
HAL Id: hal-03488634
https://hal.science/hal-03488634

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Modeling ore generation in a magmatic context
Jean-Louis Vigneresse, Laurent Truche

To cite this version:
Jean-Louis Vigneresse, Laurent Truche. Modeling ore generation in a magmatic context. Ore Geology
Reviews, 2020, 116, pp.103223. �10.1016/j.oregeorev.2019.103223�. �hal-03488634�

https://hal.science/hal-03488634
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Modeling ore generation in a magmatic context 

 

Jean-Louis Vigneresse*1, Laurent Truche2 

 

1 GéoRessources, UMR 7539, Université de Lorraine, 54506 Vandoeuvre/Nancy Cédex, 

France jean-louis.vigneresse@univ-lorraine.fr 

2 ISTerre, Université de Grenoble-Alpes, 38400 Saint-Martin-d'Hères, France. 

laurent.truche@univ-grenoble-alpes.fr 

 

Abstract 

 

 Magmatic ore deposit models are constructed from a set of measurables (e.g., ore 

grade, fluid composition, structure) from which important parameters (temperature, pressure, 

chemistry) can be estimated and possible genetic processes can be constrained. Such models 

include direct, inverse or iterative problems. Direct problems separately consider an Eulerian 

and a Lagrangian formulation. In the first case, an analytical approach describes the bulk 

system from an external frame, whereas the Lagrangian approach provides a description from 

a discrete element attached to the system. Conversely, inverse problems mostly rely on a 

system of equations or differential equations. Their solution requires a matrix inversion, using 

statistical criteria to bracket errors. Subsequently, an iterative approach is adopted, 

commencing with an initial bulk model that is successively refined to fit the observations. The 

direct problem always results in a unique solution, though the formulation is highly 

overdetermined. Such unique solution highly depends on the input parameters, and multiple 

solutions vary with the initial imposed conditions. Conversely, the inverse problem is 
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underdetermined by construction (Atlan, 2001). Accordingly, it provides a set of solutions, 

generally identified and separated by statistical tests,as exemplified bythe least squares 

approximation. Both methods intrinsically ignore feedback loops. Iterative methods are weak 

in quantifying the results. Based on the insights gained from this review, we developed a new 

integrative model for porphyry deposits that relies on the magmatic segregation of metals 

through a fluid sparging process. A formulation under the direct problem basically considers 

the enrichment factor for groups of metals (e.g., Cu, Mo, Au). A Lagrangian approach using a 

lattice Boltzmann model examines metal diffusion from the melt toward an immiscible phase, 

commonly a salty aqueous fluid. Metals first diffuse in the melt, the motion of which slows 

down when the mush development reduces the porosity, thus tapping the mobile fluid phase. 

Gas bubbles turn to tubes. They offer more mobility and allow the progression of the fluid 

phase, leading to metal advection, followed by metal precipitation. The quantitative results are 

poorly constrained owing to the large uncertainties on the input parameters but the metal 

enrichment factor fits observations from crustal abundance to ore grade levels. Nevertheless, 

the results aid in designing an inverse approach linking metal enrichment to metal 

partitioning, diffusion and viscous melt motion. From this approach, a simple diagram can be 

deduced using a logarithmic scale to smooth the parametric uncertainties. The diagram serves 

to illustrate the link between the above parameters and metal enrichment, also explaining 

differences in ore grade for different metals-magma pairs. 
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1. Introduction 

 Magmatic ore deposits are spatially and genetically associated with igneous rocks 

enriched, often up to percent levels, in base and precious metals such as Cu, Ag, Au, Mo, W, 

Sn, but also Ti, V, Ni, Cr, or rare earth elements (REE) (Fig. 1). In contrast, the original metal 

content in the source rocks, i.e. the initial melt, ranges from ppb to ppm (Fig. 2). When 

comparing the two preceding figures, the metal enrichment spans about 4 to 5 orders of 

magnitude, increasing from the lithophile, siderophile to platinum group elements (PGE). 

Identifying the causes of metal enrichment is still a matter of debate underpinned by 

numerous models deriving from field observations, experimental studies or numerical 

simulations. None of which address the full complexity of the metal concentration process, 

either during the magmatic stage, nor during the late hydrothermal stage leading to ore 

deposits (Vigneresse, 2019). 

 An abundant literature, including research papers and textbooks, describes ore bodies 

of magmatic origin and their associated metal concentrations (e.g. Robb, 2004). Host 

intrusions are either granitic to dioritic in composition, as is the case for porphyry-type 

deposits (Sillitoe, 2010), ultramafic and alkaline (Barnes and Lightfoot, 2005; Maier and 

Groves, 2011), or even carbonatitic (Zaitsev and Bell, 1995; Mitchell, 2005). The body of 

literature also provides excellent detail with respect to the emplacement and evolution of the 

causative intrusive bodies, here simply called magma reservoirs (Edmonds and Woods, 2018), 

subsequent establishment of hydrothermal circulation systems leading to intense alteration 

patterns surrounding the causative intrusions, vein formation and the precipitation of metals. 

Models have been formulated for both barren and mineralized intrusions, and recently 

profoundly evolved from the so-called melting, assimilation, storage, homogenisation 

(MASH) model (Hildreth and Moorbath, 1998) in which the magma statically evolves by 

chemical differentiation (Štemprok, 1982; Breiter et al., 1999; Kemp et al., 



2007).Furthermore,mafic and ultramafic intrusions should involve a more complex scheme of 

chemical differentiation to explain how mineralizarions develop (Brassinnes et al., 2005). 

This paradigm of magma reservoir evolution recently shifted toward a far more dynamic 

system, with successive intrusions of different magma types, based on chemical grounds (Lee 

et al., 2014) and/or physicl and thermal considerations (Vigneresse, 2008; Annen, 2009). It 

constitutes the m-(M-SAE), acronym that includes a mantle participation and multiple 

intrusions from melting, segregation, ascent and emplacement. Magmas, with different 

composition, subsequently interact with the ambient stress pattern (Vigneresse, 2008). An 

additional fluid  phase, immiscible with the silicate melt, should also be considered since it 

represents a supplementary possibility for the fate of into the magma reservoir. 

 The relation between igneous intrusions and metals generation as ore deposits has long 

been observed and described from the field as evidenced  by an abundant literature. Large 

base metals concentrations in porphyry-type deposits along the Pacific coast of Chile and Peru 

provide evidence of their genetic relationships with granitic to dioritic intrusions. They have 

been described in great detail and exploited for hundreds of years. However, models of their 

genesis fail to fully explain how metals segregate and are enriched by several orders of 

magnitude. Often, metal concentration is attributed to late hydrothermal circulation (Sillitoe, 

2010). At the same time, geophysical surveys have given further insights into the underlying 

intrusive and ore-forming processes. However, the two approaches differ profoundly in their 

methods and modes of interpretation and are rarely combined and integrated in academic 

studies.  

The present paper reviews the types of modeling underlying the formation of magmatic 

ores in the context of porphyry systems. It is organized as follows: (i) first we provide a short 

introduction on the physico-chemical interactions between the major phases entering a magma 

reservoir. (ii) Then the various types of modeling (Tarantola, 2005) are examined (Fig. 3 



First, we consider a direct problem, i.e. Lagrangian or Eulerian approaches, according to the 

adopted point of view on the parameters and measurables. Inverse problems are less 

developed in ore genesis, but are of common use for interpreting geophysical prospections on 

intrusions (Vigneresse, 1977; 1990). Finally, iterative processes, include non-linear 

differential system andor reaction diffusion equations (Fig. 3). (iii) A general model for ore 

generation is suggested, using both direct and inverse formulation., (iv)  The discussion lists 

the inherent problems linked with modeling. It also examines the relationships between 

modeling and exploration. 

2. Physico-chemical constraints 

A model, to be valid, should represent both observations and/or experimental results.It 

should also possibly offering predictive solutions. Here the whole acting process of metal 

segregation, concentration and transportation before precipitation is simply called a system. . 

The controlling parameters of the system are inherent to the construction and evolution of a 

magma reservoir. For simplicity, only porphyry-type deposits are reviewed, and the 

immiscible phase, mostly aqueous, is called the magmatic volatile phase (MVP). Ore 

generation in a magmatic context follows the usual scheme of intrusions evolution, with a 

pronounced competition between melt and MVP. Consequently a similar modeling, with more 

or less chance, applies to barren or ore-related intrusions. 

2.1. Phases in presence 

A magma reservoir is built from successive intrusions of magma, the composition of 

which may vary according to the source, degree of melting and chemical differentiation 

(Vigneresse, 2008; Annen, 2009; Lee et al., 2014; Edmonds and Woods, 2018). Magmas 

result from successive inputs of mantle and/or crustal melts, i.e. with contrasting temperature 



and composition, including fluids. The chemical evolution of the melt, strongly buffered in 

oxygen and sulphur, damps those inputs through hybridation (Castro et al., 1991). Although 

melting is continuous owing to temperature influence, melt segregation and ascent are 

discontinuous, due to the ambient stress pattern (Vigneresse, 1999, Rabinowicz and 

Vigneresse, 2004). When crystallizing, the magma reservoir registers such chemical 

variations, either by distinct mineral facies, the contacts between them, as well as their 

internal magmatic structures often displaying sharp contacts.  

The magma reservoir presents three major physical phases. Those are the viscous melt 

from which crystals develop and form a solid phase or mush, and an immiscible MVP. 

Metals can also be considered as a supplementary phase, without distinguishing between 

metals for simplicity. They are initially within the melt, with the possibility to stay in it or to 

migrate toward the solid or volatile phases, according to partition rules. 

Physical processes rule the bulk thermal evolution of the magma reservoir. They 

include heat diffusion, as well as viscous melt motion. The latter redistributes heat and 

metals that are still within it. Chemical partitioning of metals rules their transfer between the 

melt and either the MVP or crystals. 

2.2. Interactions between phases 

Interactions between the major phases should be examined separately whether they 

include metals or not. Melt motion has to face the mush (> 50 % crystals) that increases 

tortuosity (Boudreau, 1996). Tortuosity also affects the MVP motion, more mobile than the 

melt. Indeed, MVP first forms bubblesthat coalesce to form tubes that can slightly displace 

the loose solid framework of the mush (Huber et al., 2012). Nevertheless, feedback loops 



between parameters (e.g. melt motion and mush development) characterize the rheology of 

cooling magma (Burg and Vigneresse, 2002).  

2.3. Fate of the metals 

Metals are initially in the melt as ionic components moving through diffusivity around 10-

12 m2/s (Zhang et al., 2010). They may integrate first forming crystals, according to a partition 

coefficient that takes into account their charge and ionic radius (Blundy and Wood, 2003). 

Once within the crystalline network, they still diffuse within the solid with diffusivity slower 

by about 6 orders of magnitude (10-18 m2/s). Consequently, their diffusion length in crystals 

does not allow much travel (1 mm/My) within the life time of the magma reservoir. They can 

be considered as inert after integrating crystals. Metals may also stay within the viscous melt 

or integrate the MVP. The MVP composition (H2O, CO2, S, F and Cl) is essential to attract 

metals, owing to its difference in chemical potential with the melt. Metal enrichment in high 

temperature fluid and melt inclusions (Zajacz et al., 2008; Seo et al., 2009; Campos et al., 

2009), in volcanic fumaroles (Zelenski and Bortnikova, 2005; Nadeau et al., 2013), or 

observed during experiments (Pokrovski et al., 2008; Lerchbaumer and Audétat, 2013), points 

to a magmatic origin for metals into the MVP. The MVP is also under supercritical regime, 

thus allowing infinite solubility for metals. 

2.4. Metals deposition 

 With ongoing crystallization, mush develops that taps the MVP. When the MVP 

internal pressure overcomes the lithostatic pressure, the MVP is free to carry metals toward 

the surface, outside the magma reservoir. Metals precipitate, according to their solubility that 

drops when switching from lithostatic to hydrostatic and from supercritical to critical regime. 

Metals may combine with other elements to form oxides, S-compounds or halogen salts, 



leading to complex molecules. The final formation of ore veins is enhanced by such late 

hydrothermal circulation. 

Because metals enrichment from the melt toward the MVP,enriched MVP ascent and late 

brecciation are continuesly succesing in time, the tapping and  brecciation of the overlying 

caprock repeats several times, leading to multiple deposition centers, as observed in the field. 

Join to this sudden liberation of the fluid phase, alteration aureoles develop, that represent a 

good tool for ore prospection. The important point here consists in the magmatic enrichment 

of the fluid phase in metals, with a cyclic nature of ore centers generation. 

2.5. Implications 

From this summary of ore formation, the whole system appears complex, with competing 

diffusion and advection. It requires examining a multi-phase material, continuously evolving 

with time in nature and abundance, thus hardly tractable through usual equations of mass and 

momentum conservation. In addition, the process is cyclic, with an unknown number of 

cycles, each varying in its components, physically and chemically. This means that feedback 

loops are numerous, with potentially unknown consequences.  

The whole modeling should emphasize metals segregation and concentration from the melt 

toward the immiscible MVP. It should also consider melt and MVP motions. They constitute 

the physical aspect of the process. The chemical aspects consider metals partitioning between 

the phases. 

  

3. Modeling 



Modeling may involve either a qualitative or a quantitative approach. It usually starts from 

field observations and/or experimental measurements on the inferred parameters suspected to 

control all processes. Their determination is hampered by the conditions of observation, hence 

the initial inputs to modeling. Indeed, observables are a final snapshot of all undetermined 

processes that have previously generated the final aspect of a magma reservoir and ore 

deposit. They fall to determine all preceding transient situations. In addition, and that is not 

the least trivial character of the modeling, uncertain parameters, such as interactions between 

them and feedback loops, are unknown and/or not identifiable. Such a situation is common to 

all types of modeling, but often omitted by simplicity by modelers. 

The modeling often consists in solving a system or a set of analytical equations, e.g. mass 

or momentum conservation. They may be linearized and/or solved using numerical methods 

of optimization. Such models usually provide numerical values on the amount of elements 

transfer.  

Data processing and modeling commonly use top-down or bottom-up strategies. They are 

also known as direct and inverse problem (Fig. 3) solutions (Vigneresse, 1990; Tarantola, 

2005). A third class of models approximates more complex systems, e.g. involving many non-

linear interactions or feedback loops. It requires different approaches, often iterative, such as 

reaction-diffusion equations (Fig. 3). 

3.1.Direct problem 

In a direct problem approach, the measurements are used as such, and the modeling 

tries fitting to them by a judicious choice of the controlling parameters. There are no real 

mathematic criteria on the way the results should fit the measurements. In addition, two 

different approaches exist for examining the modeling (Fig. 4). The former involves an 



Eulerian formulation, often through differential equations for mass and momentum 

conservation, or dynamic motion of the major parameters. Conversely, the second approach, 

or Lagrangian, considers the system of parameters from an external point of view. It is better 

designed for a qualitative analysis of the parameters influence. The two approaches differ 

when considering their derivatives. In the Eulerian system, ∂/∂t is the rate of change with time 

of the fluid property. It generally includes a term accounting for convection. Conversely, in 

the Lagrangian approach, D/Dt represents the acceleration of an individual element as it 

speeds up or slows down during its motion (Fig. 4).  

3.1.1. The Eulerian approach 

 Analytical equations, or differential systems, describe the behavior of one particle 

(Fig. 4) using an external reference frame (Teschl, 2012). The system my decompose into 

more detailed sub-systems. Nevertheless, this decomposition may fail to identify the 

responsible mechanisms, since it is imposed as a prerequisite. 

 In the case of ore deposits, the Eulerian approach has been used a long time ago, 

mostly derived from hydrodynamic flows (Ague and Brimhall, 1989; Garven, 1995; Cathles 

and Adams, 2005). Models have first been developed in 1D for simplicity, before increasing 

computing power led to 2D and 3D simulations. They take the form of particle or fluid motion 

according to hydrodynamic concepts (Chi and Xue, 2011), e.g. through an inspection of the 

driving forces, fluid pressure regimes, fluid flow rate and directions to localize metals 

concentration. The inputs may also involve the larger scale tectonic environment, topographic 

variations due to erosion, or tectonic deformation. Such factors have influence in changing the 

local stress pattern thus modifying the fluid pressure and the veins pattern. introducing the 

equations of heat transport, mass and momentum conservation (Ju and Yang, 2011), examines 

a more complex situation. In the former case, the model allows investigating the role of 



external factors such as the effect created by an unconformity surface, with meteoritic water 

infiltration through dipping faults, on the thermal inputs during ore genesis. Introducing the 

analysis of the fluid pressure regime and the flow rate provides insights on the driving forces 

that control cooling and salt content in mineralizing fluids (Chi and Xue, 2011). The 

equations of mass and momentum transport, coupled with the heat equation examine the 

effects of replenishment by the successive injections of new magma (Schöpa and Annen, 

2013). The time delays between intrusions are essential to insure the fate of the intrusion. 

Hence too large volumes of intrusions or too short delays between them fail to produce large 

reservoirs of mobile magma because a large quantity of mush has no time to develop. A 

model, specifically dedicated to the Yerington Batholith, Nevada, has been constructed 

(Schöpa et al., 2017) for modeling its three successive magma pulses. It results that magma 

should be emplaced at a high rate (> 4 cm/yr), uncommon in plutons, but with periods of 

quiescence between them exceeding 100 kyr. Coupled interactions between magma intrusion 

and cooling modify the local regime of deformation, rearranging the brittle-ductile transition, 

with implication on the development of fractures (Guillou-Frottier and Burov, 2003; Zhang et 

al., 2011 

In such models of porphyry-type deposits, the zone under study is first discretized 

spatially through a triangular or rectangular grid, the spacing of each node being of the order 

of 50 m. A supplementary discretization in time allows to reproduce the incremental 

emplacement of successive magma inputs (Schöpa et al., 2017). The discrete volumes of 

magma have their own composition, i.e. temperature and fluid content. It simulates the 

incremental growth of a granitoïd intrusion. Discretization also allows computing the required 

derivatives, in space and time that rule the system of equations for magma flow, fluid motion 

and heat losses. Successive models using different time interval for the new magma inputs 

investigate the role of magma residence time. They provide constraints on the thermal 



evolution of both the magma reservoir and the mineralized fluid release (Chelle-Michou et al., 

2017; Schöpa et al., 2017). Nevertheless, several successive direct models are required, 

examining the controlling parameters (delay between intrusions) to conclude for an acceptable 

model. The overall impression is that a long error and trial process should first identify which 

parameter better control the system. This suppose that they are all identified, excluding 

possible feedback loops. A similar approach, using temporal evolution is also matter of 

modeling, using U–Th–Pb–He time–temperature data (Fu et al., 2010). The model identifies a 

first phase of cooling while the surrounding rocks are heated. A following stage assumes 

cooling of the whole system and corresponds to exhumation of the intrusive. The same 

approach, focusing on the nature and intensity of the stress pattern, determines fractures 

evolution around an intrusion, examining the position of the brittle/ductile transition (Weis et 

al., 2012). The released fluid, enriched in metals, may serve as an estimate to the quantity of 

specific metal, e.g. copper, that can be extracted from the intrusion. Enrichment by a factor of 

1000 is something obtainable in a 2D simulation, using a 10 by 3 km magma reservoir of 

elliptical shape with a cupola in the roof at 5 km depth (Weis et al., 2012).  

Chemical exchanges have been examined on chemical bases through simple chemical 

reactions and evolution, using trace elements for instance (Wright et al., 1983). Further 

developments apply to specific minerals, e.g. REE fractionation in apatites (Krneta et al., 

2018), trace element zoning in accessory minerals (Melnik and Bindeman, 2018) or more 

simply to trace elements fractionation (Tauson et al., 2018). Similarly, fluid-rocks interactions 

studies started from mineralized fluid flow in porous or fractured medium (Steefel and 

Lichtner, 1994; O’Brien et al., 2003) and leaching metals from the country rocks (Mouhers, 

2015; Myagkiy et al., 2017). Such studies apply to porphyry type deposits (Weis et al., 2012) 

in relation with geodynamics (Liu et al., 2008) or environmental problems (Zhao et al., 2014). 

They show that ore develops as a consequence of dynamic variations in rock permeability, 



mostly driven through the injection of fluids released by adjacent magmatism. Hence, a static 

permeability cannot reproduce the observed alterations, whereas a dynamically driven 

permeability in response to magmatic fluids creates a metal-precipitation front leading to 

potential metal enrichment, such as Cu, up to a factor of 2000 (Weis et al., 2012). 

Nevertheless, the authors recognize that the mechanism of fluid extraction from the magma 

remains a major unknown in the model. 

The solution of the system of equations may be avoided, using non-dimensional 

numbers that characterize the structures or patterns of the solutions. This is done through non-

dimensional ratios of the acting parameters. Associated to them, a wavelength determines the 

geometric parameters, providing a geometric constraint on the metric associated with the 

solutions. They determine the type and shape of instabilities (see review in Vigneresse, 2015). 

Among them, the Reynolds number (Re) ratio of inertial forces to viscous forces, the Stefan 

(St) ratio of the sensible heat to the latent heat, and the Péclet number (Pe) ratio of advection 

to diffusion. At last, the compaction length (λ) determines the average spacing of melt veins 

during segregation (Rabinowicz and Vigneresse, 2004). Such numbers are essentially 

qualitative for determining the instability pattern resulting from the competition of two 

essential parameters. 

3.1.2. The Lagrangian approach 

The Lagrangian approach (Fig. 4) involves indirect methods, such as cellular automata 

(CA), lattice gas automata (LGA) or lattice Boltzmann modeling (LBM). They are 

mathematical abstraction of a physical system (Chopard and Droz, 1998) after its 

discretization in space and time. The space is divided in small finite cells, whereas the time 

evolution is represented by the successive states of each cell. Such methods (CA, LGA or 

LBM) are used to represent complex physical situations, in which a direct Eulerian solution is 



hardly tractable, when the geometry or amount of each phase vary continuouslySuch 

examples of CA include partial melting in migmatites (Vigneresse and Burg, 2000; 2006) 

whereas LGA are widely in use for reactive fluid (Kang et al., 2006; Pazdiniakou et al., 2018) 

or fracture propagation (Marconi and Chopard, 2003). More complex interactions have 

recently been addressed to simulate metals segregation within a mush, with a viscous melt and 

a loose rigid framework (Huber et al., 2008; Parmigiani et al., 2014). 

CA have first been proposed by von Neumann (Burks, 1970) and the model has been 

popularized with the advent of computers (Wolfram, 1983; Toffoli and Margolus, 1987). The 

space and time discretization inherent to CA totally differs from the discretization of the 

partial differential equations representing the physical process. Hence CA mimics the physical 

interactions between adjacent cells and the time evolution of the system is given by the 

successive states they adopt. Each cell presents a finite number of states, indicating its major 

physical state, for instance the finite percentage of melt in case of a rock under melting 

(Vigneresse and Burg, 2000). CA is by essence deterministic. Models only require integer 

values, making their numerical implementation exact (Chopard and Droz, 1998). A rule, 

representing the interactions between cells mimics the imposed geometric conditions of 

motion (e.g. under strain). Since the discretized space is finite, its boundaries are commonly 

periodic to avoid jamming, assuming mass conservation within the system.  

  The use of CA in solving complex problems has a two-fold expression. First, the 

model can predict the physical properties of the considered system. However, the 

quantification of the system is hampered by the scaling, and can predict only relative values, 

according to the imposed rule. For instance, in migmatites an imposed shear strain is more 

effective in displacing the mobile melt than vertical compaction or pure shear (Vigneresse and 

Burg, 2006). Second, the CA method informs on the consequence of an imposed rule. For 

instance, during melt extraction in partially molten rocks (Vigneresse and Burg, 2000), the 



mobile melt within a solid matrix moves under simple or pure shear. Indeed, strain 

preferentially partitions into the mobile melt. Two threshold values are fixed, the first for melt 

motion, and the second ruling the possibility for the melt to escape the system. They are fixed 

according to field observations (Vigneresse et al., 1996). Nevertheless, the CA model allows 

bracketing such thresholds below which the melt motion cannot connect cells, or above which 

a too loose framework results in a rapid melt escape and drying of the molten rocks. Thus, the 

modelling serves as a qualitative determination of the parameters and examines their 

consequences on the physical or chemical evolution with time. It clearly demonstrates in case 

of rocks melting, that melt extraction proceeds due to the ambient stress pattern. Simple shear 

moves the melt whether pure shear concentrates it. An important point is also the 

discontinuous character of melt extraction, observed in both Lagrangian and Eulerian 

formulations (Vigneresse and Burg, 2006; Rabinowicz and Vigneresse, 2004). 

In a cellular automaton simulating metal enrichment in a mushy magma reservoir, 

time and space are discretized through finite particles. Space is represented by a finite number 

of cells on a 2D or 3D periodic lattice. Each particle is assigned to a physical phase 

component, e.g. melt, fluid or solid. Each cell has a fixed number of possible eigenvalues 

ranging from 0 to 100, which mimic its metal content. Initially the metal is entirely randomly 

distributed in the melt. Rules control the distribution and motion of the cell content with time. 

Metals may enter the solid phase in a restricted percentage, whereas it is enhanced to enter the 

volatile phase, thus mimicking the partitioning. The cells representing the melt and the MVP 

are free to move, according to their ability to flow, fluid being more mobile than the melt, 

though a crystal mush slows down both motions. Bubbles accumulation has potential 

importance in determining the eruptability of magmas (Parmigiani et al., 2016). 

Lattice gas automata (LGA) or Lattice Boltzmann modeling (LBM) represent a subset 

of CA, more designed to describe hydrodynamic processes as discretized kinetic models 



(Chopard and Droz, 1998). The system is also discretized in 2D or 3D space (Fig. 5) and 

internal rules mimic the discrete motion of the particles. In particular, it quantifies the 

interactions between cells, using an intrinsic value attached to each cell. This profoundly 

differs from CA methods. It has importance in determining the state of the cell after collision, 

whereas a simple propagation does not provide any information from outside the domain. The 

same way as in CA, the boundaries incorporate either periodic or kinetic (Animali and Karlin, 

2002) conditions. In general, LBM also allows more flexibility than CA on complex boundary 

problems. 

For hydrodynamic problems, LBM represents a more efficient method than the usual 

Eulerian approach though Navier-Stokes partial differential equations (Suga, 2006; Shan et 

al., 2006; Pazdiniakou et al., 2018). It has also advantage on the Eulerian formulations in 

complex convective problems, since it may incorporate phase changes (Huber et al., 2008; 

2012). The ability of each cell to have its own predetermined state also represents a valuable 

advantage when dealing with complex interactions between cells of contrasted properties (e.g. 

between fluid and solids, or solids and gas) in a porous media (Pazdiniakou et al., 2018). 

Commonly, the Lagrangian approach provides better information in complex systems 

compared to an Eulerian formulation. However, the quantification of such results remains 

difficult to calibrate. At least, the direct problem formulation is deterministic, providing a 

solution that strongly depends on the initial imposed conditions. Successive models, with one 

parameter changed at each time, allow identifying which effect results from the changes. It 

does not allow identification of any unsuspected cause or feedback loops. 

3.2  Inverse problem 

During inverse problems, the measurements are used to deduce the controlling factors 

ruling the system (Tarantola, 2005) (Fig. 3). This supposes that qualitative and quantitative 



relationships exist that connect the parameters to the results, even when such equations are 

approximate. Equations may be linear, leading to a system of equations easily solvable by 

matrix inversion, or non-linear. In such a case, appropriate methods, often iterative such as the 

steepest gradient (Arfken, 1985), should converge toward a solution. Basically, it is 

equivalent to linearizing the system by successive approximations. The following review 

mostly focuses on linear systems. 

3.2.1. Linear systems of equations 

 A system of equations would it be linear or not relates the number of pertinent 

equations (m) in the vector m to the vector x with (n), the number of unknowns (n), through a 

matrix A (Fig. 6) 

m = A x       (1) 

The system is considered as underdetermined when there is less equations than 

unknowns (m < n). Conversely, it is overdetermined when there are more equations than 

unknowns (m > n). Hence, each unknown can be viewed as a constraint, restricting the degree 

of freedom of the system (e.g. Trefethen and Bau, 1997). But the above definition suffers 

many exceptions, linked with the rank of the matrix, rk(A), that identifies the number of 

linearly independent columns or rows of the matrix. Suppose a huge set of equations 

measuring the temperature, chemical composition and amount of a given metal (e.g. copper) 

in a single ore deposit. Such measurements have been realized on a grid with 1m spacing, 

over a zone 10 by 10 km wide. The number of equations (measurements) is thus largely 

greater than the number of variables (e.g. 3). The system should be overdetermined, according 

to the above definition. But most equations do not provide enough information on the global 

evolution of the ore deposit. Certainly, some obvious parameters (fluid conditions, time, etc) 

are lacking from the three imposed variables. The information carried by the set of equations 



is thus redundant, and non-informative. The system is underdetermined. This is actually the 

case when all variables have not yet been identified, or when the number of observations (the 

number of equations) does not reflect the action of all varying parameters, as it is the case for 

feedback loops. Such a situation has been pointed out (Atlan, 2011) and frequently occurs in 

biology, where emergence and auto-organization come out from complex situations. The 

situation manifests by the possibility of several models, with different parameters, to 

adequately fit the measurements. 

 The simplest problem occurs with a square matrix A (m = n). Specific numbers 

quantify the matrix A (e.g. Howard, 1984). First, the rank of a matrix rk(A) corresponds to the 

maximal number of linearly independent columns, indicating redundant information (Fig. 6). 

Then, its eigenvalues (λi) satisfy the eigen-equation A - λ I = 0, in which I is the identity 

matrix (all terms null, except those of the diagonal fixed at 1). Their full set of eigenvalues 

forms the spectrum of the matrix, Sp(A) (Fig. 6). The trace Tr(A) is the sum of all 

eigenvalues, whereas the determinant det(A) is their product. At last, the condition number of 

the matrix κ(A) is the ratio of the maximum to the minimum eigenvalue (Fig. 6). In case of a 

system of equations, the Jacobian matrix (J) designs the matrix of the partial derivatives of 

the system. It determines the stability of the system. Numerically, the solution of a square 

system (m = n) should be unique, provided the rank of the matrix is also equal to n, i.e. there 

is no redundant measurement. This ideal case manifests by n eigenvalues distributed along a 

spectrum, or not invertible scalars. The case of underdetermined system manifests by a region 

in which solutions best represent the measurements. It signifies that there is more than one 

solution. A minimal length solution determines a specific solution that has a minimum 

squared norm. In this case, the spectrum of the matrix has all finite values (Trefethen and Bau, 

1997). (Fig. 6) When the matrix is rank deficient, a pseudo-inverse can be computed using a 



decomposition in singular values (see below), involving a damped least-squares process 

(Vigneresse, 1978). 

 The most common case is overdetermined. A solution exists relying on the norm 

chosen to minimize the errors on the solution. In a one-dimensional case, the so-called L1 

norm corresponds to the median, or least absolute value of the error bar. Conversely the L∞, or 

Chebyshev norm, considers the maximum error. Commonly the least squares approximation, 

or L2 norm considers the squared errors, equivalent to the usual mean square error. The most 

common method for solving any system in a least squares sense is by converting the 

rectangular A matrix into an invertible square matrix, just by multiplying both sides of Eq. 1 

by the transposed AT matrix. 

  AT m = AT A x      (2) 

 Although the method seems simple and easy to implement, it rapidly reveals complex 

when using numerical values. Indeed, the numerical values of the AT A matrix present 

extremely dispersed values, making the matrix ill conditioned (Lawson and Hanson, 1987). In 

terms of solution numeracy, the norm L2 offers only one solution whereas L1 offers many. 

Conversely the computational difficulty increases with L2. 

3.2.2. Singular value decomposition 

Inverting the system in the sense of the least squares norm requires examining a 

singular value decomposition (Golub and Reinsch, 1970; Lawson and Hanson, 1987). 

Because the AT A matrix is by construction ill-conditioned, i.e. with eigenvalues displaying 

contrasted amplitudes, it is necessary to examine the spectrum of the matrix (Sp(A) or 

diagram of the eigenvalues) (Fig. 6). In particular, redundant equations bearing no additional 

information on the relationships between variables and measurements, mark by small to very 

small eigenvalues (Fig. 6). They should be removed from the final solution. But this implies 



to compute eigenvalues and eigenvectors by some process of ranking. A first formulation uses 

a singular value decomposition. It directly starts from the A matrix, and by successive 

rotations, determines a diagonal matrix (S), with the required eigenvalues (Fig. 7).  

 A = U S VT       (3) 

The rotation matrices, U and V, are such that they do not modify the bulk dimensions 

of the system since their products by their transposed (U UT or V VT) are unit matrices. The 

successive products are geometrically equivalent to a rotation and scaling along the 

eigenvectors (Fig. 8). The process is repeated for all eigenvalues. The columns of U and V 

form an orthonormal new basis for the system. The rank of the matrix equals the number of 

non-zero singular values which is the same as the number of non-zero diagonal elements in S. 

The eigenvalues of S are the squares of the eigenvalues of A. In that sense, they relate to the 

energy contained into the matrix. The singular value decomposition provides the 

pseudoinverse of a matrix, whatever its dimension (Vigneresse, 1977). A second step exists to 

take into account the low eigenvalues that contain few information. The Levenberg-

Marquardt scheme replaces the inverse of the eigenvalues by a function with a damping 

parameter (Lawson and Hanson, 1987) that stabilizes the results (Vigneresse. 1978). 

The singular value decomposition and pseudoinverse have been successfully applied 

to signal processing (Sahidullah and Kinnunen, 2010) and image processing (Sadek, 2012), In 

particular they are widely used for image compression (Andrews and Patterson, 1976). Other 

applications focus on large data sets, such as genomic signal processing (Alter and Golub, 

2004). It should be noted that common spreadsheets providing least squares approximations 

do not take into account singular value decomposition and often lead to unconsistant results 

when used without discernement. 



Inverse problems are not  often used to understand the generation of ore deposits. It 

reflects the underlying complexity of the process, owing to the unhierarchised parameters that 

enter ore genesis (e.g; metal abundance, temperature, pressure, chemistry…). It does not 

allow a simple formulation from the observed manifestations (veins, brecciation), and can 

hardly cope with multiple centers of ore generation and the many metals involved (Landtwing 

et al., 2002; 2010). 

Nevertheless, least-squares approximations are in common use for fluid inclusions 

characterization (Wilkinson, 2001) or geochemical trends appreciation. More commonly, 

extraction of anomalous mineral composition, especially trace or rare minerals are statistically 

examined in order to detect anomalous concentrations. Thus, analysis and discrimination 

between trace elements (Herrmann and Berry, 2002), or specific minerals, (e.g. magnetite) 

composition (Ghasemzadeh-Barvarz et al., 2016) are often inspected using least-squares 

investigations. Large geochemical data sets are also submitted to statistical trends for 

extracting the most probable places or regions of any geochemical concentration (Kun et al., 

1987). Such simple applications are rather statistical than conceptual, in that sense that they 

provide evolution trends rather than identification of the genesis conditions. 

Because the relations between measurements and parameters are more appreciated and 

quantified, geophysical methods commonly use least-squares based inversion methods to 

determine the shape, volume or extension of ore bodies from gravity data (Vigneresse, 1977; 

1990; Dolgal et al., 2016). More generally, potential field methods offer also such possibilities 

of inversion (Malehmir and Bellefleur, 2009; Eppelbaum, 2014).  

 

3.3. Iterative methods 



In case of non-linear systems of equations, two general methods of solving use an 

iterative solution. From an initial approximation of the model, successive iterations tend to 

reproduce the measurements (Fig. 1). Non-linear algebraic equations can easily be reduced to 

a system of polynomial equations and solved through specific algorithms such as the 

Newton’s, or Newton-Raphson’s method or the steepest descent method (Arfken, 1985; Süli 

and Mayers, 2003). Iterative by construction, the solution generally converges toward a 

solution, giving place to a generalized inversion (Ben-Israel and Greville, 1974). 

3.3.1. Non-linear systems  

When the system is highly nonlinear, the approximation through pseudo-linearization 

often fails to correctly represent the underlying physics. Inverting a large sparse matrix or a 

non-linear system is equivalent to solve the intersection of a conic curve and a plane. The 

solution is generally non-unique, at least in two dimensions i.e. with only two variables. Still 

in two dimensions, it depends if the curve intersects, is tangent or does not cross the curve. 

When the dimension is higher, a system of non-linear equations describes the process. The 

variables, or unknown functions in case of partial derivatives, are represented by polynomial 

of degree commonly higher than one. When several variables simultaneously occur in such 

equations (e.g. x and x2 or x3) those can enter the systems as a new set of variables. The same 

is valid for simple derivative functions when their analytical expression is known. 

 The Newton’s method is used if the number of equations is equal to the number of 

variables, rarely the case in fact. However, it does not provide all the solutions nor prove that 

there is no solution. A starting point constitutes the initial condition. The method has a better 

and faster solution when the initial starting point is close to a solution. The steepest descent is 

a gradient method for finding the minimum of a function through an iterative optimization 

algorithm. It has basis on Marquardt’s method of minimization (Marquardt, 1963) 



interpolating between a common Gauss algorithm and gradient descent to locate the minimum 

value of a surface, viewed as a potential low..  

Those methods minimize the sum of the squares of the equations, thus pertaining to a 

least-squares approximation. Nevertheless, in case of several local minimum solutions, they 

may be estimated as global solution, avoiding the real global minimum. The methods work 

for overdetermined systems, but outputs an empty information if all local found minima are 

positive. 

3.3.2. Other iterative solutions  

Some non-linear equations provide a reasonable description of a physical process. 

Hence, the geophysical effects generated by a 2D or 3D body are easily modeled by direct 

methods. Such equations can be inverted, from an initial starting model, with arbitrary 

parameters, and then, iterative modifications provide effects that are compared to the 

measured effects (Vigneresse, 1990). The algorithm is quite simple, but some cautions should 

be provided on the convergence of the solution. Convergence is actually always realized, but 

it may lead to spurious effects. Such effects manifest by a convergence of the solution, i.e. a 

minimization of the errors between observations and computation, but also by a divergence 

due to improper input parameters. They consist in numerical instabilities that may serve to 

bracket the initial parameters into a range leading to convergence. 

Such effects have been put in evidence during gravity data inversion to get the 3D 

shape at depth of granitic intrusions (Vigneresse, 1990). Hence, depending on the adopted 

values for densities distribution, two divergent types of solution (in the geological senses) are 

observed whereas the results numerically converge. When the input densities are too large, the 

computer deals with an excess of mass that does not fit the underlying real distribution of 

mass. The successive iterations compensate such excess by adding unobserved mass deficit 



outside the physical limits of the intrusion. Conversely, when the densities distribution cannot 

yield the total mass, then the intrusion dramatically increases in depth, but compensates the 

mass deficiency by adding spurious reliefs aside. In both cases, the divergence of the results 

with observations helps in bracketing the values of expected solution (Améglio et al., 1997).  

These divergences also occur during other iterative processes, attesting a mismatch in 

the input parameters with the real values. However, such numerical divergence is easily 

discernable and can be used to infer a better choice of the input parameters. 

3.3.3. Reaction-diffusion systems 

 A simple chemical reaction transforming one atom of metal (e.g. Cu) into a salt fails to 

explain enrichment even through reactants. In usual chemical reactions, one atom of Cu is 

transferred from the melt toward the MVP, and there is no enrichment. To achieve chemical 

enrichment, the process requires that the reaction increases the amount of metal by a factor n, 

here about 3-4 orders of magnitude. Such enrichment in one variable is observed in systems 

of reaction-diffusion, as for instance, during the separation of  pigments forming zebra stripes 

either in animal patterns or in zebra rocks (Murray, 1993; Kelka et al., 2017). It points to 

chemical amplifiers, or reactions involving several steps with successive enrichment in one 

element. Such reactions present non-linear positive or negative feedback loops, all describing 

oscillating enrichment, up to chaotic behavior, e.g. the Belousov-Zabotinski reactor (Gray and 

Scott, 1990; Benini et al., 1996) or the Brusselator (Nicolis and Prigogine, 1977). The latter is 

typical of autocatalytic reactions, increasing the concentrations in one element, with cyclic 

oscillations around a fixed point. The only possibility for such feedback loops to develop is 

through unstable reactions in contrast with steady state reactions as involved during fractional 

crystallization.  



 The starting equation is a simple 1D diffusion determining the evolution with time, 

using ∂ tu = du/dt, or a gradient of concentration ∇2u with diffusivity Du while it is submitted 

to a local reaction R(u).  

  ∂ tu = Du ∇2u + R(u)       (4)   

 Depending on the local reaction non-vanishing with time, the equation may lead to the 

Kolmogorov time process (Kolgomorov, 1931) presenting an oscillatory state. The 

generalization to higher dimension gives place to systems of reaction diffusion in which an 

inhibitor (u) and an activator (v) compete, yielding the so-called Turing machine (Turing, 

1937), an algorithm able to process first-order logic sequences within an unrestricted 

grammar. The system writes : 

  ∂ tu = Du ∇2u + R(u)       (5)   

  ∂ tv = Dv ∇2v + S(u)       (6)   

Pertaining to the same process, the Lotka-Volterra equations describe the interactions 

between a population of preys and predators (Lotka, 1910; Volterra, 1926; Arditi and 

Ginzburg, 2012). A couple of simple equations describes the growth and death of a prey 

population (u), whereas predators (v) grow and interact with the preys.  

  du(t)/dt = α u(t) – β u(t) v(t)     (7)  

  dv(t)/dt = -γ v(t) + δ u(t) v(t)      (8)  

The rates of change in the populations with time are the derivatives du/dt and dv/dt. The 

coefficients of the differential system are the controlling parameters. In such equations, α is 

the growth factor of the prey population, equivalent to the gradient of concentration, and β the 

rate for a prey to meet a predator, γ represents the loss rate of the predators, or concentration 



gradient, and δ represents the growth of the predator population. A good application works for 

rabbits and foxes (Arditi and Ginzburg, 2012). Thus, depending on the evolution rates of each 

population, catches and deaths, one population may take over the other (Holling, 1973). The 

interest of the system of equations is the possibility for one population to grow over its initial 

value, i.e. to show enrichment.  

Interestingly, the stability of such differential systems is similar to the stability 

mapping, and analogue to a Poincaré map, of viscous flows during deformation (Manneville, 

1991; Iacopini et al., 2010; Xypolias, 2010) that have recently been reviewed (Vigneresse, 

2015). The mapping uses the determinant (det (A)) and trace (Tr(A) of the matrix describing 

the system. The value of the determinant separates both hyperbolic flows (det(A) < 0) from 

non-dilatant flows (det(A) > 0), and source (Tr (A) >0) from sinks (Tr(A) <0). In between, 

when 4 * det(A) - Tr(A)2 = 0, the flow is parabolic. Another parameter, the spectrum of the 

matrix (Sp(A) determines the flow stability, provided Sp(A) < 0 (Fig 10). The Poincaré 

mapping commonly plot the successive solutions within appropriate coordinates, thus 

illustrating the cyclic nature of solution and its eventual attractors (Iacopini et al., 2010; 

Xypolias, 2010). 

 The so-called Gray-Scott scheme generalizes such iterative models. It describes a 

chemical conservative equation under which the source (U) and drain (V) result in a product 

(P) under the chemical equations U + 2V → 3V and V → P (Gray and Scott, 1990). Under 

such conditions, the two reactions R(u) and S(u) in Eqs 7 and 8, simplify into  

∂ tu = Du ∇2u – u v2 + F(1-u)     (9)   

  ∂ tv = Dv ∇2v + u v2 – (F+k) v     (10)   



When considering only the first right hand term of Eq. 9, it is equivalent to the heat 

equation. The term in (u v2) is the reaction rate, whereas the term in F(1-u) represents the 

replenishment and v is the diminishment term. The two constant values F and k represent the 

feeding rate and the kill rate respectively. The results strongly depend on the two constants F 

and k, showing no reaction at all when F is either null or too high. In between oscillations 

occur, that may yield to chaos. Such changes in the resulting patterns have been considered as 

bifurcations in the number of solutions which can be analyzed through the Jacobian of the 

system (Eqs. 9, 10) (Hale et al., 1999). Indeed, it presents two eigenvalues, namely -F and -

(F+k), that determine a trivial critical point (Delgado et al., 2017). A mapping of the types of 

solutions is constructed (Fig. 10). It uses the trace and determinant of the Jacobian, matrix of 

the first derivatives of the system. The diagram separates the points of bifurcation from the 

stable solutions of the system.  

When such models were issued, they gave place to an abundant literature, mainly 

focusing on bifurcations of solutions, leading to chaos (e.g. Glendinning, 1995), but also to 

self-organization (Ortoleva, 1994). They found rapid applications in chemical systems 

presenting oscillations with time. Other applications include pattern formation due to two 

competing diffusion processes, such as stripes (Murray, 1993), or pigmentation patterns on 

mollusks shell (Meinhardt, 2009; Kelka et al., 2017), and more often in rhythmic ore 

alternance (Shahabpour, 2005). 

Liesegang bands and oscillatory zoning have also been interpreted with such competing 

diffusive process (L’Heureux, 2013). Layered intrusions and orbicular rocks, as well as 

oscillatory zoning in plagioclase could be manifestations of such a double diffusion process. 

A former model of ore generation had been constructed using the Gray-Scott model (Yu, 

1988). The model starts indicating that ore-forming pertains to dissipative structures as earlier 

formulated (Prigogine, 1978), i.e. pointing to an open system, probably far from 



thermodynamic equilibrium, with continuous exchange of matter and energy. It rules out most 

direct Eulerian models, in which stationarity is implied. But the paper (Yu, 1988) becomes 

unclear on the time scale of the so-called dissipative structures, examining periods of 

formation starting in the Cambrian up to Cretaceous. Identically, it is not clear on whether the 

metals are coming from, intrusion or sediments.  

The concepts of reaction-diffusion have been recently applied to ore generation, aiming 

to show a cyclic behavior in metal enrichment (Oberst et al., 2018). The starting point is the 

initial distribution of mineralized veins in drill cores. A differential system is built that mimics 

the reaction-diffusion process, using different diffusivity values for the inhibitor and the 

activator, the latter being about the double of the former, as commonly implemented in a 

Gray-Scott model. The results show a discontinuous, but cyclic and non-periodic distribution 

of the veins. Such approaches exhibit many features of nonlinear dynamical systems, 

especially when the system is brought far from its natural equilibrium. Then feedback 

relationships between thermo-chemical and deformation processes produce recurrent fluid 

temperatures and pressures fluctuations leading to the deposition of mineral veins. It roughly 

corresponds to the distribution of minerals, such as carbonate amphibole and sericite with a 

spatial occurrence increasing in this order (Oberst et al, 2018). Nevertheless, the study was 

aimed to show the applicability of such reactions to simulate the distribution of ore, but not 

aimed toward the mode of concentration of associated metals. Such models should be used in 

case of rhythmic layering, e.g. chromite layers from the Bushveld (Cousins, 1959; Kinnaird et 

al., 2002) or any banded iron formation (Klein, 2005). 

 

4. Provisional conclusions on modeling 



The preceding review rapidly described the three types of modeling, identifying direct, 

inverse and iterative problems (Fig. 3). Each of them results in solutions that should be 

compared in terms of pertinence and representativity, which is often omitted. 

4.1.Pertinency and accuracy of models  

Difficulties during modeling consist in estimating the accuracy and, above all, the 

pertinency of the constructed model. Accuracy mostly relies on the quality of observations, 

depending on their spatial distribution and on their temporal evolution, when available. The 

latter is often unknown since measurements mostly consist in late snapshots of the process, 

when they are not obliterated by tectonics or alteration. Consequently, a direct approach can 

hardly represent the temporal evolution of ore generation. In particular, it cannot integrate the 

cyclic nature of ore genesis, excepted by determining successive quasi-stationary models with 

time (Weis et al., 2012). Historically, the direct 2D formulation has been the first approach in 

geophysics with the decomposition of the source bodies in polygonal bodies (Talwani et al., 

1959), rapidly followed by 3D modeling in gravity and magnetism. The offered solutions 

were directly compared to field observations. Varying the leading parameters brackets the 

output values, i.e. identifying a possible hierarchy between the inputs. This is a first step in 

the understanding of the underlying processes. However, the unique solution provided by the 

overdetermined system remains strongly function of the input parameters. When one of those 

is omitted or underestimated, or when feedback loops develop, the given solution fits the 

input, but hardly the reality of the processes.  

In order to avoid more uncertainties, inverse modeling has been introduced in the early 

70s. It has been imposed by the huge amount of new data released from geophysical surveys 

and the introduction of large computing facilities. Models first concerned global structures, 

such as the internal structure of the Earth, as deduced from its free oscillations or bodies 



surveyed for their electric, gravity or magnetic disturbance (Backus and Gilbert, 1970; 

Parker, 1970; Wiggins, 1972). It gave place to a general inverse formalism, factoring the 

system through its eigenvalues and eigenvectors (Franklin, 1970; Gilbert, 1971; Jackson, 

1972). The formalism came out from the common observation that an ill-posed matrix of the 

equations should provide spurious inverse matrix (Eq. 2). Optimization between the 

resolution of the data, the expected errors in the solution and the fit of the data had to be 

taken into account. It led to tests conducted using different norms such as the sum of the 

absolute errors or the sum of the squared errors, thus mimicking the L1 and L2 norms, with 

the advantage of the latter that needs less delicate computation (Vigneresse, 1977). In fact, 

this problem goes back to the 17th century with the dispute about the shape and size of the 

Earth between Boscovich and Laplace in one hand against Legendre and Gauss in the other 

one (Tarantola, 2006). Nevertheless, such formulations commonly provide solutions, often a 

set of them, from which statistical tests should identify the best fits. 

The dichotomy between over- and under-determined systems is often ignored during 

modeling. In the direct, or forward problem, one solution only exists, due to the causal 

principles. But this solution strongly depends on the input parameters that are not necessarily 

adequate or exact. In contrast, the inverse problem may present several solutions, resulting 

from similar observations or measurements. It may also present no solution at all in case of 

inconsistent data. In case of many solutions, f.i. in case of very underdetermined system due 

to the high number of parameters, the many solutions can be compared with prior 

information, resulting in equivalents error bounds when fitting to the observations. Such 

solutions are called equivalent. The key to solve such ill-posed problem consists in analyzing 

the eigenvalues of the system (Wiggins, 1972), i.e. decomposing the matrix of the system into 

its singular values (Lawson and Hanson, 1987). At least, it reinforces the strong formalism 

that underlies the inverse problem (Backus and Gilbert, 1970). Nevertheless, it does not solve 



the non-unicity of the solutions. 

4.2. Heading toward a direct, inverse or iterative problem  

It remains to select between a direct and an inverse formulation, i.e. between a unique 

solution but dependent of many a priori arguments, and many solutions compatible with the 

observations. Uncertainty exists due to a poor calibration of the initial data and noise during 

measurements and discrete sampling. This relates to the data themselves. Approximate 

conceptualization of the underlying physics, model physical assumptions (e.g. homogeneity, 

isotropy), linearization and numerical approximations restrict the validity of the model. The 

equivalent models fitting the observations within the same error bounds, and resulting from 

both successive direct computations and inverse modeling, are located within curvilinear 

valleys called the cost-function topography (Fernández-Martínez, 2015). The choice between 

such equivalent solutions is totally arbitrary, and there is no statistical way to identify one of 

them that would correctly explain the observations. 

The use of an iterative solution is hampered by the choice of the initial parameters. In 

particular, the rates of growth or of decay are totally out of constraints. For ore deposits, a 

few constraint exists on the MVP exsolution (Edmonds and Woods, 2018), that can be 

checked through bubbles nucleation and growth. But it does not inform on the rate of metal 

incorporation into the bubbles. 

In practice, modeling ore deposits commonly uses the direct formulation, whereas 

geophysical surveys prefer using an inverse problem. Certainly, this relies on a stronger 

physical formalism underlying geophysical methods. Since the parameters in cause for metal 

segregation are physical and chemical, thus internal to the way under which the magma 

reservoirs evolve, it has been tempting to determine how such tuning develops, on a broad 



scale, leading to so-called “magmatic provinces” (Petrascheck, 1965; Sillitoe, 2010) and on 

local scale, yielding barren and/or mineralized intrusion. 

 

5. Toward a general model 

Basically, the generation of ore deposits is a competition between gradients (e.g. section 

2). Those are the gradient of concentration, the gradient of velocity between a flowing melt, a 

moving fluid and a quasi-rigid crystal framework, and the gradient of metal partitioning 

between the melt and the MVP. They all result in metals enrichment by a factor 103 to 104, 

which is huge. 

5.1. Addressing the right questions and providing the right answers 

The major parameters leading to ore generation within intrusions have been identified (see 

section 2). Therefore, any modeling that would examine the variations of these parameters 

would be some modification of a direct problem (section 3.1), i.e. involving an 

overdetermined system, with inherent multiple acceptable solutions (Atlan, 2011). A full 

analytical inverse formulation is presently ruled out because of inherent feedback loops 

between advection and diffusion. The problem of ore generation must be reformulated to 

address the right questions on the manner and quantity metals are enriched (Vigneresse, 

2019). But the answer to such questioning is certainly not simple. An inverse formulation 

based on the input parameters such as ore grade, temperature, melt and fluid composition 

requires too many poorly constrained values. The changes in the physico-chemical properties 

of the melt-crystal-fluid system is also hampered by their continuous evolution in both space 

and time. At last, metal chemistry offers so many complex associations with ligands, even 

simple (S, halogens) that it is hardly tractable. 



5.2. Background of the model  

The suggested model is a mix between a direct and inverse problem. It first considers the 

physical coupling between melt viscous motion, metal diffusion from the melt toward the 

fluid phase. The chemical aspects relate to the difference in chemical potential between the 

three phases that has to re-equilibrate.  

The magma reservoir is the place where metal enrichment results from a competition 

between three different systems, two being basically physical, and a third one chemical. First 

metals are in the melt and have the choice either to stay in it and latter integrate solid crystals, 

or to move into the mobile MVP. It basically depends on the chemical attraction of metals 

between those two phases. Physically, the fate of the metals depends on a competition 

between diffusion from the melt toward MVP and advection of the melt. The second process, 

metals diffusion, is intrinsic to metals and magma composition. Third, the melt motion within 

a tortuous mush of crystals depends on melt viscosity. The three competing processes should 

be addressed before solving the quantitative aspect of metal enrichment. Because the amount 

of the three phases varies continuously, the microphysics of the mush-melt-MVP interactions 

requires a Lagrangian description (Huber et al., 2012; Parmigiani et al., 2014). It provides a 

qualitative description of the processes. Remains to solve the quantitative problem, that 

requires a different approach. 

5.2.1. The direct problem: Coupling metal partitioning, diffusion, and melt viscosity 

A global model has been conceptualized from a lattice Boltzmann model (LBM) 

simulation to understand the competition between metals diffusion from the melt toward the 

more mobile immiscible phase and their transport by advection through the mush (Huber et 

al., 2012). The competition between diffusion and advection points toward assigning a Péclet 



number for each couple of magma/metal. A first description assumes a Péclet number 

equivalent to 10-9/D providing a threshold for metal diffusivity (D) in a felsic magma (Huber 

et al., 2012). Nevertheless, the model suffers from the large quantitative uncertainties 

underlying the diffusivity values and the partition coefficients. First elaborated for porphyry-

type (Cu, Mo, W, Sn) deposits (Huber et al., 2012; Vigneresse, 2019), the model uses for 

simplicity a relative enrichment with respect to one component (Cl) of the MVP. It is the most 

common situation and best documented case of ore deposits related to granitic intrusions 

(Hedenquist et al., 2005).  

The maximum enrichment factor incorporates the Péclet numbers, i.e. the inverse of 

metal diffusivities and the melt viscosity along the length of the magma reservoir, with a 

coefficient (c) and a power law (b) coefficient, numerically adjusted (Huber et al., 2012). 

  Eme-Cl|max = (Kme/KCl) [1+(c PeCl)b/(1+(c Peme)b]   (11)  

The important point of this model is to isolate the controlling interactions between 

metals, melt and the fluid phase. The metal enrichment factor is bracketed between a 

minimum value, equivalent to the ratio of metal partitioning between the melt and MVP, and 

a maximum value. The latter is the preceding minimum value to which terms are added 

depending on metal diffusion into the melt and melt motion (Vigneresse, 2019). In case of 

relative enrichment, and for high values of both Péclet numbers (>> 1), the second term of the 

equation converges toward the ratio of the two Péclet numbers. The second numerical 

coefficient (c) simplifies to 1. Just remains in the second term of the equation the power law 

in Péclet number, with the coefficient b, numerically fitted to 1.456 for low Péclet numbers, 

but to 1.03 for high values corresponding to advection (Huber et al., 2012). The quantification 

issued from the model indicates an enrichment factor of three orders of magnitude for Au and 

Cu in porphyry-type magmas (Vigneresse, 2019). The threshold imposed on metal diffusivity 



in a felsic melt make Pb and As enrichment unlikely in such magmas. Since it basically 

consists in a competition between diffusive-like processes, the analytical solution is a suite of 

exponential functions for metal diffusion in the melt, melt viscous motion and diffusion of 

chemical potential to reach equilibrium. Keeping this in mind allowed an inverse formulation 

of the problem (see next section). 

The direct approach through LBM (Huber et al., 2012) nicely describes the interactions 

between each phase. It illustrates the necessary role of a developing mush that slows down 

melt motion, leaving more time for metal diffusion toward the MVP. Being tapped by the 

mush, the MVP now enriched in metals, must overcome a threshold before it catastrophically 

breaks the loose structure of the mush. The overpressure differs from a transition from 

hydrostatic to lithostatic, as previously suggested (Fournier, 1991; Shinohara and Hedenquist, 

1997). It corresponds to a transition from gaseous bubbles to tubes (Parmigiani et al., 2016). 

Nevertheless, melt decompression would alter the supercriticality of the fluid phase before 

metals can precipitate.  

5.2.2. The inverse problem: Metal enrichment 

Building an inverse formulation for ore genesis is not straightful due to the many 

involved parameters (diffusivity, viscosity, phase amount and composition). The key point is 

to start from the metal enrichment factor (Eq. 11), determining a relationship with the above-

mentioned parameters (Vigneresse, 2019). It indicates that a Péclet number rules the 

competition between advection and diffusion. Metals partitioning between phases is the other 

controlling factor. Both have distinct background, physical and chemical, that cannot be 

simply inverted by a single equation (Lagrangian or Eulerian). The Péclet number must be 

first expanded, taking into account the viscosity of the melt and the size of the bubbles (Huber 

et al., 2012). The latter has a restricted effect on the bulk inverse equation, but it fits a 



dimensional analysis of the equation. Another possibility is to use the Eyring equation relating 

diffusivity (D) and viscosity (η) to temperature (Eyring, 1935; Avranov, 2009) following the 

Stokes-Einstein equation providing the difference in activation energy is small between metal 

diffusivity and melt viscosity (Mungall, 2002). Such assumption is verified for cations with 

high activation energy, like high field strength elements (HFSE), i.e. most common metals 

with high valence. The equation states, using a falling particle of radius r and with B a 

constant (either 2 or 6π in hydrodynamics), and k the Boltzmann constant, states as 

  D = kT/Brη      (12) 

It results that the product log (Dη/T) is constant at 12.2 providing a rough estimate of 

log (Dη) at 9 for the temperature of a crystallizing felsic melt (Mungall, 2002; Avranov, 

2009). Using this equation, it seems clear that magma viscosity should enter into the inverse 

equation to be valid for any magma, as well as the size of the bubble. Because the latter is 

very small compared to other parameters, and does not vary for different magmas, it could be 

skipped.  

It is easy to link the other parameters since they all show an Arrhenian behavior, thus 

bringing homogeneity in the successive equations. A second point is to consider the large 

uncertainties on the experimentally measured parameters (diffusion and partitioning). Metal 

diffusivity in magmas strongly depends on temperature, but this can be handled by fixing it to 

that of a mush. Dependence on the magma composition; i.e. on its melt structure, is another 

source of uncertainties, with a range of 1 to 2 orders of magnitude (Zhang et al., 2010). At 

last, partition coefficients depend on the salt content into the MVP (see review in Vigneresse 

et al., 2019). The use of a logarithmic scale is a way to smooth the uncertainties on the 

parameters, taking advantage of their Arrhenian nature. 



Partitioning (Kmelt/MVP) represents the return to equilibrium between the chemical 

potential (µ) of each phase. Consequently, it is preferred to determine partitioning through the 

usual chemical descriptors of elements (Vigneresse and Truche, 2018). The chemical potential 

is the equivalent of electronegativity (χ) with a sign changed (Pearson, 1997). The use of 

electronegativity (usually scaled in eV, equivalent to kJ/mole) is preferred to the usual K 

values experimentally measured, but presenting a too large spread (Vigneresse, 2019). Metal 

diffusivity in the melt (D in m2/s) and viscosity (η in Pa.s) are selected for each pair of melt 

and magma. The term in length (the bubble size), that keeps dimensionality can be dropped 

since it does not depend on the melt composition. A logarithmic scale approximates the 

maximum enrichment value (E) as the respective sum of those parameters: 

  log10 E = – log10 Kmelt/MVP – log10 η – log10 D    (13) 

Such a simple formula approximates the enrichment factor as a function of the three 

competing factors within the melt-MVP-mush and metals interactions. A simple synthetic 

diagram links the three parameters to a specific metal enrichment (Fig. 11).  

A note of caution should then be added to the preceding formulation though the given 

values fit the observations. Obviously, the logarithmic scale (Eq. 13) minimizes the 

uncertainties on the input parameters, especially diffusivity and partitioning. The computed 

enrichment factor should be taken as a bulk metal enrichment, providing an order of 

magnitude rather than an exact number. Nevertheless, this simple equation is verified in two 

important cases. First, it has been verified for porphyry-type deposits (Cu, Mo, W, Sn) in case 

of dioritic to granodioritic magmas (Vigneresse et al., 2019). Then it has been extended to 

ultramafic and alkaline magmas with subsequent Ni, Ti, V ore deposits. A further extension to 

carbonatites and REE deposits also fits the equation (Vigneresse et al., submitted). In each 



case, the couple metal-magma takes place at different temperatures, changing the values of 

the parameters (diffusion, viscosity, partitioning). 

5.2.3. Cyclicity 

The competition between diffusion and advection repeats cyclically. Hence, the MVP 

builds up and escapes the magma reservoir with metals, but a new cycle starts, which is 

hardly reproducible by usual modeling techniques (Shahabpoor, 2005). The metal enrichment 

in the MVP can be viewed as the slow charge of a capacitor in classical electrostatics. 

Conversely, the decharge of the capacitor takes place as the MVP releases its metal content. 

Using the hydraulic analogy, a capacitor is like a rubber membrane sealed within a pipe 

through which the flow of water molecules can pass by stretching the membrane. The flow is 

controlled by its resistance (R). Such stretching effect is like displacing the charges one plate 

of the capacitor. The amount of stretch is the capacitance (C). It can store energy. The 

discharge occurs by releasing the stretch on the membrane. Both events are exponentially 

ruled with a time constant in RC. The analogy could provide insights to the evolution of an 

ore deposit with time.  

 

6. Discussion on the suggested model 

The suggested model is a compromise between a direct formulation using a LBM 

formalism and an inverse solution based on metal enrichment. The inverse approach is, at our 

present knowledge, the first and certainly preliminary, approach to ore genesis. 

6.1. Generation of different metallic veins in a given deposit 



The direct method would allow to estimate the differential enrichment in metals (Cu, but 

also Au, Ag, …) observed in most porphyry deposits, just by varying the second order 

parameters controlling metal diffusivity and magma viscosity. Indeed, a small variation in 

temperature may alter the metal content within the MVP, thus varying the enrichment and 

consequently the ore grade. The activation energy for magma viscosity being larger that the 

one for metal diffusivity, an increase in temperature due to hotter (e.g. mafic) magma should 

enhance metal enrichment. 

Conversely, the inverse approach should give insights to the role of fluids within the 

MVP. Considering the eq. 13, the value of metal partitioning could be computed, assuming a 

differential metal enrichment value, whatever its origin. The variation directly correlates with 

the chemical character of the MVP. Adding S species decreases the electronegativity (i.e. 

increases its chemical potential), whereas halogens increase electronegativity. The variation in 

both senses may reach about 1-2 eV, thus resulting in a similar change but in 1-2 order orders 

of magnitude for the chemical potential difference with the melt.  

Such variations in ore grade from vein to vein should find explanation by the different 

bulk diffusivity values under a given temperature.  

 

6.2.Modeling and exploration  

A point that frequently comes out from the reviewers on papers about ore deposits relates 

to “how does this paper help me to discover new deposits during exploration ?” Answering 

such question is : it does not help. Indeed, there is a basic difference between modeling, that 

aims to understand processes,and exploration leading to the discovery of new deposits.  



 The dichotomy between explanatory and predictive modeling reflects the distinct 

scientific goals, between causal explanation and empirical prediction (Shmueli, 2010). Both 

use data for explaining or predicting, respectively. In contrast, modeling aims understanding 

the causal processes. Once those have been identified, then statistical analyses or 

consequences observable on the field can be used for prediction and exploration. In a different 

approach, descriptive modeling summarizes the available data and tries identifying their 

causes. Nevertheless, it is also not aimed at prediction (Sainani, 2014). One basic difference 

between the two approaches relies on the difference between a quantitative and predictive 

approach in one hand, and a qualitative approach, commonly more explicative and certainly 

offering a better understanding of the processes (Thom, 2009). The latter book, written by the 

Medal Field mathematician who conceptualized the catastrophe theory, also makes the 

difference between the two approaches. 

 

7. Conclusions   

A brief review of models of ore generation within an intrusive context considers the direct, 

inverse and iterative problems. In the direct problem, starting from given and fixed 

parameters, a unique solution is proposed, because of its intrinsic over-determination. It 

denotes a causal relation to the provided solution. By evidence, the resulting model nearly 

always fits observations, but there is no control on some un-observed feedback loop or 

complex coupling between variables. The direct approach is widely proposed in the literature 

of economic geology. Conversely, the inverse problem starts from the measurements, trying 

to identify the controlling parameters. The solution is non-unique and must satisfy a statistical 

test on errors, the most used being a least squares norm. Owing to its underlying physical 

formalism, it is mainly used for the interpretation of geophysical prospections. Finally, 



iterative approaches often result in identifying attractors that control a cyclic behavior of the 

system. From such approaches, a global model has been constructed, extending a previous 

formulation, valid for porphyry-type deposits and associated metals (Cu, Mo, Au, Ag). Metal 

enrichment results during the magmatic stage, in a competition between diffusion, i.e. 

transport within the melt, and advection, i.e. transport by the magmatic volatile immiscible 

phase. Melt motion, through viscosity and mush formation, through crystallization, also 

compete together. They constitute the physical aspects of the model. At this competition, 

another one exists, between metal partitioning between the melt, crystals, and fluid phase. It 

constitutes the chemical aspects of the competition. Such formalism points to a direct 

problem, providing metal enrichment factors using a predefinite Péclet number for each 

metal. Another important principle is to consider the bulk enrichment factor in metals, not 

necessarily through a precise number, as suggested in the direct method, but using an inverse 

formalism based on a logarithmic scale. Looking at the order of magnitude, up to five, of the 

enrichment appears sufficient, contrasting with previous models that hardly reach two orders 

of magnitude.  
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Figure captions 

 

Figure 1. Ore grade (g/t) as a function of ore tonnage (Mtons). Data sets for Cu, Mo, W, 

Au are redrawn from Sinclair (2007), and data for V and REE are from Kelley et al., 

(2017). The major idea coming out from this diagram is the global grade ranging 0.1 to 10 

%, that slightly increases for Ni and PGE, thus increasing the enrichment factor (E), owing 

to the lower initial abundance in such metals (see Fig. 2). 

 

Figure 2.  Abundance of elements as a function of 106 atoms of Si. Elements are in their 

atomic number (Z) order, and are grouped as lithophile and siderophile elements. Rare 

earth elements (REE) are individualized, as well as platinum group elements (PGE). The 

relative abundance of most metals ranges 10-5 to 102 relative to Si, that is 10-11 to 10-4 in 

absolute values. 

 

Figure 3.  Illustration of the direct, inverse and iterative problem in the case of ore deposit 

formation. In the direct problem, the inputs are the parameters of the melt, metals and 

MVP that are thought to control magma reservoir evolution and metal enrichment (E). The 

solution is unique, but strongly dependent on the causal parameters that are fixed. In the 

inverse problem, the parameters are deduced from the model, leading to several solutions, 

that should be separated using a statistical test on the errors. In the iterative problem, an 

initial model is built, and the parameters are further refined to match the enrichment. 

 



Figure 4. Eulerian versus Lagrangian approaches to a flux of matter. The former 

approach considers an external reference frame. The rate of change with time of some fluid 

property (∂/∂t) generally includes a term accounting for convection. Conversely, in the 

Lagrangian approach, the frame is attached to a particle. D/Dt represents the acceleration 

of an individual element as it speeds up or slows down during its motion. 

 

Figure 5. Lattice Boltzmann Model illustrated by the interactions between adjacent 

particles, in 2D (plan) and 3D (volume). The result is the coding of each particle as a 

function of its content, e.g. melt or MVP. Picture of the model during computation adapted 

from the modeling by A. Parmigiani (Huber et al., 2012) showing the gas phase within the 

mush (in light grey). 

 

Figure 6. Matrix problem (m = A x), full, under-, and over-determined problem, with the 

unscaled matrix spectrum Sp(A), a plot of the eigenvalues in decreasing amplitude. The 

values close to nullity should be removed, indicating redundant and un-significant 

solutions, thus un-significant equations. The characteristics of the matrix, such as the trace 

Tr(A), its determinant det(A) and its conditions number κ(A) are indicated, all resulting 

from the eigen-equation. The colors used to represent the vectors and the subsequent 

matrix components have no significance in terms of amplitude or values. This is also valid 

in the successive illustrations about matrix computation. 

 



Figure 7. Rotational and scaling aspects of the singular value decomposition starting 

from a unit disc with the initial geometric coordinates (X and Y). The eigenvectors (σ1 and 

σ2) of matrix A are successively rotated through matrix VT and U and scaled through the 

matrix S. The successive rotations and scaling modify the position of the original 

coordinates into a new coordinates system (σ1 and σ2) transforming the unit disc into an 

ellipse. Hence the columns of U are eigenvectors of eigenvectors of ATA and the columns 

of V are eigenvectors of AAT. They form a new orthonormal basis for the system. 

 

Figure 8. Singular value decomposition. The matrix A is rotated and scaled (Fig. 7) 

through the matrix U and V. It finally results in a matrix S, pseudo eigenmatrix of the 

system. The respective products U UT and V VT are the unity matrix I, with only diagonal 

terms equal to 1. Conversely the columns of U and V form a new orthonormal basis for the 

system, according to the successive rotations and scalings. 

 

Figure 9. Map of different types of 2D flow in a referential constructed from Tr(A) and 

det(A). The former discriminates between sources and sinks, whereas det(A) separates the 

field of pure to simple shear. A parabola considers the degenerate solutions. A simple 

inspection on the eigen characters of the matrix immediately provides the type of flow it 

induces. Such diagrams are of great interest in understanding ductile deformation, 

pertaining to viscous flow regimes. 

 



Figure 10.  Model of fluid sparging in case of porphyry-type deposits. The magma 

reservoir is represented with no crystals, a yet abundant mush, and a tapping mush. The 

MVP exsolves from a periodically replenished magma reservoir. The new magma is 

rapidly assimilated since the magma reservoir is buffered in oxygen, and sulphur. Metals 

represented as small plain drops diffuse into the melt, and preferentially incorporate the 

immiscible phase. They first form bubbles, that progressively turn to tubes when they 

accumulate in the mush. The equivalent diagram representing the Péclet 

(advection/diffusion) and Stefan (sensible heat/latent heat) numbers shows this transition 

from bubbles to tubes. When the mush is too stiff to resist the MVP buoyancy, the latter 

escapes through high strain rate, switching from lithostatic and supercritical to a simple 

hydrostatic regime. Metals precipitate while MVP alters the surroundings. The process is 

cyclic, induced by magma replenishment.  

 

Figure 11. Global enrichment in case of Cu-Au porphyry deposits. The diagram is scaled 

in temperature between 600 and 700 °C, versus the parameters (diffusion D, viscosity η 

and partitioning K) in a logarithmic scale. The sum of those parameters (Eq. 12) provides 

the enrichment factor (E), as indicated by the arrows. The case of Cu is illustrated within a 

felsic magma, as it develops in porphyry type deposits. The enrichment must then be 

corrected by the initial metal abundance to reach ore grade. 
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