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Abstract: Thermal spray comprises a group of coating processes for coating manufacturing in 

which metallic or nonmetallic materials are deposited in a molten or semi-molten condition. Most 

often, the coating properties are significantly influenced by the operating parameters. However, 

obtaining a comprehensive modeling or analytical analysis of the thermal spray process is too 

difficult to be practical due to the complex chemical and thermodynamic reactions. Accordingly, 

the present study aims at applying an artificial neural network (ANN) model to predict the HVOF 

sprayed Cr3C2−25NiCr coatings and analyze the influence of operating parameters regardless of 

the intermediate process. The process parameters, which were automatically recorded by the 

homemade HVOF spray system during the spray process, were served as the inputs for the ANN 

model. Then, the porosity, microhardness and wear rate of coatings were measured and 

considered as targets for the ANN model. After configuring and training procedure of the model, 

the predicted results were compared to the results of experimental data. The good consistency 

found between these results permits to verify the reliability and accuracy of the trained ANN 

model. Additionally, the mean impact value (MIV) analysis was conducted to quantitatively 

explore the relative significance of each input variable for improving the effective prediction. 
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1. Introduction 

Thermal spray comprises a group of coating processes for coating manufacturing in which 

finely divided metallic or nonmetallic materials are deposited in a molten or semi-molten 

condition [1]. The high-velocity oxy-fuel process (HVOF) has been regarded as one of the most 

efficient techniques for depositing high-performance coatings at moderate cost [2]. In this 

process, the feedstock powders are sent into the combustion chamber by the carrier gas and 

heated at high temperature by the combustion of mixture gas. The heated or melted particles are 

accelerated by the combustible gases to achieve the supersonic velocity when they go through the 

de Laval nozzle, and then deposit on the substrate to form a coating [3,4]. Dense and 

homogenous coatings, having low porosity, high hardness and high wear resistance are therefore 

formed. The HVOF sprayed coatings, such as NiCr-based [5–7] or WC-Co-based [8,9] coatings, 

have been widely applied to improve surface quality and performance of metal parts for varied 

industrial applications, owing to their excellent chemical and mechanical performance, such as 

high oxidation resistance, corrosion resistance, and wear resistance. 

The coating performances are highly dependent on the operating parameters of the HVOF 

process. Fuel flow rate, spraying distance and oxygen flow rate were examined as the most 

important HVOF process parameters affecting the characteristics of in-flight particles [10]. 

Higher particle velocity would contribute to increasing the hardness and cavitation erosion 

resistance of the coatings [11]. Mechanical properties of HVOF sprayed Cr3C2-25NiCr coatings 

showed a strong dependence on microstructural features which were closely linked to selected 

processing parameters [12]. Variations in oxygen flow rate and fuel flow rate have had an effect 

on the velocity and temperature of the particles in flight, which therefore changes the properties 

of the HVOF sprayed coatings [13]. the Taguchi design method, which is an initial solution to 

identify the optimized process parameters and distinguish the major and minor factors, is the 

most widely used method to estimate the influences of the HVOF process parameters on the 



coating properties [14–16]. However, it may fail to achieve the precise optimal parameters since 

the coating quality is normally influenced by a combined effect of many HVOF process 

parameters. Numerical modeling and simulation have also been widely employed to simulate and 

control the spray process [17–19], which commonly pay more attention to investigating the 

development of the combustion and spray process. However, due to the complex multi-physical 

phenomenon of the thermal spray process, numerical modeling has difficulties to modeling the 

real behaviors. Therefore, a method for careful analysis, prediction, and optimization of the 

HVOF sprayed coatings is necessary. 

The artificial neural networks (ANN) is a computational model inspired by the organization, 

interconnection and the way information is processed of the biological neural networks 

constituting animal brains [20]. An ANN is similarly composed of processing elements called 

artificial neurons (analogous to biological neurons) and connection coefficients called weights 

(analogous to synapses) [21,22]. It can self-regulate and fit various nonlinearities in the data 

series through training and learning, which provides a method with high quality and efficiency to 

calculate the optimal conditions for manufacturing processes [23]. This method is mainly used 

when the relationship among the studied variables is complex or when the knowledge of the 

physical correlations is limited. Thermal spraying technologies are such kinds of processes 

containing complex chemical and thermodynamic reactions, which need to be researched with a 

powerful computational model, such as the ANN model. However, it is hard or costly to capture 

enough data sets of the thermal spraying processes and coatings, especially to collect enough data 

of the coating properties. Therefore, the application of the shallow ANN model, which normally 

contains less than three hidden layers for relatively less data applications, has also attracted 

increased attentions in the thermal spraying technique. Examples of applications of ANN models 

in thermal spray were lists in Table.I [24–31]. Most of the works were concentrated on the 

atmospheric plasma spray (APS) process and the ANN method has been relatively less used in 



HVOF sprays. There are limited researches about the investigation of the HVOF spray process by 

applying the ANN model. Additionally, the relative importance of each input variable in the 

ANN model has seldom been studied for the thermal spray process.  

In this study, the HVOF spray experiments and corresponding tests have been carried out to 

create the data set for the training, validation and test of the ANN model. The ANN model has 

been introduced to thoroughly study the HVOF spray process and has been applied to correlate 

the process parameters of HVOF spray ((served as inputs for the ANN model)) to the mechanical 

performance of coatings(served as targets for the ANN model). The reliability and accuracy of 

the ANN model have been verified by further experiments. Moreover, mean impact value (MIV) 

based analysis has been conducted to quantitatively explore the relative importance of each input 

variable for the improvement of the mechanical performance of coatings 

2. Experimental and characterization procedures 

2.1 Spray materials and coating fabrication 

The commercial available Cr3C2-25(Ni20Cr) (METCO 81 VF-NS: Oerlikon Metco AG, 

Wohlen, Switzerland) powder were used as feedstock in this study. The powder was received 

with a nominal particle size distribution of-45+5 μm. 

The HVOF spray experiments were carried out with a homemade Diamond Jet spray 

system. It characterizes with a recompiled control system programmed by using the 

programmable logic controller (B&R Industrial Automation GmbH, Eggelsberg, Austria) and a 

commercial DJ-2701 hybrid gun (Sulzer-Metco, Westbury, NY). A six-axis industrial robot 

IRB2600-20 (ABB, Sweden) was employed to fix the gun. 316L stainless steel plates 

(Ø25mm×10mm) were used as the substrates, which were grit-blasted and then ultrasonically 

cleaned in ethanol for 10 min before experiment. Methane was used as the fuel gas in this work. 

Experiments have been carried out by varying three process parameters, namely O2 flow rate, 

CH4 flow rate and stand-off distance. The CH4 flow rate varied from 120 to 200 slpm and O2 flow 



rate from 200 to 240 slpm. The stand-off distance was set as 280 and 320 mm. The HVOF spray 

process parameters are listed in Table.II. 

2.2 Coating characterization 

The microhardness of coatings was measured on the coating cross section by a Vickers 

microhardness indenter (Leiz-Wetzlar, Germany) with a load of 300 gf (e.t. 2.94 N) and a 

dwelling time of 25 s. twenty indentations were randomly measured and thereby give an average 

microhardness value for each coating. 

In order to calculate the porosity of coatings, the cross-sectional microstructure of prepared 

coatings was examined by a scanning electron microscope (SEM, JSM-5800LV, JEOL) with a 

secondary electronic mode. More than ten consecutive pictures were captured and an average 

value was calculated by using the imaging software (Image J). 

Dry sliding wear tests were carried out in a CSEM tribometer (Switzerland) having a 

ball-on-disc configuration. The tests were performed at atmospheric environment with 

temperature of 15-20℃ and humidity of 40-50%. Al2O3 ball (6 mm diameter) was employed as 

the counterpart material and was cleaned with alcohol before test. the test were conducted at the 

same sliding condition with a load of 5 N, a rotation radius of 7 mm, a linear rotation speed of 

10 mm/s and a sliding distance of 500 m. The cross-sectional profiles of the worn track were 

measured using a profilometer (Altisurf 500, France). At least ten profiles were conducted to give 

an average wear volume. Then the wear rate of the samples, which stands for the amount of 

material removed from the surface and uses to evaluate the wear resistance of coatings, is 

expressed by: 

� = ∆����          (1) 

, where ∆�is the volume loss of the material [mm3], S is the sliding distance [m] and 	
 is the 

applied normal load [N]. 



The samples for all the tests, i.e. the samples for measuring the microhardness and porosity, 

the surface of as-sprayed coatings for the dry sliding tribological test, were prepared with the 

same sequential procedure of grinding with P220 SiC paper and MD-Largo disc, and polishing 

with 3μm diamond suspension and 0.04μm non-drying colloidal silica suspension. 

3. Simulation model 

Thermal spray is considered as a non-linear problem taking its operating conditions and 

properties into account. An ANN model is a powerful statistical method to recognize the 

correlations between the parameters of a complex modeling or generalization problem and its 

response, such as pattern recognition and nonlinear system identification and control [32]. In this 

section, an ANN model has been configured and trained to predict the coating properties 

(microhardness, porosity and wear rate of coatings) from the process parameters (stand-off 

distance, oxygen flow rate, and fuel flow rate). The development of the ANN model is described 

as following. 

3.1 Data collection and pre-processing 

For configuration, training and validation of the ANN model, firstly, the operating 

parameters and test results were collected and pre-processed. A database of 120 data derived 

from 20 set of HVOF experiments and related tests was collected. Three process parameters, 

oxygen flow rate (Q(O2)), fuel flow rate (Q(CH4)), and stand-off distance(Dis), were served as the 

inputs for the ANN model. Meanwhile, the microhardness, porosity and wear rate of the coatings 

were used as the targets. The experimental values of the inputs and outputs were tabulated in 

Table.III. for the pre-processing, the data would be normalized according to Eq. (2) to fall in the 

range [-1, 1] in order to avoid the calculation error related to different parameter magnitudes [33]. 

All the data was randomly divided into three set according the data division function of 

“dividerand”. The ratio of the training set, testing set and validation set were 70%, 15% and 15% 

respectively.  
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�� = ���������������          (2) 

, where, �
�� is the normalized value; � is the experimental value; ����, ���
 are the 

maximum and the minimum of the experimental values in the data set. 

3.2 Establishing, training, and validation of the ANN model 

Once the data has been allocated, the next step is to configure the network and conduct the 

training of the network. 

Since both of the input and target variables of network are three, the numbers of neuron in 

input and output layers were accordingly set as three neurons. However, there is no general rule 

to precise the number of neurons in the hidden layers. The number of hidden layers and the 

number of neuron in the hidden layer are determined considering the accuracy of the trained 

model and the complexity of network structure. Normally, higher accuracy with lesser number of 

hidden layers and neurons in the hidden layer is expected. Consequently, An ANN model with 

two hidden layers and ten neurons in both of these two hidden layers was chosen, the architecture 

of which was shown in Fig.1. The accuracy of the model can be measured by the correlation 

coefficient (R) value, which provides an understanding about how well the outputs of the trained 

model fit the actual experimental results. If R = 1, this indicates that there is an exact linear 

relationship between the outputs and targets. If R is close to zero, then there is no linear 

relationship between outputs and targets. 

The training of the ANN model in this work was conducted in a supervised manner, using 

the back-propagation method. It is a typical learning technique comprised of a multilayer feed 

forward neural network trained by the error BP algorithms [34]. The inputs are sent forward via 

transfer function and the errors between the predicted outputs of using the network weights and 

the targets of the training set (experimental data) are calculated. The differences are propagated 

backward and the error network is feedback by adjusting the weights in order to minimize the 



errors. The task of determining the set of values for the weights that minimizes an error function 

is so-called training. The values of the weights and biases of the network are tuned to optimize 

network performance during the process of training, as defined by the network performance 

function. In this study, the performance function for networks is mean square error (MSE) - the 

average squared error between the networks outputs and the experimental result. It is defined as 

follows [35]: 
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, where, it is the experimental result; ia is the network predicted result; ie is the difference 

between the experimental result and the network predicted result; N is the number of the data 

sets. 

The ANN model was trained and tested in Matlab (MathWorks, Natick, MA, USA). The 

Log-sigmoid transfer function (logsig) was selected as the transfer function for hidden layers, the 

Linear transfer function (purelin) as the transfer function for output layer, and 

Levenberg-Marquadt Back-propagation (trainlm) as the training function. The functions used 

were summarized in Table.IV. 

3.3 MIV analysis approach 

Introducing an appropriate method to analyze the significance of each input variable taking 

into account the error of the input variables is meaningful. MIV based analysis provides such a 

method for ANN model to explore the relative importance of each input variable for the 

improvement of the prediction performance. 

The MIV method, firstly proposed by Dombi GW in biomedical field, is used to choose 

parameters or analyze the independent variables that have a great impact on the dependent 

variables in an ANN [36]. Hereafter, it has been widely employed to quantitatively feature 



analysis in the machine learning applications [37,38]. The process of MIV based analysis is as 

follows [39]: 

(1) Obtaining the trained ANN model with the input (�) in the data set, as shown in Eq. (4). 

� =  ���� ��� ⋯ ������⋮ ��� …⋮ ⋱ ���⋮�!� �!� ⋯ �!�
"         (4) 

,where, n is the number of the input variables, m is the number of values of each variable. 

(2) The ith variable in � is added and reduced by 10% to form two new inputs, �#(1) and 

�#(2), as displayed in Eq. (5) and Eq. (6). 
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�#(2) =  
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(3) These two new inputs are used for simulation with the trained model. The simulated outputs, 

i.e. 2#(1) and 2#(2), based on �#(1) and �#(2) are obtained. The difference between 

2#(1) and 2#(2) is calculated and defined as impact value 3#, as depicted in Eq. (7)-(9). 

2#(1) =  
()
))
*4��(1)⋮ 4��(1)⋮ ⋯ 4��(1)⋮45�(1)⋮ 45�(1) …⋮ ⋱ 45�(1)⋮46�(1) 46�(1) ⋯ 46�(1)./

//
0
         (7) 
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0
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3# = 2#(2) − 2#(1)         (9) 

,where, l is the number of the output variable. 

(4) The MIV of ith input variable on the kth output variable could be calculated according to Eq. 

(10). The sequence of the input variables is sorted according to their absolute MIVs. 

73�#(8) = �� ∑ (3#)5:�:;�          (10) 

(5) The contribution rate to the kth output variable from the ith input variable can be further 

calculated as following[40]: 

<#(8) = |���>(5)|∑ |���>(5)|?>@A ∗ 100%        (11) 

4. Results and discussions 

4.1 Analysis of the coating properties 

As displayed in Tabel.2, the microhardness of coatings varies from 461±33 to 732±48 

HV0.3. The operating parameters of stand-off distance of 280 mm, O2 flow rate of 200 slpm, and 

CH4 flow rate of 160 slpm contributes to the highest microhardness of 732±48 HV0.3. Higher 

values of microhardness mainly occur with relatively short stand-off distance (280 mm). For the 

distribution of the porosity of coatings, it mainly concentrates in the range of 0.67±0.12% to 

1.78±0.31%. Most of the relatively higher values of the coatings porosities are related to shorter 

stand-off distance (280 mm), especially with lower O2 flow rate of 200 slpm. For the wear rate of 

coatings during the abrasion test, it distributes randomly and mainly focuses on the range of 

4.00±1.30×105 to 15.73±1.95×105 mm3/N/m. A relatively low coating wear rate occurs when the 

stand-off distance is 280 mm and the O2 flow rate of is 240 slpm. 

The stand-off distance has a greater impact on the coating properties which has a relatively 

slighter fluctuation with the varied of the flow rate of O2 and CH4. However, there are no 

obviously relationships among the microhardness, the porosity and the wear rate of the coatings. 



In addition, it is hard to build the relationship between the process parameters of HVOF spray 

and the coatings performances by curve fitting. Therefore, an ANN model is needed to further 

investigate and predict the performance of coatings. 

4.2 Analysis of the training and validation process of ANN model 

The ANN model was trained more than 100 times and the one generating the minimum error 

of the validation set was saved. An R-value of 0.99965 for the ANN model to predict the coating 

properties from the process parameters of the HVOF process was obtained. The R-value provides 

an understanding of how well the network was trained. The training result demonstrating the 

comparison between the targets (T, experimental values) and outputs (y, predicted values) of the 

ANN model was shown in Fig.2. The line y = T represents that the predicted outputs exactly 

match the targets. It is clear that all of the data standing for the microhardness, porosity and wear 

rate of coatings are dispersed around the line y = T, which indicates that the trained result rightly 

fit with the targets. This can be further verified by the relatively small absolute errors (maximum 

error of 2.675%) from the error histogram, as displayed in Fig.3. 

The predicted outputs of the ANN model were inverse normalized after training to compare 

with the experimental values. As displayed in Fig.4, the comparison between the experimental 

values and the predicted values of the training and validation set of the ANN model was given, 

where the red and blue symbols stand for the experimental and predicted values, respectively. In 

the first approximation, results are in good agreement. The relative errors between the 

experimental values and the predicted values were calculated with respect to the experimental 

values and shown in Fig.5. As shown in Fig.5(a), the relative error between the experimental and 

predicted values of the microhardness of coatings varies from -0.703% to 1.538% with an 

average of 0.156% and a standard deviation of 0.477%. It distributes smaller and more 

concentrated than the porosity of coatings varying from -0.535% to 2.062% with an average of 

0.239% and a standard deviation of 0.605% (shown in Fig.5(b)). The wear rate of coatings shows 



the widest and the most discrete distribution with a range from -4.361% to 4.407%, an average of 

0.004% and standard deviation of 1.922%, as displayed in Fig.5(c)). It indicates that the ANN 

model is more accurate in predicting the microhardness of coatings, which is mainly attributed to 

the more regular tendency of the distribution of coatings microhardness. 

4.3 Testing of ANN model 

The test set of ANN model (No. 3, 4 and 19), randomly allocated from the data set in 

Table.III, is independent from the training and optimization process of the ANN model. Its 

predicted and experimental values was inverse normalized and shown in Fig.6, where the black 

and red columns stand for the predicted and experimental values, respectively. As shown in 

Fig.6, the maximum of the relative errors for the microhardness, porosity and wear rate of 

coatings are 1.513%, 0.715% and 1.552%, corresponding to a difference of 9.17 HV0.3, 0.01 

%area, and 0.11×10-5 mm³/N/m. The minimums of the relative errors are 0.157%, 0.039% and 

0.085%%, respectively. It can be seen that the predicted values are consistent with the 

experimental values and the range of the relative errors in test set is smaller than that of training 

and validation set. Analysis suggests that the ANN model is properly trained to predict the 

microhardness, porosity and wear rate of coatings from the HVOF sprayed process parameters. 

Though the relationships between the HVOF sprayed process parameters and the properties of 

coating are complex, it is possible to directly predict the coating properties by employing the 

ANN model. 

4.4 MIV based analysis for the ANN model 

The MIV based analysis method has been widely accepted as one of the best indicators for 

evaluating the value of a given coefficient for an ANN model [37,41,42]. The MIV value and 

contribution rate for each input variable on each output variable were calculated and shown in 

Table.V and Table.Ⅵ . Results show that the important sequence of the factors for the 



microhardness and porosity is: spray distance > O2 flow rate > CH4 flow rate; for the wear rate: 

O2 flow rate > spray distance > CH4 flow rate. Spray distance is the most important factor to 

influence the microhardness and porosity, which occupies 50% and 57% contribution rate, 

respectively. This result keeps consistency with the analysis of the coating properties in Section 

4.1. However, the importance of O2 flow rate is much more than spray distance for the wear rate, 

possessing 57% contribution rate. CH4 flow rate always has the slightest impact on all output 

variables, contributing 17%, 18% and 20% for microhardness, porosity and wear rate of coating, 

respectively.  

Though the fuel in the HVOF spray is different from this study, previous works have also 

concluded that the spray distance performs greater influence on the microhardness and porosity 

of coatings than the oxygen flow rate for different kinds of feedstock [14,43,44]. Another study 

has also been carried out to emphasize the great influence of spray distance on coatings 

microhardness from the perspective of airborne acoustic emission during the HVOF spray[45]. 

Research [46] also suggested that the oxygen flow rate has complex impact on the coatings wear 

performance. On the one hand, the increase of the oxygen flow rate would increase the velocity 

of particle in-flight and enhance the cooling effect for the particle in-flight, resulting in the 

decrease of the temperature of particle in-flight, which would decrease the coatings wear 

resistance. On the other hand, increasing the oxygen flow rate would contribute to increasing the 

temperature of particle in-flight due to increasing the reaction rate of the gases. Unfortunately, 

there are limited researches to directly compare the importance of the process parameters. In this 

work, The MIV based analysis makes up the study of the importance of the process parameters, 

especially for ANN model. 

5. Conclusions 

In this work, an ANN model has been configured, trained and optimized to predict the 

coating properties (i.e. microhardness, porosity and wear rate of coating) from the operating 



parameters of HVOF spray(i.e. stand-off distance, flow rate of CH4 and O2). HVOF spray 

experiments and related tests were conducted to set up the data set for the training, validation and 

test of the ANN model. The ANN model has been trained and optimized. An R-value of 0.99965 

with a maximum error of 2.675% is achieved to verify the prediction performance of the ANN 

model. The reliability and accuracy of the ANN model have been further verified by the test sets, 

where the relative errors are smaller than the maximum errors of the training and validation set 

(1.538%, 2.062% and 9.407% for microhardness, porosity and wear rate of coating, respectively). 

Therefore, the developed ANN model can be used for spray behavior prediction and further 

parameter control or optimization in coating operating practice. Additionally, the MIV based 

analysis has been carried out for evaluating the factors importance. Results show that the 

important sequence of the factors for the microhardness and porosity is: spray distance > O2 flow 

rate > CH4 flow rate; for the wear rate: O2 flow rate > spray distance > CH4 flow rate. 
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Table.I Examples of ANN models used in thermal spray 

Spray 

technique 

Spray 

material 

Inputs Outputs Reference 

Atmospheric 

plasma spray 

(APS) 

Al2O3–13% 

Weight TiO2 

Arc current intensity; injector 

stand-off distance; injector 

diameter; carried gas flow rate; H2 

flow rate; Ar flow rate 

Particle temperature, 

particle velocity, particle 

diameter 

(Ref 24,25) 

APS Al2O3–13% 

Weight TiO2 

Arc current intensity; total gas(H2 

+ Ar); H2 content(H2/Ar); carried 

gas flow rate; injector diameter 

Height and the flattening 

of the coating profile 

[26] 

APS Al2O3–13% 

Weight TiO2 

Arc current intensity; total gas(H2 

+ Ar); H2 content(H2/Ar); carried 

gas flow rate 

Particle temperature, 

particle velocity 

[27] 

APS Al2O3–13% 

Weight TiO2 

Particle temperature; particle 

velocity 

Coating porosity [28] 

APS Mo (Metco) 

powders 

Wear environment (dry and 

acidic); normal load; wear time 

Microhardness and the 

amount of wear loss 

[29] 

HVOF and 

flame spray 

WC-CoCr, 

Cr3C2-NiCr, 

Deposition method; impact angle 

and speed of abrasive particles; 

fracture toughness; microhardness; 

porosity; roughness; coating 

density 

Erosion rate [30] 

HVOF spray NiCrAlY O2 flow rate; spraying distance Coating porosity and 

hardness 

[31] 

  



Table.II HVOF spray process parameters 

Parameters Values 

O2 flow rate (slpm) 200, 240 

CH4 flow rate (slpm) 120, 140, 160, 180, 200 

Air flow rate (slpm) 300 

Carrier gas flow rate (slpm) 40 

Stand-off distance (mm) 280, 320 

Gun traverse speed (mm/s) 200 

Powder feed rate (g/min) 30 

  



Table.III Database for the training, validation and test of the ANN model 

No. 

HVOF process parameters 
 

Coating porosities 

Dis 

[mm] 

Q(O2) 

[slpm] 

Q(CH4) 

[slpm]  

Microhardness 

[HV0.3] 

Porosity 

[%area] 

Wear rate×10-5 

[mm³/N/m] 

1 280 200 120 
 

558±39 1.47±0.23 15.59±1.56 

2 280 200 140 
 

531±20 1.37±0.28 7.12±1.73 

3 280 200 160 
 

732±48 1.78±0.31 6.12±1.46 

4 280 200 180 
 

606±50 1.70±0.16 10.17±1.54 

5 280 200 200 
 

575±56 1.23±0.19 11.74±2.26 

6 280 240 120 
 

532±51 1.56±0.24 10.25±1.20 

7 280 240 140 
 

561±36 0.87±0.20 4.20±2.16 

8 280 240 160 
 

691±42 1.00±0.17 4.47±1.14 

9 280 230 180 
 

632±58 1.03±0.23 5.00±0.86 

10 280 225 200 
 

656±35 0.83±0.33 4.00±1.30 

11 320 200 120 
 

461±33 1.11±0.21 4.95±0.91 

12 320 200 140 
 

474±36 0.92±0.18 9.15±2.81 

13 320 200 160 
 

531±45 0.67±0.12 9.70±1.61 

14 320 200 180 
 

547±31 0.86±0.12 7.69±0.93 

15 320 200 200 
 

565±18 0.98±0.31 8.92±3.06 

16 320 240 120 
 

509±33 0.88±0.14 15.73±3.95 

17 320 240 140 
 

596±43 0.72±0.20 9.93±3.04 

18 320 240 160 
 

557±34 0.80±0.09 5.54±1.57 

19 320 233 180 
 

606±41 0.99±0.08 6.94±1.65 

20 320 230 200 
 

583±39 0.87±0.17 6.88±1.66 

  



Table.IV Training functions of the ANN model 

functions Values 

Pre-processing and post-processing 

function 

mapminmax 

removeconstantrows 

data division function dividerand 

Transfer function for hidden layers logsig 

Transfer function for the output layer purelin 

Training function trainlm 

 

  



Table.V The MIV values for input variables 

Input 

variables 

 Output variables 

Microhardness porosity Wear rate 

Distance  -0.128 -0.273 -0.076 

Q(O2)  0.085 -0.118 -0.189 

Q(CH4)  0.045 -0.086 -0.068 

 

 

  



Table.Ⅵ The contribution rate for input variables 

Input 

variables 

 Output variables 

Microhardness porosity Wear rate 

Distance  50% 57% 23%  

Q(O2)  33%  25%  57%  

Q(CH4)  17% 18%  20%  

  



 

Figure captions 

Fig.1 The architecture of the ANN model 

Fig.2 The comparison between the output and the target 

Fig.3 The error histogram of the training results 

Fig.4 The comparison of the predicted and experimental result of microhardness (a), porosity (b), 

and wear rate (c) of coatings in training and validation set 

Fig.5 The distribution of relative errors of microhardness (a), porosity (b), and wear rate (c) of 

coatings in training and validation set 

Fig.6 The comparison of the predicted and experimental result of microhardness (a), porosity (b), 

and wear rate (c) of coatings in test set 
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