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Let {ξ(k), k ∈ Z} be a stationary sequence of random variables with conditions of type D(u n ) and D (u n ). Let {S n , n ∈ N} be a transient random walk in the domain of attraction of a stable law. We provide a limit theorem for the maximum of the first n terms of the sequence {ξ(S n ), n ∈ N} as n goes to infinity. This paper extends a result due to Franke and Saigo who dealt with the case where the sequence {ξ(k), k ∈ Z} is i.i.d.

Introduction

In the 1940s, Extreme Value Theory has been developed in the context of independent and identically distributed (i.i.d) random variables by Gnedenko [START_REF] Gnedenko | Sur la distribution limite du terme d'une série aléatoire[END_REF]. It is straightforward that if {ξ(k), k ∈ Z} is a sequence of i.i.d random variables then the following property holds: for any sequence of real numbers (u n ), and for τ > 0,

nP (ξ(0) > u n ) -→ n→∞ τ =⇒ P max k≤n ξ(k) ≤ u n -→ n→∞ e -τ .
The above property has been extended for sequences of dependent random variables satisfying the so-called conditions D(u n ) and D (u n ) of Leadbetter [START_REF] Leadbetter | On extreme values in stationary sequences[END_REF][START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF].

More recently, Franke and Saigo [START_REF] Franke | The extremes of a random scenery as seen by a random walk in a random environment[END_REF][START_REF] Franke | The extremes of random walks in random sceneries[END_REF] have investigated extremes for a sequence of dependent random variables which do not satisfy the conditions D(u n ) and D (u n ). More precisely, they consider the following problem. Let {X k , k ∈ N + } be a sequence of centered, integervalued i.i.d random variables and let

S n = X 1 + • • • + X n , n ∈ N + . Assume that {X k , k ∈ N + }
is in the domain of attraction of a stable law, i.e. for each x ∈ R,

P n -1 α S n ≤ x -→ n→∞ F α (x),
where F α is the distribution function of a stable law with characteristic function given by

ϕ(θ) = exp(-|θ| α (C 1 + iC 2 sgnθ)), α ∈ (0, 2].
The sequence {S n , n ∈ N + } is referred to as a random walk. When α < 1 (resp. α > 1), it is known that this random walk is transient (resp. recurrent) [START_REF] Kesten | A limit theorem related to a new class of sel-similar processes[END_REF][START_REF] Gall | The range of stable random walks[END_REF]. Now, let {ξ(k), k ∈ Z} be a family of R-valued i.i.d random variables independent of the sequence {X k , k ∈ N + }. In the sense of [START_REF] Franke | The extremes of random walks in random sceneries[END_REF], the sequence {ξ(S n ), n ∈ N + } is called a random walk in a random scenery. Franke and Saigo derive limit theorems for the maximum of the first n terms of {ξ(S n ), n ∈ N + } as n goes to infinity. An adaptation of Theorem 1 in [START_REF] Franke | The extremes of random walks in random sceneries[END_REF] shows that in the transient case, i.e. α < 1, the following property holds: if nP (ξ(0) > u n ) -→ n→∞ τ for some sequence (u n ) and for some τ > 0, then

P max k≤n ξ(S k ) ≤ u n -→ n→∞ e -τ q , ( 1 
)
where q = P (∀k ∈ N + , S k = 0). Notice that q > 0 because the random walk {S n , n ∈ N + } is transient. According to a result due to Le Gall and Rosen [START_REF] Gall | The range of stable random walks[END_REF], the number q can be also expressed as

q = lim n→∞ R n n a.s., (2) 
where R n = #{S 1 , . . . , S n } is the range of the random walk.

In this paper, we extend (1) to sequences {ξ(k), k ∈ Z} which are not necessarily i.i.d. but which only satisfy conditions of type D(u n ) and D (u n ). More precisely, we consider the following problem. Let S n = X 1 + • • • + X n , where {X k , k ∈ N + } is a sequence satisfying the same properties as above, i.e. a sequence of centered, integer-valued i.i.d random variables in the domain of attraction of a α-stable law, with α < 1. Let {ξ(k), k ∈ Z} be a stationary sequence of random variables independent of {X k , k ∈ N + }. Assume that there exist a sequence (u n ) such that

nP (ξ > u n ) -→ n→∞ τ, (3) 
for some τ > 0, where ξ has the same distribution as ξ(k), k ∈ Z. In the following, the sequence {ξ(k), k ∈ Z} is supposed to satisfy conditions of type D(u n ) and D (u n ). Roughly, the condition D(u n ) (see e.g. p29 in [START_REF] Lucarini | Extremes and recurrence in dynamical systems[END_REF]) is a weak mixing property for the tails of the joint distributions. To introduce it, we write for each i 1 < • • • < i p and for each u ∈ R,

F i 1 ,...,ip (u) = P (ξ(i 1 ) ≤ u, . . . , ξ(i p ) ≤ u) .
Condition D(u n ) We say that {ξ(k), k ∈ Z} satisfies the condition D(u n ) if there exist a sequence (α n,l ) (n,l)∈N 2 and a sequence (l n ) of positive integers such that α n,ln → 0 as n goes to infinity, l n = o(n), and

|F i 1 ,...,ip,j 1 ,...,j p (u n ) -F i 1 ,...,ip (u n )F j 1 ,...,j p (u n )| ≤ α n,l for any integers i 1 < • • • < i p < j 1 < • • • < j p such that j 1 -i p ≥ l.
Notice that the bound holds uniformly in p and p . The condition D (u n ) (see e.g. p29 in [START_REF] Lucarini | Extremes and recurrence in dynamical systems[END_REF]) is a local type property and precludes the existence of clusters of exceedances. To introduce it, we consider a sequence (k n ) such that

k n -→ n→∞ ∞, n 2 k n α n,ln -→ n→∞ 0, k n l n = o(n), (4) 
where (l n ) and (α n,l ) (n,l)∈N 2 are the same as in condition D(u n ).

Condition D (u n ) We say that {ξ(k), k ∈ Z} satisfies the condition D (u n ) if there exists a sequence of integers (k n ) satisfying (4) such that lim n→∞ n n/kn j=1 P (ξ(0) > u n , ξ(j) > u n ) = 0.
In the classical literature, the sequences (α n,l ) (n,l)∈N 2 and (k n ) only satisfy k n α n,ln -→ n→∞ 0 (see e.g. (3.2.1) in [START_REF] Lucarini | Extremes and recurrence in dynamical systems[END_REF]) whereas in (4) we have assumed that n 2 kn α n,ln -→ n→∞ 0. In this sense, the condition D (u n ) as written above is slightly more restrictive than the usual condition D (u n ). We are now prepared to state our main theorem. Theorem 1. Let {S n , n ∈ N + } be as above and let {ξ(k), k ∈ Z} be a stationary sequence of random variables such that nP (ξ(0) > u n ) -→ n→∞ τ , for some sequence (u n ) and τ ≥ 0. Assume that the conditions D(u n ) and D (u n ) hold. Then for almost all realization of {S n , n ∈ N + },

P max k≤n ξ(S k ) ≤ u n -→ n→∞ e -τ q ,
where q = P (∀k ∈ N + , S k = 0). The above result extends (1) to sequences {ξ(k), k ∈ Z} which only satisfy the conditions D(u n ) and D (u n ). Notice that our theorem is stated when α < 1, but it remains true when α ≥ 1. We did not deal with this case because, when the random walk is recurrent, the number q equals 0 and the limit is degenerate, i.e.

P (max k≤n ξ(S k ) ≤ u n ) -→ n→∞ 1.
The main idea to derive Theorem 1 is to adapt [START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF] to our context. We think that our method combined with Kallenberg's theorem ensures that the point process of exceedances converges to a Poisson point process, in the same spirit as Theorem 3 in [START_REF] Franke | The extremes of random walks in random sceneries[END_REF]. More precisely, if the threshold is of the form u n = u n (x) = a n x + b n , for some x ∈ R, and if we let

τ k = inf{m ∈ N + , #{S 1 , . . . , S m } ≥ k}, then the point process Φ n = τ k n , ξ(S τ k ) -b qn a qn , k ≥ 1
converges to a Poisson point process with explicit intensity measure. The rest of the paper is devoted to the proof of Theorem 1.

Proof of Theorem 1

The main idea is to adapt [START_REF] Leadbetter | Extremes and local dependence in stationary sequences[END_REF] to our context. To do it, let (k n ), (l n ) be as in [START_REF] Gnedenko | Sur la distribution limite du terme d'une série aléatoire[END_REF]. For n large enough, let r n = n kn-1 + 1. Given a realization {S n , n ∈ N + } of the random walk, we write S n = {S 1 , . . . , S n } and R n = #S n . To capture the fact that the random scenery {ξ(k), k ∈ Z} satisfies the condition D(u n ), we construct blocks and stripes as follows. Let

K n = R n r n + 1. ( 5 
)
There exists a unique K n -tuple of subsets B i ⊂ S n , i ≤ K n , such that the following properties hold:

j≤Kn B j = S n , #B i = r n and max B i < min B i+1 for all i ≤ K n -1. Notice that K n ≤ k n and #B Kn = R n -(K n -1)
• r n almost surely (a.s.). The sets B j , j ≤ K n , are referred to as blocks. For each j ≤ K n , we also denote by L j the family consisting of the l n largest terms of B j (e.g. if

B j = {x 1 , . . . , x rn }, with x 1 < • • • < x rn , j ≤ K n -1, then L j = {x rn-ln+1 , . . . , x rn }). When j = K n , we take the convention L Kn = ∅ if #B Kn < l n .
The set L j is referred to as a stripe, and the union of the stripes is denoted L n = j≤Kn L j .

In the rest of the paper, we write M B = max k∈B ξ(k) for all subset B ⊂ Z. To prove Theorem 1, we will use the following lemma.

Lemma 1.

With the above notation, we have for almost all realization of {S n , n ∈ N + },

(i) P (M Sn ≤ u n ) -P M Sn\Ln ≤ u n -→ n→∞ 0; (ii) P M Sn\Ln ≤ u n -j≤Kn P M B j \Ln ≤ u n -→ n→∞ 0; (iii) j≤Kn P M B j \Ln ≤ u n -j≤Kn P M B j ≤ u n -→ n→∞ 0.
The first and the third assertions mean that, asymptotically, the maximum is not affected if we remove the sites which belong to one of the stripes. Roughly, this comes from the fact that the size of the stripes is negligible compared to the size of the blocks. The second assertion is a consequence of the fact that the sequence {ξ(k), k ∈ Z} satisfies the condition D(u n ). To derive Theorem 1, we will also use the following lemma.

Lemma 2. With the above notation, we have for almost all realization of {S

n , n ∈ N + }, j≤Kn P M B j ≤ u n -→ n→∞ e -τ q .
Proof of Lemma 1. First we prove (i). To do it, for all n ∈ N + , we write

0 ≤ P M Sn\Ln ≤ u n -P (M Sn ≤ u n ) ≤ P (M Ln > u n ) ≤ #L n P (ξ > u n ) ≤ K n l n P (ξ > u n ) ≤ k n l n P (ξ > u n ) . ( 6 
)
Since

k n l n = o(n) and nP (ξ > u n ) -→ n→∞ τ , we have k n l n P (ξ > u n ) -→ n→∞ 0
. This together with (6) concludes the proof of (i). Now we prove (ii). Noticing that {M Sn\Ln ≤ u n } = j≤Kn {M B j \Ln ≤ u n } and bounding P M B Kn \Ln ≤ u n by 1, we have

P M Sn\Ln ≤ u n - j≤Kn P M B j \Ln ≤ u n ≤ P   j≤Kn M B j \Ln ≤ u n   -P   j≤Kn-1 M B j \Ln ≤ u n   P M B Kn \Ln ≤ u n + P   j≤Kn-1 M B j \Ln ≤ u n   - j≤Kn-1 P M B j \Ln ≤ u n .
It follows from the definition of where d(A,B) denotes the distance between any pairs of sets A, B ⊂ R. Thanks to the condition D(u n ), this gives

L n that inf j≤Kn-1 d(B Kn \ L n , B j \ L n ) ≥ l n ,
P M Sn\Ln ≤ u n - j≤Kn P M B j \Ln ≤ u n ≤ α n,ln + P   j≤Kn-1 M B j \Ln ≤ u n   - j≤Kn-1 P M B j \Ln ≤ u n .
By induction, we have

P M Sn\Ln ≤ u n - j≤Kn P M B j \Ln ≤ u n ≤ (K n -1)α n,ln ≤ k n α n,ln ,
which converges to 0 as n goes to infinity. This concludes the proof of (ii). It remains to prove (iii). To do it, notice that, for n large enough,

P M B j ≤ u n = 0 because P M B j > u n ≤ r n P (ξ > u n ) -→ n→∞ 0.
This allows us to write for n large enough,

j≤Kn P M B j \Ln ≤ u n - j≤Kn P M B j ≤ u n = j≤Kn P M B j ≤ u n   j≤Kn P M B j \Ln ≤ u n P M B j ≤ u n -1   , ≤ j≤Kn P M B j \Ln ≤ u n P M B j ≤ u n -1. (7) 
Now, let j ≤ K n be fixed. Because #{B j ∩ L n } ≤ l n , we can prove, in the same spirit as [START_REF] Gall | The range of stable random walks[END_REF], that

P M B j \Ln ≤ u n -P M B j ≤ u n ≤ l n P (ξ > u n ) .
Adapting ( 6) again, we also have

P M B j > u n ≤ r n P (ξ > u n ) . ( 8 
)
This implies that

P M B j \Ln ≤ u n P M B j ≤ u n = 1 + P M B j \Ln ≤ u n -P M B j ≤ u n 1 -P M B j > u n ≤ 1 + l n P (ξ > u n ) 1 -r n P (ξ > u n ) = 1 + τ l n n + o l n n ,
where the last line comes from the fact that P (ξ > u n ) ∼ n→∞ τ n . This together with ( 7) and the fact that

K n ≤ k n implies j≤Kn P M B j \Ln ≤ u n - j≤Kn P M B j ≤ u n ≤ 1 + τ l n n + o l n n kn -1 ∼ n→∞ τ k n l n n .
The last term converges to 0 as n goes to infinity since k n l n = o(n). This concludes the proof of (iii).

Proof of Lemma 2. First, we provide a lower-bound for j≤Kn P M B j ≤ u n . To do it, for all n ∈ N + , we write

j≤Kn P M B j ≤ u n = exp   j≤Kn log 1 -P M B j > u n   ≥ exp (K n log (1 -r n P (ξ > u n ))) ,
where the last line comes from (8). To deal with the right-hand side, we notice that log (1 -

r n P (ξ > u n )) ∼ n→∞ -r n P (ξ > u n )
since r n P (ξ > u n ) converges to 0. It follows from ( 2), ( 3) and ( 5) that, for almost all realization of {S n , n ∈ N + },

lim n→∞ exp (K n log (1 -r n P (ξ > u n ))) = exp(-τ q).
Therefore a.s. lim inf

n→∞ j≤Kn P M B j ≤ u n ≥ exp(-τ q).
Now, we provide an upper-bound for j≤Kn P M B j ≤ u n . To do it, we write

j≤Kn P M B j ≤ u n = exp   j≤Kn log 1 -P M B j > u n   ≤ exp   - j≤Kn P M B j > u n   .
This together with the Bonferroni inequalities (see e.g. p110 in [START_REF] Feller | An introduction to probability theory and its applications[END_REF]), implies that 

j≤Kn P M B j ≤ u n ≤ exp   -(K n -1)r n P (ξ > u n ) + j≤Kn α<β;α,β∈B j P (ξ(α) > u n , ξ(β) > u n )   . Since K n r n P (ξ > u n ) -→ n→∞ τ q a.s.,
P (ξ(α) > u n , ξ(β) > u n )   .
Therefore, it is enough to prove that j≤Kn α<β;α,β∈B j

P (ξ(α) > u n , ξ(β) > u n ) -→ n→∞ 0.
To do it, we write the sum appearing in the above equation into two terms: the first one deals with the case when β -α < r n , and the second one deals with the opposite. For the first term, we use the fact that the sequence {ξ(k), k ∈ Z} is stationary. This gives We prove below that the two terms of the right-hand side converge to 0. For the first one, we have j≤Kn α<β;α,β∈B j

j≤Kn α<β;α,β∈B j P (ξ(α) > u n , ξ(β) > u n )1 {β-α<rn} ≤ j≤Kn β∈B j rn k=1 P (ξ(0) > u n , ξ(k) > u n ) ≤ k n r
P (ξ > u n ) 2 ≤ k n r 2 n P (ξ > u n ) 2 ∼ n→∞ τ 2 r n n .
The last term converges to 0 according to (4). To deal with the second term of (9), we use the condition D(u n ). This gives which converges to 0 as n goes to infinity according to (4). This concludes the proof of Lemma 2.

Theorem 1 follows directly from Lemmas 1 and 2.

n rn k=1 P 2 +

 k=12 (ξ(0) > u n , ξ(k) > u n )The last term converges to 0 as n goes to infinity according to the condition D (u n ) and the fact that k n r n ∼ n→∞ n. Now, we deal with the same series but this time by replacing 1 {β-α<rn} by 1 {β-α≥rn} . We havej≤Kn α<β;α,β∈B j P (ξ(α) > u n , ξ(β) > u n ) 1 {β-α≥rn} ≤ j≤Kn α<β;α,β∈B j P (ξ > u n ) j≤Kn α<β;α,β∈B j P (ξ(α) > u n , ξ(β) > u n ) -P (ξ > u n ) 2 1 {β-α≥rn} . (9)

  we have a.s.

	lim sup n→∞ j≤Kn	P M B

j ≤ u n ≤ exp   -τ q+ lim sup n→∞ j≤Kn α<β;α,β∈B j