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ABSTRACT  

Alzheimer’s disease (AD) neuropathology is extremely heterogeneous, and the evolution 

from preclinical to mild cognitive impairment (MCI) until dementia is driven by interacting 

genetic/biological mechanisms not fully captured by current clinical/research criteria. 

We characterized the heterogeneous “construct” of AD through a cerebrospinal fluid (CSF) 

biomarker-guided stratification approach. We analyzed five validated pathophysiological CSF 

biomarkers (Aβ1-42, t-tau, p-tau181, NFL, YKL-40) in 113 participants (healthy controls 

[N=20], subjective memory complainers [N=36], MCI [N=20], and AD dementia [N=37], 

age: 66.7±10.4, 70.4±7.7, 71.7±8.4, 76.2±3.5 years [mean±sd], respectively) using Density-

Based Spatial Clustering of Applications with Noise, which does not require a priori 

determination of the number of clusters. We found five distinct clusters (sizes: 

N=38,16,24,14,21) whose composition was independent of phenotypical groups. Two clusters 

showed biomarker profiles linked to neurodegenerative processes not associated with classical 

AD-related pathophysiology. One cluster was characterized by the neuroinflammation 

biomarker YKL-40. Combining non-linear data aggregation with informative biomarkers can 

generate novel patient strata which are representative of cellular/molecular pathophysiology 

and may aid in predicting disease evolution and mechanistic drug response.  

 

KEYWORDS: Alzheimer's disease; biomarker-guided categorization; clustering; 

pathophysiology; precision medicine 
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ABBREVIATIONS  

Aβ1-42 = forty-two-amino acid-long amyloid-β peptide; AD = Alzheimer’s disease; ADD = 

Alzheimer’s disease dementia; APMI = Alzheimer Precision Medicine Initiative; APMI-CP = 

Alzheimer Precision Medicine Initiative Cohort Program; CDR = Clinical Dementia Rating 

scale; CLIQUE = CLustering In QUEst; CSF = cerebrospinal fluid; DBSCAN = Density-

Based Spatial Clustering of Applications with Noise; FCSRT = Free and Cued Selective 

Rating Test; HC = healthy controls; IWG = International Working Group; LLOQ = Lower 

limit of quantification; MCI = mild cognitive impairment; MMSE = Mini-Mental State 

Examination; MRI = magnetic resonance imaging; NFL = neurofilament light chain protein; 

NIA-AA = National Institute of Ageing-Alzheimer Association; NINCDS-ADRDA = 

National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s 

Disease and Related Disorders Association; p-tau = hyperphosphorylated tau protein; p-tau181 

= tau hyperphosphorylated at threonine 181; PET = positron emission tomography; SMC = 

subjective memory complainers; t-SNE = t-Distributed Stochastic Neighbor Embedding; t-tau 

= total tau protein.  

 



5 

 

1. INTRODUCTION  

Over the past three decades, technological advances have transformed the conceptual 

framework of Alzheimer’s disease (AD). Post-mortem studies demonstrated a high degree of 

neuropathological heterogeneity in patients who received a clinical diagnosis of AD, 

emphasizing the need to develop reliable in vivo biomarkers for AD-related pathophysiology 

(Rabinovici et al., 2017). Accordingly, the current research diagnostic criteria (Dubois et al., 

2007, 2010; Albert et al., 2011; McKhann et al., 2011; Sperling et al., 2011) recommend the 

biomarker-based in vivo demonstration of AD pathomechanistic alterations, i.e. brain 

overaccumulation of both brain amyloid-β (Aβ) (as indicated by low Aβ peptide [Aβ1-42] 

concentrations in the cerebrospinal fluid [CSF]) and neurofibrillary tangles (as indicated by  

elevated CSF concentrations of hyperphosphorylated tau [p-tau] and total tau [t-tau] proteins).  

Furthermore, the growing need for early-stage clinical trials for disease-modifying 

therapies is fostering a progressive shift from a clinical toward a biological definition of AD, 

along its clinical continuum (Jack et al., 2018). For the sake of stratifying individuals by AD 

pathomechanistic alterations, the “A/T/N” scheme, an agnostic conceptual framework focused 

on a biological definition of the pathophysiological continuum of AD, has been proposed. The 

A/T/N categorizes individuals by the presence/absence of core AD-related pathophysiological 

hallmarks (Aβ and tau proteinopathies plus neurodegeneration) (Jack et al., 2016a, 2018).  

In the next years, the implementation of the current A/T/N scheme with additional 

pathophysiological process, including neuroinflammation, axonal damage, and synaptic 

dysfunction is expected to occur (Hampel et al., 2018b; Molinuevo et al., 2018). The 

integration of the A/T/N system in clinical trials is expected to support  time-sensitive 

pathway-based therapeutic approaches. 

Ideally, all relevant pathophysiological mechanisms supporting AD should be integrated 

into a biomarker-guided stratification strategy to support the aggregation of patients from 
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large-scale population studies into homogeneous “clusters” (i.e. strata of individuals with 

distinct biomarker profiles) independent of clinical phenotypes. This regrouping (i.e. 

stratification) strategy has the potential to establish subsets of individuals which share similar 

disease-related trajectories and drug-responses. In this context, one study predicted patient 

evolution based on clusters generated from both cerebrospinal fluid (CSF) and magnetic 

resonance imaging (MRI) data (Nettiksimmons et al., 2010). Previous work clustered AD 

patients using, e.g., the CLustering In QUEst (CLIQUE) strategy (Gamberger et al., 2016a, 

2016b) (not including dimensionality reduction and focused on patients with a very large 

number of attributes), hierarchical clustering (which provides a multiscale picture of clusters 

but no indication of which dimensionality to choose), or k-means clustering (which requires a 

priori determination of the number of clusters) for profiling AD patients, older adults in 

general (Escudero et al., 2012; Zemedikun et al., 2018), or patients with other disorders, 

including aphasia (Hoffman et al., 2017). 

In this exploratory analysis, we sought to investigate whether different AD clinical 

syndromes may drop into different biomarker-driven clusters as well as whether different 

clinical syndromes may drop into the same biomarker-driven cluster. 

In view of this objective, we recruited the entire continuum of the AD “construct” – from 

the asymptomatic cognitively normal preclinical stage (Dubois et al., 2016), including 

subjective memory complainers (SMC), through mild cognitive impairment (MCI), all the 

way to clinically overt dementia. We employed a panel of validated and innovative CSF 

biomarkers, including (I) the traditional CSF core, feasible (Frank et al., 2003; Hampel et al., 

2008) biomarkers to track AD pathophysiology – the forty-two-amino acid-long amyloid-β 

peptide (Aβ1-42), t-tau, and tau hyperphosphorylated at threonine 181 (p-tau181) proteins 

(Dubois et al., 2007, 2010, 2014; Albert et al., 2011; McKhann et al., 2011; Sperling et al., 

2011; Jack et al., 2016a) – and (II) two additional CSF candidate biomarkers: neurofilament 
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light chain (NFL) (Lista et al., 2017) − a structural component of the neuroaxonal 

cytoskeleton − and YKL-40 (Baldacci et al., 2017b) − a specific macrophage differentiation 

glycoprotein highly expressed in astrocytes. These are biomarkers of large-caliber myelinated 

axons disintegration (Olsson et al., 2016) and astrocytic activation, which are core 

mechanisms of neurodegeneration and neuroinflammation (Olsson et al., 2016; Baldacci et 

al., 2017a), respectively.  

We believe that asking this question may provide useful insights for next clinical trials 

investigating biomarker-guided molecular combination therapies for AD. 

 

2. MATERIAL AND METHODS 

2.1. Study participants  

We conducted a multicenter cross-sectional study in a convenience sample (N=113) 

recruited in three independent academic memory clinics. Particularly, healthy controls (HC) 

(N=20), SMC (N=36), MCI (N=20), and AD dementia (ADD) (N=37) individuals were 

examined. Age, sex, and Mini-Mental State Examination (MMSE) were reported in Table 1. 

Specifically, 58 participants were recruited from the Institute for Memory and Alzheimer’s 

Disease (Institut de la Mémoire et de la Maladie d’Alzheimer, IM2A) – a sub-cohort of the 

Alzheimer Precision Medicine Initiative Cohort Program (APMI-CP; available at 

https://www.apmiscience.com/) (Hampel et al., 2017; Hampel et al., 2018c; Hampel et al., 

2019) – at the Pitié-Salpêtrière University Hospital (Paris, France), 42 from the German 

Center for Neurodegenerative Diseases (DZNE) (Rostock, Germany), and 13 from the 

Institute of Neuroscience and Physiology at Sahlgrenska University Hospital (Mölndal, 

Sweden). The recruitment center will be referred to as “site” in this paper. 

The study complied with the tenets of the Declaration of Helsinki of 1975 and was 

approved by the local Ethical Committees at each participating university center. All 
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participants or their representatives gave written informed consent for the use of their clinical 

data for research purposes.  

 

2.2. Clinical diagnosis  

The clinical diagnosis of ADD was performed according to the National Institute of 

Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related 

Disorders Association (NINCDS-ADRDA) consensus criteria (McKhann et al., 1984) and the 

clinical core of the current diagnostic criteria for the amnestic presentation of AD dementia 

(McKhann et al., 2011; Dubois et al., 2014). N=37 patients with ADD were included. All 

participants had a diagnosis of typical ADD (i.e. hippocampal type). 

The clinical diagnosis of MCI was based on the MCI core clinical criteria (Albert et al., 

2011). The group clinically defined as MCI included 20 participants. These individuals, 

predominantly amnestic type MCI, had a one-year clinical follow-up. Three of them 

converted to ADD within one year.  

Thirty-six participants with SMC, available at the time of study execution, were recruited 

from the “INveStIGation of AlzHeimer’s PredicTors in Subjective Memory Complainers” 

(INSIGHT-preAD) study, a French standardized large-scale, observational, mono-centric, 

academic, university-based cohort which is part of the APMI-CP 

(https://www.apmiscience.com/) (Hampel et al., 2017; Dubois et al., 2018; Hampel et al., 

2018c; Hampel et al., 2019) at the time of the preparation of the manuscript. The status of 

SMC was confirmed as follows: (I) participants gave an affirmative answer (“YES”) to both 

questions: “Are you complaining about your memory?” and “Is it a regular complaint that has 

lasted now more than 6 months?”; (II) participants presented intact cognitive functions based 

on MMSE score ≥ 27, Clinical Dementia Rating scale (CDR=0), and Free and Cued Selective 

Rating Test (FCSRT, total recall score ≥ 41) (Dubois et al., 2016). Amyloid-positron emission 
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tomography (PET) imaging investigation was performed at baseline visit, as mandatory study 

inclusion criterion. Ten SMC participants were amyloid-PET positive and 26 participants 

were amyloid-PET negative. Amyloid-PET imaging processing has been previously described 

(Dubois et al., 2018; Habert et al., 2018).  

Cognitively HC (N=20) were individuals who: (I) volunteered for lumbar puncture, (II) 

were free of neurological or psychiatric diseases, and (III) had a MMSE score between 27 and 

30.  

 

2.3. CSF sampling and immunoassays for CSF core biomarkers, NFL, and YKL-40 

2.3.1. CSF withdrawn and pre-analytical procedures 

CSF was taken in the morning through a standard lumbar puncture. All CSF samples used 

in the present study and deriving from the three different cohorts were collected in 

polypropylene tubes and processed as follows: centrifugation at 1,000 g for 10 minutes at the 

temperature of +4°C (IM2A, Pitié-Salpêtrière University Hospital, in Paris), 1,500 g for 10 

minutes at the temperature of +4°C (samples collected at the Department of Psychosomatic 

Medicine inside the University of Rostock), 1,800 g for 10 minutes at the temperature of 

+4°C (samples collected at the Clinical Neurochemistry Laboratory in Mölndal). The obtained 

supernatant was collected, homogenized, and aliquoted into multiple 0.5 mL cryovial- 

sterilized tubes, and finally stored at -80°C within 1 hour from collection and until 

biochemical assessment. 

 

2.3.2. Immunoassays for the assessment of CSF core biomarkers of AD 

pathophysiology 

CSF measurement of AD core biomarkers – i.e., Aβ1-42, t-tau, p-tau181 – were performed, 

for the Paris cohort, at the Laboratory of Biochemistry, Unit of Biochemistry of 
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Neurometabolic diseases, Pitié-Salpêtrière University Hospital in Paris; for the Rostock 

cohort in two different units: the Laboratory of Neurochemistry, Department of Neurology, 

Göttingen University Medical Center, before June 2012, and the Institute of Clinical 

Chemistry and Laboratory Medicine, Rostock University Medical Centre, as of June 2012; for 

the Gothenburg cohort, at the Clinical Neurochemistry Laboratory at the Sahlgrenska 

University Hospital in Mölndal. The concentrations of the three AD core biomarkers were 

measured using established sandwich ELISA methods, INNOTEST β-AMYLOID(1-42) 

(Vanderstichele et al., 2000), INNOTEST hTAU-Ag (Blennow et al., 1995), and INNOTEST 

Phospho-Tau[181P] (Vanmechelen et al., 2000) (Fujirebio Europe NV, Gent, Belgium), 

respectively. All analyses were carried out by experienced laboratory technicians who were 

blinded to clinical data. All laboratories involved in the present study, participate in the 

Alzheimer’s Association Quality Control Program for CSF biomarkers (Mattsson et al., 2011) 

and the Global Biomarker Standardization Consortium (Carrillo et al., 2013). The threshold 

cut-off values for identifying pathologic  concentrations of the core biomarkers were different 

across laboratories i.e.: at the IM2A in Paris, Aβ1-42 < 500 pg/mL, t-tau > 450 pg/mL, p-tau181 

> 60 pg/mL; at DZNE in Rostock, Aβ1-42 < 567 pg/mL, t-tau > 512 pg/mL, p-tau181 > 66 

pg/mL (for the CSF samples assessed before June 2012) and Aβ1-42 < 450 pg/mL, t-tau > 450 

pg/mL, p-tau181 > 62 pg/mL (for the CSF samples assessed after June 2012); at Clinical 

Neurochemistry Laboratory in Mölndal, Aβ1-42 < 550 pg/mL, t-tau > 400 pg/mL, p-tau181 > 80 

pg/mL.  

 

2.3.3. Immunoassays for the assessment of CSF biomarkers NFL and YKL-40 

CSF NFL and YKL-40 were analyzed at the Clinical Neurochemistry Laboratory at the 

Sahlgrenska University Hospital in Mölndal, Sweden. In particular, CSF NFL protein 

concentrations were quantified using a sensitive sandwich ELISA method (NF-light ELISA 
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kit; UmanDiagnostics AB, Umeå, Sweden), according to the recommendations provided by 

the manufacturer. The lower limit of quantification (LLOQ) for this assay was 50 ng/L. CSF 

YKL-40 protein concentrations were quantified using a commercially available ELISA kit 

(R&D Systems, Minneapolis, MN, US), according to manufacturer instructions. The LLOQ 

for this assay was 60 pg/mL. All patient samples showed values above the in-house LLOQ. 

Intra-assay coefficients of variation were below 10%. The measurements of each biomarker 

were performed in one round of experiments, using the same batch of reagents, by board-

certified laboratory technicians who were blinded to the clinical data. 

 

2.4. Statistical analysis 

Our data allowed us to represent every participant as a “point” in a five-dimensional space, 

where the five coordinates are the five CSF biomarkers under investigation (Aβ1-42, t-tau, p-

tau181, NFL, YKL-40). In accordance with our hypothesis that the embedding of individuals in 

this biomarker-based space could be able to reveal novel, unknown associations as well as 

possibly categories of individuals – i.e. clusters – we proceeded as follows. 

As a first step, in order to eliminate age- and sex-related confounds, both variables were 

simultaneously regressed-out of all biomarker values using a quadratic regression model 

which also included age-sex interaction. Then, this five-dimensional space of adjusted (for 

age, sex, and their interaction) biomarker values was fed into t-Distributed Stochastic 

Neighbor Embedding (t-SNE) to reduce dimensionality and, successively, into density - based 

clustering to formally identify clusters of arbitrary shape/different densities without imposing 

prior constraints on the number of clusters. t-SNE is a non-linear dimensionality reduction 

technique well-suited for embedding high-dimensional data for visualization in a low-

dimensional space of two or three dimensions. Specifically, in t-SNE a probability 

distribution over pairs of high-dimensional objects is constructed so that similar objects have 
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a high probability of being picked while minimizing the probability of picking dissimilar 

points. Successively, another probability distribution is designed over the points in a lower-

dimensional map, and finally the Kullback-Leibler divergence between the two distributions 

is minimized with respect to where the points are located in the map. This allows an efficient 

and high-performing dimensionality reduction problem which optimally preserves high-

dimensional relationship between data points (Maaten, 2014, 2009; Maaten and Hinton, 2008; 

van der Maaten and Hinton, 2012). Then, density-based clustering (Density-Based Spatial 

Clustering of Applications with Noise, DBSCAN) (Patwary et al., 2012; Tran et al., 2013) can 

be applied to the low-dimensional representation to automatically identify clusters. It groups 

closely packed points (i.e. points with a high number of close neighbors) and marks points 

low-density regions as outliers (i.e. noise). Briefly, when a point is found to be a dense part of 

a cluster, its ε-neighborhood is also considered to belong to the same cluster and all 

corresponding points are added, as well as their own ε-neighborhood when they are also 

dense, continuing until the density-connected cluster is complete. Successively, a point which 

has not previously been visited is retrieved and processed the same way – this can lead to the 

discovery of either noise or of a further cluster. Both t-SNE and DBSCAN can be used with 

any distance function and do not require initial, arbitrary determination of the number of 

clusters. In terms of validation, while some methods have been proposed to test the 

generalizability of unsupervised clustering methods (Tibshirani and Walther, 2005), it should 

be noted that the DBSCAN approach seeks to explore the data for partitions with high density 

areas of points (clusters i.e. clusters which, importantly, are not necessarily globular) 

separated by low density areas, possibly containing noise objects. Dealing with noise objects 

correctly in a validation approach is a challenge that makes the definition of external or even 

cross-validated methods arduous, and no method has yet been proposed for this particular 

case. Also, standard internal validity metrics commonly applied in unsupervised clustering 
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applications (like, e.g. silhouette analysis) fail for arbitrarily shaped, non-convex clusters and, 

again, are not defined for noise objects. For the purpose of this revision, we have 

implemented a recently presented method for density-based, arbitrarily shaped clusters 

(Moulavi et al., 2014)  which assesses clustering quality based on the relative density 

connection between pairs of objects and is based on a new kernel density function. After 

cluster identification, in order to explore cluster profiles and how different we were from each 

other, we employed several strategies: first, the average minimum Manhattan Distance 

between every pair of clusters was calculated. Also, biomarker values were compared across 

clusters using Kruskal-Wallis tests, and when a significant (P<0.05) effect of group (i.e. 

cluster) was found, post-hoc tests were conducted in order to identify the main drivers of this 

effect (2-sided tests adjusted for multiple comparisons across pairs of clusters). Additionally, 

for each biomarker, the overall dataset was divided in quintiles (see Table 2A for quintile 

boundaries) in order to observe to which quintile the median value of each biomarker in each 

cluster belonged. Using quintiles has the advantage of defining robust ranking intervals, 

centered on median of each distribution, which can provide a sense of where the median of 

each biomarker in each cluster falls with respect to the whole population median. Quintiles 

are intervals built using percentiles (i.e. bottom quintile = 20th percentile, second quintile = 

21st-40th percentile, center quintile = 41st-60th percentile, fourth quintile = 61st-80th percentile, 

top quintile = 81st-100th percentile). The overall workflow of the clustering strategy is 

exemplified in Fig. 1. 

 

3. RESULTS 

Demographic and clinical data of the individuals stratified by clinical diagnosis are 

reported in Table 1. 
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We found 5 distinct clusters of individuals (sizes: N=38, N=16, N=24, N=14, N=21). The 

low dimensional embedding, which provides an easily readable 2D representation of the 

clusters we found, is shown in Fig. 2. We obtained a density-based cluster validation index of 

0.67, indicating good quality clustering. 

Cross-tabulation based on cluster assignment and clinical categorization – i.e. HC, SMC, 

MCI, and ADD – is shown in Table 3 and the distribution of each biomarker across clusters is 

shown in Fig. 3. Particularly, Table 3 shows how all individuals and their respective clinical 

categories are redistributed across clusters (both in absolute number and in percentage), as 

well as how the individuals belonging to each cluster are distributed across clinical categories. 

As an example, when looking at the first row from left to right, one can see that Cluster 1 is 

composed of 7.9% HC (3 individuals), 26.3% SMC (10 individuals), 23.7% MCI (9 

individuals), and 42.3% ADD (16 individuals), which in total form 33.6% (38 individuals) of 

all participants (113 individuals). Similarly, looking at the first column from top to bottom, 

we can see that HC individuals were distributed as follows: 15%, 15%, 10%, 25%, and 35% 

in Clusters 1, 2, 3, 4, and 5, respectively, for a total of 20 individuals which represent 17.7% 

of the total (113 individuals). This reasoning can be applied to every row and column to better 

understand the relationship between the clinical categorization and the data-driven clusters we 

derived. Importantly, Chi-square tests “Clinical category x Cluster” and “Site x Cluster” 

yielded P values of 0.16 and 0.14 (respectively), indicating that cluster formation was not 

significantly influenced by site-related effects and that the two categorizations – clinical and 

biomarker-guided – are not statistically related to each other.  

The cluster-wise biomarker concentrations are reported in Table 4. The Manhattan 

distance between clusters is shown in Table 2B, demonstrating how, for example, the pair of 

clusters which were furthest apart was Clusters 2 and Cluster 3, while the clusters which were 

closest to each other were Cluster 4 and Cluster 5. 
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In terms of statistical comparison between clusters, the Kruskal-Wallis tests for comparing 

multiple medians yielded the following group effects: YKL-40 (P<0.001), t-tau (P<0.001), 

NFL (P=0.019), Aβ1-42 (P=0.532), p-tau181 (P<0.001). Also, the results of post-hoc testing are 

shown in Table 5 (in terms of resulting P value).  

Finally, computing biomarker quintiles across the whole population and allocating cluster 

medians for each biomarker to each quintile resulted in the cluster profiles shown in Table 

2C.  

It should be noted that, while Table 5 is based on simply comparing medians (while the 

multivariate cluster formation process is based on matching multivariate probability 

distributions), along with Tables 2C and 2B, it can provide an idea of the strongest drivers of 

the cluster formation process. One could e.g. examine in how many biomarkers a given 

pairwise comparison is statistically significant or, conversely, in how many pairwise 

comparisons a given biomarker is significantly different between pairs of clusters (see 

Discussion). For example, the separations of Clusters 2 versus 3 (which corresponds to the 

highest distance between clusters; Table 2B) and 3 versus 5 (which corresponds to the 

second-highest distance between clusters; Table 2B) appear to be a result of several 

biomarkers in conjunction – possibly mainly driven by YKL-40 and t-tau in the first case and 

by YKL-40 in the second case. Also, median biomarker values are not statistically different 

between Clusters 2 versus 5 and 4 versus 5 (which corresponds to the lowest distance between 

clusters; Table 2B). As mentioned above, this is not a discrepancy since the cluster forming 

process is based on the whole biomarker distribution as opposed to median values only. Also, 

a weak effect is noted in YKL-40 and NFL in comparing Cluster 3 versus Cluster 5. In terms 

of cluster profiles within the overall population, from Table 2C one can infer that, for 

example, Cluster 3 is characterized by a much higher (with respect to the whole population 

median) YKL-40 concentration, while Cluster 2 is characterized by lower (with respect to the 
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whole population median) NFL, t-tau, and p-tau181 concentrations, higher Aβ1-42 

concentration, and a much lower (with respect to the whole population median) YKL-40 

concentration. By the same token and under the same approximations, one could infer that, 

overall, YKL-40 is the main driver of division, followed by t-tau, p-tau181, and NFL that 

contributes very little to cluster separation. Aβ1-42 does not significantly contribute to cluster 

separation. 

 

3.1. Description of clusters 

Cluster 1 was the largest (N=38) and consisted of MCI (23.7%), SMC (26.3%), ADD 

(42.7%) participants, as well as of a small portion of HC (only 7.9%) participants. This cluster 

included a single MCI subject that converted to dementia at follow-up. CSF t-tau and p-tau181 

median concentrations were in the 4th quintile (Table 2C). These individuals showed 

significantly higher CSF concentrations of YKL-40 compared with those of Clusters 2 and 5. 

CSF t-tau and p-tau181 concentrations were significantly higher than those of Cluster 2 (Fig. 3 

and Table 5).  

Cluster 2 (N=16) included ADD (31.3%), SMC (25.0%), MCI (25.0%), and HC (18.8%) 

participants. Only one subject, within the MCI group, converted to dementia at follow-up. 

CSF YKL-40 median concentrations were in the bottom quintile and CSF NFL, t-tau, and p-

tau181 were in the 2nd quintile. On the contrary, the median concentrations of CSF Aβ1-42 were 

in the 4th quintile (Table 2C). CSF YKL-40 concentrations were significantly lower than 

those of Clusters 1, 3, and 4. CSF t-tau and p-tau181 concentrations were significantly lower 

than those of Clusters 1 and 3. CSF NFL concentrations were significantly lower than of those 

of Cluster 3 (Fig. 3 and Table 5).  

Cluster 3 (N=24) was represented by SMC (45.8%), ADD (29.2%), MCI (16.7%), and HC 

(8.3%) participants. These individuals showed the highest CSF YKL-40 concentrations 
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compared with those of all other clusters (Fig. 3 and Table 5) with a median concentration 

falling in the top quintile. CSF t-tau and p-tau181 were in the 4th quintile (Table 2C). CSF 

concentrations of t-tau and p-tau181 were significantly higher than those of Clusters 2 and 5. 

CSF NFL concentrations were significantly higher compared with those of Cluster 2 (Fig. 3 

and Table 5).  

Cluster 4 was the smallest one (N=14) and consisted of HC (35.7%), ADD (28.6%), MCI 

(14.3%), and SMC (21.4%) participants. One MCI subject converted to dementia at follow-

up. CSF NFL median concentrations were in the 2nd quintile (Table 2C). CSF YKL-40 

concentrations were significantly higher than those of Cluster 2 and significantly lower than 

Cluster 3. CSF t-tau and p-tau181 concentrations were significantly lower than those of Cluster 

3 (Fig. 3 and Table 5).  

Cluster 5 (N=21) included SMC (38.1%), HC (33.3%), ADD (23.8%), and MCI (4.8%) 

participants. CSF YKL-40 and t-tau median concentrations were in the 2nd quintile whereas 

the median concentrations of CSF Aβ1-42 were in the 4th quintile (Table 2C). CSF YKL-40 

concentrations were significantly lower compared with those of Clusters 1 and 3. CSF t-tau 

and p-tau181 concentrations were significantly lower than those of Cluster 3 (Fig. 3 and Table 

5).  

 

4. DISCUSSION  

In this clustering investigation, we asked the question of how many pathophysiological 

profiles may underlie the clinical progression of the typical (hippocampal type) AD 

phenotype (that encompasses syndromic diagnoses ranging from SMC to MCI to overt 

dementia) and asymptomatic individuals. To this end, we compared participant groups, 

generated via biostatistical clustering analysis, to groups obtained using a traditional 

diagnostic categorization based on currently available clinical diagnostic criteria. Importantly, 
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in our approach, the number of clusters is not imposed a priori but, rather, determined 

automatically by optimality criteria. We explored the possibility of deriving a meaningful 

stratification of individuals distributed along the broad biological and clinical spectrum of AD 

(Dubois et al., 2016; Aisen et al., 2017) using exclusively core biological fluid markers which 

reflect distinct pathomechanistic alterations associated with the disease (i.e. brain Aβ 

accumulation and neurofibrillary pathology, neuroinflammation, axonal damage, and 

neurodegeneration). In our population, we found no significant relationship between the two 

categorizations (i.e. clinical diagnosis and clusters), emphasizing how data-driven similarity 

criteria can uncover novel between-individuals associations in biomarker space which reflect 

different pathophysiological mechanisms not necessarily mirrored in clinically descriptive 

categories. In this context, it should however be noted that the Chi-Square test between 

clinical diagnosis and clusters returned a P value of 0.16. While this is traditionally 

considered not statistically significant, it reflects the fact that, overall, clinical categories did 

somewhat polarize (albeit not to a statistically significant extent) the clustering results to a 

certain extent. This naturally reflects the effect of peculiar syndromic clinical diagnoses. 

Relatedly, we did not find a biomarker-based cluster that uniquely corresponded to the 

clinical AD diagnosis. This is not unexpected, as it would only occur if this clinical diagnosis 

was homogeneous in terms of biomarker profiles. However, it is interesting to note that 

cluster 1 contains 42.3% of all AD patients, and that AD patients constitute 42.1% of the 

whole cluster count. This lends further support to the complex interplay and only partial 

overlap between clinical and biomarker-driven categories. 

Cluster 3 was the furthest/most distant (Table 2B) from the majority of other clusters (2, 4, 

and 5) but not from Cluster 1. Cluster 1 and Cluster 3 show a biomarker profile linked to 

neuronal dystrophy and loss, i.e. neurodegeneration (t-tau) and tau-mediated brain 

proteinopathy (p-tau181) (and, additionally, neuroinflammation [YKL-40] in the case of 
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Cluster 3), which do not entirely correspond to the predefined AD-related pathophysiological 

core ( Sperling et al., 2011; Dubois et al., 2014; Jack et al., 2016b, 2018). These two clusters 

were mostly represented by ADD patients (Cluster 1) and SMC individuals (Cluster 3). Since 

CSF YKL-40 concentrations in Cluster 3 are significantly higher than those of Cluster 1, one 

could argue that an association between neurodegeneration, neurofibrillary deposition, and 

neuroinflammatory mechanisms may exist in cognitively normal subjects at risk for ADD 

(Baldacci et al., 2017a). 

 Clusters 2, 4, and 5 were close to each other and presented average or lower median 

concentrations of biomarkers charting axonal damage and neurodegeneration – namely NFL 

and t-tau, of tau-mediated brain proteinopathy (p-tau181) – and neuroinflammation (YKL-40) 

compared with those found in Clusters 1 and 3.  

Moreover, Cluster 2 was the most distant from Clusters 1 and 3, which in turn showed the 

highest median concentrations of biomarkers of neurodegeneration and neuroinflammation. 

Therefore, in spite of including a large share of ADD patients, Cluster 1 and Cluster 2 present 

different biomarker profiles, particularly with reference to the level of cerebral amyloidosis. 

In addition, Cluster 2 showed, along with Cluster 5, higher median concentrations of Aβ1-42 

compared to all other clusters. The same clusters were characterized by a high degree of 

clinical heterogeneity, especially Cluster 2 which, however, is the second out of five for 

prevalence of ADD.  

Moreover, Cluster 5 was mostly represented by SMC and HC, whereas Cluster 4 primarily 

included HC and ADD. At a speculative interpretation level, the different biomarker profiles 

in Clusters 4 and 5 may suggest that neuroinflammation, tau-mediated toxicity, and cerebral 

amyloidosis could be the pathophysiological mechanisms driving cognitive decline. 

Interestingly, Cluster 5, mainly composed by SMC and HC, is the only cluster where median 

t-tau concentration does not lie in the same quintile as median p-tau181 concentration. 
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Moreover, in Cluster 5, YKL-40 median concentration lies in the 2nd quintile whereas Aβ1-42 

lies in the central quintile. This profile suggests that post-translational modifications of tau-

protein alone may not be sufficient to determine cognitive decline. This possibility is in line 

with the comparison between Clusters 1 and 3 (see above). Moreover, besides the core 

pathophysiological biomarkers of AD, innovative but robust biomarkers tracking distinctive 

pathophysiological mechanisms, such as neuroinflammation, may account (even if not alone), 

for cognitive decline along the clinical AD continuum. Detecting novel biologically-

determined (e.g. inflammation-based) disease categories (for instance, Cluster 3 which 

presents the highest CSF median YKL-40 concentration) is expected to substantially improve 

disease prediction and provide key tools for accurate pathway-based therapies, such as drugs 

targeting neuroinflammation. 

It is important to note that the high-dimensional feature reduction and aggregation (i.e. 

clustering) approach we employed in this paper is able to deal with partial redundancies while 

still extracting additional information from multiple variables which exhibit collinearities. In 

line with the above, it is also important to note that partially collinear biomarkers do not 

necessarily imply a representation of the same pathomechanistic alteration. For example, in 

spite of p-tau and t-tau stemming from a common precursor, p-tau has been demonstrated to 

reflect neurofibrillary pathology while t-tau is an established marker of axonal damage and 

neuronal injury (Jack et al., 2018). Indeed, an agnostic hypothesis-independent biomarker-

driven classification system (the A/T/N scheme) has been proposed to stratify individuals 

according to core AD-related pathological and pathophysiological hallmarks (brain 

overaccumulation of both Aβ and tau proteins aggregates, and neurodegeneration) (Jack et al., 

2018). In the currently available research diagnostic criteria as well as in the A/T/N scheme, 

CSF t-tau and p-tau181 play a different role. Despite the fact that NFL represents a marker of 
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axonal damage, similarly to t-tau, the former is more tightly related to the damage of large-

caliber fiber axons (Shahim et al., 2016, 2018; Jack et al., 2018). 

In summary, we found that our biomarker-guided clustering approach generates a set of 

specific clusters not significantly bound to original distinct clinically phenotyped diagnostic 

groups. Specifically, none of the clusters appears homogeneous enough to be translated into 

predefined clinical categories that can be considered specific of AD pathophysiology. Instead, 

each cluster includes all phenotypical groups. Interestingly, CSF Aβ1-42 concentrations are 

less likely to have contributed to the process of cluster segregation. A potential explanation 

for this finding could be that Aβ1-42 peptide modifications appear several years before 

symptoms onset and are perhaps not linearly associated with the progressions of 

neurodegeneration and cognitive decline (Sperling et al., 2011; Jack et al., 2013). In contrast, 

all other biomarkers significantly contribute to separating clusters. In this regard, previous 

studies reported that all these biomarkers are positively correlated and associated with 

worsening of cognitive performance (Mattsson et al., 2016; Hampel et al., 2018d). This 

finding allows us to hypothesize that the individuals included in Cluster 3 – i.e. those with the 

highest median YKL-40 concentration in CSF – may benefit from participating in targeted 

clinical trials using compounds acting against neuroinflammation. Moreover, our clusters do 

not show a significant “Site x Cluster” interaction and are generated after correction of 

biomarker values for age, sex, and their interaction, thus ensuring that our model is 

biologically robust to the impact of ageing and sexual dimorphism on AD-related 

pathophysiological mechanisms (Cavedo et al., 2018; Ferretti et al., 2018; Hampel et al., 

2018f). 

Unsupervised clustering strategies are ideal for identifying multivariate, non-linear 

associations between individuals which can be described or characterized by a large number 

of variables – e.g. biomarkers and clinical outcomes – by dealing with a n-dimensional space 
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which cannot be treated appropriately through intuition or classical linear methods. 

Particularly, these algorithms search for clusters by simultaneously taking all variables into 

account, regardless of their nature. The similarity metric employed can also be varied in case 

there is a strong hypothesis about the nature of the association between biomarkers. By 

clustering individuals according to a multidimensional profile which could span all data 

realms available (e.g. genetic risk factors, fluid biomarker concentrations, imaging 

modalities), it should be feasible to define groups of individuals who share main 

pathophysiological drivers and triggers and, possibly, similar longitudinal disease trajectories. 

Under the hypotheses that the input data contains all main information potentially driving the 

evolution of the disease, these findings might support the discovery and development of 

targeted and individualized therapies with proven disease-modifying effects, consistent with 

the standardized stepwise procedure of proof-of-pharmacology (Hampel et al., 2018a; Hampel 

et al., 2018g). Thus, it would be possible to treat individuals at asymptomatic preclinical 

stages of the disease, when the imbalance of homeostatic dynamics is still potentially 

restorable and the functionality of brain networks can be preserved. This innovation, applied 

in drug research and development programs as well as in clinical practice, is in line with the 

precision pharmacology (Hampel et al., 2018e) and precision medicine paradigms (Hampel et 

al., 2016, 2017; Hampel et al., 2018c; Hampel et al., 2019). In this context, we anticipate that 

unsupervised methods – complemented by integrative disease modeling (Younesi and 

Hofmann-Apitius, 2013; Baldacci et al., 2016, 2018; Hampel et al., 2017) – will accelerate 

and optimize clinical trial development for individualized treatments through the 

implementation of biomarker matrices serving for different contexts-of-use, namely risk 

prediction, early stratification and early detection and diagnosis, treatment efficacy and safety 

monitoring, and prognostic evaluation.  
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In follow-up studies, we plan to further expand the panel of pathophysiological biomarkers 

to establish a stratification algorithm which could include biomarkers of synaptic damage, 

such as neurogranin (Lista and Hampel, 2016) and alpha-synuclein (Vergallo et al., 2018). 

Moreover, we also aim at including a core blood-based biomarker panel in order to take 

optimal advantage of the broad accessibility of blood-plasma-based analyses to screen 

international large-scale cohorts of asymptomatic individuals at risk (Hampel et al., 2018b; 

Hampel et al., 2018g). This is of great importance for future translation of these classification, 

diagnostic, and early detection approaches into worldwide primary clinical practice. 

Our explorative pilot study presents some caveats. First, our follow-up data is restricted to 

SMC and MCI participants, hence hampering the characterization of the cluster-wise subject-

trajectories through time. Second, the sample size is relatively limited, and most clustering 

algorithms perform better on a large number of individuals. Still, it should be noted that an 

over/under representation of any clinical category within any particular cluster does not, per 

se, indicate instability of the clustering procedure. In this context, it is important to note that 

one of the overall aims of our paper is to demonstrate how the same clinical syndrome may be 

allocated to different biomarker-driven clusters as well as that different clinical syndromes 

may drop in the same biomarker-driven cluster. Also, given the partial collinearity of the 

biomarkers which is, however, possibly associated with different biological underpinnings, 

and the limited sample size, we hypothesized that a highly nonlinear and state of the art 

dimension reduction algorithm such as tSNE could allow better data separation and hence 

cluster identification as compared to running a clustering algorithm on the 5-dimensional data 

directly. 

 Our multicenter cohort is clinically heterogeneous – i.e. it includes individuals ranging 

from the status of SMC to overt ADD – and, although data were corrected for age using non-

linear regression, residual differences in terms of e.g. age may still affect the corrected 
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concentrations of CSF biomarkers (Jack et al., 2016b). In addition, our study did not use MRI 

or amyloid-PET imaging data, which, however, could be seamlessly included to enhance our 

or other clustering strategies, as previously reported (Ten Kate et al., 2018; Young et al., 

2018). 

In conclusion, we found: (I) a set of biologically defined clusters not significantly linked to 

the clinical diagnosis, (II) that Aβ1-42 is less likely to have contributed to the cluster 

segregation, and (III) that all other biomarkers, especially YKL-40, significantly contribute to 

separating clusters. We believe that this stratification approach, based on state-of-the-art 

biomarker-guided clustering algorithms, should not replace but, rather, complement, optimize, 

and enrich the traditional diagnostic approaches in neurology to design treatments tailored to 

the individual biological-clinical profile (Hampel et al., 2016, 2017; Hampel et al., 2018c, 

2018e; Hampel et al., 2019). The integration of clinical data with biological comprehensive 

information may represent the crucial step forward to the development of an accurate 

biomarker-guided stratification framework, which has the potential to inform and innovate 

traditional diagnostic work-ups as well as treatment selection strategies for next-generation 

clinical trials.  
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FIGURE LEGENDS 

Figure 1. Overall workflow for clustering procedure. For every clinical category (which 

may be composed of individuals with heterogeneous biomarker profiles), all N biomarkers 

under study are sampled and the values (after adjustment for confounds like sex and age 

through quadratic regression) are arranged into a multidimensional space where each 

individual is represented by a dot with N coordinates. Successively, a dimensionality 

reduction algorithm is applied, followed by a cluster identification procedure which allows to 

redefine subject groupings based on biomarker profiles exclusively. All computational 

procedures are purely data-driven. 

 

Figure 2. t-SNE low dimensional embedding of identified clusters of individuals. The 

colors represent the clinical diagnosis (blue = ADD; orange = MCI; green = HC; red = SMC). 

The blue ellipses delimit the clusters identified by the DBSCAN procedure. 

Abbreviations: ADD = Alzheimer’s disease dementia; C1 = Cluster 1; C2 = Cluster 2; C3 

= Cluster 3; C4 = Cluster 4; C5 = Cluster 5; DBSCAN = Density-Based Spatial Clustering of 

Applications with Noise; HC = healthy controls; MCI = mild cognitive impairment; SMC = 

subjective memory complainers.  

 

Figure 3. Box-whisker plots depicting the distributions of biomarkers across the 

clusters. The X axis indicates reports the number of clusters; the Y axis indicates the 

biomarker concentration. Middle line: median. Boxes: interquartile rage. Whiskers: Extremes. 

Points: Outliers. Numbers: Group numerosities.  

Abbreviations: Aβ1-42 = forty-two-amino acid-long amyloid-β peptide; NFL = 

neurofilament light chain protein; p-tau181 = tau hyperphosphorylated at threonine 181; t-tau = 

total tau protein.  
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Table 1. Demographic and clinical data of the individuals stratified by clinical diagnosis. 
 

 
HC 

(N= 20) 

SMC 

(N= 36) 

MCI 

(N= 20) 

ADD 

(N= 37)  

Sex (M/F) 7/13 11/25 13/7 18/19 

Age at the time of CSF collection (yrs) 60.7±10.3 76.2±3.5 71.7±8.4 70.4±7.7 

MMSE 29.4±0.8 28.6±1.1 25.5±2.3 21.7±5.0 

CSF biomarkers     

p-tau181 (pg/mL) 43.5±8.5 54.0±20.1 82.3±39.4 102.0±51.0 

t-tau (pg/mL) 198.6±78.6 431.6±202.2 380.0±190.3 449.5±167.5 

Aβ1-42 (pg/mL) 912.0±146.4 439.6±173.1 620.8±375.8 553.9±299.1 

NFL (pg/mL) 684.7±296.1 975.6±353.1 1245.7±583.0 1622.1±583.4 

YKL-40 (ng/mL) 
102.910 
±40.895 

224.557 
±72.723 

145.371 
±57.041 

153.358 
±54.308 

 

Notes: Numbers denote frequency for sex, mean ± standard deviation for age, MMSE, and CSF biomarkers.  
Abbreviations: Aβ1-42 = forty-two-amino acid-long amyloid-β peptide; ADD = Alzheimer’s disease dementia; CSF = cerebrospinal fluid; F = female; HC = healthy 

controls; M = male; MMSE = Mini-Mental State Examination; MCI = mild cognitive impairment; NFL = neurofilament light chain protein; p-tau181 = tau 
hyperphosphorylated at threonine 181; SMC = subjective memory complainers; t-tau = total tau.  
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Table 2. A. Quintile boundaries. B. Cluster distances. C. Cluster profiles according to the quintile (computed on the whole population) in which 
the median biomarker value of each cluster falls.  
  

A. Quintile Boundaries 
Bottom Quintile-

2nd Quintile 

2nd Quintile- 

Center Quintile 
Center Quintile- 

4th Quintile 
4th Quintile- 

Top Quintile 

B. Cluster 

Distances 

CSF NFL (pg/mL) 677.0 968.6 1174.4 1513.0 C1 C2 C3 C4 C5

C1 2.79 2.17 0.94 1.53

C2 2.79 3.74 0.88 0.72

C3 2.17 3.74 2.49 2.92

C4 0.94 0.88 2.49 0.33

C5 1.53 0.72 2.92 0.33

CSF YKL-40 (pg/mL) 106022.0 139240.0 170989.0 220130.0 

CSF Aβ1–42 (pg/mL) 346.0 424.0 507.9 805.0 

CSF t-tau (pg/mL) 202.3 334.0 433.0 598.0 

CSF p-tau181 (pg/mL) 42.0 53.0 68.0 98.0 

     
 
C. Cluster Profiles CSF NFL CSF YKL-40 CSF Aβ1-42 CSF t-tau CSF p-tau181 

C1 – – – ↑ ↑ 

C2 ↓ ↓↓ ↑ ↓ ↓ 

C3 – ↑↑ – ↑ ↑ 

C4 ↓ – – – – 

C5 – ↓ ↑ ↓ – 

      

 

Notes: ↑↑ = Top quintile; ↑ = 4th quintile; – = Center quintile; ↓ = 2nd quintile; ↓↓ = Bottom quintile.  

Abbreviations: Aβ1–42 = forty-two-amino acid-long amyloid-β peptide; CSF = cerebrospinal fluid; NFL = neurofilament light chain protein; p-tau181 = tau 

hyperphosphorylated at threonine 181; t-tau = total tau protein. C1 = Cluster 1; C2 = Cluster 2; C3 = Cluster 3; C4 = Cluster 4; C5 = Cluster 5.  
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Table 3. Cross-tabulation based on clinical categorization: HC, SMC, MCI, and ADD. 
 

CLINICAL CATEGORY TOTAL 

HC SMC MCI ADD   

CLUSTER 

C1 

Count 3 10 9 16 38 

% within Cluster 7.9% 26.3% 23.7% 42.1% 100.0% 

% within Clinical Category 15.0% 27.8% 45.0% 43.2% 33.6% 

% of Total 2.7% 8.8% 8.0% 14.2% 33.6% 

C2 

Count 3 4 4 5 16 

% within Cluster 18.8% 25.0% 25.0% 31.3% 100.0% 

% within Clinical Category 15.0% 11.1% 20.0% 13.5% 14.2% 

% of Total 2.7% 3.5% 3.5% 4.4% 14.2% 

C3 

Count 2 11 4 7 24 

% within Cluster 8.3% 45.8% 16.7% 29.2% 100.0% 

% within Clinical Category 10.0% 30.6% 20.0% 18.9% 21.2% 

% of Total 1.8% 9.7% 3.5% 6.2% 21.2% 

C4 

Count 5 3 2 4 14 

% within Cluster 35.7% 21.4% 14.3% 28.6% 100.0% 

% within Clinical Category 25.0% 8.3% 10.0% 10.8% 12.4% 

% of Total 4.4% 2.7% 1.8% 3.5% 12.4% 

C5 

Count 7 8 1 5 21 

% within Cluster 33.3% 38.1% 4.8% 23.8% 100.0% 

% within Clinical Category 35.0% 22.2% 5.0% 13.5% 18.6% 

% of Total 6.2% 7.1% 0.9% 4.4% 18.6% 

TOTAL Count 20 36 20 37 113 

% within Cluster 17.7% 31.9% 17.7% 32.7% 100.0% 

% within Clinical Category 100.0% 100.0% 100.0% 100.0% 100.0% 

% of Total 17.7% 31.9% 17.7% 32.7% 100.0% 

 
Abbreviations: ADD = Alzheimer’s disease dementia; C1 = Cluster 1; C2 = Cluster 2; C3 = Cluster 3; C4 = 

Cluster 4; C5 = Cluster 5; CSF = cerebrospinal fluid; HC = healthy controls; MCI = mild cognitive impairment; 
SMC = subjective memory complainers.  
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Table 4. Biomarker concentrations of the individuals stratified by biomarker-guided clusters. 
 

 CSF biomarkers  

 
p-tau181 

(pg/mL) 
t-tau (pg/mL) 

Aβ1-42 
(pg/mL) 

NFL (pg/mL) YKL-40 (pg/mL) 

Clusters       

Cluster 1 
80.2±44.0 

(68.1) 
457.6±209.5  

(434.6) 
522.6±202.8  

(481.7) 
1253.0±558.6 

(1076.7) 
172711.0±13574.5 

 (169037.0) 

Cluster 2 
47.0±23.5 

(47.8) 
252.1±140.2 

(219.56) 
504.5±294.8  

(434.7) 
836.8±354.2 

(838.2) 
89272.4±17302.4 

(96569.3) 

Cluster 3 
95.7±46.7 

(79.5) 
598.1±319.1  

(518.8) 
621.9±331.8  

(534.3) 
1384.4±579.9 

(1111.4) 
250776.0±46763.7 

(242451.0) 

Cluster 4 
62.1±28.5 

(60.5) 
369.1±238.9  

(360.9) 
572.0±254.8  

(462.3) 
1236.5±743.5 

(950.1) 
144999.0±4040.5 

(145820.0) 

Cluster 5 
60.0±23.4 

(53.0) 
317.1±114.2  

(317.5) 
583.1±206.2  

(529.9) 
1057.2±368.9 

(1039.6) 
127808.0±7567.9 

(129711.0) 

 
Notes: Numbers denote mean ± standard deviation for CSF biomarkers. 
Abbreviations: Aβ1-42 = forty-two-amino acid-long amyloid-β peptide; CSF = cerebrospinal fluid; NFL = 

neurofilament light chain protein; p-tau181 = tau hyperphosphorylated at threonine 181; t-tau = total tau protein.  
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Table 5. Results of post-hoc testing after Kruskal-Wallis tests.  
 

  

C1 vs C2 

 

C1 vs C3 

 

C1 vs C4 

 

C1 vs C5 

 

C2 vs C3 

 

C2 vs C4 

 

C2 vs C5 

 

C3 vs C4 

 

C3 vs C5 

 

C4 vs C5 

YKL-40 <0.001 0.009 0.008 <0.001 <0.001 0.027 ns. <0.001 <0.001 ns. 

t-tau 0.006 ns. ns. 0.015 <0.001 ns. ns. 0.007 0.003 ns. 

p-tau181 0.033 ns. ns. ns. 0.001 ns. ns. 0.013 0.027 ns. 

NFL 0.010 ns. ns. ns. 0.013 ns. ns. ns. ns. ns. 

Aβ1-42 ns. ns. ns. ns. ns. ns. ns. ns. ns. ns. 

 
Notes: Only significant (<0.05) P values are shown. P values which are also significant after correction for 

multiple comparisons are shown in bold. 
Abbreviations: Aβ1-42 = forty-two-amino acid-long amyloid-β peptide; C1 = Cluster 1; C2 = Cluster 2; C3 = 

Cluster 3; C4 = Cluster 4; C5 = Cluster 5; NFL = neurofilament light chain protein; ns. = non-significant; p-
tau181 = tau hyperphosphorylated at threonine 181; t-tau = total tau protein.   
 

 












