ ~ 1 ~
A (.7, @) < 2(3b% + U%Z(@)Q)/O QIS lsup) Aw (", 0(2,u,7, Z(@)))du

where g, = sup,cg |9(x)| and w(g,d), 6 > 0, denotes the uniform continuity modulus of a function g : R —
R. One easily checks that, for every v € [0,1] and z€ K

0 < (2, u,7, Z(@)) < /7 Cbreronen (1 +12]).

Consequently by Lebesgue’s dominated convergence theorem

lim IE[ 522 ‘Kf(x,’y,(:))u =0.

v—0
. ~ _ 1
(i1). Set y(w) = D Then, one checks that for every z€ R and u€ [0, 1],

=~ 2 lx] 2
|z +u(€y(z, Z(@)) —z)| = |z| - (1 +]z]) = 5 — .
3 3 3

Hence, for every w such that Z(Z}) is finite,
lim sup |z +u(e,(z, Z(@)) —z)| = +o0.

lol—=+00 ye(0,9],u€l0,1]
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Finally, as f” has a compact support,

sup \/N\f(x,%aﬂ =0 for |z| large enough.
"/E(O;Z]





