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Introduction

The identification of contaminant source location is a challenge for the management of numerous contaminated sites. A good knowledge of the source location allows a better strategy for the site remediation and the reduction of treatment costs. Migration plume processes are linked to the porous medium properties which are highly heterogeneous causing concentrated mass fluxes in a small zone. Studies showed that 70-80% of the plume mass discharge occurs in 10-20% of the contaminated area (Guilbeault et al., 2005). This 10% is the true source zone, which may often be quite small but has to be localised.

During the past 30 years, groundwater flow and pollutant transport models coupled with different inversion methods have been developed for source identification. A number of methods are available in the literature to estimate source localisation in synthetic cases from observations, mostly concentration data. These methods can be classified as follows : nonlinear optimisation approach, geostatistical approach or backward simulation approach [START_REF] Bagtzoglou | Mathematical Methods for Hydrologic Inversion: The Case of Pollution Source Identification[END_REF].

Optimisation methods are the most used approaches and allow source localisation from the comparison between observed and simulated data after a forward simulation. Gorelick et al., (1983) were the first to use an optimisation method for source localisation. The test was carried out on a 2D homogeneous synthetic case, in steady and transient states. All parameters of the geological medium were known (hydrodynamics and transport). Observations were represented by concentration history of the tracer, moreover, errors on observations were considered. The method presented in their paper is a restrictive method and is not suitable for real cases due to the requirement of known parameters, such as [START_REF] Wagner | Simultaneous Parameter Estimation and Contaminant Source Characterization for Coupled Groundwater Flow and Contaminant Transport Modelling[END_REF], who used a nonlinear optimisation method and worked on a synthetic 2D case in steady state. He developed an approach to simultaneously respond to parameter estimation and source characterization with nonlinear maximum likelihood estimation. The source was considered as continuous. Initial parameters are unknown (field of hydraulic conductivity, , dispersivity, , porosity, and boundary conditions). Since the field is parametrized with only two zones of piecewise constancy, this facilitates the source localisation. [START_REF] Mahar | Optimal Monitoring Network and Ground-Water--Pollution Source Identification[END_REF] used a nonlinear optimisation method combining source localisation and the identification of the best location for additional measurement points (measurement of source fluxes). They considered a synthetic 2D homogeneous case in steady state with known hydrogeological and transport parameters. The same authors worked with a homogeneous 2D case [START_REF] Mahar | Identification of Pollution Sources in Transient Groundwater Systems[END_REF] to identify the location of a transient source with several observations (concentrations). Datta et al., (2009) used the same synthetic case to estimate simultaneously parameters ( field, and ) and release history of several potential sources with a nonlinear program. Estimated Confidential C parameters were close to the actual value and proved the robustness of the method in a homogeneous case. [START_REF] Sun | A Robust Approach for Iterative Confidential C Contaminant Source Location and Release History Recovery[END_REF] also worked on several 2D homogeneous cases in transient state with constrained robust least squares estimator combined with an optimization in order to reduce significantly the computing time. [START_REF] Aral | Identification of Contaminant Source Location and Release History in Aquifers[END_REF] used a genetic algorithm allowing a nonlinear optimisation and provides a fair results improvment. The latter approach is based on a 2D heterogeneous model in steady state ( field and are known) with a transient source. Other optimisation methods (stochastic or ensemble optimisation for instance) have also been developed by [START_REF] Singh | Identification of Unknown Groundwater Pollution Sources Using Artificial Neural Networks[END_REF]; [START_REF] Yeh | Groundwater Contaminant Source Identification by a Hybrid Heuristic Approach[END_REF][START_REF] Yeh | Applying Hybrid Heuristic Approach to Identify Contaminant Source Information in Transient Groundwater Flow Systems[END_REF]; [START_REF] Ayvaz | A Hybrid Simulation--Optimization Approach for Solving the Areal Groundwater Pollution Source Identification Problems[END_REF]; Xu andGómez-Hernández (2016, 2018) and applied to this domain.

Unlike previous papers that carried out their analysis on synthetic cases, [START_REF] Bashi-Azghadi | Pollution Source Identification in Groundwater Systems: Application of Regret Theory and Bayesian Networks[END_REF] worked on a real case with a nonlinear optimisation method which minimises the number of probing wells and average regret in estimating polluted area. The site is a highly polluted oil refinery due to leakage from several tanks and the contaminant release is known.

To minimise the number of probing wells, the authors used a Monte Carlo analysis to assess uncertainties with a large number of randomly generated scenarios considering several variables such as the oil tank position at the origin of the contamination. The method permits the location of the source with a limited number of observations.

During the last 20 years, geostatistical approaches have been used for source identification. [START_REF] Snodgrass | A Geostatistical Approach to Contaminant Source Identification[END_REF] used a geostatistical method combined with Bayesian theory [START_REF] Tarantola | Inverse Problem Theory Elsevier[END_REF] to localise a source between two potential zones in a 1D

homogeneous synthetic case with a concentration release. They considered known hydraulic conductivity fields (K fields) and dispersivities ( ). Michalak and Kitanidis (2004) used geostatistical inverse modelling for contaminant source identification in a real site with observed field data with known hydraulic and transport parameters. This study showed that the history of contamination can be estimated with a good precision. [START_REF] Confidential C Gzyl | Contaminant Source and Release History Identification in Groundwater: A Multi-Step Approach[END_REF] worked also in a real site with several sources using a multi-step approach to identify the contaminant release history with a geostatistical method. [START_REF] Butera | Simultaneous Identification of the Pollutant Release History and the Source Location in Groundwater by Means of a Geostatistical Approach[END_REF] method for source localisation based on the geostatistical approach used by [START_REF] Snodgrass | A Geostatistical Approach to Contaminant Source Identification[END_REF].

Other methods using backward simulation coupled or not to geostatistics, were developed, these methods consider known, homogeneous or heterogeneous, field and known . [START_REF] Bagtzoglou | Application of Particle Methods to Reliable Identification of Groundwater Pollution Sources[END_REF] were among the first to use the inversion of transport equation to localise a source. In their work, transport equation was modelled with an inverse time and an unchanged dispersivity. [START_REF] Neupauer | Adjoint Method for Obtaining Backward-in-Time Location and Travel Time Probabilities of a Conservative Groundwater Contaminant[END_REF] used the adjoint method in a synthetic case with only one observation. The approach was also tested with several observations to localise sources in a real site in a 1D case [START_REF] Neupauer | Backward Probability Model Using Multiple Observations of Contamination to Identify Groundwater Contamination Sources at the Massachusetts Military Reservation[END_REF].

Michalak and Kitanidis (2004b) coupled the adjoint method for backward simulation with a geostatistical approach to identify the historical distribution of contaminant. [START_REF] Cupola | Laboratory Sandbox Validation of Pollutant Source Location Methods[END_REF] compared the adjoint method with the approach developed by [START_REF] Butera | Simultaneous Identification of the Pollutant Release History and the Source Location in Groundwater by Means of a Geostatistical Approach[END_REF] for a source localisation in a sand tank. Authors established the reliability of both methods and showed that the adjoint method is able to detect only one source compared to [START_REF] Cupola | Laboratory Sandbox Validation of Pollutant Source Location Methods[END_REF] approach.

Recently, [START_REF] Xu | Simultaneous Identification of a Contaminant Source and Hydraulic Conductivity via the Restart Normal-Score Ensemble Kalman Filter[END_REF] presented a method to simultaneously identify a source and estimate a field with a Kalman filter-like approach. The identification was proven with this method but uncertainty about field generated was significant, also the dispersivity was considered as known. This study is original in that the field is also estimated together with the source location, which makes the case closer to real world problem.

Table 1 summarises the characteristics of the existing approaches and shows that few studies can be applied to real case. Indeed, the challenge for real world cases is to deal with unknown heterogeneous field of hydraulic properties and unknown transport parameters (dispersivities).

In such contexts, the source identification may become challenging. Numerous studies consider known or homogeneous parameter fields. Yet, estimated location may be largely uncertain when inferred with biased parameters. The implementation of source identification Confidential C approach applicable to realistic case studies with unknown parameters, we consider here that hydraulic conductivity, dispersivity and source location are unknown and the contaminant release is constant. To our knowledge the GLMA has not been used before for contaminant source localisation.

As the problem includes a lot of uncertainty and generally very few measurement points, the second objective is to analyse the collection of complementary field data to better constrain the uncertainty of the unknown parameters. More precisely, the objective is to add new measurement points to decrease uncertainties about source location. To place these additional observations, a Data-worth analysis can be used with available tools as PREDUNC [START_REF] Moore | Efficient Regularization and Uncertainty Analysis Using a Global Optimization Methodology[END_REF] or PYEMU (a python script) developed by [START_REF] White | A Python Framework for Environmental Model Uncertainty Analysis[END_REF]. Due to the cost of a drilling, only a limited number of data can be added and DW analysis leads to optimize observation strategies with limited costs.

Data Worth analysis (DW) was studied by several authors in hydrogeology to optimize the data collection, while increasing value of information and therefore shrinking more the uncertainty.

This analysis is performed with nonlinear optimisation methods such as the ones developed in, Freeze et al., 1992;James and Freeze, 1993b;[START_REF] James | In Aquifer Remediation Design[END_REF]Fu and Gómez-Hernández, 2009. From the 70's to the 2000's, several studies conducted DW analysis in the context of hydrogeological problems (i.e. Gates and Kisiel., 1974;[START_REF] Maddock | Management Model as a Tool for Studying the Worth of Data[END_REF]Dausman et al., 2010;[START_REF] Hill | Knowledge, Transparency, and Refutability in Groundwater Models, an Example from the Death Valley Regional Groundwater Flow System[END_REF].

Other authors used DW analysis for hydrogeological and remediation problems based on finding the best location for Pump & Treat [START_REF] Tucciarelli | Optimal Data Acquisition Strategy for the Development of a Transport Model for Groundwater Remediation[END_REF]Freeze et al., 1992;[START_REF] James | In Aquifer Remediation Design[END_REF]. [START_REF] Wallis | Using Predictive Uncertainty Analysis to Optimise Tracer Test Design and Data Acquisition[END_REF] used the DW for transport problem with an evaluation of the introduction of multiple observations in a tracer test experiment. [START_REF] Wöhling | Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools[END_REF] extended the multiple observations approach with two types of data (hydraulic conductivity and heads data ) to decrease the predictive uncertainty of the hyporheic fluxes travel time. They used a genetic algorithm to find an optimal combination of predefined number Confidential C of measurement location. [START_REF] Vilhelmsen | Extending Data Worth Analyses to Select Multiple Observations Targeting Multiple Forecasts[END_REF] worked only with a single type of data, hydraulic conductivity. They extend the DW analysis to select multiple observations to reduce one or multiple forecast. [START_REF] Wöhling | Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools[END_REF] tested the multiple observations with a genetic algorithm. 2500 potential new measurement location is included and 1 million combinations of a maximum of 4 measurements are considered to find the best location of new data, which is not easy to implement for a practical case.

GLMA combined with a Data Worth analysis are used in this manuscript to develop an innovative practical methodology for real world case studies, this is a new contribution to the domain, according to the authors knowledge. More precisely, an iterative method is described for source identification based on GLMA coupled with a linear DW analysis to identify the best location of new measurement. The method is then applied to two synthetic cases with heterogeneous hydraulic conductivity field.

This manuscript is organized as follows. The first section, Material and Methods, details the GLMA method and the iterative approach to add new measurements with the DW analysis description. The second and third sections present the construction of the considered 2D heterogeneous synthetic cases together with the results on the source localisation. The presented approach is eventually summarized and discussed.

Material and methods

Strategy

The global strategy is based on an iterative approach to minimise uncertainties at each phase of the source localisation. The strategy can be applied in real situations, as it requires only a small number of wells in the plume and one or two additional sampling campaigns. conductivity field, dispersivity and the source position) including uncertainties on these parameters. For the source, we will use the term , which is the position of the source along the Y-axis (see fig. 3). Uncertainties linked to are analysed through a DW analysis to detect the best zones to drill new wells and then obtain new observation which will increase the accuracy on the source localisation. The parameter will not be considered in order to focus the analysis on the variation of on a fixed value (along X-axis), which corresponds to the perpendicular transect to the plume direction. 

GLMA approach

The Gauss-Levenberg-Marquardt Algorithm is a non-linear optimisation method (PEST++ code) to calibrate a model with observed data through the adjustment of parameters. The GLMA aims at minimizing the gap between observed and simulated data expressed with an objective function (Φ), Equation 1.

Φ ∑ * " #$ % & '( (1)
Where ), is the iteration number, * , is the observed data, , the simulated data, , the weight imposed for each data (chosen to ensure a good representation of each members in the overall function). The GLMA method will look for the best parameters set to find the minimal phi by changing iteratively the parameters values. In our study, the adjustable parameters are the field of K (parameterized with pilot points), the position of the source * and the dispersivity α.

At each iteration, the nonlinear problem is simplified by using a linear approximation:

̅ ,̅ + . (2)
Where ,̅ is the parameters vector, ̅ the data vector, is the linearized model (Jacobian matrix)

and . is the total errors in the measurement and the model. At each optimisation stage (and iteration), is updated to use the modified parameters and aim to give the best optimisation.

Due to the unknown characteristics of the contaminated site (hydraulic and transport parameters), the model has to take into account a number of parameters higher than the number of observations (the system is under-determined). To obtain a non-uniqueness solution, several approaches [START_REF] Carrera | Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 2. Uniqueness, Stability, and Solution Algorithms[END_REF] have been investigated to increase the stability of inverse problems. Regularization improves the condition problem. Namely Tikhonov regularization entails the addition of a term into the objective function to give preference to a particular solution [START_REF] Tonkin | A Hybrid Regularized Inversion Methodology for Highly Parameterized Environmental Models[END_REF] and will be used in our case.

The general approach is presented in Figure 2 on the following page. The initial field is obtained by kriging from the K values at the pilot points (details of interpolation are defined in Part 2).

The global approach (Figure 2) is divided in two steps:

(i)

Step 0: first optimisation to estimate the pilot points parameters for the field by simulating only the hydraulic heads data ;
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(ii)

Step 1: second optimisation to estimate all the parameters by simulating and concentration data ( ). In this step, initial values of pilot points correspond to the parameters estimated in Step 0.

Initial parameters

To help the resolution of the problem, it is possible to set initially a lower and upper limit for each parameter. For the pilot points representing the field, the interval taken for each parameter corresponds to an a priori knowledge of the geologic characteristics. For , the interval corresponds to a potential distance between two points where the source can be located. Dispersivity is more complex to estimate, the chosen limits correspond to the estimate of the dispersivity linked to the size of the plume and the heterogeneity of the sediment (Gelhar 1992). In addition, the parameters were separated in three groups (one for , one for and one for ) thus allowing assigning different weight in the regularisation equations (higher for and ). It is also possible to transform the value of the parameters in order to stabilize the variation between parameters (a log10 transformation is used for and )

Reference observation dataset

Data was simulated with MODFLOW [START_REF] Harbaugh | MODFLOW-2000, The U. S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process[END_REF] and MT3DMS [START_REF] Zheng | MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide[END_REF]. Observations data used for the analysis come from simulated data of a synthetic case where noise have been added on each observation for performance evaluation (Pooran Singh [START_REF] Mahar | Optimal Identification of Ground-Water Pollution Sources and Parameter Estimation[END_REF] in Equation 3 [START_REF] Singh | Identification of Unknown Groundwater Pollution Sources Using Artificial Neural Networks[END_REF] :

/0* * & + 1 * & 2 (3)
Where /0* is the observation data used for the analysis, * & the simulated data, 1 is a random fraction (a value of 0.1 is used corresponding to a moderate noise level), 2 is a standard normal deviates generated with the random number generation of the Excel Analysis ToolPack (mean = 0 and standard deviation = 1).
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Observation data are separated in two different groups to separate the hydraulic head data and concentration data. Observations are square root transformed (see Equation 1), used to make observation with a low concentration values more visible in the global objective function. 

Data Worth analysis

The Data Worth analysis allows the effect of new observations on the variance of a prediction of interest. In our case, if we consider that the position of the source is our prediction of interest, the analysis will help us to locate future drilling to limit uncertainties on .

Theory

Let the vector , designate model parameters and the measurements of hydraulic heads and To take account of new data in the Jacobian, [START_REF] Vilhelmsen | Extending Data Worth Analyses to Select Multiple Observations Targeting Multiple Forecasts[END_REF] defined the complete Jacobian matrix ABB , according to a prediction of interest ? :

ABB C 4?) < 0A*D E9 F ( 8 
)
Where ABB is the total Jacobian containing the prediction of interest 4?) < , 0A*D the basic Jacobian containing the initially existing data used for calibration and E9 the Jacobian containing the new observations at each line of the matrix.

Then, the authors defined the DW as follows:

GH I JKL M I NOPK M (9)
Where @ 9DQ % the variance value of the prediction of interest after adding data and @ 0A*D % defines the variance value of the prediction of interest on the existing data at the beginning of the analysis. DW ranges between 0% and 100%. For a fictitious new data added, if the DW value is close to 100%, no decrease was noted and the added observation (or an area of added observations) will not reduce the uncertainty on the prediction of interest. If DW is close to 0%, the added observation will markedly decrease the prediction uncertainty. For a better understanding, we will base our study on the value (1-DW), which means that when the value is closer to 100%, the observations decrease the prediction uncertainty.

Applications of the Data Worth

Adding a number of fictitious observations in the Jacobian matrix (complete Jacobian), the value of the variance of the prediction of interest (here, the source location ) on each of the new observations is calculated. The number of fictitious observations depends on the studied domain, corresponding to on observation per cell of the domain.
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It is therefore possible to build a map of variances related to a prediction of interest and to have a value of (1-DW) over an entire domain. Zones with higher value of (1-DW) represent where new observations are needed to reduce uncertainty of .

Assessment of adding new observations with the Data worth analysis is realised with PyEMU tool [START_REF] White | A Python Framework for Environmental Model Uncertainty Analysis[END_REF], which calculate the variance of the prediction.

Iterative choice of the best points

For operational reasons, it is not reasonable to conduct a single campaign for one drilling. Thus the number of observation to be added after each phase has been set to three. The first point chosen is the zone where 41 " GH) is the highest. The problem is to target the 2 nd and 3 rd point. [START_REF] Vilhelmsen | Extending Data Worth Analyses to Select Multiple Observations Targeting Multiple Forecasts[END_REF] used a method to have multiple combinations of new observations with a random search procedure in a Data worth analysis (2500 potential new measurement and 1 million combinations). In our work about real-site applicability (saving time), we want to target observations without a random procedure. So when the point p1 is chosen, the goal is to select the p2 in a region where the concentrations measured at p1 have no influence. For this we used a geostatistical approach. Considering that concentrations values as correlated with each other, directional variograms are calculated based on the concentration field (with the simulated plume with GLMA). Then we define an ellipse 34S3, ?3, US, U?) having p1 as center that defines the limits away from which there is no correlation with measurements at p1. The dimensions US and U? of the ellipse correspond to 2/3 of the corresponding range of the two directional variograms [START_REF] Moore | Efficient Regularization and Uncertainty Analysis Using a Global Optimization Methodology[END_REF]. The zone selected for p2 corresponds to the zone outside this first ellipse where 41 " GH) is the highest. Then, p3 is selected outside the two previous ellipse having p1 and p2 as center.

This approach will however be limited to the situation where geostatistical analysis of the tracer plume seems to be valid. Although there is no formal way to determine which geological medium can be approached with classical geostatistics, the presented approach might be valid for porous medium as geostatistics are now commonly used, but more questionable in Confidential C 

Data used for the optimisation

For the case A, ten observations were added from p1 to p10 (Figure 3). Their location was chosen in order to have a non-ideally location with respect to the plume (p1, p2, p3, p4 and p10). The goal is to have a case close to the reality knowing that at the beginning of the study of a contaminated site, the existing wells are in most cases very poorly located. Errors were also added (see Method part) and these disturbed data are considered as observed data.

GLMA Implementation

Initial parameters

Initial parameters are presented in Table 2. In the Step 0 described in the Method part, the first elsewhere it has the advantage to allow a rapid estimation of the K field with flow-only simulations, which shall be a good start for the more costly runs including flow and transport.

Regularisation

To help the parameters estimation, regularisations methods are used in our calibration (i) Tikhonov regularisation and (ii) Singular Value Decomposition (SVD). A priori information is added in the Tikhonov regularisation with a higher weight value for and in the global objective function. This point is important in order to promote and in the global objective function in the first stages of the optimization. In addition, a SVD is used with a truncation of 5.10 -7 .

Results

To evaluate the calibration of the models and the robustness of the source location, Root-Mean-Square-Error (^_`a) criterion and Normalized-Root-Mean-Square-Error (b^_`a) are used. The b^_`a considered in this study is the normalisation representing by the range of the observed data (maximum value minus minimum value) and expressed as a percentage.

As long as the b^_`a for is less than 5% and the b^_`a for is less than 15%, we consider that the calibration is acceptable for us.

Phase 1

Optimisation in the Phase 1 gave equal to 30.84 ± 5.32 m (reference = 29 m) and equal to 2.65 ± 1.15 m (reference = 3 m). RMSE (between simulated and observed data) for and is respectively equal to 0.001 m and 0.0007 mg.L -1 . The b^_`a for and C are respectively less than 5% and 15%.

Data used for the optimisation

For the case B, ten observations were added from p1 to p10 (Figure 6). Errors were added (like the case A) as used to have "observed data" for the optimisation.

GLMA implementation

The same method is used (see GLMA implementation for the case A). The parameters are presented in the Table 2 where the potential range of YS (20 -70 m) is also shown. = 10% given a low correlation compared to the case A but acceptable according to the ASTM standard.

First DW analysis and choice of new points

Data worth is calculated with the parameter estimated in the Step 1 of Phase 1 for each new point located in the mesh grid of the subdomain of the zone studied, corresponding to 3000 points.

In the case B, the new observations must be located at an S coordinate higher than 125 meter (Figure 7) to constrain the analysis. The first point is located at [125; 55], (p11 in the Figure 7).

The concentration simulated in the Phase 1 allowed us to draw the ellipse P q 4xp, yp, rx, ry)

where, S, and ?,, are the coordinate of the ellipse center corresponding to the first point located and US 33 i ; U? 11 i. The point p12 is located at a coordinate [160; 55] and the third point is located at a coordinate [190.5; 50.5] (see Figure 7). Observations p11, p12 and p13 are used for the Phase 2. 

General results

Results for the source localisation
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The Table 3 summaries results from optimisation used for cases A and case B (Table 4 shows computing time for each phases). The source localisation in the synthetic case A gave the best estimation with a high correlation between observed and simulated data (Figure 9). The final value for is 30.7 (29 is the reference value). Indeed, pilot points interpolation method used during the modelling phases of the case A is identical to the method used for the construction case (same pilot points number, same type of kriging). The case A mainly allowed establishing the methodology on an easily achievable case, giving low b^_`a and a good parameters estimation.

For the case B, the construction method is different to the one used for the modelling phases, which adds more errors in the calibration of the observations and the localisation of the source.

b^_`a (for and ) of case B (Figure 9) are higher than case A but are acceptable according to the ASTM standard. The final value for is 64 m (the reference value is 61 m) with a low standard deviation. Errors can due to the plume coming from = 61 m and turns before the area fixed for the new observation adding. Indeed, the information received by the optimisation is in some ways wrong and cannot simulate a turn of the plume before the authorized sampling zone. close to the source. The model becomes closer to the reference conditions necessary for the correct application of the DW approach. This outlines the fact that the larger the exclusion zone the highest the error on the source position. Although this seems evident the presented study cases show that the error on the source position is much smaller than the size of the exclusion As the method is intended to be applied to real field sites, it must be robust and it could be interesting to know its true uncertainty. Indeed the GLMA method is quite efficient but (i) it cannot assert that the obtained results are the global minimum and (ii) the obtained uncertainty is the one of the linearized model. In order to assess the robustness of the method, several In addition, these different tests, have allowed evaluating fields estimated for each fixed * .

Figure 12 (e) and (f) shows the standard deviation of pilot points values ( field estimated) as a function of imposed * during the last phase. One can note that the minimum value of @ t lies within the interval of the low values of HNRMSE and CNRMSE. Moreover, as indicated by the closeness of the final solution and the minimum of @ t , the value found by the GLMA algorithm seem to correspond to the @ t , minimum. In case A, the minimum standard deviation value of the pilot points is associated with a * = 31 m, which correspond to the estimated value of 30.7

Figure 1 Figure

 1 Figure 1shows a schematic representation of the strategy. One cycle corresponds to one run

Figure 1 :

 1 Figure 1 : Iterative approach for the source localisation

Figure 2 :

 2 Figure 2 : Workflow of the optimisation Approach for the source localisation

  concentrations. Considering Bayes theorem, the posterior probability distribution of model parameters (p) is defined by 34,| ) with : Confidential C

Figure 3 :

 3 Figure 3 : Initial ] field for case A with 52 pilots points after kriging and basic plume created by MT3DMS. The reference location of the source is represented by the dotted line with XA = 14 m and YA = 29 m.

  calibration is realised only with to have the best estimation of the pilot points represented the field before a second optimisation represented by the Step 1. The parameters characteristics (transformation, increment…) are identical for the two steps. Once hydraulic Confidential C head observations are calibrated in the Step 0, the second optimisation in Step 1 is realised using (i) hydraulic head and concentration observations in two different groups, (ii) and field represented by pilot points, and parameters in three groups. The pilot points values estimated in Step 0 are used for the Step 1 as initial parameters. This approach has been used

  Optimisation in the Phase 2 gave equal to 61.89 ± 1.67 m (ref = 61 m) and a longitudinal dispersivity equal to 0.49 ± 1.38 m (ref = 1.8 m). RMSE (between simulated and observed

Figure 7 :Figure 8 :

 78 Figure 7 : Data worth map linked to \ o -The case B needed 3 Phases to decrease uncertainty linked to \ o

  note a same order of magnitude with the high and low zones of hydraulic conductivity. Similar areas are surrounded in dotted lines in Figure 10 and Figure 11. This analysis confirms the results obtained, showing the robustness of the method.

Figure 10 :Figure 11 :

 1011 Figure 10 : Case A comparison between the real ] field map, the estimated ] field with the unknown source and the estimated ] field with the known source position and dispersivity. Dotted lines represent similar zone with high and low hydraulic conductivity.

  tests have been carried out in order to calibrate the C and H by considering different fixed * and leaving the pilot points of the field and the dispersivity vary. For cases A and B, an optimisation was carried out on each of the 13 imposed positions of * , varying every two meters, from 11 to 39 m for case A and from 25 to 69 for case B. All phases have been tested.The results are presented in the two first lines of the Figure12.On the first phase, before adding observations through DW, the optimisation allows obtaining a minimal RMSE for a wide range of fixed * (case A : RMSE-C < 0.05 mg.L -1 and RMSE-H < 0.01 m, case B : RMSE-C < 0.3 mg.L -1 and RMSE-H < 0.3 m). For case A (Figure12(a) and (c)), on phase 1, sources * giving good results vary between 17 and 37 m (for C and H). Adding observations in Phase 2 (13 observations) reduced this range from 27 to 35 m (reference * = 29 m). For case B (Figure 12 (b) and (d)), in phase 1, sources * giving good NRMSE are included on a large range from 35 to 67 m (with 10 observations). In Phase 3, the interval is much smaller, ranging from 59 to 67 m (reference * = 61 m). The overall results are summarized in the Figure 13.

  

  

  

Table 2 : Initial parameters value for the GLMA method

 2 

	CASE A	CASE B

Table 3 : Estimated parameters for each case. Values in parenthesis represent the a priori value used for the optimisation Case A Case B Reference value Phase 1 Phase 2 True value Phase 1 Phase 2 Phase 3

 3 

			30.84	30.7		56.23	61.89	64.51
	\ o	29	± 5.32 (15)	± 2.29 (30.84)	61	± 1.90 (40)	± 1.67 (56.23)	± 0.37 (61.89)
			2.65	2.95		0.50	0.49	1.47
	αL	3	± 1.15	± 1.09	1.8	± 1.38	± 1.38	± 1.04
			(7)	(2.65)		(3)	(0.50)	(0.49)
	NRMSE -H	-	<0.5%	<0.5%	-	1.36%	3.39%	4.15%
	RMSE -H (m)		0.001	0.0015		0.01	0.07	0.09
	NRMSE -C	-	<0.5%	<0.5%	-	10%	9.6%	7.86%
	RMSE -C (mg.L -1 )		0.0007	0.002		0.33	0.33	0.38

Table 4 : Computational time with GMLA in the cases used

 4 the field is heterogeneous. During the transition from Phase 2 to Phase 3, the added points become sensitive. Observation added in Phase 2 clearly defined the flow

		CASE A		CASE B		
	Number of runs	Phase 1	Phase 2	Phase 1	Phase 2	Phase 3
	Step 0 -H	3300	2525	3022	3026	1022
	Step 1 -T	1351	2488	3236	3304	3355
	Computational time	11 hours	20 hours	50 hours	50 hours	50 hours

Table 5 : Source sensitivity for each observation. Red values are points with the lower sensitivity among all the parameters

 5 

		Case A		Case B		
		Phase 1	Phase 2	Phase 1	Phase 2	Phase 3
	P1	0.05	0.062	-0.084	-0.034	-0.019
	P2	-0.08	-0.08	-0.12	-0.069	-0.044
	P3	-0.012	-0.007	0.12	0.07	0.045
	P4	-0.012	-0.009	0.032	0.045	0.018
	P5	-0.041	-0.027	-0.095	-0.053	-0.033
	P6	-0.026	-0.01	-0.041	-0.022	-0.014
	P7	0.018	0.029	0.14	-0.092	0.083
	P8	0.021	0.034	0.083	0.063	0.059
	P9	-0.044	-0.033	-0.024	-0.03	-0.092
	P10	-0.027	-0.019	0.0039	0.015	0.019
	P11		0.22		-0.076	-0.074
	P12		0.2		-0.14	-0.025
	P13		0.14		-0.02	-0.015
	P14					0.092
	P15					0.11

Where 34 |,) is the likelihood function and 34,) the prior probability distribution of parameters (that encapsulated expert knowledge by direct measurement at one or several discrete location).

Considering the equation (1), the equation ( 7) and a Gaussian distribution of , and ., with the Schur's complement, the posteriori covariance matrix of parameters 4,| ) is defined by: 4,| ) 4,) " 4,) : ; 4,) < + 4 )= >( 4,)

Where 4,) is the covariance matrix associated with the prior parameters, 4 ) is the covariance matrix associated with the prior observations.

Then, considering , the vector of the forecast:

Where ? is the sensitivity of the prediction of interest depending on each parameter. Assuming a linear model and considering equation ( 5) and ( 6), it is possible to calculate the predictive uncertainty variance of a given forecast (Dausman et al., 2010) with: @ * % ? < 4,)? " ? < 4,) < ; 4,) < + 4 )= >( 4,)?

In the equation ( 7), the term ? < 4,)? represents uncertainties associated to the prediction before the calibration. The other term on the right represents the decrease of uncertainty obtained with the calibration. Equation ( 7) is linear, but transport equations assume a nonlinear problem which elements of are dependent on parameters values ,. In order to respond to this nonlinearity, can be represented by the Jacobian matrix (the sensitivity matrix between parameters and observation) obtained with the optimisation [START_REF] Vilhelmsen | Extending Data Worth Analyses to Select Multiple Observations Targeting Multiple Forecasts[END_REF]. Thus, it is not directly the values of observations and parameters that are used but rather the covariances and the Jacobian.

Confidential C fractured medium or with the occurrence of structural discontinuities in the geological medium (e.g. faults).

Source localisation in Case A

Synthetic cases construction

Dimensions of the case A domain are 200 × 50 m with a mesh size of 1 meter in Y-axis and 5 meters for the X-axis.

Hydrodynamic parameters

The boundary conditions were placed upstream and downstream with an imposed hydraulic head of 10.50 m and 10.00 m respectively (gradient of 0.0025). The generation of the field was carried out from 52 pilots points homogeneously distributed with a 15 meters spacing.

values on each point were randomly generated to have a range of 3 to 300 m.day -1 , corresponding to a distribution type that can be found on a real site (Figure 3). The heterogeneous reference field is obtained by kriging with a 25 m range spherical variogram.

Transport and source parameters

The source was placed as shown in the Figure 3 with a value of 10 mg/L. The longitudinal dispersivity is equal to 3 meters and the transvers to 0.3 meters. The coordinate of the center of the source are located at Z [ = 14 m and \ [ = 29 m (center of the source). The source has a width of 2 meters according to the ? axis. is used as the parameter of the source, corresponding to center of the source, it is allowed to vary between 10 and 40 m (see Table 2). The simulation is steady state with a continuous source.

Confidential C

DW analysis and choice of new points

Once calibration is done, the goal is to calculate the worth of data linked to . Data worth is calculated with the parameter estimated in the Step 1 of Phase 1 for each new point located in the mesh grid of the domain (2000 points).

The (1-DW) map is used to find the first point to add, to decrease the variance linked to .

For this case, we considered that the new points must be located at an S coordinate higher than 25 meter (Figure 3), in order to constraint the analysis enough. So, the first point is located at a coordinate [25; 30], (p11 in the Figure 3). The concentration simulated in the Phase 1 were used to calculate the directional variogram (along the S and ? axes) which allow to draw the ellipse P d 4S,, ?,, rx, ry) where, S, and ?,, are the coordinate of the ellipse center corresponding to the first point located and US 14 i ; U? 5 i corresponding to the 2/3 of the directional variogram range. The second point p12 is located outside the first ellipse at a coordinate [25; 36.5] where 41 " GH) is higher. Then the third point is located outside the second ellipse at a coordinate [38; 32.5] (see Figure 3). Points p11, p12 and p13 are used for the Phase 2. It can be seen that the variance decreases rapidly downgradient the source and is small around the existing points with measured information.

Phase 2

Like Phase 1, the Step 0 was done with 13 hydraulic head values in order to have the initial pilot point parameters for the second calibration. The initial parameters and correspond to the parameters estimated in the Phase 1. Optimisation in the Phase 2 gave equal to 30.7 ± 2.29 m (29 m) and a longitudinal dispersivity equal to 2.95 ± 1.09 m (3 m). ^_`a (between simulated and observed data) for and is respectively equal to 0.0015 m and 0.002 mg.L -1 (b^_`a -< 5% mn b^_`a-< 15%).

Comparison between Phase 1 and Phase 2
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The Figure 7 bellow shows the 41 " GH) maps before and after the addition of new observation. Adding new points allow the decrease of the variance linked to * and decrease the standard deviation for (Figure 5). Dimensions of the case B domain are 400 × 100 m with a mesh size of 1 meter for ? and 5 meters for S.

Hydrodynamic parameters

For the case B, the boundary condition was placed upstream (on the left) with an imposed hydraulic head of 14 m. The generation of the field was carried out from 24 pilots points randomly distributed in a subdomain of 400 × 100 meters (Figure 6). Then, an interpolation using Thiessen polygon [START_REF] Yang | Twelve Different Interpolation Methods: A Case Study of Surfer 8.0[END_REF]) was used to generate the field around the pilot points with a range of 3 -300 m.day -1 .

Transport and source parameters

In the case B, the source carried a constant concentration of 10 mg.L -1 , the longitudinal dispersivity was set to 1.80 meters and the transvers to 0.18 meters. The coordinates of the source center are located at Z p = 101 m and \ p = 61 m (Figure 6). The source has a width of 2 meters according to the ? axis. This case is more complex due to the Thiessen polygon with a highly heterogeneous field. . b^_`a for and are acceptable (3.39% for H and 9.6% for C). Furthermore, 41 " GH) map in the phase 2 (see Figure 7) still has zones with high value, that is why another addition of new points is proposed.

Second DW analysis and choice of new points

Due to the uncertainties still visible in the Phase 2 DW map another DW analysis is calculated with the parameter estimated in the Phase 2. The first observation is located at a coordinate [125.5; 66.5], (p14 in the Figure 7). The ellipse P d 4xp, yp, rx, ry) has the same dimension (US

The second point p15 is located at a coordinate [159.5; 68.5] and the third point is located outside the second ellipse at a coordinate [192.5; 65.1]. Observations p14, p15 and p16 are used for the Phase 3.

Phase 3

The final optimisation gave equal to 64.51 ± 0.37 m (ref = 61 m) and a equal to 1.47 ± 1.04 m (ref = 1.8). ^_`a for and are respectively equal to 0.09 and 0.38 given respectively a b^_`a equal to 4.15% and 7.86%.

Comparison between Phase 1, Phase 2 and Phase 3

The three data worth maps are presented in Figure 7 and after the addition of new observation.

Adding new points allow the decrease of the variance linked to in three phases to have a better estimation of and with a lower standard deviation (Figure 8).
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Figure 9 : Calibration results on the last phase for each case.

field comparison

To go further in the analysis, Figure 10 and Figure 11 show a comparison between the reference field and the estimated field for each case. A third field was estimated by considering the source and the dispersivity as known (only pilot points were estimated). This comparison helped us to know the optimum field estimated by the GLMA. Thus, field associated with the location of the source are almost identical to the calibrated field considering known parameters proving (i) the results robustness and (ii) that the source has not stagnated in a local minimum during the optimisation phase. If we compare the estimated field with the reference field, absolute values are not exactly the same. As the modelling was carried out Confidential C

Discussion and conclusion

This study introduced the development and implementation of a source localisation strategy on two synthetic cases. The method has been developed to be applicable to a real problem with, (i) a limited number of new observations to reduce uncertainties about the source location, (ii) spatial constraints for the source position similar to what happens on a real site, (ii) consideration of a steady state source (stabilized plume) without historical knowledge of contaminant and (iv) unknown transport ( and ) and hydraulic ( field) parameters.

The bibliography study showed that works on source localisation are generally effective when the evolution of a plume is taken into account (history of pollutants on one or more points). A stabilized plume is more complex to analyse (due to the constant release) also, these cases are the most common in reality. Having not been used to our knowledge, the choice of the method was thus focused on a nonlinear optimization using the GLMA from the PEST++ application combined with a DW analysis to minimise uncertainties on the source localisation.

Results show that it is possible to estimate , and field with low standard deviation for each synthetic case. The DW analysis allowed the decrease of * standard deviation, from 5.3 m to 2.3 m in case A and from 1.9 to 0.4 in case B. However, maps showed a visual small effect of adding observations. The interest of adding observations rather appears by analysing the Jacobian matrix calculated in the last optimisation of each phase. Sensitivity values of the Jacobian are presented in Table 5. More precisely, the table presents a part of the 10 most sensitive values (in green) and the least sensitive ones (in red) for each observation among all the associated parameters. Only sensitivities are presented. It appears that in case A the new observations are sensitive to the source (P11, P12 and P13). For case B, the situation is more complex. It is interesting to note that P3, P7 and P8 remain sensitive throughout the study because they are located on the north part of the plume. On the other hand, in Phase 2, the added points are not sensitive to the source, which is not visible to the DW map calculated.

This could result from the fact that the DW assumes a linear model in the domain, which is not Confidential C m during the strategy application. For case B, the minimum value of the standard deviation in Phase 3, is assigned to a * = 65 m, close to the value estimated in the strategy. This point raises the fact that if the heterogeneity of the K field is increased it is possible to reproduce almost any observed value. Therefore the estimated position of the source corresponds to the model that satisfies the observed values and has the minimum heterogeneity.

It can be further observed that the uncertainty in Ys around the final point given in figure 12 is much higher than the one provided by the GLMA method. Indeed, as already stated above, the GLMA uncertainty is based on the linearized model but also the obtained uncertainty on Ys considers K and α fixed. Thus, the initial methodology is interesting but it must be accompanied by a more precise study, taking into account two new criterions with (i) a GLMA analysis of the * range corresponding to the lowest RMSE and (ii) an analysis of the smallest heterogeneity of field, estimated in the last phase.

The method shall further be validated for a number of different cases and levels of heterogeneity in order to confirm its effectiveness and applicability. Some important points have not been tested in this study and could be used for improvements or perspectives on the future with (i) the use of a smaller number of observations at the beginning, (ii) the localisation of two or more sources, (iii) the simultaneous localisation of and , (iv) the implementation of transient phenomena (recharge or punctual pumping) and (v) the localisation of a source in reactive transport problem.
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