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Abstract 9 

The modeling of the Micro-CHP unit operating in dual-fuel mode is performed based on 10 

experimental results carried out at the laboratory scale. The engine tests were performed on an 11 

AVL engine, with a maximum power of 3.5 kW, using conventional diesel as pilot fuel and 12 

synthetic biogas as primary fuel. The biogas flow rate is evaluated using the experimental 13 

results from the literature, based on the anaerobic digestion in batch reactor of a mixture of 26 14 

% of Oat Straw and 74 % of Cow Manure, diluted to contain only 4 % of volatile solid. 15 

The engine operation was modeled using the Artificial Neuron Network (ANN) method. 16 

Experimental engine tests were used as a database for training and validation phases of ANN 17 

models. Three different ANN models are developed to model respectively the pilot fuel flow 18 

rate, the airflow rate and the exhaust gas temperature. Engine power output, biogas flow rate 19 

and biogas methane content were used as the same input layer. 20 

Given that the evolution of the biogas flow evolves along the entire digestion duration (50 21 

days), the simulation work is performed by varying the number of digesters to be used in 22 

parallel mode. It is obtained that the optimal operation condition, minimizing the number of 23 

digesters and using less than 10 % of the energy from diesel fuel, is to use 5 digesters and run 24 
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the engine under load of 70 %. It is concluded that a micro-CHP unit of 1 kWe, requires a dual 25 

fuel generator with a nominal power of 1 kWe, five digesters and a daily availability of effluents 26 

of 171 kg/day, consisting of 45 kg/day of oat straw and 126 kg/day of cow manure. It can also 27 

produce up to 2.45 kW of thermal power from the exhaust. 28 

Keywords 29 

Micro CHP; Anaerobic digestion; Dual fuel engine; Artificial Neural Network; 30 
Cogeneration. 31 

 32 

1. Introduction 33 

Combined Heat and Power (CHP) is an important alternative for minimizing primary energy 34 

consumption by optimizing the efficiency of energy conversion units. CHP is also known as 35 

cogeneration, which means the simultaneous generation of electricity and heat from a single 36 

fuel source. The term Micro-CHP is often associated with systems whose electrical power does 37 

not exceed 50 kW [1]. Micro-CHP in farm, where biogas is produced from anaerobic digestion 38 

of effluents, has been of increasing interest to livestock farmers in recent years. Biogas is a 39 

cleaner and potentially renewable fuel. It consists mainly of methane (CH4), carbon dioxide 40 

(CO2), small traces of carbon monoxide (CO), hydrogen (H2), oxygen (O2) and hydrogen 41 

sulphide (H2S ) [2]. In Europe, biogas represented in 2015 around 8 % of renewable energy 42 

production and the equivalent of 4 % of European natural gas consumption. In 2016, the 43 

treatment of organic waste by anaerobic digestion is largely done on farms. Among the 269 44 

anaerobic digestion units installed in France up to 2016, there are nearly 88.5 % units are on 45 

farms and only 11.5 % in centralized units [3]. 46 

The most used heat engines in micro-CHP devices are internal combustion engines. 47 

Although the use of gaseous fuel is widespread in spark ignition engines, the high CO2 content 48 

of the produced biogas by anaerobic digestion, especially at the beginning of the digestion 49 
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reaction, disadvantages the use of biogas as a fuel in the internal combustion engines. Indeed, 50 

the high CO2 content in the intake charge has the disadvantage of increasing the specific heat 51 

of the gases and reducing the flame propagation speed [4]. It also decreases the energy quality 52 

of the fuel and thus increases fuel consumption [5]. 53 

Putting existing diesel engines into dual-fuel operating mode, using diesel as pilot fuel and 54 

biogas as primary fuel, has both environmental and economic advantages [6]. In fact, 55 

Tippayawong et al [7] that reported long-term utility in this second operating mode shows 56 

negligible effects on engine power and efficiency during the first 2000 hours run. Beyond this, 57 

a little quantity of carbon deposition inside the combustion chamber was observed [7]. Different 58 

techniques were examined to improve the operation of compression ignition (CI) engines in 59 

diesel-biogas dual fuel mode such as the use of low levels of substitution [8], preheating of 60 

induced air-fuel mixtures [9,10], modifying the pressure and temperature of the initial charge 61 

using exhaust gas recirculation process [11,12] and modification of the pilot fuel injection 62 

system [13,14]. 63 

Biogas is often used as the primary fuel in dual-fuel engines because of its high anti-knock 64 

properties compared to other gaseous fuels. With a methane content of up to 65 %, its high 65 

octane number allows it to have greater knock resistance and better adaptation to engines that 66 

generally have higher compression ratios [15]. It was reported that in combined cooling, 67 

heating, and power (CCHP) systems, where production of heat, cold and power occur 68 

simultaneously from the same primary energy, biogas-diesel dual-fuel mode reduces CO2 69 

emissions by 24.9 % compared to the single production mode [16]. 70 

In dual-fuel operating mode and under higher engine loads (above 80 %), the brake specific 71 

energy consumption (BSFC) is slightly lower than that of conventional diesel mode, whereas 72 

the brake thermal efficiency (BTE) in dual-fuel mode is considerably lower than that of diesel 73 
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mode. On the other hand, under lower engine loads, the lower BTE and the higher BSFC are 74 

generally caused by incomplete combustion of the biogas-air mixture due to a poor mixture and 75 

a lower temperature in the cylinder [17]. Although the BTE is slightly affected under higher 76 

engine loads, it remains largely dependent on CH4/CO2 ratio of the biogas composition [18]. 77 

Increasing the CH4 content of the biogas, which raises the heat release rate, leads to a significant 78 

increase in the BTE [15,19]. However, the substantial replacement of the pilot fuel with the 79 

gaseous fuel causes a remarkable BTE degradation [20]. The gaseous fuel, whose ignition 80 

temperature is much higher than the pilot fuel, will act as heat sink during the combustion 81 

process. It causes an undesirable increase in the specific heat capacity of the working fluid and 82 

consequently, it decreases the combustion temperature [21]. Nathan et al. [22] have shown that 83 

above 40 % of CO2 in biogas, the dissociation of CO2 into O2 and CO significantly affects the 84 

ignition delay. 85 

On the other hand, the lower carbon content of CH4 compared to petroleum-based diesel 86 

reduces the exhaust gases emissions [23]. Several researchers have confirmed that the relative 87 

homogeneous charge and the lower cylinder temperature in dual-fuel operating mode have the 88 

advantage of significant reduction of NOx and smoke emissions [21,24,25]. As regards the HC 89 

and CO emissions, they are higher when the biogas substitution is high, especially if its 90 

percentage of CO2 is high [26]. With regard to the exhaust gas temperature in the dual-fuel 91 

operating mode, it has been shown to be higher than that of the diesel operating mode [27,28]. 92 

In micro-CHP on farm, the biogas is produced from anaerobic digestion of livestock 93 

effluents whose the characteristics and composition are very random. Anaerobic co-digestion 94 

of livestock effluents and agricultural waste is widely applied in Europe [29,30]. Anaerobic 95 

digestion on the farm, which involves the production of biogas from agricultural biomass, is 96 

becoming increasingly important as it offers significant environmental benefits and provides an 97 

additional source of income for farmers [31]. Livestock effluents in the form of manures 98 
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(generally semi solid with a high straw content) or slurry (only cattle excrement that is generally 99 

liquid) are of interest for anaerobic digestion because of their high potential of biogas 100 

production. 101 

Several studies have been conducted to investigate the increased biogas production through 102 

anaerobic digestion of livestock effluents [32–35]. The potential of biogas production not only 103 

depends on the chemical composition of the effluents, but also on the anaerobic digestion state 104 

(solid state, liquid state, pasty state), type of digesters (continuous reactor, semi continuous 105 

reactor, batch reactor) and on the operating conditions (digestion temperature, recirculation of 106 

percolate ... etc.). 107 

In continuous or semi-continuous anaerobic digestion, the composition and flow rate of 108 

biogas leaving the digester are practically constants.  Depending on the composition of the 109 

effluents and on the operating conditions, the methane content is often between 55 and 65 % 110 

[36]. The major disadvantage of this pathway is the high investment costs, especially for small 111 

power plants. In France, for example, anaerobic digestion plants with electrical power of 35, 112 

170 and 500 kWe respectively, have the investment costs of 12.5, 5.6 and 5.6 k€/kWe [37]. A 113 

large part of the investment costs is reserved for the biogas storage, its homogenization, sealing 114 

systems and security. This is because the biogas must be produced continuously and with a 115 

methane content between 55 and 65 % to be acceptable in the gas engines. Indeed, a biogas 116 

whose low methane content causes flammability and efficiency problems and a biogas whose 117 

methane content is too high causes the knocking problems in gas engines. 118 

In the discontinuous digestion process (batch reactor), where the digesters are sized 119 

according to the size of the farm and the availability of the effluents, the investment and 120 

maintenance costs for the small plants can greatly reduce compared to those of the continuous 121 

digestion process. The most problem is that the flow of biogas leaving the digester and its 122 
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methane content change throughout the anaerobic digestion time, which is often between 40 123 

and 60 days. The purpose of this study is to overcome these constraints and use this pathway to 124 

develop on-farm micro-CHP technology. It involves two objectives: The first is to use a dual-125 

fuel engine to use the biogas leaving the digester regardless of its flow and its methane content. 126 

It eliminates the need for biogas storage, which significantly reduces investment costs. The 127 

second objective is to determine the number of digesters needed to optimize the operation of a 128 

micro-CHP unit on the farm. For this purpose, a simulation work of a micro-CHP unit based 129 

on experimental data from laboratory tests was performed. Simulation of the engine 130 

operation in dual fuel mode is carried out using artificial neural network (ANN) models. 131 

The novelty of the present work is to model and develop a diesel engine map, operating in 132 

diesel-biogas dual-fuel mode taking into account the availability of biogas in term of 133 

quantity and quality (composition). This expresses that the operation of the engine is very 134 

flexible to the number of digesters used for the anaerobic digestion of livestock effluents, 135 

which in turn directly influences the primary fuel (biogas) supplied to the engine. In 136 

addition, the model makes it possible to minimize the number of digesters so that the biogas 137 

produced is directed to the engine without storage. As a result, the pilot fuel remains 138 

minimal in accordance with the regulatory limits, making it possible to benefit from the 139 

feed-in tariffs of electricity. 140 

ANN is a popular machine learning technique that has been shown its effectiveness in 141 

various fields [38]. This form of black-box modelling approach allows the omission of 142 

physical knowledge or equations that relate the relationship between the input and 143 

corresponding output without the loss of accuracy unlike white and grey box modelling, 144 

albeit care must be taken in the selection of appropriate input and outputs to avoid 145 

meaningless predictions.  146 
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The engine modeling technique using the ANN models is more preferable nowadays 147 

because it can identify a complicated and unknown input/output relationship based on 148 

experimental data. It has several advantages compared to mathematical engine models 149 

(analytical multi-zone models, computational fluid dynamic models and chemical kinetic 150 

models) which are very difficult to put into practice because excessive assumptions have 151 

been made in constructing the models [39–42]. In addition, these mathematical models 152 

depend on several engine-specific parameters, which are generally difficult to estimate or 153 

to predefine (inlet valve flow coefficient, kinetic of combustion, local air fuel ratio, local 154 

heat loss coefficient...etc.). Furthermore, ANN has a better capability in approximating 155 

input-output relationship that polynomial regression models owing to its ability in capturing 156 

non-linear behavior of a given system in particular for a large number of measured data 157 

[38]. 158 

Several studies have been conducted on diesel engine performance and/or emissions 159 

modeling using neural network models [39,43–45]. Others have also used this method for 160 

performance modeling and emission characteristics, and even the elaboration of the 161 

operational maps for engines operating with biodiesel blends [46–48]. Similarly for the 162 

modeling of engines operating in dual-fuel mode, researchers are increasingly interested in 163 

the use of the ANN method to model the operation, performance, emissions and even 164 

develop operational maps for the dual fuel engines [49–51]. 165 

Since the modelling of the diesel engine is a regression task, two situations need to be 166 

considered. The first situation is that the model output is single dimension, which means 167 

that individual model is required for each engine performance output. The other one is with 168 

multi-dimension outputs, where one model is already sufficient to predict several engine 169 

performance outputs. In order to increase the model accuracy and prevent any parameter 170 
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from dominating the output values, the data sets are often normalized before training the 171 

models [39,52]. 172 

This present paper covers three major parts, namely the kinetic production of biogas from 173 

anaerobic digestion of livestock effluents, the modeling of dual-fuel engine using the ANN 174 

models, and simulation of the micro-CHP unit operating with dual fuel engine and using 175 

biogas as primary fuel. The dual fuel engine setup, the pilot fuel characteristics, the ANN 176 

models as well as the kinetics production of biogas are briefly introduced in Section 2. The 177 

ANN based models were trained and validated using a series of experimental tests, 178 

performed with a 3.5 kW dual fuel engine. The engine models outputs are single dimension. 179 

The first is to model the pilot fuel flow rate, the second is to model the airflow rate and the 180 

third is to model the temperature of the exhaust gas. The instantaneous production of biogas 181 

is determined from the literature where anaerobic digestion of a mixture of oat straw and 182 

cow manure was studied and optimized [53]. In section 3, where the main results are 183 

discussed, the engine tests, the validation of the ANN models, as well as the simulation 184 

results of the micro-CHP unit, were presented. 185 

Nomenclature 186 

AC annual consumption ��  thermal power (W) 

AMFR average mass flow rates IA injection angle (degree) 

ANN artificial neuron network IVC inlet valve close (degree) 

BDC bottom dead center IVO inlet valve open (degree) 

BSFC brake specific energy consumption LHV lower heating value (J/kg) 

BTE brake thermal efficiency  ��  mass flow rates (kg/s) 

CA crank angle MR mass ratio 

CCHP combined cooling, heating, and power MSE mean square error 

CHP combined heat and power OS oat straw 

CM cow manure R2 regression coefficients 

CI  compression ignition RMSE root mean square error 

Cp specific heat (J/kg.K) RNG rundum number generation 

ER energy ratio TDC top dead center 
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EVC exhaust valve close (degree) TS total solid 

EVO exhaust valve open (degree) VS volatile solid  

 187 

2. Materials and methods 188 

2.1. Dual-fuel engine setup 189 

The engine tests were carried out on a single cylinder research engine (AVL 5402), 190 

instrumented to control and measure the operating parameters. The main design specifications 191 

as well as the technical operating data are given in Table 1. 192 

Table 1 : Dual-fuel engine specification 193 

Parameter Specification 

Model AVL 5402 

Type Four-stroke, CI engine 

Bore x Stroke 85 x 90 mm 

Compression ratio 17.3 

Injection pressure 600 bar 

Combustion system Dual-fuel  

Injection system type Common rail, direct injection 

Nozzle hole x diameter 5 x 0.17 mm 

Rated power output 3.5 kW at 1500 rpm 

IA 7° CA before TDC 

IVO 36° CA before TDC 

IVC 69° CA before BDC 

EVO 76° CA before BDC 

EVC 32° CA before TDC 

 194 

Under the same operating conditions, including air-fuel ratio, engine speed and engine loads, 195 

the performance parameters of this engine, despite being an water-cooled single-cylinder diesel 196 

engine, can be projected on a multi-cylinder engine that can be used in a CHP unit. During the 197 

tests, the engine speed was kept constant at 1500 rpm, similar on to that of electric power 198 

generator, producing electricity at a frequency of 50 Hz. All tests were carried out to develop 199 
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an engine power ranging between 1.75 and 3.5 kW. The pilot fuel is a conventional diesel, 200 

while the primary fuel is a synthetic biogas, consisting of CH4 and CO2. 201 

The experimental procedures consists in fixing the biogas methane content and the pilot fuel 202 

flow rate and maintaining the desired engine load acting on the biogas flow rate. It consists in 203 

varying the CH4 content of biogas between 20 and 60 % and the engine load between 50 and 204 

100 % (i.e. engine power outlet between 1.75 and 3.5 kW). The recorded data from each test 205 

are the engine power, biogas methane content, biogas flow rate, pilot fuel flow rate, airflow 206 

rate, and exhaust gas temperature. 207 

2.2. Fuels characteristics 208 

The flow rate of the synthetic biogas as well as its CH4 content have been varied to obtain a 209 

wide range and to get closer values to the biogas composition resulting directly from the 210 

digesters, without using a storage gasometer. The latter is often necessary to balance the flow 211 

rate and composition of biogas (50 to 65 % CH4) for subsequent use. 212 

In practice, the biogas characteristics from anaerobic digestion of cattle effluents, such as 213 

flow rate and CH4 content, vary throughout the entire digestion period, which is of the order of 214 

two months. In this study, the biogas is synthetized from pressurized bottles. The methane 215 

content of the synthesis gas varies from 20 to 60 % while its flow rate is adjusted to develop 216 

the desired engine load (between 50 to 100 % of full load). 217 

The pilot fuel, which serves as an ignition source for the mixture, is a conventional fuel 218 

consisting of 93 % v/v diesel (C20H40) and 7 % v/v biofuel (C18H36O2). Its density and lower 219 

heating value (LHV) are 840 kg/m3 and 42.8 MJ/kg, respectively. 220 

2.3. Engine parameters modeling 221 
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The engine parameters have been modeled using methodology based on Artificial Neural 222 

Networks. An ANN is an architecture containing a huge quantity of neurons systematized in 223 

different layers and the neurons of one layer are linked to those of another layer of by dint of 224 

weights, and it can be prepared or trained to accomplish a specific duty via creating accurate 225 

alteration of its linking weights, bias and architecture [43,44]. 226 

In this study, ANN based models have been developed in the MATLAB environment using 227 

the Neural Network toolbox. The proposed ANN model consist in three discrete ANNs, 228 

developed to estimate engine parameters namely pilot fuel flow rate, intake airflow rate and the 229 

exhaust gas temperature. Where, ANN1 is used to delineate pilot fuel flow rate, ANN2 is used 230 

to delineate intake airflow rate, and ANN3 is used to delineate exhaust gas temperature. Each 231 

ANN has one input layer with three variables (engine power, biogas flow rate and its CH4 232 

content), up to five hidden layer and one output. Figure 1 illustrates the architecture of the 233 

ANN1 model for the pilot fuel flow rate. 234 

 235 

Figure 1. Configuration of multi hidden layers neural network estimating pilot fuel flow 236 

rate 237 
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The implementation of ANN comprises of three main stages viz. parameter selection, 238 

training, and testing. As regard the parameter selection, the input-output data is often processed 239 

by normalizing it within a certain range [38,43]. The recorded data from the experimental tests 240 

(83 tests) is then normalized and randomly partitioned with respect to training, testing and/or 241 

validation.  They are divided into two sets of which the first (68 tests) is selected as the training 242 

(80 %) and validation (20 %) dataset, while the second (15 tests) is selected to testing the 243 

generalization capability of ANN models. The training dataset is used to train the model and 244 

tuning model hyperparameters (weights and biases). The model sees and learns from this data. 245 

The validation dataset is used to evaluate a given model, but this is for frequent evaluation. It 246 

is used to fine-tune the model hyperparameters. The test dataset provides the gold standard used 247 

to evaluate the model. It is only used once a model is completely trained (using the train and 248 

validation sets). Since the choice of the test dataset significantly influences the model training, 249 

the control random number generation (RNG) function of Matlab software is used to control 250 

the random selections of the results and an optimal selection has been made for each model.  It 251 

consists in choosing the selection that minimizes the RMSE among the 100 different random 252 

selections. Normalized parameters such as engine power, biogas flow rate, methane content, 253 

pilot fuel flow rate, airflow rate and exhaust gas temperature respectively were obtained by 254 

dividing their values by 4 kW, 60 g/min, 100 % v/v, 20 g/min, 300 g/min and 600 °C. 255 

After selecting the input and output parameters, the key parameters specified prior to any 256 

ANN investigation are the number of hidden layers, the number of neurons in the hidden layers, 257 

the activation function, as well as the training (learning) algorithms. Since there is no precise 258 

rule to determine the number of hidden layers and the number of neurons in the hidden layer, 259 

the trial and error method has been applied to find the number of hidden layers and the number 260 

of neurons in the hidden layer. In order to decide the most appropriate or best solution a software 261 

was developed to design and train the network by varying the number of hidden layers from 1 262 
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to 5 and the number of neurons in each hidden layer from 1 to 20 neurons. Figure 2 illustrates 263 

the calculation flowchart for selection data optimization, ANN model design optimization, and 264 

ANN model training. 265 

 266 
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 267 

Figure 2. Flowchart of the design and optimization of the ANN models 268 

For each design, 250 iterations were performed where the new obtained optimal design is 269 

updated. The optimum solution has been selected by minimizing the root mean square error 270 
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(RMSE), given by Eq.1. Indeed, various studies have been shown that the application of ANN 271 

method in engine performance consists of optimal configurations consisting of using one to two 272 

hidden layers whose number of neurons in each layer does not exceed ten [43–45,54]. 273 

���� � 	∑ ��
��
�_������
��
�_����������
�    ..................................................................... (Eq.1) 274 

Where : � !" !_#$%& and � !" !_�'(& are respectively the ith calculated and measured 275 

output values. �)� is the total number of the measured output data. 276 

As shown in figure 1, the fully connected layer method is considered, i.e. each neuron is 277 

connected to every neuron in the previous layer, and each connection has it's own weight. Each 278 

neuron of hidden layer is molded by input(s), addition block and activation function followed 279 

by the output. The weight is a value that defines the strength of the input connected to the node. 280 

A bias controls the magnitude of the input for the activation function, in which the magnitude 281 

is increased with a positive bias and vice-versa. The computational model is given by the 282 

perceptron model in figure 3 [54]. 283 

 284 

Figure 3. The perceptron model 285 

The general expression of the output of the model is 286 

 � * + ∑ ,&-&.&/0   ........................................................................................................ (Eq.2) 287 
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The output of the perceptron model is governed by the activation (transfer) function. The 288 

hidden layers are governed by the log-sigmoid activation function (logsig) while the output 289 

layer is governed by the linear activation function (purelin). The log-sigmoid activation 290 

function (Eq.3) takes the input (which can be any value between plus and minus infinity) and 291 

overwrites the output in the range 0 to 1. The linear activation function (Eq.4) leaves the input 292 

as it is. 293 

1� � � 0
02�34  ................................................................................................................ (Eq.3) 294 

1� � �   ....................................................................................................................... (Eq.4) 295 

The gradient descent with momentum backpropagation training function (traingdm) is used 296 

as learning algorithms. It consists in adjusting the network parameters, namely the weights and 297 

the biases, by using as a cost function the mean squared error (MSE). The network parameters 298 

are backpropagated until the signal is minimized upon a number of training iterations, which is 299 

also known as epochs. 300 

2.4. Simulation of biogas production 301 

The evolution of biogas production (flow rate and CH4 content) from cattle manure effluents 302 

were simulated based on previous research works [53]. In fact, the cattle manure effluents, 303 

especially in small farms, are often mixed with straw. Zhao et al [53] investigated the anaerobic 304 

co-digestion of oat straw (OS) and cow manure (CM). Their study examined the effects of 305 

different percentages of total solid (TS) and the addition of CM on methane production during 306 

OS anaerobic digestion. The experiments were conducted at a laboratory scale on 300 ml loads 307 

in 500 ml laboratory flasks. The batch tests were carried out in an enclosure maintained at a 308 

constant temperature, at 37 ± 2 °C, for a maximum of 50 days. This time, usually chosen as 309 

hydraulic retention time T95, is considered optimal for the anaerobic digestion reaction. It 310 

makes it possible to produce 95 % of methane which can be produced when the reaction time 311 
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is maintained until the completion of the reaction. Table 2 summarizes the OS and CM 312 

characteristics. 313 

Table 2 : Characteristics of OS and CM  314 

Parameter OS CM 

Total solid (%) 94.73 ± 0.42 16.8 ± 0.19 

Volatile solid (%) 86.61 ± 0.66 9.22 ± 0.08 

Cellulose (%) 29.87 ± 1.14 22.91 ± 0.28 

Hemicellulose (%) 30.12 ± 1.35 22.85 ± 0.11 

Lignin (%) 5.23 ± 0.22 8.09 ± 0.08 

Ash (%) 14.36 ± 0.26 6.32 ± 0.17 

Total carbon (%) 36.35 ± 0.31 26.27 ± 0.14 

Total nitrogen (%) 0.67 ± 0.01 1.20 ± 0.04 

Carbon/Nitrogen ratio 54.25 21.89 

 315 

The produced biogas characteristics, in particular the cumulative production of the main 316 

chemical species (CH4 and CO2) constituting biogas, divided by the input charge in volatile 317 

solids (VS), are represented in Figure 4. The highest cumulative production of biogas was 318 

obtained with a mixture of OS:CM ratio of 2:1 and a TS content of 4 %. It was 840 Lbiogas/kgVS 319 

consisting of 49.6 % of CH4 and 50.4 % of CO2.  320 

 321 
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Figure 4. Cumulative production of biogas from Co-digestion of OS and CM at 37 °C  322 

The cumulative production curves summarize the evolution of the total production of biogas 323 

per kg of VS of feedstock. This feedstock represents a mixture of 0.889 kg of OS and 2.495 kg 324 

of CM, diluted with 29.41 kg of water to contain only 4 % of TS. After 50 days of anaerobic 325 

digestion, the cumulative production is 840 liters of biogas, consisting of 416 liters of CH4 and 326 

424 liters of CO2. 327 

The shape of the cumulative biogas production curve will be used in simulation work as a 328 

flow of biogas from each digester. It allows to model the dual-fuel operating mode without 329 

biogas storing gasometer, where the biogas from the anaerobic digesters is directed directly to 330 

the intake of the dual-fuel engine (Figure 5). 331 

 332 

Figure 5. Schematic of the CHP plant operating with biogas from n digesters 333 

3. Results and discussion 334 

3.1. Engine tests 335 

The experimental results used to train, validate and test the ANN models are presented in 336 

Figure 6. It summarize the selected input data (engine power, biogas methane content, biogas 337 

flow rate) and the selected output data of the ANN models (pilot fuel flow rate, airflow rate, 338 

and exhaust gas temperature). 339 



19 
 

 340 

Figure 6. Experimental tests and the optimal random selection of the training and 341 

validation data 342 

The training and validation dataset is presented in blue color while the test dataset is 343 

presented in red color. It is clear that the optimal selection of the test dataset differs for each 344 

model. The optimum choices of the test dataset for models ANN1, ANN2 and ANN3 345 

respectively are obtained using the control random number generation (RNG) of 34, 76 and 68. 346 

It is obvious that the choices of the test dataset are different. This is because the physical models 347 

that connect the model outputs to their inputs (engine power, biogas methane content and biogas 348 

flow rate) are also different. 349 

The results allow us to draw two conclusions: The first is that the chosen experimental 350 

procedure makes it possible to scan all the possible cases and to have a very representative 351 

experimental set. The second is that the control random selection of the test dataset plays a key 352 

role in the ANN modeling. Indeed, uncontrolled random selection risks selecting 353 

unrepresentative or undiversified dataset. 354 
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3.2. Performances and validation of ANN based models 355 

The models are validated using two criteria namely RMSE and R-squared (R2). The RMSE 356 

is an absolute measure of fit, whereas R-squared is a relative measure of fit. RMSE is a good 357 

measure of how accurately the model predicts the response, and it is the most important criterion 358 

for fit if the main purpose of the model is prediction. It indicate how close the observed data 359 

points are to the model’s predicted values. Lower values of RMSE indicate better fit. With 360 

regard the R-squared, it has the useful property that its scale is intuitive: it ranges from zero to 361 

one, with zero indicating that the proposed model does not improve prediction over the mean 362 

model, and one indicating perfect prediction. 363 

It is found that the optimal configurations of the models ANN1, ANN2 and ANN3 364 

respectively have the RMSE values of 0.58 %, 0.34 % and 0.62 % and the regression 365 

coefficients (R2) values of 0.9993, 0.9858 and 0.9959. The propinquity of the R2 values to (1) 366 

and RMSE values to (0) signifies the accurateness of the ANN based models [43,55]. It reflect 367 

that these ANN models give quite satisfactory and acceptable performance. This suggests that 368 

the ANN model of the engine is accurate, valid and reliable. The performance graphs for the 369 

networks with good agreement between experimental and calculated results are shown in Figure 370 

7. 371 

 372 

Figure 7. Experimental versus calculated values for the different recorded parameters 373 
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The good precision and steadfastness of the ANN based models also reflect the good choice 374 

of the inputs parameter selection of the models, such as engine power, biogas methane content 375 

and biogas flow rate. Indeed the fact that the engine power depends on the fuels flow rates (pilot 376 

and primary fuels) adequately justifies the physical dependence of the ANN1 model output 377 

(pilot flow rate) with the engine power, biogas flow rate and biogas methane content. Regarding 378 

the physical dependence of the airflow rate (ANN2 model output), it is related to the model 379 

inputs through the admitted flow of biogas. Indeed, the intake flow of the engine, naturally 380 

aspirated under a constant engine speed (1500 rpm), consists of the sum of two flows, namely 381 

the airflow and the biogas flow (biogas flow rate and its methane content). As for the physical 382 

dependence of the airflow rate to the engine speed, it is already explained in the physical 383 

dependence of the parameters of the ANN1 based model, where the biogas flow rate and the 384 

engine speed are physically dependent. For the physical dependence of the ANN3 model 385 

parameters, it is evident that the exhaust gas temperature depends on the engine power, biogas 386 

flow rate, and biogas methane content (i.e. CH4 and CO2 flow rates). In the diesel engine, where 387 

under a constant engine speed the volumetric efficiency is practically constant, the variation of 388 

the power implies the variation of the air fuel ratio which is in turn affects the exhaust 389 

temperature. In addition, the variation of the biogas flow and the methane content implies the 390 

variation of the CO2 flow rate, which is an inert gas and therefore its presence decreases the 391 

exhaust temperature. 392 

As regards the ANN1 based model, its optimal configuration consists of two hidden layers 393 

for which the first comprises five neurons and the second comprises four neurons. Their optimal 394 

adjusted network parameters, namely the weights and the biases, are shown in Table 3. 395 

Table 3. Weight and biases of the ANN 1 based model 396 

 1st Hidden layer : IWj,i b1,j 

1.5733 -3.2675 -2.6178 -12.4954   4.6390 
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0.6322 -1.7464 -2.7040 0.1185   -2.5938 

-0.0659 -0.2166 -0.3591 0.1678   1.3898 

17.0472 63.1983 3.9064 23.0693   33.2631 

0.3928 -0.1054 4.9590 -1.5147   -5.7573 

2nd hidden layer : IWj,i b2,j 

-0.1093 -33.2032 -18.4208 -0.0635 -2.2667 12.5516 

30.9308 -30.9775 5.0478 -24.3578 -2.6255 -9.9047 

110.3573 16.8241 11.4910 -10.4912 -23.9237 11.3550 

0.0259 -0.6688 13.4434 0.0250 0.9057 -8.2412 

Output hidden layer : LWj,1 b3 

-19.1421 0.0824 11.6260 -27.5964   14.6475 
 397 

Where, i = input variables, j = Hidden layer neurons , IWj,i = weight to jth neuron of hidden 398 

layer from ith input variable, LWj,i = Weight to output layer from jth neuron, b1,j = bias to jth 399 

neuron of 1st hidden layer, b2,j = bias to jth neuron of 2nd hidden layer, b3 = bias to jth neuron of 400 

output layer. 401 

For the ANN2 based model, its optimal configuration also consists of two hidden layers for 402 

which the first comprises three neurons and the second comprises five neurons. Their optimal 403 

adjusted network parameters, namely the weights and the biases, are shown in Table 4. 404 

Table 4. Weight and biases of the ANN 2 based model 405 

1st Hidden layer : IWj,i  b1,j 

-0,0045 -2,4101 6,3145 0,0066   -5,4061 

0,0022 0,6448 -0,3752 0,0110   -0,3895 

-17,4060 62,4664 -20,2027 95,2348   -24,6803 

2nd Hidden layer : IWj,i b2,j  

-53,2753 -3,8107 -1,1256     52,4951 

88,1274 175,1971 46,5783     -119,3185 

-11,8383 2,2070 -0,1461     6,1280 

12,0424 36,1368 -0,5266     -17,2298 

-82,8240 -170,4725 -36,7020     113,9552 

Output hidden layer : LWj,i  b3 

45,7544 41,9136 -9,3538 -78,7266 46,7049 -14,6489 
 406 
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Likewise, for the ANN3 based model, its optimal configuration consists of two hidden layers 407 

for which the first comprises five neurons and the second comprises three neurons. Their 408 

optimal adjusted network parameters are shown in Table 5. 409 

Table 5. Weight and biases of the ANN 3 based model 410 

1st Hidden layer : IWj,i  b1,j 

0,1504 0,0775 -1,2412 -1,3139   0,5200 

0,5634 -1,0624 4,5390 -2,5093   -1,4359 

-0,0130 -0,0178 0,2789 0,2887   -1,6385 

1,4895 -30,0325 2,9975 -7,4717   -1,0186 

0,4957 -18,3654 15,7180 -17,7499   3,0818 

2nd Hidden layer : IWj,i  b2,j 

-0,7228 -0,1800 12,8054 -0,5347 -0,6179 -1,4763 

6,9956 2,4618 9,0203 0,6300 1,3695 -9,2359 

5,4879 4,2692 -11,4440 0,5861 1,9571 -7,3014 

Output hidden layer : LWj,i  b3 

16,6370 37,2658 -25,8575     -12,9805 
 411 

3.3. CHP simulation results 412 

It is recalled that the engine used, with a maximum power of 3.5 kW, has been able to 413 

consume up to 60 g/min of biogas (Figure 6). Given that the digesters dump the biogas into a 414 

manifold (as shown in Figure 5), the anaerobic digestion unit will be sized so that the maximum 415 

flow rate of biogas in the manifold outlet is 60 g/min. 416 

The instantaneous flow rate of biogas leaving a single digester is determined by deriving the 417 

cumulative instantaneous production of the digester, given in Figure 4. Depending on the 418 

number of digesters to be used, the resulted average biogas flow rate and the corresponding 419 

digester charge are determined. Figure 8 shows the evolution of the digester charge as well as 420 

the average biogas characteristics (biogas, CH4 and CO2 flow rates) as a function of the number 421 

of used digesters. 422 
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 423 

Figure 8. Digester charge and characteristics of the produced biogas versus number of 424 

digester to produce a biogas flow rate whose maximum is 60 g/min 425 

It is observed that when only one digester is used, the amount of effluent (digester charge) 426 

is 1187 kg_VS (mixture of 1055.2 kg of OS, 2961.6 kg of CM and 34909 kg of water). This 427 

charge gradually decreases to reach 355.1 kg_VS (mixture of 315.7 kg of OS, 885.97 kg of CM 428 

and 10444 kg of water), for each digester, when 10 digesters are used. 429 

It can be noted that the average biogas flow rate increases as the number of digesters 430 

increases. This is because the fluctuation of the biogas flow rate decreases while increasing the 431 

number of digesters. Indeed, when using two digesters, for example, the loading of the digesters 432 

takes place every 25 days. i.e. while the second digester has reached its 25th day of digestion, 433 

the first digester has reached its end of digestion (50th day) so it will charge again. On the other 434 

hand, when using ten digesters, for example, the digesters are loaded every 5 days. i.e. while 435 

the tenth digester has reached its 5th day of digestion, the first digester has reached its end of 436 

digestion (50th day). This reduction in the loading time actually has two advantages: the first is 437 

to reduce the fluctuation of the flow and the composition of the biogas, the second reduces the 438 

storage time of the effluents, which prevents the loss of the methane production yield of the 439 

effluents. 440 
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Figure 9.a shows the instantaneous production of biogas flow over a period of 100 days. In 441 

the case of a single digester, the fluctuation of the biogas flow rate is between 2 and 60 g/min. 442 

Fluctuations are reduced and range between 38 and 60 g/min when the number of digesters 443 

exceeds 5. The biogas flow rate becomes less fluctuating. In addition, the biogas methane 444 

content (Figure 9.b), which varies between 18 and 50 % when a single digester is considered,  445 

quickly becomes stable, between 46 and 49 %, as soon as two digesters have been considered. 446 

 447 

Figure 9. Biogas flow rate and the corresponding pilot fuel flow rate for different engine 448 

power outputs. 449 

This biogas, whose flow rate and CH4 content vary over time, serves as the primary fuel for 450 

the operation of the 3.5 kW power engine in dual fuel mode. This involves the variation of the 451 

associated pilot fuel flow rate that will be injected into the engine cylinder to develop the desired 452 

engine load. Figures 9-c to 9-f show the effect of the number of digesters as well as the evolution 453 

of the pilot fuel flow rate associated with biogas flow rate as a function of the engine load (50, 454 

70, 80 and 100 %). 455 
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Using these simulation results (Figure 8 and Figure 9), the performance of the dual fuel CHP 456 

plant will be evaluated on an annual basis (8760 hours). Figure 10 illustrates the average annual 457 

pilot fuel flow rate as well as the pilot fuel mass ratio as a function of the engine load and the 458 

number of digesters. The pilot fuel mass ratio is given by the following equation:   459 

���&�5�	7
�� � 8�9:;�<=>	?4@<
8�9:;�<=>	?4@<28�9:A�=BCD   ..................................................................... (Eq.5) 460 

Where E�F��&�5�	7
�� and E�F�G&5H�� are the average mass flow rates for pilot fuel and 461 

biogas respectively. They are determined as the ratio of annual consumption of the considered 462 

fuel to the elapsed time of digestion. They are given by the following equations: 463 

E�F��&�5�	7
�� � 8�;�<=>	?4@<
���
��	I&H���&5�	�&J�   ..................................................................... (Eq.6) 464 

E�F�G&5H�� � 8�A�=BCD
���
��	I&H���&5�	�&J�   ..................................................................... (Eq.7) 465 

Where E#�&�5�	7
�� and E#G&5H�� are the annual consumptions of pilot fuel and biogas 466 

respectively, calculated by integrating their flow rate curves throughout the digestion time. 467 

 468 

 469 
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Figure 10. Average annual fuel consumption versus engine load and number of digesters. a) 470 

Average pilot fuel mass flow rate. b) Average pilot fuel mass ratio. 471 

The result shows that for a lower number of digesters, the average pilot fuel flow rate 472 

increases quickly with respect to the engine load. In the case of a single digester, for example, 473 

the pilot fuel flow rate increases from about 7 to 13 g/min when the engine load increases from 474 

about 50 to 100 %. This is because the biogas flow rate and its methane content show a 475 

significant fluctuation. The effect of the number of digesters becomes unimportant from 6 476 

digesters, where the pilot fuel flow rate goes from about 1 to 3.7 g/min when the engine load 477 

goes from 50 to 100 %. With regard to the mass fraction of the pilot fuel (figure 10.b), and 478 

under a given engine load, it decreases by increasing the number of digesters so that it becomes 479 

negligible when the number of digesters becomes greater than four digesters. This is the 480 

consequence of the flow rate and methane content of biogas becoming stable. 481 

One of the limiting factors for the development of micro-CHP technology with dual fuel is 482 

the use of diesel fuel as a pilot fuel. The regulated tariffs for electricity from renewable sources 483 

generally requires limited consumption of fossil fuels for the operation of the CHP plants. For 484 

instance,  in France, the current regulation imposes that the annual fossil energy consumption 485 

rate should not exceed 10 % of the primary energy used in the diesel-biogas CHP plants [56]. 486 

Figure 11 shows the average energy ratio of the pilot fuel (���&�5�	7
��) as well as the engine 487 

efficiency as a function of the engine load and the number of digesters. These two parameters 488 

are given by the following equations:  489 

���&�5�	7
�� � 100 ∗ 8�9:;�<=>	?4@<NOP;�<=>	?4@<
8�9:;�<=>	?4@<NOP;�<=>	?4@<28�9:A�=BCDNOPA�=BCD   ...................... (Eq.8) 490 

�)QR)'	'11RSR')ST � 100 U�H&��	�5V�W	5
��
�
8�9:;�<=>	?4@<NOP;�<=>	?4@<28�9:A�=BCDNOPA�=BCD   .......... (Eq.9) 491 
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Where X�Y�&�5�	7
�� � 42.42	�]/_Q is the lower heating value of pilot fuel and X�YG&5H�� 492 

is the lower heating value of biogas. The latter is calculated according to the methane content 493 

of biogas. 494 

 495 

Figure 11. Engine efficiency and energy ratio versus engine load and number of digesters 496 

Regarding the engine efficiency, it increases proportionally with the engine loads. In 497 

addition, for a constant engine load, the increase in the number of digesters implies a slight 498 

decrease in engine efficiency. For a load of 70 %, for example, the engine efficiency goes from 499 

about 25 % when a single digester is considered to about 20 % when the number of digesters is 500 

10. This is because increasing the number of digesters induces an increase in the biogas flow 501 

rate (Figure 8), which causes a decrease in the pilot fuel flow rate (Figure 10-a) at a constant 502 

engine load. In fact, several researchers reported that increasing the amount of biogas in a dual 503 

fuel engine at the expense of pilot fuel involves the reduction of engine efficiency [4,8,57–59]. 504 

On the other hand, the pilot fuel energy ratio, shown in Figure 11-b, decreases while increasing 505 

the number of digesters. It is only from 4 digesters that the average pilot energy ratio is less 506 

than 10 % which complies with French regulation. For operation under an engine load equal to 507 

70 %, the number of five digesters can be optimal. In addition to these regulation limits, such 508 

as thermal efficiency, pollutant emissions, engine aging and maintenance costs, the technical 509 
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limits has also proven that operation under partial loads is recommended. Aklouche et all [42] 510 

have already proved that the indicated thermal efficiency obtained in dual fuel operation is 511 

almost similar for partial loads greater than 70 %. Finally, this partial load, which represents 70 512 

% of the maximum engine power, actually represents a nominal power of 2.45 kW. 513 

For instance, in the case of five digesters, the digester charging period, given as the digestion 514 

time (50 days) divided by the number of digesters (5 digesters), is 10 days. Each digester charge 515 

is then equal to 635.6 kg_VS (Figure 8) leading to a total inlet charge of 20844 kg (565 kg of 516 

OS, 1586 kg of CM and 18693 kg of water). It provides an average biogas flow rate of 50 g/min, 517 

consisting of 48 % v/v of average methane content (Figure 8). 518 

In summary, a micro-CHP unit of 1 kw (shaft power) require a dual fuel engine generator 519 

whose nominal shaft power is 1 kW, five digesters and a daily availability of effluents of 171 520 

kg/day, consisting of 45 kg/day of OS and 126 kg/day on CM. 521 

Since the thermal power of the CHP plant depends on the heat exchanger efficiencies as well 522 

as the temperature of the cold source, the study is limited to the estimation of the power heat 523 

output available in the exhaust gases. In order to estimate the thermal power, it is necessary to 524 

determine the mass flow rate of the exhaust gases, their temperature and their specific heat. As 525 

regard to the mass flow rate of the exhaust gases, it is given as the sum of input mass flow rates, 526 

such as biogas flow rate, pilot fuel flow rate and airflow rate admitted into the cylinder. The 527 

latter is determined using the ANN2 based model. It allows determining the required airflow 528 

rate according to the engine load and the number of digesters. 529 

Using ANN3 based model, simulation results show that the annual average airflow rate rage 530 

from 232 to 260 g/min. This is due to the dependence of the airflow rate with respect to the 531 

biogas flow rate, admitted into the engine through its intake manifold. In addition, the fact that 532 

the engine speed is constant does not imply that the airflow rate must be constant. Indeed, the 533 
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airflow admitted into the cylinder depends on the flow of the biogas injected into the intake 534 

duct, and which takes part in the total intake flow sucked by the engine. Various studies have 535 

already found this dependence of intake flows, which sometimes results in the variation of the 536 

total air fuel ratio [60,61]. 537 

Regarding the exhaust temperature, it is determined using the ANN3 based model. Figure 538 

12-a illustrates the average annual exhaust gas temperature as a function of engine load and 539 

number of digesters. It is in the range of 340 and 540 °C. Unlike water-cooled engines, where 540 

some of the exhaust energy is absorbed in the engine cylinder head, the temperature of the 541 

exhaust is often higher. It varies according to the engine load and the air fuel ration [61]. Its 542 

increase with the number of digesters is due to the fact that the latter favors the use of biogas at 543 

the expense of the pilot fuel. The relatively high presence of biogas flow rate leads to a decrease 544 

in the airflow rate, which in turn favors the raising of the exhaust temperature. In fact, the high 545 

presence of air (or the lower air-fuel ratios) implies the reduction of the quantity of air in excess, 546 

which absorbs a quantity of heat released by the combustion of the fuels. 547 

 548 

Figure 12. Exhaust gas temperature and the thermal power output versus engine load and 549 

number of digester 550 
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A reciprocating internal combustion engine CHP system can provide total efficiency 551 

(electrical power and thermal energy) of up to 80 % [64]. The heat generated from the engine 552 

can be used for numerous purposes such as space heating, cooling, domestic hotwater and other 553 

processes of energy recovery from waste such as pyrolysis, gasification, trans-esterification, 554 

anaerobic digestion, …etc. 555 

To properly estimate the thermal power of exhaust gases, it is necessary to determine their 556 

specific heat according to their chemical composition. Under the assumption of actual complete 557 

combustion, the exhaust gas consists mainly of H2O, CO2, N2 and O2. The presence of O2 on 558 

the one hand and the non-presence of the unburned species (CO, HTC, and NOx) on the other 559 

hand imply that the real combustion is considered. The estimation of the CO2 and H2O flow 560 

rates are determined using the complete combustion of the pilot and primary fuels while the 561 

estimation of N2 and O2 flow rates are determined taking into account the airflow rate sucked 562 

by the engine. Finally, this assumption makes it possible to neglect the presence of the unburned 563 

species, which are evaluated in ppm range in the exhaust gases [22,62], and consequently, their 564 

presence does not affect the specific heat of the exhaust gases. Therefore, the mass fraction of 565 

each species in the exhaust gases is calculated as a function of the biogas flow rate, its methane 566 

content, the pilot fuel flow rate and the airflow rate. 567 

The specific heat of each chemical species is given by a correlation as a function of 568 

temperature [63]. The specific heat of the exhaust gases `#"Uab�
��_c��d is then determined 569 

using Equation 10. 570 

#"Uab�
��_c���e� � -Of�#"Ofg�e� + -��f#"��f�e� + -.f#".f�e� + -�f#"�f�e�  .. (Eq.10) 571 

Where  #"Ofg�e�, #"��f�e�, #".f�e�, #"�f�e� are the specific heats in [J/kg.K] of H2O, 572 

CO2, N2 and O2 respectively. -Of� , -��f, -.f, -�f are the corresponding mass fractions of 573 

these species in the exhaust gases. 574 
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In this study, where the engine is used without the exhaust exchanger, the thermal power of 575 

the CHP is expressed by the thermal power available in the exhaust gas at the engine output. It 576 

is determined using Equation 11. 577 

��Uab�
��_c�� �	�� Uab�
I�_c�� ∗ #"Uab�
��_c�� ∗ eUab�
��_c�� ........................................ (Eq.11) 578 

Where �� Uab�
��_c�� is the mass flow rates of exhaust gas. eUab�
��_c�� is the temperature of 579 

exhaust gases in [°C] just at the outlet of the engine combustion chamber (exhaust manifold). 580 

Simulation results using ANN3 based model led to evaluate the average thermal power 581 

contained in the exhaust gases. Figure 12-b illustrates the evolution of thermal power of exhaust 582 

gases as a function of the engine load and the number of digesters. It shows that the thermal 583 

power available in the exhaust gas is between 5 and 13 kW. Since the thermal power of the 584 

CHP unit is given by the thermal power which is actually recovered, it will be estimated by 585 

multiplying the results of the figure 12-b by the efficiency of the heat exchanger used in the 586 

CHP unit. A similar assumption is already used by Teymoori et al [66] developed a case study 587 

applied to an animal farm, covering the technical and economic aspects of biogas production 588 

using manure from livestock to replace fossil fuel used for heat and electricity generation. They 589 

estimated the thermal power of the CHP plant based on the assumption of constant thermal 590 

efficiency, which is estimated at 65 % of the primary power. 591 

For the above cited example where a CHP unit consisting of 5 digesters and an engine 592 

operating under load of 70 % is considered, the thermal power available in the exhaust gas is 593 

about 10 kW. In the field of combined heat and power, the used heat exchangers can recover 594 

up to 60 % of the thermal power contained in the exhaust gases. Indeed, similar percentages 595 

have been obtained experimentally by running an 8 kWe cogeneration unit (ecoGEN-08AH) 596 

[68] in dual fuel operation mode. 597 
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In summary, based on these assumptions, the1 kWe micro-CHP unit (shaft power), requiring 598 

a generator with a nominal electric power of 1 kW, can produce up to 2.45 kW of thermal 599 

power. 600 

4. Conclusion 601 

Mico-CHP on farm, where electricity and heat are produced from the anaerobic digestion of 602 

farm effluents, is increasingly the focus of many researchers. Dual-fuel engines are known for 603 

their flexibility in biogas composition, which varies throughout the duration of the anaerobic 604 

digestion reaction. The modeling of the micro-CHP unit operating in dual-fuel mode is carried 605 

out on the basis of experimental results carried out at the laboratory scale. The engine tests were 606 

carried out on an AVL engine with a maximum power of 3.5 kW, operating in dual fuel mode. 607 

The biogas flow rate is evaluated using experimental results from the literature based on 608 

anaerobic co-digestion of mixture of oat straw and cow manure. 609 

The engine parameters have been modeled using methodology based on Artificial Neural 610 

Networks. Three ANN based models are developed to estimate engine parameters namely pilot 611 

fuel flow rate, intake airflow rate and the exhaust gas temperature. The inputs of the ANN based 612 

models are engine power, biogas flow rate, and biogas methane content. The ANN based 613 

models have been shown to provide quite satisfactory and acceptable performance. Their 614 

RMSE is between 0.34 % and 0.62 % and their R-squared is between 0.99 and 1. Each of them 615 

consists of two fully connected hidden layers. The ANN1 which models the pilot fuel flow rate 616 

includes five neurons in its first hidden layer and four neurons in its second hidden layer. The 617 

ANN2 which models the airflow rate includes three neurons in its first hidden layer and five 618 

neurons in its second hidden layer. The ANN2 which models the exhaust temperature includes 619 

five neurons in its first hidden layer and three neurons in its second hidden layer. 620 
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The effect of the number of digesters on the biogas characteristics is studied and the optimal 621 

CHP conception, allowing the use of only 10% of the primary energy from the pilot fuel, is 622 

CHP unit consisting of 5 digesters and dual fuel engine whose a nominal load equal to 70 % of 623 

its maximum load. A micro-CHP unit of 1 kWe, requires a dual fuel generator with a nominal 624 

power of 1 kW, five digesters and a daily availability of effluents of 171 kg / day, consisting of 625 

45 kg/day of oat straw and 126 kg/day of cow manure. Il can also recover up to 2.45 kW of 626 

thermal power from the exhaust gases. 627 

Works using a truly micro-CHP model, operating in diesel-biogas dual-fuel mode and 628 

equipped with an exhaust exchanger must be carried out. It is necessary to optimize its operation 629 

by acting on two parameters: The first is to improve the efficiency of the engine during 630 

operation in dual fuel mode. Indeed, the lower air-fuel equivalence ratio of diesel engines often 631 

involves unburned methane in the exhaust, which reduces the efficiency of dual-fuel engines. 632 

The second is to optimize the thermal power of the CHP unit by maximizing heat recovery from 633 

the exhaust and the heat recovery from the engine jacket. 634 
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