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Non parametric estimation of the coefficients of a diffusion
with jumps

Émeline Schmisser∗

October 8, 2018

Abstract

In this article, we consider a jump diffusion process (Xt)t≥0, with drift function b, diffusion
coefficient σ and jump coefficient ξ2. This process is observed at discrete times t = 0,∆, . . . , n∆.
The sampling interval ∆ tends to 0 and the time interval n∆ tends to infinity. We assume
that (Xt)t≥0 is ergodic, strictly stationary and exponentially β-mixing. We use a penalized
least-square approach to compute adaptive estimators of the functions σ2 + ξ2 and σ2. We
provide bounds for the risks of the two estimators.

Keywords: jump diffusions, model selection, nonparametric estimation
Subject Classification: 62G05, 62M05

1 Introduction
We consider the stochastic differential equation (SDE):

dXt = b(Xt−)dt+ σ(Xt−)dWt + ξ(Xt−)dLt, X0 = η (1)

with η a random variable, (Wt)t≥0 a Brownian motion independent of η and (Lt)t≥0 a pure jump

centered Lévy process independent of
(

(Wt)t≥0 , η
)
:

Lt =

∫ t

0

∫
|z|<1

z (µ(dt, dz)− ν(dz)dt) +

∫ t

0

∫
|z|≥1

zµ(dt, dz)

where µ is a Poisson measure of intensity ν(dz)dt, with
∫
R(z2 ∧ 1)ν(dz) <∞. The process (Xt)t≥0

is assumed to be ergodic, stationary and exponentially β-mixing. It is observed at discrete times
t = 0,∆, . . . , n∆ where the sampling interval ∆ tends to 0 and the time of observation n∆ tends
to infinity. Our aim is to construct adaptive non-parametric estimators of ξ2 + σ2 and σ2 on a
compact set A. We do not assume that the jumps are of finite intensity, only that L∆ is centred
(that is

∫
|z|≥1

zν(dz) = 0) and has a moment of order 8.
Diffusions with jumps become powerful tools to model processes in biology, physics, social sci-

ences, medical sciences, economics, and finance. They are used in the study of dynamical systems
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when the noise is discontinuous or too intensive to be modeled by a Brownian motion, like polymer-
arization phenomenons (see Berestycki (2004)), telephone noise or infinite capacity dam (Protter
and Talay (1997)). In finance, they are used to model a variety of financial applications such as
interest rate modelling or capital asset pricing (which includes fair pricing of options). Indeed, the
standard model was the Black-Sholes model, but the prices in the market are not continuous and
often have jumps. The jump diffusions are therefore more and more used to model asset prices (see
Aït-Sahalia and Jacod (2009) and Protter and Talay (1997) for instance).

There already exists numerous articles dealing with adaptive estimation for Lévy processes (see
for instance Kappus (2014) and Comte and Genon-Catalot (2009) for pure jump Lévy processes and
Neumann and Reiß (2009) and Gugushvili (2009) for more general Lévy processes. The estimators
are based on the characteristic function. Non-parametric estimation of the coefficients of a diffusion
without jumps is also well known (e.g Hoffmann (1999) or Comte et al. (2007)). However, to
our knowledge, there do not exist adaptive estimators for the coefficients of a jump diffusion.
Moreover, the non-parametric estimators are pointwise and constructed only in the finite intensity
case. Shimizu (2008) construct maximum-likelihood parametric estimators of σ2 and ξ2 when
the process (Xt) is stationnary. Their estimators converge with rates

√
n and

√
n∆ respectively.

Mancini and Renò (2011) and Hanif et al. (2012) both use local times to construct pointwise, non-
adaptive estimators in the finite intensity cas. Mancini and Renò (2011) construct kernel estimators
of σ2. Hanif et al. (2012) provide local polynomials estimators of σ2 + ξ2. They both prove the
convergence and the asymptotic normality of their estimators.

In this paper, we construct L2 adaptive estimators of the two functions σ2 +ξ2 and σ2 under the
asymptotic framework n∆→∞, ∆→ 0. To estimate the second infinitesimal moment σ2(x)+ξ2(x)
on a compact set A, we consider the following random variables

Tk∆ :=
(X(k+1)∆ −Xk∆)2

∆
= σ2(Xk∆) + ξ2(Xk∆) + noise + remainder.

We introduce a sequence of increasing subspaces Sm of L2(A) and we construct a sequence of
estimators ĝm by minimizing over each Sm a contrast function

γ1,n(t) =
1

n

n∑
k=1

(Tk∆ − t(Xk∆))2.

We bound the risk, then we introduce a penalty function pen1(m) and we minimize on m the
function γ1,n(f̂m) + pen1(m). Our estimator satisfies an oracle inequality (up to a multiplicative
constant). As the penalty pen1(m) depends on a unknown constant Σ1, we construct an estimator
Σ̂1 and show that the robust estimator obtained by minimizing γ1,n(f̂m) + p̂en1(m) satisfies the
same oracle inequality.

To estimate the function σ2, we consider the randow variables

Yk∆ =
(X(k+1)∆ −Xk∆)2

∆
1|X(k+1)∆−Xk∆|≤

√
∆ ln(n) = σ2(Xk∆) + noise + remainder.

We show that these variables are close to the continuous part of the increments, then we construct
an adaptive robust estimator of σ2 as for σ2 + ξ2. The risk of this estimator depends on the
Blumenthal-Getoor index of ν and automatically realizes a bias-variance compromise.

This article is composed as follows: in Section 2, we specify the model and its assumptions. In
Sections 3 and 4, we construct the estimators and bound their risks. Section 5 is devoted to the
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simulations and proofs are gathered in Section 6. The technical tools (the definition of the Besov
spaces, some properties of the Fourier transforms, the Talagrand’s and Bennett’s inequalities, the
Berbee’s coupling lemma and the Burkholder-Davis-Gundy inequality) are set in Appendix A.

2 Model
We consider the stochastic differential equation (1). We assume that the following assumptions are
fulfilled:

Assumption A1. The functions b, σ and ξ are Lipschitz.

This assumption ensures that a unique strong solution of (1) exists.

Assumption A2. The process (Xt) is ergodic, exponentially β-mixing and there exists a unique
invariant probability.

See Masuda (2007) for sufficient conditions for this assumption. For instance, it is satisfied if:

a. The Lévy measure ν is symetric.

b. The function b is elastic: ∃c > 0,M ≥ 0, ∀x, |x| ≥M , xb(x) ≤ −c|x|.

c. The function σ2 and ξ2 are bounded.

d. The function σ is bounded by below: ∀x, σ(x) ≥ σ0 > 0.

We can now assume:

Assumption A3.

a. The process (Xt) is stationary.

b. Its stationary measure has a density π which is bounded from below and above on any compact
set. In particular, there exists π0 and π1 such that for any x ∈ A, there exist two constants
0 < π0 ≤ π(x) ≤ π1 <∞.

We need also some technical assumptions on the Lévy measure and on the functions σ2 and ξ2:

Assumption A4. The Lévy measure ν satisfies:

a. ν ({0}) = 0 and I8 :=
∫ +∞
−∞ z8ν(dz) <∞.

b. E
(
X8
t

)
<∞ (it is not always a consequence of the previous item, see also Masuda (2007) for

sufficient assumptions).

c. The Blumenthal-Getoor index is strictly less than 2: there exists β ∈ [0, 2[ such that
∫ 1

−1
|z|βν(dz) <

∞.
This is not a strong assumption, as the Lévy measure already satisfies

∫ 1

−1
z2ν(dz) <∞.

d.
∫ +∞
−∞ z2ν(dz) = 1. This item ensures the identifiability of the function ξ (if not, we estimate
the function σ2(x)I2 where I2 :=

∫ +∞
−∞ z2ν(dz)).
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e. The functions σ and ξ are bounded from below and above: ∃σ2
1 , ξ

2
1 such that

∀x ∈ R, 0 < σ2(x) ≤ σ2
1 and 0 < ξ2(x) ≤ ξ2

1 .

To simplify the notations, let us set

Bk∆ =

∫ (k+1)∆

k∆

b(Xs)ds, Zk∆ =

∫ (k+1)∆

k∆

σ(Xs)dWs and Jk∆ =

∫ (k+1)∆

k∆

ξ(Xs−)dLs. (2)

We introduce the σ-algebra Ft = σ (η, (Ws)0≤s≤t, (Ls)0≤s≤t).
The following lemma follows directly from the Burkholder-Davis-Gundy inequality.

Lemma 1. For any p ≥ 1, if I2p :=
∫
R z

2pν(dz) <∞ and E
(
X2p

∣∣Fk∆

)
<∞, we have:

∀u ≥ 0, E
(

sup
0≤s≤∆

(Xs+u)2p

∣∣∣∣Fu) . (1 + |Xu|2p)

and
∀u ≥ 0, E

(
sup

0≤s≤∆
(Xs+u −Xu)

2p

)
. ∆I2p + ∆p (3)

where A . B means ∃C, A ≤ CB and C does not depend on ∆ or on n. Then, as b, σ2 and ξ2 are
Lipschitz:

E
(
B2p
k∆

∣∣∣Fk∆

)
= ∆2pb2p(Xk∆) + C∆2p+1/2

E
(
Z2p
k∆

∣∣∣Fk∆

)
= ∆pσ2p(Xk∆)E

(
N2p

)
+ C∆p+1/2 where N ∼ N (0, 1)

E
(
J2p
k∆

∣∣∣Fk∆

)
= ∆ξ2p(Xk∆)I2p + C∆3/2.

To bound the risk of the adaptive estimator of g = σ2 + ξ2, we need bounded variables (or at
least bounded variables with high probability). As exponential moments are needed, the functions
σ and ξ have to be bounded. The big jumps must also be under control.

Assumption A5.

a. The Lévy measure ν is sub-exponential:

∃λ,C > 0, ∀|z| > 1, ν(]− z, z[c) ≤ Ce−λ|z|.

b. The random variables (X∆, . . . , Xn∆) have exponential moments: ∃µ,K > 0,

E (exp(µX∆)) ≤ K.

c. There exists δ, 0 < δ < 1, such that ∆ = O(n−δ).

This assumption ensures that there is not too much big jumps in a fixed-time interval. Indeed,
the terms |Jk∆| are bounded by a constant C with high probability. This allow us to bound the
terms Bk∆, Zk∆ and Jk∆:
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Lemma 2.

a. Under Assumptions A1-A4, ∀ε ∈]0, 1[, ∀r > 0, P
(
|Bk∆| ≥ ∆1−ε) . n−r.

b. Under A1-A4 and A5e, for any r > 0, P
(
|Zk∆| ≥ rσ1∆1/2 ln(n)

)
≤ 2n−r.

c. For the jumps, we have two bounds. Indeed, one term of jump can be quite big, but we can
control fairly well a mean of jump terms. Let us set qn = cr ln(n)/∆. Under Assumptions
A1-A5, for any p > 0, for any r > 0, for c large enough,

P
(
|Jk∆| ≥

r2CJ ln(n)

λ

)
. n−r and P

(
1

qn

qn∑
k=1

J2p
k∆ ≥ (r + 1)2Cpξ

2p
1 ∆ ln2p(n)

)
. n−r

where the constans CJ and Cp will be precised later.

To estimate σ, we cut off the jumps. The following assumption ensures that the (not too small)
jumps can be detected and removed.

Assumption A6.

a. The function ξ is bounded from below: ∃ξ1, ∀x ∈ R, ξ2(x) ≥ ξ2
0 > 0.

b. There exists 0 < δ < 1 such that ∆ = O(n−δ).

To estimate the constant in the penalty function, we need an additional assumption on the
stationary density. We need the following assumption:

Assumption A7. The stationary density π is continuous on A.

Our aim is to estimate the functions g := σ2+ξ2 and σ2 non parametrically on the compact set A.
Estimating directly a function is difficult. To do so, we introduce a sequence of increasing subspaces
(Sm)m∈Mn

of L2(A). Then, as in the linear regression framework, we construct a sequence of
estimators by minimizing over each Sm a mean square contrast function γn(t). Finally we select the
"best" estimators ĝm̂ and σ̂2

m̂ thanks to a penalty function. As usual in nonparametric estimation,
the risk of our estimators can be decomposed in a variance term and a bias term which depends
of the regularity of the estimated function. We choose to use the Besov spaces to caracterize the
regularity, which are well adapted to L2 estimation (particularly for the wavelet decomposition).

First, we need some conditions on the subspaces Sm.

Assumption A8.

a. The subspaces Sm have finite dimension Dm and are increasing: ∀m, Sm ⊆ Sm+1.

b. The ‖.‖L2 and ‖.‖∞ norms are connected:

∃φ1,∀m, ∀t ∈ Sm, ‖t‖2∞ ≤ φ1Dm ‖t‖2L2

with ‖t‖2L2 =
∫
A
t2(x)dx and ‖t‖∞ = supx∈A |t(x)|. This implies that for any orthonormal

basis (ϕλ)λ∈Λm) of Sm, ∀x ∈ R, ∑
λ∈Λm

ϕ2
λ(x) ≤ φ1Dm.
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c. For any m ∈ N, there exists an orthonormal basis (ψλ)λ∈Λ of Sm such that

∀λ, card(λ′, ‖ψλψλ′‖∞ 6= 0) ≤ φ2.

d. For any function t belonging to Bα
2,∞, the Besov space of regularity α ≤ r (see Appendix A),

∃c, ∀m, ‖t− tm‖2L2 ≤ cD−2α
m

where tm is the orthogonal projection L2 of t on Sm.

These conditions are classical in nonparametric estimation. The vectorial subspaces generated
by piecewise polynomials of degree r, spline functions of degree r or wavelets of regularity r satisfy
these properties (see Meyer (1990), Proposition 4 p50, and DeVore and Lorentz (1993) for the proof
of (d)).

3 Estimation of σ2 + ξ2.

To estimate σ2 for a diffusion process (without jumps), we can consider the random variables

Tk∆ =
(X(k+1)∆ −Xk∆)2

∆

(see Comte et al. (2007) for instance). For jump diffusions,

X(k+1)∆ −Xk∆ = Bk∆ + Zk∆ + Jk∆

and therefore Tk∆ is a rough estimator of σ2(Xk∆)+ξ2(Xk∆), not of σ2(Xk∆) alone. We can write:

Tk∆ = σ2(Xk∆) + ξ2(Xk∆) + Ek∆ + Fk∆ +Gk∆

where

∆Ek∆ := (Bk∆ +Zk∆ +Jk∆)2− (Zk∆ +Jk∆)2 +E
(

(Zk∆ + Jk∆)2
∣∣Fk∆

)
−∆(σ2(Xk∆) + ξ2(Xk∆))

is a remainder term and

∆Fk∆ := Z2
k∆ − E

(
Z2
k∆

∣∣Fk∆

)
, ∆Gk∆ := J2

k∆ − E
(
J2
k∆

∣∣Fk∆

)
+ 2Jk∆Zk∆

are centred. The random variable Fk∆ comes from the Brownian terms, and Gk∆ from the jump
and Brownian terms.

The following lemma derived from Proposition 1 and the Burkholder-Davis-Gundy inequality.
It is proved in Section 6.

Lemma 3. Under Assumptions A1-A4,

• E
(
E2
k∆

∣∣Fk∆

)
. ∆, E

(
E4
k∆

∣∣Fk∆

)
. ∆.

• E (Fk∆|Fk∆) = 0, E
(
F 2
k∆

∣∣Fk∆

)
= 2σ4(Xk∆) + C∆1/2 , E

(
F 4
k∆

∣∣Fk∆

)
. 1.

• E (Gk∆|Fk∆) = 0, E
(
G2
k∆

∣∣Fk∆

)
= ∆−1ξ4(Xk∆)I4 + C∆−1/2.

• E
(

(Gk∆ + Fk∆)2
∣∣Fk∆

)
= ∆−1ξ4(Xk∆)I4 + C∆1/2

where C is a constant that does not depend on n neither on ∆ and is not the same in two different
lines.
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3.1 Estimation for fixed m

For any m ∈Mn = {m, Dm ≤ Dn} where the maximal dimension Dn satisfies Dn ≤
√
n∆/ ln(n),

we construct an estimator ĝm of g = σ2+ξ2 by minimizing on Sm the mean square contrast function

γ1,n(t) =
1

n

n∑
k=1

(t(Xk∆)− Tk∆)
2
.

We can always find a function minimizing γ1,n(t), but it may not be unique. On the contrary,
the random vector (ĝm(X∆), . . . , ĝm(Xn∆) is always uniquely defined. Therefore we consider the
empirical risk Rn(ĝm), where

R1,n(t) = E
(
‖t− gA‖2n

)
with ‖t‖2n =

1

n

n∑
k=1

t2(Xk∆)

and gA := g1A. We introduce the L2
π-norm ‖t‖

2
π :=

∫
A
t2(x)π(x)dx, and gm,π the orthogonal

projection of g on Sm for the π-norm.

Proposition 4 (Bound of the empirical risk). Under Assumptions A1-A4 and A8, if m ∈Mn, the
risk of the estimator ĝm is bounded by:

R1,n(ĝm) ≤ ‖gm,π − gA‖2π + 12Σ1
Dm

n∆
+ C∆

where the constant C does not depend on m, nor on n and ∆ and

Σ1 := min

(
ξ4
1,AI4,

Φ1

π0
I4

∫
R
ξ4(z)π(z)dz

)
whith ξ1,A = supx∈A ξ(x).

Corollary 5 (Bound of the L2-risk). The bound for the L2
π-risk is less sharp. Under Assumptions

A1-A4 and A8, if m ∈Mn

E
(
‖ĝm − gA‖2π

)
≤ 9 ‖g − gm,π‖2π + 24Σ1

Dm

n∆
+ 2C∆.

For any function t on the compact set A, ‖t‖2π ≤ π1 ‖t‖2L2 . Then, if we denote by gm the orthogonal
projection (L2) of g on Sm, we get that ‖gm,π − gA‖2π ≤ ‖gA − gm‖

2
π ≤ π1 ‖gA − gm‖2L2 and, under

the same assumptions,

E
(
‖ĝm − gA‖2L2

)
≤ 9π1 ‖g − gm‖2L2 + 24Σ1

Dm

n∆
+ 2C∆.

This estimator converges when n∆→∞. This is quite logical: indeed, for a compound Poisson
process, we have approximatively n∆ jumps in the time interval [0, n∆]. We can remark that, quite
naturally, the empirical risk and the L2

π-risk converges with rate
√
n∆.

We have to find a good compromise between the bias term, ‖gm − gA‖2L2 , which decreases when
m increases, and the variance term, proportional to Dm/(n∆). If g belongs to the Besov space
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Bα
2,∞(A) (with α ≥ 1), then ‖gm − gA‖2L2 is proportional to D−2α

m . The risk is then minimal for
mopt = (n∆)1/(1+2α), and satisfies, when n∆2 → 0,

E
(∥∥ĝmopt − gA∥∥2

L2

)
. (n∆)−2α/(2α+1).

Hanif et al. (2012) assume that σ2 and ξ2 belongs to C 2. If n∆3/2 → 0, they obtain the rate of
convergence (n∆)−2/5. We obtain the same rate of convergence for this regularity.

3.2 Adaptive estimator
We now have a collection of estimators ĝ0, . . . , ĝm, . . .. Our aim is to select automatically the
dimension m̂, without any knowlege of the regularity of g. As the subspaces Sm are increasing,
the function γ1,n(ν̂m) decreases when m increases. To find an adaptive estimator, we need to add
a penalty term pen1(m). We take a penalty term proportional to the variance, that is pen1(m) =
κΣ1

Dm
n∆ and choose the adaptive estimator ĝm̂ by minimizing the function

m̂ = min
m∈Mn

γ1,n(ĝm) + pen1(m).

The random variables Fk∆ and Gk∆ are bounded with high probability thanks to Lemma 3. As
they are also exponentially β-mixing, we can apply the Berbee’s coupling lemma and a Talagrand’s
inequality for β-mixing random variables. We then obtain the following oracle inequality:

Theorem 6. Under assumptions A1-A5 and A8, there exists a universal constant κ1 such that for
any κ ≥ κ1,

E
(
‖ĝm̂ − gA‖2L2

)
. inf
m∈Mn

{
‖gm − gA‖2L2 + pen1(m)

}
+ ∆ +

ln3(n)

n∆
.

The adaptive estimator ĝm̂ automatically realises the best (up to a multiplicative constant)
compromise.

3.3 Robust estimator
It remains to find the constant in the penalty. The universal constant κ1 can be explicitely bounded;
the quantity

Σ1 = min

{
ξ4
1,AI4 ,

φ1

π0

∫
R
ξ4(x)π(x)dx

}
is unknown but can be bounded. We first estimate the function h(x) := ξ4(x)I4. Let us set

Vk∆ :=
(X(k+1)∆ −Xk∆)4

∆
= ξ4(Xk∆)I4 + Lk∆︸︷︷︸

small term

+ Hk∆︸︷︷︸
centred term

.

We consider the estimator

ĥm = arg min
t∈Sm

γ3,n(t) where γ3,n(t) =
1

n

n∑
k=1

(Vk∆ − t(Xk∆))
2
. (4)

Let us denote by R3,n := 1
n

∑n
k=1(h(Xk∆ − t(Xk∆))2 the empirical risk.
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Proposition 7. Under Assumptions A1-A5 and A8, for any m such as Dm ≤ Dn =
√
n∆/ ln(n):

E
(
R3,n(ĥm)

)
≤ ‖h− hm‖2π I4 + C

Dm

n∆
+ C ′∆.

We set ĥ1 = supx∈A ĥln(n). Under assumptions A1-A5 and A8,

P
(∣∣∣ĥ1 − ξ4

1,AI4

∣∣∣ ≥ 1/ ln(n)
)
. n−5.

This result is sufficient to bound the penalty (which is all we need). However, the bound will be
more precise if we estimate also the second term φ1/π0I4

∫
R ξ

4(x)π(x)dx. In the proof of Proposition
7, we show that E

(
L2
k∆

)
. ∆ and E (Hk∆|Fk∆) = 0. Then, we can remark that

E (Vk∆) = E
(
ξ4(Xk∆)

)
I4 + C∆1/2.

We can estimate E (Vk∆) by the mean V̄n. As we are insterested in the minimum of π, it is
better to take the kernel estimator. Indeed, computing the pointzise risk of the kernel estimator
is quite natural, and this allows us to control the error on the minimum quite easily. Moreover,
the kernel estimator is already implemented in some softwares. We consider the rectangular kernel
K(x) := 1|x|≤1/2 and set

π̂h(x) =
1

n

n∑
k=1

Kh (Xi − x) with Kh(x) = h−1K(x/h).

We take a grid (x1, . . . , xln2(n)) of equally spaced points of A, and we compute the minimum of
π̂(n∆)−1/2) on this grid:

π̂0 := min
1≤j≤ln2(n)

π̂(n∆)−1/2(xj).

Let us set Σ̂1 = min
{
ĥ1 ,

φ1

π̂0
V̄n

}
.

Lemma 8. Under assumptions A1-A5 and A7-A8, Σ̂1 is a consistent estimator of Σ1 and more
precisely, for C large enough

P
(
|Σ̂1 − Σ1| ≥

1

ln(n)

)
. n−5.

Corollary 9. Under Assumption A1-A5 and A7-A8, for any κ ≥ κ1, the adaptive estimator ĝm̃
where

m̃ = arg min
m∈Mn

{
γ1,n(ĝm) + κ

(
1 +

1

ln(n)

)
Σ̂1
Dm

n∆

}
achieves the oracle inequality:

E
(
‖ĝm̃ − g‖2L2

)
. inf
m∈Mn

{
‖gm − gA‖2L2 +

Dm

n∆

}
+ ∆ +

ln3(n)

n∆
.
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4 Estimation of σ2.
We have that

Tk∆ =
(X(k+1)∆ −Xk∆)2

∆
= σ2(Xk∆) + J2

k∆ + small terms + centred terms.

The idea is to keep Tk∆ only when there is no jump. The continuous part of the increment is
Bk∆ +Zk∆ and the jump part of the increments is Jk∆. If we could access the continuous part, we
would consider the quantities

Uk∆ :=
(Bk∆ + Zk∆)2

∆
.

We need to approximate these increments. As the stochastic term Zk∆ is of order ∆1/2, we can only
suppress the jumps of amplitude strictly greater than ∆1/2. Authors such as Gloter et al. (2016)
or Mancini and Renò (2011) use a threshold proportional to ∆1/2−ε. We decide to use a slightly
different threshold, proportional to ln(n)∆1/2. Then we consider:

Yk∆ =

(
X(k+1)∆ −Xk∆

)2
∆

1ΩX,k

where ΩX,k =
{
ω,
∣∣X(k+1)∆ −Xk∆

∣∣ ≤ (σ1 + ξ1) ln(n)∆1/2
)
}. This is a classical method to obtain

the continuous increment of a Lévy process or a jump diffusion (see for instance Jacod (2007), ,
Shimizu and Yoshida (2006) . . . )

Lemma 10 (Approximation of the continuous increment). Under assumptions A1-A4 and A6,

E
(

(Uk∆ − Yk∆)
2p
)
. ln4p(n)∆1−β/2 +

1

n
.

We recall that β is the Blumenthal-Getoor index of the process (Xt). For a compound Poisson
process, β = 0 and most of the jumps can be detected and removed. If β is high (close to 2), there
is more and more small jumps and it becomes more difficult to detect them. Under Assumptions
A1-A4 and A6,

P
(
|Uk∆ − Yk∆| ≥ ln2(n)

)
. n−6

4.1 Estimation for fixed m

We consider the following contrast function and the empirical risk

γ2,n(t) =
1

n

n∑
k=1

(t(Xk∆)− Yk∆)
2 and R2,n(t) = E

(∥∥t− σ2
∥∥2

n

)
.

Let us set σ̂2
m = arg inft∈Sm γ2,n(t).

Proposition 11. Under Assumptions A1-A4, A6 and A8, the risk of the estimator σ̂m is bounded
by:

R2,n(σ̂2
m) ≤

∥∥σ2
A − σ2

m

∥∥2

π
+ Σ2

Dm

n
+ C∆1−β/2 ln2(n)

where σ2
A(x) = σ2(x)1x∈A and Σ2 ≤ min

{
σ4

1 ,
φ1

π0

∫
σ4(x)π(x)dx

}
.
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The bias term
∥∥σ2

A − σ2
m

∥∥2

L2 and the variance term Σ2Dmn
−1 are the same as for a diffusion

without jumps. Nevertheless, the remainder term is ∆2 for a diffusion process (see for instance
Comte et al. (2007)). Even for Poisson processes, the remainder term will be here proportional
to ∆ ln4(n). This is due to the jumps: to bound the risk, we use a Taylor approximation of
X(k+1)∆ − Xk∆. For a SDE without jumps, we can refine this Taylor approximation to obtain a
smaller remainder term. Here, the difference (X(k+1)∆ −Xk∆)2p is proportional to the probability
of having a jump in the time interval [k∆, (k+ 1)∆] and does not change with p: we can not refine
the approximation.

If σ2 belongs to the Besov space Bα
2,∞, then

∥∥σ2
A − σ2

m

∥∥2

L2 . D−2α
m . The best estimator is

obtained for Dmopt = n−1/(1+2α) and its risk is bounded by n−2α/(2α+1) + ∆1−β/2.

Remark 12. Let us set ∆ ∼ n−δ, with 0 < δ < 1. We have the following rates of convergence:

a jump diffusions diffusions
0 < δ ≤ 2α

2(2α+1) ≤
1
2 ∆1/2−β/4 ∆

2α
2(2α+1) ≤ δ ≤

2α
(2α+1)(1−β/2) ∧ 1 ∆1/2−β/4 n−α/(2α+1)

2α
(2α+1)(1−β/2) ∧ 1 ≤ δ < 1 n−α/(2α+1) n−α/(2α+1)

If β = 0, the adaptive estimator will reach the rate of convergence n−α/(2α+1) for high frequency
data (n∆2α+1/(2α) = O(1)). This is the minimax rate of convergence for non-parametric estimation
of σ2 for diffusions processes (see for instance Hoffmann (1999)). If β or α is too big (as soon as
β(α+ 1/2) > 1), even for high frequency data, the remainder term will be predominant in the risk.
Mancini and Renò (2011) set δ = 1 (∆ = 1/n) and assume that the derivative of σ2 is bounded.
They obtain a rate of convergence of n−1/3. For δ close to 1, we obtain the same rate if σ2 belongs
to the Besov space B1

2,∞, that is if g′ ∈ L2.

4.2 Adaptive estimator
Let us introduce a penalty function pen2(m) = κn−1Σ2 and define the adaptive estimator σ̂2

m̂:

m̂ = arg min
m∈Mn

γ2,n

(
σ̂2
m

)
+ pen2(m)

where Mn = {m, Dm ≤ Dn}. To bound the risk of the estimator σ̂m̂, we use a Bernstein-type
inequality and a decomposition on a lattice.

Theorem 13. Under Assumptions A1-A4, A6 and A8, there exists κ2 such that, if κ ≥ κ2, we
have the following oracle inequality:

R2,n(σ̂2
m̂) . min

m∈Mn

(∥∥σ2
A − σ2

m

∥∥2

L2 + pen2(m)
)

+ ∆1−β/2 ln4(n) +
1

n
.

Again, the constant Σ2 = min{σ4
1 ,

φ1

π0

∫
σ4(x)π(x)dx} is unknown. Let us set σ̂2

1 = supA σ̂
2
ln(n)

and M̂ c
4 = n−1

∑n
k=1 (Yk∆)

2, and

Σ̂2 := min

(
max σ̂4

1 ,
φ1

3π̂0
M̂ c

4

)
.

The estimator Σ̂2 converges toward Σ2 with high probability:

11



Lemma 14. Under Assumptions A1-A4 and A6-A7,

P
(∣∣∣Σ̂2 − Σ2

∣∣∣ ≥ 1

ln(n)

)
. n−5.

Then the estimator with the estimated penalty satisfies also an oracle inequality:

Corollary 15. Let us set p̂en2(m) = κ
(

Σ̂2 + 1
ln(n)

)
Dm/(n∆) with κ ≥ κ2 and m̃ = arg minm∈Mn

γ2,n(σ̂2
m)+

p̂en2(m). Then, for any κ ≥ κ1, under Asummptions A1-A4 and A6-A8, we have the following
oracle inequality:

Rn(σ̂2
m̂) . min

m∈Mn

(∥∥σ2
A − σ2

m

∥∥2

L2 + pen2(m)
)

+ ∆1−β/2 ln4(n) +
1

n
.

5 Simulations

5.1 Models
In the first three models, we consider a stochastic process (Xt) such that

dXt = b(Xt)dt+ σ(Xt)dWt + ξ(Xt−)dLt, X0 = η,

with Lt a compound Poisson process:

Lt =

Nt∑
k=1

ζk

where Nt is a compound Poisson process of intensity 1, and (ζk) are centred, independent, and
identically distributed random variables. We denote by f the law of ζk and we assume that E

(
ζ2
k

)
=

1 and that the random variables (ζk) are independent of (η, (Wt)t≥0 , Nt). The simulation is done
by an Euler scheme: we first simulate the instants and the size of the jumps. We obtain a time
vector t1, . . . , tN of the time of the jumps. Thanks to an Euler scheme, we simulate Xt on the sorted
vector: (0,∆, . . . , t1, . . . , tN , . . . , n∆). As Xt can considerably vary after a jump, this method of
simulation gives us a better accuracy than simulate L∆ in one step.

The last two models have infinite jump activity: we nearly consider a stable Lévy process (with
jumps smaller than 1). We use the same simulation algorithm as for the Poisson process, with
an approximate simulaton of the jumps: we only compute the jumps greater than ∆. The jumps
smaller than ∆ are replaced by a Gaussian.

All these models satisfy all the assumptions that we can check, that is A1, A2, A4, A5 and A6.
We estimate the stationary density, and our models also seem to satisfy also Assumptions A3 and
A7.

5.2 Method
We change A into the set [0, 1] by an affine transformation. We use the vectorial subspaces generated
by the spline functions:

Sm,r = Vect (ϕr,k,m, k ∈ Z) , with ϕr,k,m = 2m/2gr(2
mx− k)1x∈A

and gr = 1x∈A ∗ . . . ∗ 1x∈A (r + 1) time

12



Those subspaces nearly form a multi-resolution analysis of L2([0, 1]) of regularity r.
To construct the adaptive estimator, we compute f̂m,r forDm ≤

√
n∆, 0 ≤ r ≤ 4 and 0 ≤ m ≤ 7.

Indeed for m = 7, we already have Dm = 128. If m was bigger, there will be a memory problem.
The constants κ1 and κ2 are chosen by numerical calibration (see Comte and Rozenholc (2002),
Comte and Rozenholc (2004) for a complete discussion). We take κ1 = 6 and κ2 = 24. Then we
compute the adaptive estimators and the robust estimators. We minimize γn(f̂m,r) + p̂en(m, r)
with respect to m, then r.

To obtain Figures 1-5, for each model, we realise 5 simulations and draw the 10 corresponding
estimators: 5 with the true penalty constant, and five with the estimated penalty constant (the
robust estimator). To construct the tables, for each set (n,∆) and each model, we make 50 simu-
lations, and for each simulation, we compute the adaptive estimators ĝm̂,r̂ or σ̂2

m̂,r̂ and the robust
estimator ĝm̃,r̃ or σ̂2

m̃,r̃, the selected dimension (m̃, r̃), the estimated penalty constant Σ̂1 or Σ̂2,
and the empirical errors

risk =
1

n

n∑
k=1

(ĝm̃,r̃(Xk∆)− g(Xk∆))
2
1Xk∆∈A, err =

1

n

n∑
k=1

(ĝm̂,r̂(Xk∆)− g(Xk∆))
2
1Xk∆∈A.

Or for estimating σ2

risk =
1

n

n∑
k=1

(
σ̂2
m̃,r̃(Xk∆)− σ2(Xk∆)

)2
1Xk∆∈A, err =

1

n

n∑
k=1

(
σ̂2
m̂,r̂(Xk∆)− σ2(Xk∆)

)2
1Xk∆∈A.

We also compute the empirical error for each ĝm,r (or σ̂2
m,r). Then we deduce the dimension

(mmin, rmin) that minimizes the empirical error (denoted by errmin). In the tables, we write the
following informations:

• mean and standard deviation of the risk of the robust estimators ĝm̃,r̃ and σ̂2
m̃,r̃ (in fact, we

give the squrare roots of these quantities, that is
√

mean(risk) and
√

sd(risk) to compare
more easily the error and the values of the function).

• A criteria of comparison between the risks of the adaptive estimator and the robust estimator;
orpen = mean(ln(risk/err)). The quantity orpen is positive if the robust estimator is worse,
and negative if the robust estimator is better.

• An oracle to compare the risks of the robust estimator and the ’oracle’ estimator; or =
mean(ln(risk/errmin)). This quantity is always positive.

• the mean and the standard deviation of the selected dimension Dm̃,r̃.

• the mean and standard deviation of the estimated penalty constant Σ̂1 or Σ̂2.

The best results for risk are written in bold.

5.3 Results
The estimation of σ2 seems very good for models 1-3, that is when the Blumenthal-Getoor index
is equal to 0. For ∆ small enough (∆ = 10−2 or 10−3 for Model 1, ∆ = 10−3 for Models 2 and 3),
the risk of the robust adaptive estimator σ̂2

m̃,r̃ is inversely proportional to n, that is proportional to

13



the variance term. When β is not equal to 0 (models 4-5), we overestimate σ2: this is because the
small jumps can not be cut. The risk mostly depends on ∆: the remainder term is predominant.
The effect is more important for Model 5 (with Blumenthal-Getoor index equal to 3/2) than for
Model 4 (with Blumenthal-Getoor index equal to 1/2): this is consistent with Remark 12. The best
results are obtained for ∆ = 10−3 and n = 105.

The results for function g = σ2 + ξ2 are quite different. Indeed, the variance term is bigger (it
is proportional to 1/n∆ and not 1/n). The convergence is good for Ornstein-Uhlenbeck models
(Models 1, 4 and 5); when ∆ is small enough (≤ 10−2), the risk in inversely proportional to n∆.
This is not exactly the case Models 2 and 3, as we have to find a good trade-off between the bias
and the variance terms. But, when ∆ ≤ 10−2, the risk seems to depends only on n∆. The larger
n∆, the larger the selected dimension: our estimator is really adaptive.

The risk of the robusts estimators seems to be either comparable, either even better (for the
Ornstein-Uhlenbeck models) than the adaptive estimator with known penalty constant. For the
Ornstein-Uhlenbeck, we tend to overestimate the penalty, which is better than underestimate it.

The constant Σ̂2 seems to converge, even very slowly. For Σ̂1, it is more difficult to see a pattern.
This is quite understandable: the rate of convergence of Σ̂2 really depends on ∆ and on n, whereas
the one of Σ̂1 depends on ∆ and on n∆.

6 Proofs

6.1 Proof of Lemma1
The first two inequalities are fairly classical, so we do not give the proof here. The process being
stationary, we only prove the result for k = 1.

For any function f Lipschitz, by Hölder inequality and equation (3),

E

(∫ (k+1)∆

k∆

f(Xs)− f(Xk∆)ds

)2p
∣∣∣∣∣∣Fk∆

 ≤ ∆2p−1E

(∫ (k+1)∆

k∆

(f(Xs)− f(Xk∆))2pds

∣∣∣∣∣Fk∆

)
. ∆2p+1I2p + ∆3p. (5)

Let us set

B̃k∆ :=

∫ (k+1)∆

k∆

(b(Xs)− b(Xk∆))ds, Z̃k∆ :=

∫ (k+1)∆

k∆

(σ(Xs)− σ(Xk∆))dWs,

J̃k∆ :=

∫ (k+1)∆

k∆

(ξ(Xs)− ξ(Xk∆))dLs. (6)

We have that

E
(
B2p

∆

∣∣∣F0

)
= E

((
∆b(Xk∆) + B̃k∆

)2p
∣∣∣∣F0

)
= b(X0)2p∆2p+

2p∑
i=1

Ci2pb(X0)2p−i∆2p−iE
(
B̃ik∆

∣∣∣F0

)
Then by, as the function b is Lipschitz, by (5),

E
(
B2p

∆ −∆2pb(X0)2p
∣∣∣F0

)
.

2p∑
i=1

∆2p−i∆i+1/2 . ∆2p+1/2.
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Figure 1: Model 1: Ornstein-Uhlenbeck and binomial jumps (β = 0)

dXt = −2Xtdt+ dWt + dLt

with binomial jumps: P (ζk = 1) = P (ζk = −1) = 0.5. Then ξ4
1I4 = 1 and σ4

1 = 1.

Estimation of σ2 Estimation of σ2 + ξ2

−1.0 −0.5 0.0 0.5 1.0

0
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0
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1
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2
.0

−1.0 −0.5 0.0 0.5 1.0

1
.5

2
.0

2
.5

n = 105, ∆ = 10−3 n = 105, ∆ = 10−2

−. : estimator with true penalty constant . . .: robust estimator

Estimation of σ2 + ξ2

∆ n Risk Dm̃,r̃ Σ̂1

mean sd orpen or mean sd mean sd
10−1 103 0.28 0.26 -0.26 0 1 0 3.8 1.4
10−1 104 0.26 0.14 -0.10 0.0046 1.0 0.2 2.9 1.2
10−1 105 0.27 0.079 -0.00060 0.12 3.0 0.1 2.1 0.3
10−2 103 0.34 0.42 -0.31 0 1 0 4.3 3.7
10−2 104 0.11 0.16 -0.19 0 1 0 2.4 1
10−2 105 0.049 0.054 -0.057 0.087 1.0 0.1 1.5 0.35
10−3 104 0.34 0.41 -0.24 0 1 0 4.3 2.8
10−3 105 0.11 0.13 -0.16 0 1 0 2.2 0.9

Estimation of σ2

∆ n Risk Dm̃,r̃ Σ̂2

mean sd orpen or mean sd mean sd
10−1 103 0.74 0.43 -0.15 0.0011 1.0 0.07 7.5 3.7
10−1 104 0.74 0.24 -0.034 0.0034 1.125 0.47 4.90 1.05
10−1 105 0.75 0.13 -0.0019 0.014 3.0 0.2 4.2 0.3
10−2 103 0.050 0.059 -0.035 0 1 0 2.3 2.7
10−2 104 0.18 0.14 -0.30 0.061 1.4 1.8 2.1 0.6
10−2 105 0.90 0.26 -0.017 0.031 18.6 13.5 4.4 0.7
10−3 104 0.015 0.019 -0.055 0 1 0 1.4 1.4
10−3 105 0.0052 0.0063 0 0 1 0 1.1 0.04

15



Figure 2: Model 2: square function and Laplace jumps (β = 0)

dXt = −2Xtdt+
X2
t− + 3

X2
t− + 1

dWt + dLt

with Laplace jumps:
f(dz) = ν(dz) = 0.5e−|z

√
2|.

Then ξ4
1I4 = 6 and σ4

1 = 81.
Estimation of σ2 Estimation of σ2 + ξ2

−1.0 −0.5 0.0 0.5 1.0

4
5

6
7

8
9

1
0

−1.0 −0.5 0.0 0.5 1.0

5
6

7
8

9
1

0
1

1

n = 105, ∆ = 10−3 n = 105, ∆ = 10−2

− : true function −. : estimator with true penalty constant . . .: robust estimator

Estimation of σ2 + ξ2

∆ n Risk Dm̃,r̃ Σ̂1

mean sd orpen or mean sd mean sd
10−1 103 2.29 1.2 -0.017 0.34 1.0 0.3 30 26
10−1 104 2.04 0.9 0.097 0.13 2.1 1.0 26 12
10−1 105 1.89 0.4 5.10−5 0.0053 3.0 0.1 19 4
10−2 103 2.25 3.5 -0.30 0.85 1.15 0.5 55 198
10−2 104 1.29 1.1 0.76 1.20 1.9 1.0 32 41
10−2 105 0.40 0.3 -0.061 0.21 3 0 20 14
10−3 104 1.64 1.7 -0.62 0.71 1.7 1 27 80
10−3 105 1.28 1.1 0.71 1.20 1.9 1.0 32 34

Estimation of σ2

∆ n Risk Dm̃,r̃ Σ̂2

mean sd orpen or mean sd mean sd
10−1 n3 1.97 0.8 0 0.52 1 0 48 9.0
10−1 104 1.44 0.8 -0.33 0.083 2.6 0.8 43 2.9
10−1 105 1.28 0.3 4.10−5 0.013 3.0 0.07 43 1.1
10−2 103 1.76 0.7 0.025 1.53 1.0 0.2 67 15.4
10−2 104 0.38 0.3 0 0.22 3 0 72 5.6
10−2 105 0.26 0.2 -0.016 0.19 3.5 0.8 73 1.7
10−3 104 0.32 0.3 0 0.29 3 0 76 6.1
10−3 105 0.14 0.08 -0.024 0.95 3.3 0.8 78 1.6
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Figure 3: Model 3: sine function and Gaussian jumps (β = 0)

dXt = (−2Xt + sin(3Xt))dt+
√

2 + 0.5 sin(πXt−)(dWt + dLt)

with normal jumps: ζk ∼ N (0, 1). We have that σ4
1 = 6.25 and ξ4

1I4 = 18.75.
Estimation of σ2 Estimation of σ2 + ξ2
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n = 105, ∆ = 10−3 n = 105, ∆ = 10−2

−. : estimator with true penalty constant . . .: robust estimator

Estimation of σ2 + ξ2

∆ n Risk Dm̃,r̃ Σ̂1

mean sd orpen or mean sd mean sd
10−1 103 0.98 0.7 -0.029 0.44 1 0 32 23
10−1 104 0.83 0.5 0.10 0.36 1.5 0.5 26 9
10−1 105 0.67 0.25 -0.0043 0.024 3.9 0.9 18 3.0
10−2 103 1.42 1.5 -0.24 0.17 1 0 53 72
10−2 104 0.85 0.6 -0.058 0.78 1.0 0.07 42 26
10−2 105 0.40 0.3 0.039 0.87 2.0 0.3 27 8
10−3 104 1.52 2.0 -0.15 0.20 1 0 63 100
10−3 105 0.82 0.5 -0.018 0.82 1.0 0.07 41 21

Estimation of σ2

∆ n Risk Dm̃,r̃ Σ̂2

mean sd orpen or mean sd mean sd
10−1 103 0.67 0.4 0.00090 0.21 1.0 0.2 13.0 5.6
10−1 104 0.99 0.4 -0.013 0.030 2.3 0.84 12.5 1.8
10−2 105 1.22 0.3 -0.0066 0.0048 4.8 0.8 13.8 0.6
10−2 103 0.36 0.2 0.10 1.31 1.1 0.32 8.3 4.0
10−2 104 0.17 0.1 0.037 0.69 2.6 0.9 6.7 0.6
10−2 105 0.20 0.09 -0.00068 0.011 4.1 0.44 6.9 0.22
10−3 104 0.14 0.01 0.020 1.40 2.6 0.9 6.4 1.2
10−3 105 0.027 0.02 0 0.22 4 0 6.2 0.15
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Figure 4: Model 4: stable jumps (β = 1/2)

b(x) = −2x σ2(x) = ξ2(x) = 1, ν(dz) =
3

4z3/2
1|z|≤1,

the jumps have infinite activity. The Blumenthal-Getoor index is equal to β = 1/2, and ξ4
1I4 = 3/7.

Estimation of σ2 Estimation of σ2 + ξ2
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.0

2
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n = 105, ∆ = 10−3 n = 105, ∆ = 10−2

−. : estimator with true penalty constant . . .: robust estimator

Estimation of σ2 + ξ2

∆ n Risk D̂m̃,r̃ Σ̂1

mean sd orpen or mean sd mean sd
10−1 103 0.29 0.2 -0.12 0 1 0 2.6 1.3
10−1 104 0.26 0.1 -0.11 0.011 1.1 0.4 2.0 0.6
10−1 105 0.27 0.07 -0.00063 0.11 3.0 0.1 1.6 0.2
10−2 103 0.24 0.3 -0.090 0 1 0 1.8 1.7
10−2 104 0.078 0.09 -0.047 0 1 0 1.2 0.6
10−2 105 0.037 0.04 0 0.052 1.0 0.1 0.74 0.16
10−3 104 0.23 0.3 -0.073 0 1 0 1.8 1.1
10−3 105 0.076 0.09 -0.047 0.0084 1.0 0.07 1.0 0.5

Estimation of σ2

∆ n Risk Dm̃,r̃ Σ̂2

mean sd orpen or mean sd mean sd
10−1 103 0.73 0.4 -0.061 0 1 0 6.7 3.0
10−1 104 0.75 0.2 -0.022 0.0015 1.1 0.4 4.7 0.85
10−1 105 0.75 0.13 -0.00049 0.014 3 0 4.2 0.25
10−2 103 0.53 0.4 -0.14 0.0024 1.0 0.07 7.7 11
10−2 104 0.82 0.3 -0.099 0.0038 1.2 0.5 5.0 1.3
10−2 105 0.96 0.2 -0.020 0.0018 2.1 3.1 4.5 0.4
10−3 104 0.15 0.1 -0.041 0.016 1.1 0.4 2.0 0.9
10−3 105 0.21 0.07 -0.017 0.0078 1.7 1.7 1.7 0.14
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Figure 5: Model 5: stable jumps (β = 3/2)

b(x) = −2x σ2(x) = ξ2(x) = 1, ν(dz) =
1

4z5/2
1|z|≤1.

Then the Blumethal-Getoor index is equal to 3/2 and ξ4
1I4 = 1/5 and σ4

1 = 1.
Estimation of σ2 Estimation of σ2 + ξ2

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

−1.0 −0.5 0.0 0.5 1.0

1
.5

2
.0

2
.5

n = 105, ∆ = 10−3 n = 105, ∆ = 10−2

−. : estimator with true penalty constant . . .: robust estimator

Estimation de σ2 + ξ2

∆ n Risk Dm̃,r̃ Σ̂1

mean sd orpen or mean sd mean sd
10−1 103 0.28 0.2 -0.50 0 1 0 2.1 0.9
10−1 104 0.27 0.13 -0.16 0.012 1.1 0.39 1.8 0.5
10−1 105 0.28 0.070 -0.0032 0.11 3.0 0.1 1.4 0.14
10−2 103 0.18 0.20 -0.52 0 1 0 1.1 1.3
10−2 104 0.069 0.08 -0.13 0 1 0 0.68 0.3
10−2 105 0.036 0.035 -0.14 0.020 1.0 0.1 0.44 0.10
10−3 104 0.16 0.2 -0.32 0 1 0 0.96 0.7
10−3 105 0.054 0.07 -0.2 0.010 1.0 0.07 0.53 0.3

Estimation de σ2

∆ n Risk Dm̃,r̃ Σ̂2

mean sd orpen or mean sd mean sd
10−1 103 0.74 0.4 -0.042 0 1 0 6.4 2.7
10−1 104 0.74 0.21 -0.018 0.0015 1.1 0.3 4.6 0.7
10−1 105 0.74 0.12 -0.00020 0.015 3.0 0.07 4.1 0.2
10−2 103 0.77 0.42 -0.083 0 1 0 9.3 11
10−2 104 0.90 0.30 -0.038 0.00098 1.0 0.25 4.9 0.98
10−2 105 0.96 0.18 -0.011 0.00026 1.2 0.52 4.3 0.3
10−3 104 0.53 0.20 -0.015 0.00076 1.0 0.1 3.3 1.2
10−3 105 0.59 0.13 -0.0078 0.00051 1.2 0.6 2.8 0.2
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We now focus on the Brownian term.

E
(
Z2p

∆

∣∣∣F0

)
= E

((
σ(X0)W∆ + Z̃k∆

)2p
∣∣∣∣F0

)
= σ(X0)2pE

(
W 2p

∆

)
+

2p∑
i=1

Ci2pσ(X0)2p−iE
(
W 2p−i

∆ Z̃i∆

∣∣∣F0

)
.

By Cauchy-Schwarz,

E
(
Z2p

∆ − σ(X0)E
(
W 2p

∆

)∣∣∣F0

)
.

2p∑
i=1

(
E
(
W 4p−2i

∆

)
E
(
Z̃2i
k∆

∣∣∣F0

))1/2

.
2p∑
i=1

(
∆2p−iE

(
Z̃2i

∆

∣∣∣F0

))1/2

According to the Burkholder-Davis-Gundy inequality, Hölder inequality and (3),

E
(
Z̃2i

∆

∣∣∣F0

)
. E

(∫ ∆

0

(σ(Xs)− σ(Xk∆))2ds

)i∣∣∣∣∣∣F0

 . ∆i−1E

(∫ ∆

0

(σ(Xs)− σ(Xk∆))2ids

∣∣∣∣∣F0

)
. ∆i+1 (7)

Therefore, As E
(
W 2p

∆

)
= ∆pE

(
N2p

)
where N is a centred reduced gaussian,

E
(
Z2p

∆ − σ(X0)2p∆pE
(
N2p

)∣∣∣F0

)
. ∆p+1/2.

To bound the jump term, let us first remark that E
(
L2p

∆

)
= ∆I2p + C∆2. Then

E
(
J2p
k∆

∣∣∣F0

)
= ξ2p(X0)E

(
L2p

∆

)
+

2p∑
i=1

Ci2pξ
2p−i(X0)E

(
L2p−i

∆ J̃ i∆

∣∣∣F0

)
.

By the Burkholder-Davis-Gundy inequality and (5), we get:

E
(
J̃2p

∆

)
. I2p

∫ ∆

0

(ξ(Xs)− ξ(Xk∆))
2p
ds+

(∫ ∆

0

(ξ(Xs)− ξ(X0)2ds

)p
. ∆I2p(∆I2p + ∆p) + ∆p(∆I2)p . ∆2I2

2p + ∆p+1I2p + ∆2p. (8)

By Cauchy-Schwarz, we obtain:

E
(
Jk∆ − ξ2p(X0)E

(
L2p

∆

)∣∣∣F0

)
.

2p∑
i=1

(
∆∆2

)1/2
. ∆3/2

which ends the proof.
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6.2 Proof of Lemma 2
We introduce the compensated Poisson measure µ̃(s, z) = µ(s, z) − ν(z)s, and we decompose the
Lévy process as follows:

L(1)
s =

∫ s

0

∫
|z|≤∆1/2

zµ̃(ds, dz), L(2)
s =

∫ s

0

∫
∆1/2<|z|≤∆1/4

zµ̃(ds, dz)

L(3)
s =

∫ s

0

∫
∆1/4≤|z|≤1

zµ̃(ds, dz), L(4)
s =

∫ s

0

∫
|z|>1

zµ(ds, dz) (9)

and the random variables J (i)
k∆ =

∫ (k+1)∆

k∆
ξ(Xs−)dL

(i)
s . The Brownian and the very small jumps

have a similar behaviour. One big jump term can be quite large, but as many terms are zero, its
mean can be bounded.

Bound of the drift terms

As Xk∆ ∈ A, b(Xk∆) is bounded. Let us set B̃k∆ := Bk∆−∆b(Xk∆) =
∫ (k+1)∆

k∆
(b(Xs)−b(Xk∆))ds.

By Hölder inequality and Lemma 1, as b is Lipschitz, if E
(
X2p

0

)
<∞,

E
((

B̃k∆

)2p
∣∣∣∣Fk∆

)
≤ E

∫ (k+1)∆

k∆

(b(Xs)− b(Xk∆))2pds

(∫ (k+1)∆

k∆

12p/(2p−1)

)2p−1
∣∣∣∣∣∣Fk∆


≤ E

(∫ (k+1)∆

k∆

(Xs −Xk∆)2pds∆2p−1

∣∣∣∣∣Fk∆

)
. ∆2p+1. (10)

Therefore, by Markov inequality, for any ε ∈]0, 1[, any p ≥ 1,

P
(
|Bk∆| ≥ ∆1−ε) . ∆−2p+2pεE

(
B̃2p
k∆

)
. ∆1+2pε.

By Assumption A5, ∆ = O(n−δ) and then P
(
|Bk∆| ≥ ∆1−ε) . n−r.

Bound of the Brownian terms

By Markov inequality,

P
(
Zk∆ ≥ rσ1∆1/2 ln(n)

)
≤ n−rE

[
exp

(
1

σ1∆1/2
Zk∆

)]
≤ n−rE

[
exp

(
1

σ2
1∆

∫ (k+1)∆

k∆

σ2(Xs)ds

)]
≤ n−r.

By symmetry, P
(
Zk∆ ≤ −rσ1∆1/2 ln(n)

)
≤ n−r and P

(
|Zk∆| ≥ rσ1∆1/2 ln(n)

)
≤ 2n−r.
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Bound of the small jumps.

The terms J (1)
k∆ are small and can be bounded in the same way as the Brownian terms Zk∆. As the

terms are stationary, we focus on the bound of J (1)
∆ . Let us set

Ka,t =

∫ t

0

∫ ∆1/2

−∆1/2

(
eaξ(Xs)z − 1− aξ(Xs)z

)
ν(dz)ds and Va,t = a

∫ t

0

ξ(Xs−)dL(1)
s −Ka,t.

According to Corollary 5.2.2 of Applebaum (2004), for any a ≥ 0, t > 0, exp(Va,t) is a local martin-
gale. We consider a sequence of increasing stopping times (τN ) such that τN →∞ and exp(Va,t∧τN )
is a martingale. Then E (exp(Va,∆∧τN ) = 1. We can remark that for any a ≤ 1/(2ξ1∆1/2),

Ka,t ≤
∫ t

0

∫ ∆1/2

−∆1/2

a2z2ξ2(Xs)ν(dz)ds ≤ ξ2
1a

2t

∫ ∆1/2

−∆1/2

z2ν(dz).

We recall that β is the Blumenthal-Getoor index (see Assumption A2), and therefore∫ ∆1/2

−∆1/2

z2ν(dz) =

∫ ∆1/2

−∆1/2

zβz2−βν(dz) . ∆1−β/2.

We get Ka,∆ ≤ ξ2
1a

2∆2−β/2. By Markov’s inequality,

S1 := P

(∫ ∆∧τN

0

ξ(Xs−)dL(1)
s ≥ 2rξ1∆1/2 ln(n)

)
≤ P

(
Va,∆∧τN ≥ exp

(
2raξ1∆1/2 ln(n)− ξ2

1a
2∆2−β/2

))
≤ exp

(
−2raξ1∆1/2 ln(n) + ξ2

1a
2∆2−β/2

)
.

Letting N → ∞, and a = 1/(2ξ1∆1/2), we obtain P
(
J

(1)
∆ ≥ 2rξ1∆1/2 ln(n)

)
. exp (−r ln(n)) ≤

n−r. We prove in the same way that P
(
−J (1)

∆ ≥ 2rξ1∆1/2 ln(n)
)
. n−r. Therefore:

P
(∣∣∣J (1)

∆

∣∣∣ ≥ 2rξ1∆1/2 ln(n)
)
. n−r. (11)

Bound for the jumps greater than ∆1/2.

We want to bound 1
qn

∑(j+1)qn−1
k=jqn

(J
(4)
k∆)2p. Let us first prove that the random variables J (4)

k∆ are not
too large. We have to bound both the number of jumps in the time interval [k∆, (k+ 1)∆[ and the
size of the jumps.

The probability of having a very large jump is quite small: by Assumption A5,

ν

([
− (r + 2) ln(n)

λ
,

(r + 2) ln(n)

λ

]c)
. n−(r+2). (12)

The number of jumps greater than (r + 2) ln(n)/λ on the whole interval [0, n∆] follows a Poisson
law of parameter smaller than Cn−(r+2). Then

P
(
µ

(
[0, n∆],

[
− (r + 2) ln(n)

λ
,

(r + 2) ln(n)

λ

]c)
≥ 1

)
≤ 1− e−cn

−(r+2)n∆ ' ∆

nr+1
.
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The probability of having more than (r + 2)C (with C = 1/(δ(2− β)) (see Assumption A5 for the
definition of δ)) jumps greater than ∆1/2 in a time interval ∆ is very low. Let us set

E∆ :=
{
ω,∀k, µ

(
[k∆, (k + 1)∆],

[
−∆1/2,∆1/2

]c)
< (r + 2)C

}
.

The number of jumps greater than ∆1/2 in the time interval [k∆, (k+ 1)∆] is a Poisson variable of
parameter ∆

∫
|z|≥∆1/2 ν(dz) ≤ ∆2−β ∫ zβν(dz) . ∆2−β . Then

P (E c
∆) . n(∆2−β)(r+2)C = n∆(r+2)/δ . n−(r+1) (13)

By (12) and (13),

P
(
|J (2)+(3)+(4)
k∆ | ≥ (r + 2)2C ln(n)

λ

)
. n−(r+1).

Bound of the mean of J (4)
k∆. Most of the terms J (4)

k∆ are equal to 0. To bound
∑qn
k=1

(
J

(4)
k∆

)2p

,
we have to bound the number of non-zero terms, which is bounded by the number of jumps greater
than 1 in the time interval [jqn∆, (j + 1)qn∆]. We use the following property:

If Y follows a Poisson law of parameter θn, then for any λ > 0,

P (Y ≥ cn) ≤ e−λcnE (exp(λY )) ≤ e−λcn exp
(
θn(eλ − 1)

)
.

This inequality is minimal for λ = ln(cn/θn) and then: P (Y ≥ cn) ≤
(
θn
cn

)cn
e−θn+cn . Therefore,

for any λ ≥ 1:
P (Y ≥ λθn) ≤ e−θn(λ−1). (14)

Let us set v1 := ν(]− 1, 1[c) ∨ 1 and

E (4)
p :=

{
qn∑
k=1

∣∣∣J (4)
k∆

∣∣∣2p ≥ 2ν1qn∆

(
(r + 2)2C∆ ln(n)

λ

)2p
}
.

If E
(4)
p is true, then either one |Jk∆| is greater than (2r + 2)2C ln(n)/λ, either there are more than

2v1∆qn jumps. As µ ([0, qn∆[, [−1, 1]c) is a compound Poisson process of intensity smaller than
v1∆qn, we obtain by (14),

P
(
E (4)
p

)
. qnP

(
|J (4)
k∆| ≥

(r + 2)2C ln(n)

λ

)
+ P (µ ([0, qn∆[, [−1, 1]c) ≥ 2v1∆qn)

.
qn
nr+1

+ exp (−3qn∆v1) .
1

nr+1
.

Bound of the mean of |J (2)
k∆ + J

(3)
k∆|. Let us set L(i)+(j)

s = L
(i)
s +L

(j)
s and J (i)+(j)

k∆ = J
(i)
k∆ + J

(j)
k∆.

By (13), the probability of having more than (r + 2)C jumps greater than ∆1/2 in a time interval
of length ∆ is smaller than n−(r+2). Therefore

P
(
∃k, µ

(
[k∆, (k + 1)∆], [−∆1/2,∆1/2]c

)
≥ (r + 2)C

)
. n−r+1.
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We have:
qn∑
k=1

∣∣∣J (2)+(3)
k∆

∣∣∣2p 1E∆ ≤ ξ
2p
1 (r + 2)2pCp−1

∫ qn∆

0

|∆L(2+3)
s |2p

where
∫ qn∆

0
|∆L(2+3)

s |2p is the sum of the 2p-power of all the jumps of size between ∆1/2 and 1 in
the time interval [0, qn∆]. Then

P

(
qn∑
k=1

|J (2+3)
k∆ |2p ≥ c

)
≤ Cn−r+1 + P

(∫ qn∆

0

|∆L(2+3)
s |2p ≥ c/((r + 2)2pC2p−1ξ2p

1 )

)
.

As
∫ qn∆

0
|∆L(2+3)

s |2p is a compound Poisson process, we have, for any a ≤ 1:

E

(
exp

(
a

∫ qn∆

0

|∆L(2+3)
s |2p

))
= exp

(
qn∆

∫
∆1/2≤|z|≤1

(eaz
2p

− 1)ν(dz)

)

≤ exp

(
2aqn∆

∫
∆1/2≤|z|≤1

z2pν(dz)

)
≤ exp(2aqn∆I2p).

Let us set a = (r + 1)/(qn∆). By Markov inequality, we obtain:

P

(∫ qn∆

0

|∆L(2+3)
s |2p ≥ qn ln(n)∆

)
≤ E

(
exp

(
a

∫ qn∆

0

|∆L(2+3)
s |2p

))
exp (−a∆ ln(n)qn)

= exp (2(r + 1)I2p)n
−(r+1) . n−(r+1).

Therefore

P

(
1

qn

qn∑
k=0

|J (2+3)
k∆ |2p ≥ (r + 2)2pC2p−1ξ2p

1 ln(n)∆

)
.

1

nr+1
. (15)

6.3 Proof of Lemma 3
Bound of the small term. Let us set

∆E
(1)
k∆ := (Bk∆ + Zk∆ + Jk∆)2 − (Zk∆ + Jk∆)2

∆E
(2)
k∆ := E

(
(Zk∆ + Jk∆)2

∣∣Fk∆

)
−∆σ2(Xk∆)−∆ξ2(Xk∆)

We want to prove that ∆2E
(
E2
k∆

)
. ∆3 and ∆4E

(
E4
k∆

)
. ∆5. We focus first on the term E

(1)
k∆.

We can write

∆E
(1)
k∆ = B2

k∆ + 2Bk∆(Zk∆ + Jk∆) = B2
k∆ + 2∆b(Xk∆)(Zk∆ + Jk∆) + 2B̃k∆(Zk∆ + Jk∆)

where B̃k∆ =
∫ (k+1)∆

k∆
(b(Xs)− b(Xk∆)ds. Then, for p > 0, by (10) and Lemma 1,

∆2pE
(

(E
(1)
k∆)2p

∣∣∣Fk∆

)
. ∆4p + ∆2pE

(
(Zk∆ + Jk∆)

2p
∣∣∣Fk∆

)
+ E

(
B̃2p
k∆ (Zk∆ + Jk∆)

2p
∣∣∣Fk∆

)
. ∆4p + ∆2p+1 +

(
E
(
B̃4p
k∆

∣∣∣Fk∆

)
E
(

(Zk∆ + Jk∆)
4p
∣∣∣Fk∆

))1/2

.

. ∆4p + ∆2p+1 + ∆2p+1 . ∆2p+1. (16)
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It remains to bound E(2)
k∆. As

∫
z2ν(dz) = 1, by Lemma 1,

∆E
(2)
k∆ = E

(∫ (k+1)∆

k∆

(σ2(Xs)− σ2(Xk∆))ds

∣∣∣∣∣Fk∆

)
+ E

(∫ (k+1)∆

k∆

(ξ2(Xs)− ξ2(Xk∆))ds

∣∣∣∣∣Fk∆

)
+ E (2Zk∆Jk∆|Fk∆) .

Let us prove that E (Zk∆Jk∆|Fk∆) = 0. We consider two predictable (with respect to Ft) piecewise
stationary processes At and Bt. Then

E

(∫ (k+1)∆

k∆

AtdWt

∫ (k+1)∆

k∆

BsdLs

)
=
∑
i,j

E
(
AtiBtj (Wti+1

−Wti)(Ltj+1
− Ltj )

∣∣Fmax(ti,tj)

)
= 0.

By taking the limit in L2, we obtain that

E (Zk∆Jk∆) = 0. (17)

By Lemma 1, we get that ∆E
(2)
k∆ . ∆3/2. Therefore E

(
E2
k∆

)
. ∆ and E

(
E4
k∆

)
. ∆.

Bound of the centred terms. By (17), we get that E (Gk∆|Fk∆) = 0 and by definition,
E (Fk∆|Fk∆) = 0. Moreover, by Lemma 1, E

(
Z4
k∆

∣∣Fk∆

)
= 3∆2σ4(Xk∆) + C∆2+1/2 and

E
(
Z8
k∆

∣∣Fk∆

)
. ∆4. Therefore

∆2E
(
F 2
k∆

∣∣Fk∆

)
= Var

(
Z2
k∆

∣∣Fk∆

)
= 2∆2σ4(Xk∆) + C∆2+1/2

and E
(
F 4
k∆

∣∣Fk∆

)
. 1. By Cauchy-Schwarz and Lemma 1, E

(
J2
k∆Z

2
k∆

∣∣Fk∆

)
. ∆3/2. By (17),

E
(
Zk∆Jk∆(J2

k∆ − E
(
J2
k∆

)∣∣Fk∆

)
= E

(
Zk∆J

3
k∆

∣∣Fk∆

)
. We can write

Z∆J
3
∆ = σ(X0)W∆

(
ξ3(X0)L3

∆ + 3ξ2(X0)L∆J̃∆ + 3ξ(X0)L∆J̃
2
∆ + J̃3

∆

)
+ Z̃∆J

3
∆

We have that E
(
W∆L

3
∆σ(X0)ξ3(X0)

∣∣F0

)
= 0. To bound the other terms, we use Cauchy-Schwarz

inequality, Lemma 1, (7) and (8). We get that E
(
Zk∆J

3
k∆

)
. ∆3/2. Then

∆2E
(
G2
k∆

∣∣Fk∆

)
= ξ4(Xk∆)I4∆ + C∆3/2.

By Cauchy-Schwarz, E
(
∆2Fk∆Gk∆

)
. ∆3/2 and therefore

∆2E
(

(Fk∆ +Gk∆)2
∣∣Fk∆

)
= ξ4(Xk∆)I4∆ + C∆3/2

which ends the proof.

6.4 Proof of Proposition 4 (risk of the estimator of σ2 + ξ2 for m fixed)
We have that

γ1,n(t) =
1

n

n∑
k=1

(t(Xk∆)− g(Xk∆)− Ek∆ − Fk∆ −Gk∆)
2

= ‖t− g‖2n +
1

n

n∑
k=1

(Ek∆ + Fk∆ +Gk∆)2 − 2

n

n∑
k=1

(Ek∆ + Fk∆ +Gk∆) (g(Xk∆)− t(Xk∆)) .
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As ĝm minimizes γ1,n(t), the inequality γ1,n(ĝm) ≤ γ1,n(Πmg), where Πmg is the orthogonal pro-
jection of g on Sm for the ‖.‖n-norm, holds and then

‖ĝm − g‖2n ≤ ‖Πmg − g‖2n +
2

n

n∑
k=1

(Ek∆ + Fk∆ +Gk∆) (ĝm(Xk∆)−Πmg(Xk∆)) .

As ĝm and Πmg are A-supported,

‖ĝm − gA‖2n ≤ ‖Πmg − gA‖2n +
2

n

n∑
k=1

(Ek∆ + Fk∆ +Gk∆) (ĝm(Xk∆)−Πmg(Xk∆)) .

where gm,π is the orthogonal projection for the ‖.‖π-norm. As ‖ĝm − gA‖2n = ‖ĝm −Πmg‖2n +

‖Πmg − gA‖2n, we get:

‖ĝm −Πmg‖2n ≤
2

n

n∑
k=1

(Ek∆ + Fk∆ +Gk∆) (ĝm(Xk∆)−Πmg(Xk∆)) . (18)

By geometric and arithmetic means inequality,

2

n

n∑
k=1

Ek∆(ĝm(Xk∆)−Πmg(Xk∆)) ≤ 6

n

n∑
k=1

E2
k∆ +

1

6
‖ĝm −Πmg‖2n . (19)

Let us introduce the unit random ball for the ‖.‖2π-norm, Bm = {t ∈ Sm, ‖t‖π ≤ 1} and the random
function ν1,n(t) = 1

n

∑n
k=1(Fk∆ +Gk∆)t(Xk∆). By geometric and arithmetic means inequality,

2ν1,n(ĝm −Πmg) ≤ ‖ĝm −Πmg‖π sup
t∈Bm

ν1,n(t) ≤ 1

6
‖ĝm −Πmg‖2π + 6 sup

t∈Bm

ν2
1,n(t). (20)

Replacing (19) and (20) in equation (18), we obtain:

‖ĝm −Πmg‖2n ≤
6

n

n∑
k=1

E2
k∆ +

1

6
‖ĝm −Πmg‖2n + 6 sup

t∈Bm

ν2
1,n(t) +

1

6
‖ĝm −Πgm‖2π .

Let us set

Ωn =

{
ω, ∀m ∈Mn,∀t ∈ Sm,

∣∣∣∣∣‖t‖2n‖t‖2π − 1

∣∣∣∣∣ ≤ 1

2

}
where the norms ‖.‖π and ‖.‖n are equivalent. The following lemma is proved by Comte et al.
(2007) (section 7) for diffusion processes, but only relies on the β-mixing and stationary properties
of the process (Xt).

Lemma 16.
P (Ωcn) ≤ c

n8
.

On Ωn, any function t ∈ Sm satisfies ‖t‖2π ≤ 2 ‖t‖2n. Then

‖ĝm −Πmg‖2n 1Ωn ≤
12

n

n∑
k=1

E2
k∆ + 12 sup

t∈Bm

ν2
1,n(t). (21)
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By Lemma 3, E
(
E2
k∆

)
. ∆. It remains to bound E

(
supt∈Bm

ν2
1,n(t)

)
. Let (ϕλ)1≤λ≤Dm be an

orthonormal (for the ‖.‖π norm) basis of Sm. Any function t ∈ Bm can be written t =
∑Dm
λ=1 aλϕλ

with
∑Dm
λ=1 a

2
λ ≤ 1. By Cauchy-Schwarz,

sup
t∈Bm

ν2
1,n(t) ≤ sup∑Dm

λ=1 a
2
λ≤1

(
Dm∑
λ=1

a2
λ

)(
Dm∑
λ=1

ν2
1,n (ϕλ)

)
≤

Dm∑
λ=1

ν2
1,n(ϕλ). (22)

As E (Fk∆ +Gk∆|Fk∆) = 0, we get

E
(
ν2

1,n(ϕλ)
)

= E

( 1

n

n∑
k=1

(Fk∆ +Gk∆)ϕλ(Xk∆)

)2
 ≤ 1

n2

n∑
k=1

E
[
ϕ2
λ(Xk∆)E

(
(Fk∆ +Gk∆)2

∣∣Fk∆

)]
.

By Lemma 2 and stationarity,

E
(
ν2

1,n(ϕλ)
)
≤ 1

n
E
((

I4ξ
4(X0)

∆
+

C√
∆

)
ϕ2
λ(X0)

)
=

I4
n∆

∫
A

(ξ4(y) + C
√

∆)ϕ2
λ(y)π(y)dy ≤

ξ4
1,AI4

n∆

as (ϕλ)λ∈Λ is an orthonormal basis of Sm for the L2
π-norm. Therefore

E
(

sup
t∈Bm

ν2
1,n(t)

)
≤ Dm

n∆
ξ4
1,AI4. (23)

We can obtain another bound for E
(
supt∈Bm

ν2
1,n(t)

)
. Indeed, if t ∈ Bm, then ‖t‖2L2 ≤ 1/π0.

Then if (ψλ)λ∈Λ is an orthonormal basis (for the norm L2) of Sm,

E
(

sup
t∈Bm

ν2
1,n(t)

)
≤ E

(
sup

t∈Sm,‖t‖2L2≤1/π0

ν2
1,n(t)

)
≤ 1

π0

∑
λ∈Λ

E
(
ν2

1,n(ψλ)
)

≤ 1

π0n2

n∑
k=1

E

(∑
λ∈Λ

ψ2
λ(Xk∆)(Fk∆ +Gk∆)2

)
.

By Assumption 8, for any x,
∑
λ∈Λ ψ

2(x) ≤ φ1Dm and therefore

E
(

sup
t∈Bm

ν2
1,n(t)

)
≤ φ1Dm

nπ0
E
(
ξ4(Xk∆)I4

∆
+ C∆−1/2

)
=
Dm

n∆

φ1I4
π0

∫
R
ξ4(z)π(z)dz.

It remains to bound the risk on Ωcn. The function ĝm minimises γn(t) = n−1
∑n
k=1(Tk∆ −

t(Xk∆))2. Therefore ĝm is the orthogonal projection for the ‖.‖n- norm of (T∆, . . . , Tn∆) on the
vectorial subspace: {(t(X∆), . . . , t(Xn∆)), t ∈ Sm}. As Tk∆ = g(Xk∆) + Ek∆ + Fk∆ + Gk∆, we
obtain:

‖ĝm −Πmg‖2n = ‖ΠmT − g‖2n = ‖ΠmE + ΠmF + ΠmG‖2n ≤ ‖E + F +G‖2n .

By stationarity and Cauchy-Schwarz:

E
(
‖ĝm −Πmg‖2n 1Ωcn

)
. E

[(
1

n

n∑
k=1

E2
k∆ + F 2

k∆ +G2
k∆

)
1Ωcn

]
.
[
E
(
E4

∆ + F 4
∆ +G4

∆

)
P (Ωcn)

]1/2
.
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By Lemma 16, P (Ωcn) . 1/n8 and therefore

E
(
‖ĝm −Πmg‖2n 1Ωcn

)
.

1

∆3n4
≤ 1

n
.

Then
E
(
‖ĝm − gA‖2n

)
≤ E

(
‖Πmg − gA‖2n

)
+ 12Σ1

Dm

n∆
+ C∆.

We can remark that, as Πmg is the orthogonal projection of g for the empirical norm on Sm,
‖Πmg − gA‖2n ≤ ‖gm,π − gA‖

2
n. Therefore E

(
‖ĝm − gA‖2n

)
≤ E

(
‖gm,πg − gA‖2n

)
+ 12Σ1

Dm
n∆ +C∆.

As, for any function t, deterministic, E
(
‖t‖2n

)
= ‖t‖2π, we get:

E
(
‖ĝm − gA‖2n

)
≤ ‖gm,π − g‖2π + 12Σ1

Dm

n∆
+ C∆.

6.5 Proof of Corollary 5
We can remark that ‖ĝm − g‖2π = ‖ĝm − gm,π‖2π + ‖gm,π − g‖2π. As ĝm and gm,π belongs to Sm,

‖ĝm − gm,π‖2π 1Ωn ≤ 2 ‖ĝm − gm,π‖2n = 2 ‖ĝm −Πmg‖2n + 2 ‖Πmg − gm,π‖2n
≤ 2 ‖ĝm −Πmg‖2n + 4 ‖Πmg − g‖2n + 4 ‖g − gm,π‖2n
≤ 2 ‖ĝm −Πmg‖2n + 8 ‖gm,π − g‖2n . (24)

As E (‖t‖)2
n = E

(
‖t‖2π

)
for any deterministic function t, we have that:

E
(
‖ĝm − gm,π‖2π 1Ωn

)
≤ 2E

(
‖ĝm −Πmg‖2n

)
+ 8 ‖gm,π − g‖2π .

And
E
(
‖ĝm − gm,π‖2π 1Ωcn

)
≤
(
E
(
‖ΠmT‖4π

)
+ ‖g‖4π

)1/2

(P (Ωcn))
1/2 .

1

n
.

6.6 Proof of Theorem 6 (oracle inequality for ĝm̂)
For any m, γ1,n(ĝm̂) + pen1(m̂) ≤ γ1,n(Πmg) + pen1(m). Therefore, as

γn(t) = ‖t− g‖2n +
1

n

n∑
k=1

(Ek∆ + Fk∆ +Gk∆)2 +
2

n

n∑
k=1

(Ek∆ + Fk∆ +Gk∆)(g(Xk∆)− t(Xk∆),

we obtain:

‖ĝm̂ − gA‖2n ≤ ‖Πmg − gA‖2n+pen1(m)−pen1(m̂)+
2

n

n∑
k=1

(Ek∆+Fk∆+Gk∆)(ĝm̂(Xk∆)−Πmg(Xk∆)).

Let us set Bm,m′ = {t ∈ Sm + Sm′ , ‖t‖π ≤ 1}. Then, by geometric-arithmetic mean inequality,

‖ĝm̂ −Πmg‖2n 1Ωn ≤
12

n

n∑
k=1

E2
k∆ + 12 sup

t∈Bm,m̂

ν2
1,n(t) + 2 pen1(m)− 2 pen1(m̂).
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The ball Bm,m̂ is random, it is not possible to bound E
(

supt∈Bm,m̂
ν2
n(t)

)
as previously. We

introduce the function 12p1(m,m′) = pen1(m) + pen1(m′). Then

E
(
‖ĝm̂ −Πmg‖2n 1Ωn

)
≤ C∆ + 12E

(
sup

t∈Bm,m̂

ν2
1,n(t)− p1(m̂,m)

)
+ 4 pen1(m).

We can write:

E

(
sup

t∈Bm,m̂

ν2
1,n(t)− p(m̂,m)

)
≤
∑
m′

E

(
sup

t∈Bm,m′

ν2
1,n(t)− p1(m′,m)

)
+

(25)

To bound this term, we apply the Talagrand’s inequality for β-mixing random variables (see Ap-
pendix A) to ν1,n(t). The process (Xt)t≥0 is exponentially β-mixing: there exists c, c′ such that the
β-mixing coefficient of Xt satisfies βX(t) ≤ ce−c′t. Therefore the random vectors (Fk∆ +Gk∆, Xk∆)
are exponentially β-mixing with β-mixing coefficient smaller than βX(∆) ≤ ce−c

′∆. Let us set
qn = d8 ln(n)/(c′∆)e and pn = dn/(2qn)e. We consider the set ΩB on which the random variables
Bk∆, Zk∆ and Jk∆ are bounded:

ΩB =

{
ω,

n⋂
k=1

{
|Bk∆| ≤ ∆1−ε, |Zk∆| ≤ 7σ1∆1/2 ln(n), |Jk∆| ≤

49CJ ln(n)

λ

}
1≤k≤n

,

⋂
p∈{1,2,4}

pn−1⋂
j=0


(j+1)qn∑
k=jqn+1

J2p
k∆ ≤ 64Cpξ

2p
1 ∆ ln2p(n)


0≤j≤pn−1

 . (26)

By Lemma 2, P (ΩcB) . n−6. The random variables Fk∆ and Gk∆ are bounded on ΩB :

∀k, Fk∆ ≤ C ln2(n) and
1

qn

qn∑
i=1

Gkqn+i∆ ≤ C ln2(n)

for C a constant large enough. We consider the function ft(x, y) = xt(y) and set

Uj =
1

qn

(j+1)qn−1∑
k=jqn

ft(Fk∆ +Gk∆, Xk∆) =
1

qn

(j+1)qn−1∑
k=jqn

(Fk∆ +Gk∆) t(Xk∆).

By Lemma 3, E (Uj) = 0. For any t ∈ Bm,m′ , by stationarity,

Var (Uj) =
1

q2
n

qn∑
k=1

E
(
t2(Xk∆)E

(
(Fk∆ +Gk∆)2

∣∣Fk∆

))
≤ 1

qn
E
(
t2(X0)

ξ4
1(X0)I4 + C∆1/2

∆

)
.

Therefore
sup

t∈Bm,m′

Var (Uj) ≤
C

qn∆
:=

V

qn
.

Let us set D = max(Dm, D
′
m). As, if t ∈ Bm,m′ , ‖t‖∞ . D1/2, on ΩB , there exists a constant c such

that, for any j, |Uj | ≤ c ln4(n)D1/2. We set O = Ωn ∩ ΩB , M := c ln4(n)D1/2 and H2 := Σ1D/∆.
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By (23), E
(∣∣∣ 1
pn

∑
Uj

∣∣∣) ≤√E
(
ν2

1,n(t)
)
≤ H/

√
n. As the dimension of Sm+m′ is finite, we can find

a countable family F dense in Bm,m′ and we can apply the Talagrand’s inequality for β-mixing
random variables (see Appendix A). Therefore

E

([
sup

t∈Bm,m′

ν2
n,1(t)− 6H2

]
+

1O

)
.
V

n
exp

(
−c′H

2

V

)
+
M2

p2
n

exp

(
−c′
√
pn
qn

H

M

)
+
M

n2

.
1

n∆
e−c

′D +
ln8(n)D

p2
n

exp

(
−c′
√
pn
qn

1

∆1/2 ln4(n)

)
+

ln4(n)D1/2

n2

.
1

n∆
e−c

′D +
ln10(n)

n2∆2
D exp

(
−c′
√
n∆

ln5(n)

)

where c′ is a constant that varies from one line to another. By (25), as
∑
m′∈Mn

Dm,m′ ≤ D2
n ≤ n∆,

E

([
sup

t∈Bm,m̂

ν2
n,1(t)− p(m, m̂)

]
+

)
.

1

n∆

∑
m′

e−cDm,m′ +
ln6(n)

n∆
.

1

n∆
.

We can bound E
(
‖ĝm̂ −Πmg‖2n 1Oc

)
in the same way as we bound the risk of the non-adaptive

estimator on Ωcn:

E
(
‖ĝm̂ −Πmg‖2n 1Oc

)
.

1

∆3/2n5/2
.

1

n
.

Then, for any m ∈Mn,

E
(
‖ĝm̂ − gA‖2n

)
≤ ‖gm,π − gA‖2π + κΣ1

Dm

n∆
+ C∆.

It remains to replace the ‖.‖n-norm by the ‖.‖L2-norm. The proof is the same as in Subsection 6.5.

6.7 Proof of Proposition 7 (risk of the estimator of h for m fixed)
Let us first precise Hk∆ and Lk∆. We can write ∆Hk∆ = (Zk∆ + Jk∆)4 − E

(
(Zk∆ + Jk∆)4

)
and

Lk∆ = L
(1)
k∆ + L

(2)
k∆ with

∆L
(1)
k∆ := (Bk∆ + Zk∆ + Jk∆)4 − (Zk∆ + Jk∆)4

∆L
(2)
k∆ := E

(
(Zk∆ + Jk∆)4

)
−∆ξ4(Xk∆)I4.

Let us first prove that

E
(
L2
k∆

)
. ∆, E

(
L4
k∆

)
. ∆ (27)

E (Hk∆|Fk∆) = 0, E
(
H2
k∆|Fk∆

)
≤ C∆−1 and E

(
H4
k∆

)
. 1/∆3. (28)

To bound L
(1)
k∆, we use the same techniques as for the bound of E(1)

k∆: we develop L
(1)
k∆, use the

decomposition Bk∆ = ∆b(Xk∆) + B̃k∆, and thanks to Cauchy-Schwarz inequality, Lemma 1 and
equation (10), we obtain that E

((
L

(1)
k∆

)p)
. ∆. By Lemma 1, we get that E

(
Z4
k∆

)
≤ C∆2 and

30



E
(
J4
k∆

)
= ξ4(Xk∆)I4∆ + C∆3/2. Therefore |L(2)

k∆| . ∆1/2. By definition, E (Hk∆) = 0 and we
derives from Lemma 1 and Cauchy-Schwarz inequality that E

(
H2
k∆

)
. ∆−1 and E

(
H4
k∆

)
. ∆−3.

The rest of the proof is done in the same way as in Subsection 6.4. We denote by Πmh the
orthogonal projection of h on Sm for the ‖.‖n- norm and we get:

∥∥∥ĥm −Πmh
∥∥∥2

n
1Ωn ≤

6

n

n∑
k=1

L2
k∆ + 6

Dm∑
λ=1

ν2
3,n(ϕλ) with ν2

3,n(t) :=
1

n

n∑
k=1

Hk∆t(Xk∆) (29)

By (28), we obtain that E
(
ν2

3,n(ϕλ)
)
. 1

n∆ and therefore

E
(∥∥∥ĥm −Πmh

∥∥∥2

n
1Ωn

)
≤ ‖h− hm,π‖2π + C

Dm

n∆
+ C ′∆.

The bound on Ωcn is done in the same way as in Subsection 6.4.

6.8 Proof of Lemma 8 (Estimation of the penalty constant)
Estimation of the first bound of the variance term. Let us set h1,A = supx∈A h(x). We
have that

|ĥ1 − h1,A| ≤
∥∥∥ĥm − hA∥∥∥

L∞(A)
≤
∥∥∥ĥm − hm∥∥∥

L∞(A)
+ ‖hm − hA‖L∞(A) .

By DeVore and Lorentz (1993, p182) and Barron et al. (1999, Lemma 12), if h belongs to the Besov
space Bα

2,∞(A), then
‖hm − hA‖2L∞(A) ≤ CD

1−2α
m . (30)

As g is Lipschitz on A, g ∈ B1
2,∞(A) and ‖hm − hA‖2L∞(A) . D−1

m . As ĥm and hm belongs to Sm,∥∥∥ĥm − hm∥∥∥2

L∞(A)
≤ φ1Dm

∥∥∥ĥm − hm∥∥∥2

L2
≤ φ1Dm

π0

∥∥∥ĥm − hm∥∥∥2

π
.

On Ωn, ∥∥∥ĥm − hm∥∥∥2

π
≤ 2

∥∥∥ĥm − hm∥∥∥2

n
≤ 2

∥∥∥ĥm −Πmh
∥∥∥2

n
+ 2 ‖Πmh− hm‖2n

and ‖Πmh− hm‖2n ≤ ‖hA − hm‖
2
n. Then by (29),

|ĥ1 − h1,A|1Ωn . D−1
m +Dm ‖hm − hA‖2n +Dm

(
1

n

n∑
k=1

L2
k∆ +

∑
λ

ν2
3,n(ϕλ)

)
. (31)

We can write ‖hm − hA‖2n = ‖hm − hA‖2π + ‖hm − hA‖2n−‖hm − hA‖
2
π. As h belongs to the Besov

space Bα
2,∞, ‖hm − hA‖2π ≤ D−2α

m . It remains to bound ‖hm − hA‖2n − ‖hm − hA‖
2
π. As this term

is centred, we can apply a Bennet’s inequality. We can remark that, when h ∈ Bα
2,∞, by (30),

‖hm − hA‖2∞ ≤ CD1−2α
m =: M ′ and

Var
(
(hm − hA)2(Xk∆)

)
=

∫
(hm − hA)4(x)π(x)dx ≤ ‖hm − hA‖2π ‖hm − hA‖

2
∞ ≤ C

′D1−4α
m =: V ′.
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Then

P
(∣∣∣‖hm − hA‖2n − ‖hm − hA‖2π∣∣∣ ≥ cD−2α

m

)
≤ exp

(
− c′2nD−4α

m

2(D1−4α
m +D1−4α

m ln(n)∆−1

)
≤ exp

(
−c′ n∆

ln(n)
D−1
m

)
. n−8.

On ΩB (see (26)), by Lemma 2,

∆2

n

n∑
k=1

(
L

(1)
k∆

)2

.
1

n

n∑
k=1

B2
k∆(Jk∆+Zk∆)6 .

√√√√( 1

n

n∑
k=1

B4
k∆

)
×

(
1

n

n∑
k=1

(Zk∆ + Jk∆)12

)
. ∆3 ln8(n)

and as |L(2)
k∆| ≤ ∆1/2, 1

n

∑n
k=1 L

2
k∆ . ∆ ln8(n). To bound ν2

3,n(ϕλ), we apply (again) Bennett’s
inequality. On ΩB ,

1

qn

qn∑
k=1

|Hk∆| .
∆−1

qn

qn∑
k=1

Z4
k∆ + J4

k∆ . ln4(n).

We take V ′ = C∆−1, M ′ = C ′ ln4(n)D
1/2
m . Then, as E (νn,3(ϕλ)) = 0,

P
(
|νn,3(ϕλ)| ≥ ln(n)√

n∆

)
≤ exp

(
− −c ln2(n)∆−1

∆−1 + ln6(n)D
1/2
m ∆−1/

√
n∆

)
≤ exp

− c ln2(n)

1 + ln6(n)D
1/2
m√

n∆


and, if D2

m ≤ (n∆)/ ln12(n),

P
(
|νn,3(ϕλ)| ≥ ln(n)√

n∆

)
. n−6.

Collecting terms, we get that, as α≥1,

P
(
|ĥ1 − h1,A| & D−1

m +Dm

(
ln(n)√
n∆

+ ∆ ln6(n)

))
. n−5.

By taking Dm = ln(n), we obtain the expected result.

Estimation of the second bound of the variance term. We first focus on the term V̄n. As
Vk∆ = I4ξ

4(Xk∆) +Lk∆ +Hk∆, by (28) and (27), E (Vk∆) = I4
∫
ξ4(x)π(x)dx+C∆1/2. Moreover,

Var (Vk∆) ≤ E
(
V 2
k∆

)
≤ C

∆ + C ′∆1/2 and by Lemma 2, 1
qn

∑qn
k=1 Vk∆ . ln4(n). Therefore, by

Bennett’s inequality,

P
(
|V̄n − E (Vk∆) | ≥ ln7(n)√

n∆

)
. exp

(
− c ln14(n)∆−1

∆−1 + ln12(n)∆−1

)
. exp

(
−c ln2(n)

)
. n−5

and

P
(
|V̄n −

∫
ξ4(x)π(x)dx| ≥ C∆1/2 +

ln7(n)√
n∆

)
. n−5.
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It remains to bound π̂0−π0. We have that E (π̂h(x)) = πh(x) where πh(x) =
∫
Kh(y−x)π(y)dy.

Moreover, as the process (Xt) is exponentially β-mixing, by Berbee’s coupling lemma, on Ω∗

Var (π̂h(x)) = Var

(
1

n

n∑
k=1

Kh(Xk∆ − x)

)
≤ 1

pn
Var

(
1

qn

qn∑
k=1

Kh(Xk∆ − x)

)

≤ 1

pn
Var (Kh(Xk∆ − x)) ≤ ln(n)

n∆
E
(
K2
h(Xk∆ − x)

)
.

By a change of variable, we get that

Var (π̂h(x)) ≤ ln(n)

n∆

∫
1

h2
K2

(
y − x
h

)
π(y)dy =

ln(n)

n∆h

∫
K2(u)π(x+ hu)du .

ln(n)

n∆h
.

Then
E
(
(π̂h(x)− π(x))2

)
≤ (πh(x)− π(x))

2
+
C ln(n)

n∆h
.

If π is continuous, then the bias term (πh(x) − π(x))2 satisfies (see (Tsybakov, 2004, Proposition
1.2 with β = 1)):

(πh(x)− π(x))2 ≤ C ′h. (32)

In that case, the best estimator is obtained for h = 1/
√
n∆. By Bennett’s inequality for β-mixing

random variables (see Appendix A), as |Kh| ≤ 1/h =
√
n∆ and Var (

∑qn
k=1Kh(Xk∆ − x)) ≤

Cq2
n/h = qn

C′ ln(n)
∆h = qn

ln(n)
√
n√

∆
,

P
(
|πh(y)− π̂h(y)| ≥ ln2(n)

(n∆)1/4

)
≤ 2 exp

(
− c ln4(n)n1/2∆−1/2

ln(n)∆−1/2n1/2 + ln3(n)n1/2∆−1/2(n∆)−1/4

)

≤ 2 exp

− c ln4(n)

ln(n) + ln3(n)
(n∆)1/4

 . n−6

As π is continuous, by (32),

|π̂0 − π0| ≤ min
1≤j≤ln2(n)

|π(xj)− π0|+ max
1≤j≤ln2(n)

|π̂(n∆)−1/2(xj)− π(xj)|

.
1

ln2(n)
+

ln2(n)

(n∆)1/2
+ max

1≤j≤ln2(n)
|π̂(n∆)−1/2(xj)− π(n∆)−1/2(xj)|

and therefore

P
(
|π̂0 − π0| ≥

1

ln(n)
+

ln2(n)

(n∆)1/4

)
. n−5 (33)

which concludes the proof.

6.9 Proof of Lemma 10 (Approximation of the continuous terms)

Let us denote by Nk = µ
(

](k∆, (k + 1)∆] ,
[
−∆1/4,∆1/4

]c)
the number of jumps of amplitude

greater than ∆1/4 in the time interval ]k∆, (k + 1)∆]. We introduce the set

ΩN,k =

{
ω, Nk = 0 and

∣∣∣L(1)+(2)
k∆

∣∣∣ ≤ 4
σ1 + ξ1
ξ0

∆1/2 ln(n)

}
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where L(i)
s are defined in (9). The jumps are explicitely bounded on ΩN,k, which is close to ΩX,k.

The following lemma is proved later.

Lemma 17.

P
(
ΩcX,k

)
. ∆1−β/2, P

(
ΩcN,k

)
. ∆1−β/2 and P

(
ΩX,k ∩ ΩcN,k

)
. ∆2−β/2 + n−1.

We can write

(Uk∆ − Yk∆) =
1

∆
(Bk∆ + Zk∆)

2
1ΩcX,k

− 1

∆
J2
k∆1ΩX,k −

2

∆
Jk∆ (Zk∆ +Bk∆)1ΩX,k .

On ΩB , |Zk∆ +Bk∆| . ∆1/2 ln(n). Moreover, on ΩX,k∩ΩB , |Jk∆| ≤ |C∆1/2 ln(n)−(Bk∆ +Zk∆)| .
∆1/2 ln(n). We obtain the following bound:

|Uk∆ − Yk∆|1ΩB . ln2(n)1ΩcX,k
+ ln2(n)1ΩX,k∩ΩcN,k

+

(
J2
k∆

∆
+ ln(n)

|Jk∆|
∆1/2

)
1ΩN,k . (34)

Then by Lemma 17 and Lemma 1,

E
(

(Uk∆ − Yk∆)
2p
)
. ln4p(n)∆1−β/2 +

1

n6
+ E

((
J4p
k∆∆−2p + J2p

k∆∆−p ln2p(n)
)
1ΩN,k

)
.

It remains to bound E
(
J4p
k∆∆−2p

1ΩN,k

)
. By equation (8),

E
(
J2p
k∆1ΩN,k

)
. E

(
L2p
k∆1ΩN,k

)
+ E

(
J̃2p
k∆1ΩN,k

)
. E

(
L2p
k∆

)
+ ∆2I2

2p + ∆p+1I2p + ∆2p.

As we are in ΩN,k, we can replace I2p by I2p,N :=
∫
|z|≤∆1/4 z

2pν(dz). For any p ≥ 1, I2p,N ≤
∆2p/4−β/4 ∫

|z|≤∆1/4 z
βν(dz) . ∆p/2−β/4. Then

E
(
J̃2p
k∆1ΩN,k

)
. ∆2+p−β/2. (35)

It remains to bound E
(
L2p
k∆

)
. We use the following lemma which is nearly Proposition 4.8 of Mai

(2014) (the proof is given later):

Lemma 18. For any integer p ≥ 1,

E
((

L
(1)+(2)
k∆ 1ΩN,k

)2p
)

. ∆1+p−β/2 ln(n)2p−β

Then E
(

(J
(1)+(2)
k∆ )2p

1ΩN,k

)
. ∆1+p−β/2 ln(n)2p−β and we deduce that E

(
(Uk∆ − Yk∆)2p

)
.

∆1−β/2 ln4p(n).
Let us now bound |Uk∆ − Yk∆|. We have that

|Uk∆ − Yk∆| ≤
2

∆
(Bk∆ + Zk∆)

2
+

2

∆
J2
k∆1ΩX,k .

And

P
({
|Jk∆| ≥ (4p+ 2)σ0∆1/2 ln(n)

}
∩ ΩX,k

)
≤ P

(
|Bk∆ + Zk∆| ≥ (4p+ 1)σ0∆1/2 ln(n)

)
.

Then, by Lemma 2, P
(
|Uk∆ − Yk∆| ≥ Cσ2

1 ln2(n)
)
. n−5 where C is a universal constant.
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6.10 Proof of Lemma 17
Bound of P

(
ΩcX,k

)
. We have that X(k+1)∆ = Xk∆ +Bk∆ + Zk∆ + Jk∆. Then

P
(
ΩcX,k

)
≤ P

(
|Bk∆| ≥ ∆1/2

)
+ P

(
|Zk∆| ≥ 6σ1∆1/2 ln(n)

)
+ P

(
|Jk∆| ≥ 12ξ1∆1/2 ln(n)

)
.

By Lemma 2,

P
(
|Bk∆| ≥ ∆1/2

)
. n−6 and P

(
|Zk∆| ≥ 6σ1∆1/2 ln(n)

)
. n−6.

By (11), P
(
|J (1)
k∆| ≥ 12ξ1∆1/2 ln(n)

)
. n−6. Moreover, by Assumption 4

P
(∣∣∣J (2+3+4)

k∆

∣∣∣ > 0
)
≤ ∆

∫
[−∆1/2,∆1/2]c

ν(dz) ≤ ∆∆−β/2
∫

[−∆1/2,∆1/2]c
|z|βν(dz)

. ∆1−β/2 (36)

which concludes the proof.

Bound of P
(

ΩcN,k

)
. We have that

P (Nk ≥ 1) =

∫ (k+1)∆

k∆

∫
|z|≥∆1/4

ν(dz)dt ≤ ∆1−β/4
∫
|z|≥∆1/4

|z|βν(dz) . ∆1−β/4.

Then by (36) and (11), we obtain:

P
(
ΩcN,k

)
≤ P (Nk ≥ 1) + P

(
|L(2)
k∆| > 0

)
+ P

(∣∣∣L(1)
k∆

∣∣∣ ≥ c ln(n)∆1/2
)
. ∆1−β/2.

Bound of P
(

ΩX,k ∩ ΩcN,k

)
. We have that

P (ΩX,k ∩ {Nk ≥ 1}) ≤ P (Nk ≥ 2) + P (ΩX,k ∩ {Nk = 1}) .

Now

P (Nk ≥ 2) =

(
∆

∫
|z|≥∆1/4

ν(dz)

)2

≤

(
∆1−β/4

∫
|z|≥∆1/4

|z|βν(dz)

)2

. ∆2−β/2.

If Nk = 1, there exists a unique jump greater than ∆1/4 and therefore
∣∣∣J (3+4)
k∆

∣∣∣ ≥ ξ0∆1/4. By
conditional independence, we get:

P (ΩX,k ∩ {Nk = 1}) ≤ P (Nk = 1)× P
(∣∣∣Bk∆ + Zk∆ + J

(1+2)
k∆

∣∣∣ > cξ0∆1/4
)

≤ P (Nk = 1)

[
P (ΩcB) + P

(∣∣∣J (1+2)
k∆

∣∣∣ ≥ cξ0∆1/4

3

)]
. n−6 + ∆1−β/4P

(∣∣∣J (1+2)
k∆

∣∣∣ ≥ cξ0∆1/4

3

)
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By a Markov inequality, we obtain:

P
(∣∣∣J (1+2)

k∆

∣∣∣ > c∆1/4
)
. ∆−1/2E

[(
J

(1+2)
k∆

)2
]
. ∆−1/2∆

∫ ∆1/4

−∆1/4

z2ν(dz) . ∆1/2∆1/2−β/4.

We obtain that P (ΩX,k ∩ {Nk ≥ 1}) . ∆2−β/2. It remains to bound

P
(

ΩX,k ∩ {Nk = 0} ∩
{
|L[1)+(2)
k∆ | ≥ c∆1/2 ln(n)

})
.

We can remark that ξ(Xk∆)L
(1)+(2)
k∆ = J

(1)+(2)
k∆ − J̃ (1)+(2)

k∆ , and by Lemma 2,

P
(

ΩX,k ∩
{∣∣∣J (1)+(2)

k∆

∣∣∣ ≥ (c+ 1)∆1/2 ln(n)
}
∩ {Nk = 0}

)
. P

(
|Bk∆ + Zk∆| ≥ c∆1/2 ln(n)

)
. n−6.

By (35) and a Markov inequality, we obtain that P
(∣∣∣J̃ (1)+(2)

k∆

∣∣∣ ≥ ∆1/2 ln(n)
∣∣∣Nk = 0

)
. ∆2−β/2

which ends the proof.

6.11 Proof of Lemma 18
Let us introduce a nonnegative function f ∈ C∞ such that{

f(x) = x2p if |x| ≤ 1

f(x) = 0 if |x| ≥ 2.
and ∀x, f(x) ≤ 1.

Let us set fa(x) = a2pf(x/a) for a > 0. Then E
[(
L

(1)+(2)
∆

)2p

1ΩN,k

]
≤ E

(
f c∆

1/2 ln(n)(L
(1)+(2)
∆ )

)
.

Now L
(1)+(2)
∆ is a pure jump Lévy process, and its characteristic function is known. Following the

same proof than Mai (2014, proof of Proposition 4.8), we get that, thanks to the properties of the
Fourier transform denoted by F (see the Appendix),

E
(
fa(L

(1)+(2)
t )

)
≤ t
∫ 1

−1

fa(x)ν(dx) + Ct2
∫
R

Ffa(u)|u|2βdu.

As f belongs to the Schwarz space (see Appendix A), so does Ff and therefore , for any m > 0,
there exists a constant Cm such that |Ff(u))| ≤ Cm|u|−m. Then, as F a(u) = a2p+1F (au), we get
that

|Ffa(u)| ≤ C0a
2p+1 ∧ C3+βa

2p−2−β |u|−3−β .

Then

E
(
fa(L

(1)+(2)
t )

)
. t

∫ 2a

−2a

x2pν(dx) + t2a2p+1

∫
[−1,1]

|u|2βdu+ t2a2p−2−β
∫

[−1,1]c
|u|β−3du.

As β < 2, β − 3 < −1 and all the integrals are finite. Taking t = ∆ and a = c∆1/2 ln(n), we get:

E
((

L
(1)+(2)
k∆ 1ΩN,k

)2p
)

. ∆1+p−β/2 ln2p−β(n).
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6.12 Proof of Proposition 11 (Risk of the estimator of σ for fixed m)
We have that Yk∆ = Uk∆ + Yk∆ − Uk∆. We can write:

Uk∆ =
(Bk∆ + Zk∆)2

∆
= σ2(Xk∆) + Fk∆ +

(
E
(
Z2
k∆

)
∆

− σ2(Xk∆)

)
+

2Bk∆Zk∆ +B2
k∆

∆

Let us set

Ẽk∆ = Yk∆ − Uk∆ +

(
E
(
Z2
k∆

)
∆

− σ2(Xk∆)

)
+

2Bk∆Zk∆ +B2
k∆

∆
.

By Lemmas 1 and 10, we have that

E
(
Ẽ2
k∆

)
. ∆1−β/2 ln4(n) + ∆ and E

(
Ẽ4
k∆

)
. ∆1−β/2 ln8(n).

Moreover, by Lemma 3,

E (Fk∆|Fk∆) = 0, E
(
F 2
k∆

∣∣Fk∆

)
≤ σ4

1

∆
and E

(
F 4
k∆

∣∣Fk∆

)
.

1

∆
.

The end of the proof is the same as in Subsection 6.4. On Ωn, we obtain that:

E
(∥∥σ̂2

m − σ2
A

∥∥2

n
1Ωn

)
≤
∥∥σ2

m − σ2
A

∥∥2

π
+ 12E

(
Ẽ2

∆

)
+ 12E

(
sup
t∈Bm

ν2
n,2(t)

)
where νn,2(t) = n−1

∑n
k=1 Fk∆t(Xk∆). By Lemma 3, we get that

E
(

sup
t∈Sm

ν2
n,2(t)

)
≤
∑
λ∈Λ

E
(
ν2
n,2 (ϕλ)

)
=
∑
λ

E
(
F 2
k∆ϕ

2
λ(Xk∆)

)
≤ σ4

1

Dm

n

where (ϕλ)λ∈Λ is an orthonormal basis for the ‖.‖π- norm. If we take an orthonormal basis for the
‖.‖L2-norm, we obtain the second bound

E
(

sup
t∈Sm

ν2
n,2(t)

)
≤
φ1

∫
σ4(x)π(x)dx

π0

Dm

n
.

The bound on the risk on Ωcn is done in the same as in Subsection 6.4.

6.13 Proof of Theorem 13 (Oracle inequality for the adaptive estimator
of σ)

The beginning of the proof is the same as in Subsection 6.6. As, for any m, γn,2(σ̂2
m̂) + pen2(m̂) ≤

γn,2(σ2
m) + pen2(m), we get that

∥∥σ̂2
m̂ − σ2

A

∥∥2

n
≤
∥∥σ2

m − σ2
A

∥∥2

n
+ pen2(m)− pen2(m̂) +

2

n

n∑
k=1

(Ẽk∆ + Fk∆)(σ̂2
m̂(Xk∆)− σ2

m(Xk∆)).
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As previously, we bound the risk on Ωn and on Ωcn. We set p2(m,m′) = (pen2(m) + pen2(m′))/12.
On Ωn, we have:

E
(∥∥σ̂2

m̂ − σ2
A

∥∥2

n

)
≤
∥∥σ2

m − σ2
A

∥∥2

π
+4 pen2(m)+C∆1−β/2+12

∑
m′

E

(
sup

t∈Bm,m′

ν2
n,2(t)− p2(m,m′)

)
+

.

As in Subsection 6.6, it remains to bound E
([

supt∈Bm,m′
ν2
n,2(t)− p2(m,m′)

]
+

)
. We can remark

that E (F pk∆) ≤ 1
∆pE

(
Z2p
k∆

)
. According to Barlow and Yor (1982, Proposition 4.2 (Burkholder-

Davis-Gundy inequality with optimal constants)), there exists a constant c such that, for any
p > 0:

E
(
Z2p
k∆

)
≤ c2p(2p)pE

(∣∣∣∣∣
∫ (k+1)∆

k∆

σ2(Xs)ds

∣∣∣∣∣
p)
≤ c2p(2p)p∆pσ2p

1 .

Then E (F pk∆) ≤ σ2p
1 c2p(2p)p. By Lemma 7 of Schmisser (2012), there exists a constant κ such that,

for any (m,m′) ∈M 2
n ,

E

([
sup

t∈Bm,m′

ν2
2,n(t)− p2(m,m′)

]
+

)
.
e−(Dm+D′m)

n

which ends the proof.

6.14 Proof of Lemma 14 (Estimation of the penalty constant for the
estimation of σ2)

Approximation of the first bound. As in Subsection 6.8, we get an inequality similar to (31):

|σ̂1 − σ1,A| ≤
∥∥σ̂2

m − σ2
A

∥∥2

∞ . D−1
m +Dm

(
1

n

n∑
k=1

Ẽ2
k∆ +

∑
λ

ν2
2,n(ϕλ)

)
.

As

Ẽk∆ = (Yk∆ − Uk∆) +

(
E
(
Z2
k∆

)
∆

− σ2(Xk∆)

)
+

2Bk∆Zk∆ +B2
k∆

∆
,

on ΩB , by Lemma 1,
|Ẽk∆| . |Yk∆ − Uk∆|+ ∆1/2 + ∆1/2 ln2(n).

We apply Bennett’s inequality to n−1
∑n
k=1(Yk∆−Uk∆)2. Indeed, by Lemma 10, E

(
(Yk∆ − Uk∆)2

)
.

∆1−β/2 ln4(n), |Uk∆ − Yk∆| . ln2(n) on ΩB and

Var

(
qn∑
k=1

(Yk∆ − Uk∆)2

)
≤ q2

nE
(
(Uk∆ − Yk∆)4

)
. q2

n∆1−β/2 ln8(n) . qn ln9(n)∆−β/2.

Then

P

(
1

n

n∑
k=1

(Uk∆ − Yk∆)2 ≥ ∆1−β/2 ln4(n) +
ln(n)√
n∆

)
. exp

(
− cn ln2(n)/n∆

∆−β/2 ln9(n) + ln2(n)qn ln(n)/
√
n∆

)

. exp

(
−c ln2(n)

∆1−β/2 ln9(n) + ln4(n)/
√
n∆

)
. n−6.
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Moreover, ν2,n(ϕλ) = n−1
∑n
k=1 ϕλ(Xk∆)Fk∆. We recall that E (ϕλ(Xk∆)Fk∆) = 0, Var (

∑qn
k=1 ϕλ(Xk∆)Fk∆) ≤

σ4
1 and, on ΩB , |ϕλ(Xk∆)Fk∆| . Dm ln(n). Therefore, by Bennett’s inequality:

P
(
|ν2,n(ϕλ)| ≥ ln4(n)√

n∆

)
. exp

(
−cn ln2(n)/(n∆)

1 + qnDm ln5(n)/
√
n∆

)
. exp

(
−c ln2(n)

ln−6(n)∆ + Dm√
n∆

)
. n−6

as Dm ≤
√
n∆. We get:

P
(
|σ̂2

1 − σ2
1,A|2 ≥

1

Dm
+Dm

(
∆1−β/2 ln4(n) +

ln4(n)√
n∆

))
. n−6.

Taking Dm = ln(n), we get that

P
(
|σ̂2

1 − σ2
1 | ≥ 1/ ln(n)

)
. n−6.

Approximation of the second bound. We have that

E
(
Y 2
k∆

)
= (Uk∆ + Yk∆ − Uk∆)

2
= E

(
U2
k∆

)
+ E

(
(Yk∆ − Uk∆)2

)
+ 2E (Uk∆(Yk∆ − Uk∆)) .

By Lemmas 1, 10 and Cauchy-Schwarz,

E
(
Y 2
k∆

∣∣Fk∆

)
= 3σ4(Xk∆) + C(∆1/2 + ∆1−β/2 + ∆1/2−β/4).

and therefore E
(
Y 2
k∆

)
= 3

∫
σ4(x)π(x)dx + C∆1/2−β/4 It remains to control the difference with

the empirical mean and its expectation by a Bennett inequality. Indeed, on ΩB , Y 2
k∆ . ln4(n) and

Var
(
Y 2
k∆

)
. 1. Then

P

(∣∣∣∣∣ 1n
n∑
k=1

Y 2
k∆ − 3

∫
R
σ4(x)π(x)dx

∣∣∣∣∣ ≥ C∆1/2−β/4 +
ln2(n)√
n∆

)
. exp

(
− cn ln4(n)/(n∆)

1 + ln4(n)qn ln2(n)/
√
n∆

)

. exp

− c ln4(n)

∆ + ln7(n)√
n∆

 . n−6.

By (33), we get the expected result.
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A Technical tools

Burkholder Davis Gundy inequality. Let us consider the filtration

Ft = σ(η, (Ws)0≤s≤t, (Ls)0≤s≤t).
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Then, for any p ≥ 2, there exists a constant Cp > 0 such that:

E

(
sup

s∈[t,t+h]

∣∣∣∣∫ s

t

σ(Xu)dWu

∣∣∣∣p
∣∣∣∣∣Ft−

)
≤ CpE

∣∣∣∣∣
∫ t+h

t

σ2(Xu)du

∣∣∣∣∣
p/2
∣∣∣∣∣∣Ft−


and

E

(
sup

s∈[t,t+h]

∣∣∣∣∫ s

t

ξ(Xu−)dLu

∣∣∣∣p
∣∣∣∣∣Ft−

)
≤ CpE

(∫ t+h

t

ξ2(Xu)du

)p/2∣∣∣∣∣∣Ft−


+ CpE

(∫ t+h

t

|ξp(Xu)| du

∣∣∣∣∣Ft−

)∫
R
|z|pν(dz).

Definition of Besov’s spaces. A function g belongs to the Besov space Bα
2,∞(A) if

• g belongs to L2(A)

• Its modulus of smoothness ωp satisfies supt>0 t
−αωr(g, t)2 <∞ with r = bα+ 1c and where

ωr(g, t)p := sup
0<h≤t

‖∆r
h(g, .)‖Lp(A) where ∆r

h(g, x) :=

r∑
k=0

(−1)kCkr g(x+ kh).

This result can be find in Dellacherie and Meyer (1980) or Applebaum (2004).

Berbee’s coupling lemma. Let (Xt)t≥0 be a stationary and exponentially β−mixing process
observed at discrete times t = 0,∆, . . . , n∆. Let us set n = 2pnqn with qn = 8 ln(n)/∆. For any
a ∈ {0, 1}, 1 ≤ k ≤ pn, we consider the random variables

Uk,a =
(
X((2(k−1)+a)qn+1)∆, . . . , X(2k−1+a)qn∆

)
.

There exist random variables X∗∆, . . . , X
∗
n∆ such that

U∗k,a =
(
X∗((2(k−1)+a)qn+1)∆, . . . , X

∗
(2k−1+a)qn∆

)
satisfy:

• For any a ∈ {0, 1}, the random vectors U∗1,a, U∗2,a, . . . , U∗pn,a are independent.

• For any (a, k) ∈ {0, 1} × {1, . . . , pn}, U∗k,a ∼ Uk,a.

• For any (a, k) ∈ {0, 1} × {1, . . . , pn}, P
(
Uk,a 6= U∗k,a

)
≤ βM (qn∆) ≤ n−8 where βM is the

β-mixing coefficient of (Xt).
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Let us set Ω∗ =
{
ω, ∀(k, a) ∈ {0, 1} × {1, . . . , pn}, Uk,a = U∗k,a

}
. Then P ((Ω∗)c) ≤ n∆/n8.

Berbee’s coupling Lemma is proved by Viennet (1997).
The following Talagrand’s inequality is proved by Birgé and Massart (1998) (corollary 2p.354)

and Comte and Merlevède (2002) (p222-223).

Talagrand’s inequality. Let (X1, . . . , Xn) be independent identically distributed random vari-
ables, F a countable family of functions and define In : F 7→ R such that

In(f) =
1

n

n∑
k=1

f(Xk)− E (f(Xk)) .

If there exists M,H2, V ∈ R+ such that

sup
f∈F
‖f(Xk)‖∞ ≤M, E

(
sup
f∈F

I2
n(f)

)
≤ H2, sup

f∈F
Var (f(Xk)) ≤ V

then

E

(
sup
f∈F

I2
n(f)− 12H2

)
+

.
V

n
exp

(
−k1

nH2

V

)
+
M2

n2
exp

(
−k2

nH

M

)
.

where k1 and k2 are two explicit constants.

Bennett inequality. Let (X1, . . . , Xn) be independent identically distributed random variables
such that Var (Xi) = V and |Xi − E (Xi) | ≤M p.s (with V,M ∈ R+. Then, for any x > 0,

P (|Sn − E (Sn)| ≥ x) ≤ exp

(
− x2

2(nV + xM/3)

)
where Sn =

∑n
i=1Xi. From Berbee’s coupling lemma and Talagrand’s and Bennett’s inequality,

we deduce the following lemma:

Talagrand’s and Bennett’s inequality for β-mixing variables. Let us consider (Zk) some
random variables, exponentially β-mixing, such that the β-mixing coefficient of Zk satisfies:

∃c > 0, γ > 0,∀k, βZ(k) ≤ ce−γk.

We define qn := d2 ln(n)/(γ)e, pn = dn/(2qn)e. We have that βZ(qn) ≤ ce−2γ ln(n)/γ . n−2.

Talagrand Let us consider

In(f) =
1

n

n∑
k=1

f(Zk)− E [f(Zk)]

and F a countable family of functions. If we can find a triplet (M , V and H) in (R+)3 such
that, for any 0 ≤ j ≤ pn − 1:

∀c, sup
f∈F

Var

 1

qn

(j+1)qn∑
k=jqn+1

f(Zk)

 ≤ V

qn
,

∀c, sup
f∈F

∥∥∥∥∥∥ 1

qn

(j+1)qn∑
k=jqn+1

f(Zk)

∥∥∥∥∥∥
∞

≤M and E

[
sup
f∈F
|In(f)|

]
≤ H√

n
,
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then we have, by Talagrand’s inequality:

E

[
sup
f∈F
|I2
n(f)− 6H2|

]
+

≤ CV
n

exp

(
−k1

H2

12V

)
+ C ′

M

p2
n

exp

(
−k2

√
pnH√
qnM

)
+ 2

M

n2

where C, C ′, k1 and k2 are universal constants.

Benett Let us set

Sn =

n∑
k=1

Zk and Z̄n =
1

n

n∑
k=1

Zk.

If we can find V ′, M ′ such that, for any 0 ≤ j ≤ pn − 1

Var

 (j+1)qn∑
k=jqn+1

Zk

 ≤ qnV ′ and

∣∣∣∣∣∣
(j+1)qn∑
k=jqn+1

Zk − E (Zk)

∣∣∣∣∣∣ ≤ qnM ′
then, by Bennett’s inequality: P (|Sn − E (Sn) | ≥ x) ≤ 2 exp

(
− x2

2(nV ′+xM ′qn)

)
and therefore:

P
(
|V̄n − E (V1) | ≥ x

)
≤ 2 exp

(
− nx2

2(V ′ + xM ′qn)

)

Fourier transform.
We denote by Fh the Fourier transform of a function h ∈ L1(R):

Fh(x) =

∫
R
f(u)e−ixudu.

The Schwarz space is defined as

S (R) =
{
h ∈ C∞, ∀p, q ∈ N, ∃Cp,q, ∀x ∈ R, |xph(q)(x)| ≤ Cpq

}
.

Then we have the following properties:

a. For any h1, h2 ∈ L2(R), (a1, a2) ∈ R2, F(a1h1 + a2h2) = a1Fh1 + a2Fh2.

b. For any h ∈ L2(R), Fh ∈ L2(R) and ∀x ∈ R, h(x) = 1
2π

∫
R e

itxFh(t)dt.

c. For any h ∈ L2(R), Fh(./a)(x) = |a|Fh(ax).

d. For any functions h1, h2 ∈ L2(R), the Parseval’s formula holds:∫
R
h1(x)h2(x)dx =

1

2π

∫
R
Fh1(u)Fh2(u)du.

As Fδy(x) = e−ixy,

h(0) =

∫
R
h(y)δ0(y)dy =

1

2π

∫
R
Fh(u)du

e. For any h in S(R), Fh ∈ S(R) and

F(h(q))(x) = (ix)qFh(x).
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