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Abstract

This paper empirically analyzes team effects in multiple pairwise battles, where players

from two rival teams compete sequentially. Using international squash tournaments as a

randomized natural experiment, we show that winning the first battle significantly increases

the probability of winning the subsequent one. This result contradicts recent theoretical

literature on multi-battle team contests, according to which outcomes of past confrontations

should not affect the present ones. Furthermore, we derive testable predictions from a

theoretical model in order to identify the effect at play. We provide compelling evidence

of an individual contribution effect : players not only benefit from their team’s win, but also

value the fact of being individually – even partly – responsible for their team’s collective

success. Such an effect is of prime importance to understanding why individuals can make a

significant effort when offered collective-based incentives.

JEL Classification C72, D79, L83, M54.
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1 Introduction

Many economic achievements are produced by groups, such as teams or partnerships, in which

each individual outcome mainly depends on other teammates’ effort decisions. This is why there

is an extensive body of economic literature devoted to understanding individuals’ behavior in

teams and exploring the design of team-based incentives. The conventional economic wisdom is

that team-based incentives induce individuals to exert less effort than individual-based contracts,

simply because rational and self-interested individuals free ride and do not internalize their

teammates’ utility when making effort decisions.1 However, recent literature has found that

individuals could make a significant effort for their team, not only when they react to peer

pressure, but also in order to avoid feeling guilty, i.e., living up to the expectations of others

(Kandel & Lazear (1992), Charness & Dufwenberg (2006), Chen & Lim (2013)). In this paper,

we provide compelling evidence that individuals value being at least partly responsible for their

team’s success. Teammates make a significant effort in teams because they want to take part

in the group’s success. We refer to this important team effect as individual contribution: when

involved within a team, individuals positively take into account the role they can play to achieve

collective success.

Assessing individual contribution to team output is extremely challenging, especially when

teammates’ efforts interact in a subtle manner (Alchian & Demsetz (1972)). We focus on a

special kind of team setting, “multiple pairwise battles,” where individual production is fully

observable, thereby allowing us to test whether individuals value contributing to their team’s

victory. Multiple pairwise battles2 refer to extremely common situations where players from two

rival teams compete sequentially. Such situations include for instance competition between firms

to win local markets, large-scale military operations, and sports events. A famous example is the

Davis Cup tennis tournament, where the players from two national teams compete sequentially

in a best-of-five contest.

Fu, Lu & Pan (2015) present a benchmark theoretical analysis of multiple pairwise battles.

They show, under standard assumptions, that the outcome of a battle is independent from

1See Prendergast (1999) and Sheremeta (2017) for surveys on this topic.

2The expression “multiple pairwise battles” is used by Fu, Lu & Pan (2015). The alternative expression

“multi-battle team contest” is also used by some authors. In this paper, we refer to each component of a contest

as a battle, a match or a confrontation.
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the outcome of previous and subsequent confrontations. Such a result, which they refer to

as “neutrality,” implies that confrontations can be considered independent. There is not any

“dynamic linkage” between subsequent battles and the order of play does not affect the final

result. Neutrality is derived from the fact that players do not internalize the cost of effort of

upcoming battles, for the simple reason that it is borne by their teammates.

This paper empirically analyzes individual behaviors in multiple pairwise battles using inter-

national squash team championships as a randomized natural experiment. International squash

team confrontations offer a perfect empirical setting, as they consist in best-of-three team con-

tests, where players from rival teams compete sequentially, with each player playing only once.

More importantly, the sequence of battles in a team confrontation is randomly drawn and cannot

be manipulated.

The main results of the paper are as follows:

1. We find evidence of a dynamic linkage between subsequent battles. More precisely, we

show that, ceteris paribus, winning the first battle significantly increases the probability

of winning the second battle. This team effect contradicts neutrality.

2. We derive testable predictions from a theoretical model to further explain outcome depen-

dence in this team setting. We provide compelling evidence that outcome dependence in

battles results from individual contribution: players value being (at least partly) respon-

sible for collective success.

Our results are robust to several specifications and alternative tests. To the best of our

knowledge, this is the first paper to provide field evidence that teammates individually value

contributing to their team’s success. The implications of both results extend beyond contest

designs. Individual contribution is of prime importance to understanding why team-based incen-

tives induce individuals to make a significant effort. Theoretical models generally predict that

individuals free ride on their teammates, but this result contradicts most empirical and behav-

ioral studies showing that players’ efforts are not necessarily lower in teams than in individual

settings. Individual contribution mitigates free-riding behaviors: individuals make significant

efforts for their team as they value taking part in the group’s success.

The remainder of this paper is organized as follows. Section 2 presents the related literature.

Section 3 provides empirical evidence against neutrality in multiple pairwise battles: winning

the first battle significantly increases the probability of winning the second battle. Section 4
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pinpoints the mechanism driving non-neutrality: outcome dependence is explained by the fact

that players value not only the final reward yielded by their team’s win, but also playing an

active part in collective success. Lastly, we present robustness tests that confirm the existence

of individual contribution in multiple pairwise battles and rule out alternative explanations.

Section 5 concludes the paper with a discussion of the main implications of the individual

contribution effect.

2 Related literature

Neutrality specifies how individuals behave in multiple pairwise battles. From a theoretical

viewpoint, one can draw a contrast with the “discouragement” effect, which arises in individual

multi-battle contests in which the same players square off against one another sequentially.3 In

individual contests (e.g., a two-set tennis match), winning the first confrontation (or the first

set) positively affects the probability of winning the next one: the remaining effort required to

win the contest is lower for the frontrunner than for the laggard. The former is therefore more

likely to win than the latter.

The discouragement effect, which has been studied extensively,4 cannot occur in multiple

pairwise battles, as the remaining effort required to obtain the final payoff after a non-definitive

battle is not to be borne by the current player. The discouragement effect in individual contests

is caused by the fact that prize spreads – i.e., the difference in expected payoff between winning

and losing a battle – are not symmetric: the frontrunner has a higher prize spread than the

laggard and, as a result, more incentive to win. Conversely, neutrality occurs when the prize

3See Dechenaux, Kovenock & Sheremeta (2015) for a survey.

4There is an abundant literature on individual contests, which finds evidence of the dependence of outcomes

in subsequent individual confrontations and confirms the discouragement effect. For instance, Klumpp & Polborn

(2006) model U.S. presidential primaries as a best-of-N contest between two candidates and show that winning

the early districts strongly affects the probability of winning later districts. Malueg & Yates (2010) find empirical

evidence of strategic effects in individual tennis matches. Taking a sample of equally skilled players, they show

that the winner of the first set exerts more effort in the second set than the loser. Mago, Sheremeta & Yates (2013)

provide experimental evidence of a discouragement effect in a best-of-three Tullock contest. They also show that

this effect is strategic, not psychological. Harris & Vickers (1987) show that in a two-firm R&D race model, an

early lead yields easy wins in subsequent battles because of the discouragement effect on the lagging opponent.

Konrad & Kovenock (2009) show in a theoretical framework that the introduction of intermediate prizes for

component battles (i.e., payoff from winning a single battle even if the match is lost) reduces discouragement.
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spread is the same for both opposing players, meaning that the outcome of a battle does not

depend on previous outcomes.

As Fu, Lu & Pan (2015) stress, the neutrality result contrasts sharply with conventional

wisdom, which holds that battles are not independent in a team contest. From a theoretical

perspective,5 two kinds of effects would explain why winning the first battle should affect the

outcome of the subsequent one in multiple pairwise battles: (i) effects that endogenously alter

players’ ability; and (ii) effects that endogenously affect prize spread symmetry.

First, two effects ,“choking under pressure” and “psychological momentum,” may explain

the absence of neutrality as they alter players’ ability.

Choking under pressure may occur if a player in the lagging team faces more pressure than

a player in the leading team because the former has to win in order to keep his team in the

contest. This pressure might have a detrimental effect on performance and might thus explain

why winning the first battle would affect the probability of winning the next one. Indeed, re-

search in psychology has shown that an emphasis on the importance of the situation can limit

the individual’s capacity to exhibit his “true” ability. Such a reaction can be driven by in-

creased arousal, narrowed attention, and preoccupation with the reward or absence of reward

(see Beilock (2010)). Apesteguia & Palacios-Huerta (2010) use the random nature of the order

of soccer penalty shoot-outs to provide evidence of such psychological pressure. Teams that take

the first kick in the sequence win the penalty shoot-out 60.5 percent of the time. Taking into ac-

count the characteristics of the setting, they attribute this significant difference in performance

to psychological effects resulting from the consequences of the kicking order. However, Kocher,

Lenz & Sutter (2012) find different results using a larger sample of penalty shoot-outs. Ariely,

Gneezy, Loewenstein & Mazar (2009) show, based on experimental data, that choking under

pressure has a stronger deterrent effect on performance when the task is publicly observable.

Psychological momentum, which has been mainly documented in individual settings, denotes

the idea that winning a battle boosts players’ confidence and helps them win the next one.

In other words, initial success in a contest produces momentum that leads to future success.

Rosenqvist & Skans (2015) provide field evidence on the causal impact of past individual suc-

cesses on future performance. They use data from European golf tournaments to show that

players who (marginally) succeeded in making the cut substantially increased their performance

5See section 3.1.
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in subsequent tournaments relative to players who (marginally) failed to make the cut. On

the contrary, Berger & Pope (2011) perform a regression discontinuity analysis of professional

basketball games and find that teams that are very slightly behind at halftime (by 1 or 2 points)

actually win more often than teams that are very slightly ahead. Gauriot & Page (2014) also

use this powerful identification strategy to test for the existence of a momentum effect. They

base their analysis on point by point ball tracking data in tennis matches, which allow them to

isolate situations where balls bounce very close to the limits of the court, landing either in or

out. These random variations in the probability of winning the point are used to investigate

how professional tennis players’ performance changes after winning or losing a point. The au-

thors rule out the existence of a psychological momentum and provide evidence of a strategic

momentum, which is a consequence of variations in incentives that occur in a dynamic contest.

Second, outcome dependence in multiple pairwise battles may be explained by asymmetric

incentives among players, which may be caused by three potential phenomena.

A first effect that may distort players’ incentives and generate outcome dependence is “guilt

aversion:” a player may dread being (partly) responsible for his team’s defeat. Baumeister,

Stillwell & Heatherton (1994) define guilt as “an individual’s unpleasant emotional state associ-

ated with possible objections to his or her actions, inaction, circumstances, or intentions. Guilt

is an aroused form of emotional distress that is distinct from fear and anger and based on the

possibility that one may be in the wrong or that others may have such a perception”. Charness

& Dufwenberg (2006) examine experimentally the impact of communication on trust and coop-

eration. Their design admits observation of promises, lies, and beliefs. They find evidence of

guilt aversion showing that people strive to live up to others’ expectations. Furthermore, Chen

& Lim (2013) analyze whether managers should organize employees to compete in teams or as

individuals. Their main conclusion according to which team-based contests yield greater effort

than individual-based contests, is rooted in guilt aversion.

Second, a player may dread losing his battle in a team that performs very well, and vice versa.

We refer to this phenomenon as ”inequity aversion.”6 This idea is connected to some results from

the growing literature on individuals’ relative performance. Information on relative performance

allows for social comparison: individuals can evaluate their own performance by comparing them-

6We thank the referees for this important suggestion.
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selves to others, thereby adapting their effort.7 If players value achieving a level of performance

close to their teammates’, this would generate outcome dependence with subsequent battles.

Third, altruism, i.e., the fact that players internalize their teammates’ costs of effort, would

generate a linkage between subsequent battles. If individuals were altruistic, bearing part of

their teammates’ costs, the discouragement effect would be at play in multiple pairwise battles.

Finally, one may also consider another kind of effect, which we refer to as “individual contribu-

tion:” players may value being partly responsible for collective success. In such a case, a player

on the leading team has a higher probability of being (partly) responsible for collective success

than his opponent. This higher probability increases his incentive to make a more costly effort,

thereby increasing his probability of winning. If players value contributing to their team’s suc-

cess, then the prize spread is no longer the same for the frontrunner and the laggard. It would

follow, then, that winning the first battle endogenously creates asymmetry in prize spreads and

may therefore lead to outcome dependence with subsequent battles.

These potentially strong effects are grounds to empirically test for neutrality, which consists

in analyzing whether winning the first battle affects the probability of winning the second one.

This type of analysis poses two main empirical challenges.

First, failure to account for peer effects would generate a spurious correlation between the

outcomes of subsequent battles. Being in a more stimulating environment might increase each

teammate’s probability of winning, thereby generating some spurious correlation between the

probabilities of victory in the first two battles. The existence of peer effects continues to be

debated in the literature. For instance, Mas & Moretti (2009) show, using high-frequency data

from a field experiment, that the introduction of highly productive personnel into a team has a

positive effect on worker productivity. On the contrary, Guryan, Kroft & Notowidigdo (2009)

find no evidence of peer effects in a highly skilled professional labor market: neither the ability

nor the current performance of playing partners affects the performance of professional golfers.

Second, belonging to the lagging team should not induce the player involved in the second

battle to adopt a particular strategy that would affect the outcome of his match. The literature

has focused on the fact that players could adopt riskier strategies when facing critical situations.

Knoeber & Thurman (1994) compare tournament and linear payment schemes using data from

a sample of U.S. broiler producers. They examine the impact of prizes on performance level

7See Festinger (1954) for a seminal analysis.
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and variability, concluding that less able producers adopt riskier strategies. On the contrary,

Brown (2011), who shows that professional golfers underperform when they are paired with a

superstar, concludes that this reduced performance is not attributable to the adoption of risky

strategies.

A few papers directly test for neutrality. Fu, Ke & Tan (2015) conduct a simple best-of-

three team contest experiment, in which players from two rival teams are pairwise matched and

compete by counting the number of zeros in a series of 10-digit number strings composed of 0s and

1s. They find evidence that players from both teams remain equally motivated after observing

the outcome of the first component contest, and therefore a team tournament is equally likely to

end after two or three component contests. Dong & Huang (2018) use team squash data and do

not find evidence against neutrality. Their findings are based on a limited number of matches.

Huang & Murad (2017) develop an experiment to test for neutrality in a sequential best-of-three

team contest. In their experiment, subjects have a fixed amount of time to catch balls that fall

from the top of a computer screen by using mouse clicks. In a benchmark environment where

there is no communication amongst teammates, who only share the same fate in terms of financial

incentives, they find that second movers in lagging positions drop out of competition more often

than second movers in leading positions. This result contradicts neutrality and can be supported

by a psychological momentum. However, when teammates chat at the beginning of contests,

the outcomes of the first two battles are independent. Huang & Murad (2017)’s interpretation

is that guilt aversion compensates the psychological effect observed in the benchmark situation.

3 Testing for neutrality in multiple pairwise battles

3.1 Theoretical framework

This section theoretically analyzes individual behaviors in multiple pairwise battles and presents

the equilibrium probability of winning a component battle in a tractable form, which allows us

to (i) show that the neutrality result from Fu, Lu & Pan (2015) depends on two important

assumptions, and (ii) derive predictions for the empirical analysis.
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3.1.1 Setting

We consider a best-of-three team contest with complete information. A team X is opposed to

a team Y . The contest presents the following features: (i) there are 3 risk-neutral players in

each team. Each player only plays one battle. Xi (respectively Yi) is the player from team X

(respectively Y ) that plays the ith battle, i ∈ {1, 2, 3}; (ii) team X wins as soon as it wins two

battles and loses as soon at it loses two battles; and (iii) the third battle is non-trivial only if

team X and team Y have both won one of the two previous battles.

Let pi be the probability that Xi wins his battle against Yi,

pi =
xi

xi + yi
,

where xi is the level of effort of Xi and yi is the level of effort of Yi. This function is the simplest

version of the Tullock contest success function,8 also referred to as a lottery contest. Players do

not have the same ability. This is reflected in a linear cost function, given by

CXi(xi) =
xi
θXi

,

where θXi is the innate ability of Xi. The cost of effort is thus a decreasing function of the innate

ability of a player. The payoff associated with the collective win (denoted V ) is the same for

every player. Players also get a battle reward v when they win their own battle (independently

of their team’s outcome). V and v are strictly positive.

3.1.2 Theoretical result

Let UJi |WinKi (respectively UJi |LossKi) be the utility of player Ji, Ji ∈ {Xi, Yi}, when Ki wins

(respectively loses) battle i, Ki ∈ {Xi, Yi}.

Result 1. Equilibrium probability of winning. In a multiple pairwise battle, players choose

their optimal level of effort such that the probability that player Xi wins a confrontation is given

by

p∗i =
θXi∆UXi

θXi∆UXi
+ θY i∆UY i

,

where ∆UXi
= (UXi |WinXi) − (UXi |LossXi), respectively ∆UY i

= (UYi |LossXi)− (UYi |WinXi),

is the prize spread of player Xi, respectively Yi.

8See Buchanan, Tollison & Tullock (1980).

9



Proof. See Appendix.

This result shows that the outcome of a battle depends on two parameters only, which are

(i) players’ relative prize spreads, and (ii) players’ relative ability (or cost of effort).

Therefore, if players have the same prize spreads (i.e., ∆UXi
= ∆UY i

) and the circumstances

of the battle do not asymmetrically affect players’ cost of effort (i.e., θXi and θYi are not asym-

metrically affected by the state of the contest), the equilibrium probability of winning only

depends on players’ relative ability:

p∗iNeutrality =
θXi

θXi + θY i
.

In this case, the team contest boils down to a series of independent lotteries, yielding Fu, Lu

& Pan (2015)’s neutrality result according to which the outcome of a battle does not affect the

outcome of the subsequent ones (i.e., leading or lagging behind has no effect).

Therefore, one would observe neutrality if the two following conditions were satisfied: (i)

common prize spreads, and (ii) the absence of phenomena asymmetrically altering players’ effort

cost or ability.9

(i) Common prize spreads This condition is satisfied in the case where players only value

the collective win (payoff V ) and the battle reward (payoff v). In a decisive battle 3,10

both players have a prize spread of V + v, as they get both the collective and the battle

rewards if they win and a payoff of 0 if they lose. In battle 2, both players also have the

same prize spread: the player in the leading team gets V +v if he wins, and p∗3V if he loses

(as he can still get the collective reward V if his teammate wins battle 3, which occurs

with a probability p∗3), so his prize spread is V + v − p∗3V = v + (1− p∗3)V . The player in

the lagging team gets v+ (1− p∗3)V if he wins, as he is certain to receive the battle reward

and he also gets the collective reward if his teammate wins battle 3, which occurs with a

probability (1−p∗3). If he loses, the contest ends and he gets a payoff 0, so his prize spread

is also v + (1− p∗3)V . A similar logic applies to battle 1.

9These two conditions are sufficient, not necessary. For instance, neutrality may occur if the asymmetry in

prize spreads is compensated by a change in players’ ability.

10A decisive – or non-trivial – battle is a battle for which the winning team has not been determined yet. In

a best-of-three team contest, battle 3 is decisive if and only if each team has won one battle in the two previous

rounds.
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A necessary condition for players to have common prize spreads is that they do not take

into account their teammates’ costs of effort. A situation where players would, for any

reason, act in an altruistic way and internalize part of their teammates’ effort cost would

generate asymmetric prize spreads in battle 2. This would explain why there could exist

a dynamic linkage between subsequent battles.

Furthermore, players might not only value the team win and the battle reward but also

being individually (partly) responsible for collective success. If such motivation exists, the

prize spreads become asymmetric in battle 2: the player in the leading team has more

incentive to win than his opponent because he is sure to contribute to the success of his

team if he wins his battle, while his opponent will be “success-responsible” if and only if his

teammate also wins in period 3. Thus, an individual contribution effect would invalidate

the assumption of common prize spreads and explain the absence of neutrality.

(ii) Absence of effects asymmetrically altering players’ effort cost If we observe com-

mon prize spreads, neutrality would occur if players’ cost of effort is not asymmetrically

affected by the circumstances of the contest. In that case, the outcome of a battle would

only depend on players’ relative abilities (θXi and θY i), which remain fixed.

However, players’ effort cost may be affected in an asymmetric way by psychological factors

related to the situation at hand. A player might have psychological momentum following

the victory of his teammate, which would be equivalent to a decrease in his effort cost.

Conversely, players’ cost of effort could increase when they are under pressure. This choking

under pressure phenomenon could occur when the stakes of the battle are particularly high

for one of the players, such as the player from the lagging team involved in battle 2, whose

defeat would lead to collective failure. Incorporating such effects in the cost function of

players would also lead to non-neutrality.

These are the phenomena that might explain why these two crucial assumptions do not

necessarily hold. The next section presents an empirical strategy to test for neutrality.
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3.2 Empirical setting and data

3.2.1 International squash championships as a randomized natural experiment

Professional squash team data are particularly well suited to analysis of multiple pairwise bat-

tles. The structure of international squash competitions mirrors a theoretical best-of-three team

contest with complete information: both the identity of the six players (three in each rival team)

taking part and the order in which they play are determined before the beginning of the contest.

Battles are played sequentially; each player only plays one battle. A team wins as soon as two

of its players win. International squash tournaments can be utilized as a randomized natural

experiment to analyze potential team effects in multiple pairwise battles because the order of

play is randomly drawn ex ante. Each National Squash Association has to rank its players by de-

scending order of strength and has to declare this order truthfully: opponents or organizers may

object to a within-team ranking that does not reflect the actual hierarchy amongst teammates.

More importantly, the order of the three battles is randomly drawn from four possibilities for

every confrontation: 1-2-3, meaning that players ranked first play the first game, players ranked

second play the second game and players ranked third play the third game, 1-3-2, 2-1-3, and

3-1-2. This ex-ante randomly-drawn order of play ensures that teams cannot manipulate the

sequence of games to be played in any way.11

3.2.2 Data

We construct a comprehensive dataset of international squash team confrontations from 1998 to

201612 that includes 2,039 national team matches. We consider 55 international team tourna-

ments, including Men’s and Women’s World Team Championships, Men’s and Women’s Asian

Team Championships and Women’s European Team Championships.13 The World Team Cham-

pionships are organized by the World Squash Federation (WSF). The competition is held once

every two years, each time in a different venue. The men’s and women’s events are held sepa-

11See Section S1 of the WSF Regulations, Section L1 of the ESF Regulations and Section T1 of the ASF

Regulations for more details.

12The data were gathered from the website http://www.squashinfo.com.

13We do not include Men’s European Team Championships in our sample because the tournament uses a

best-of-four structure with ties broken by points count back.
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rately in different years.14 The Asian Team Championships are organized by the Asian Squash

Federation (ASF) and take place every two years. Finally, the European Squash Federation

(ESF) holds the European Team Championships annually.

We have also recorded additional information: match durations (for most entries), locations

and exact scores. The official scoring system for all levels of professional and amateur squash is

called “point-a-rally scoring” (PARS). In PARS, the winner of a rally always receives a point,

regardless of whether he served or returned. Sets are now played to 11, but were played to 9

until 2007 at Men’s World Team Championships, 2008 at Women’s World Team Championships,

2009 at Women’s European Team Championships, and 2010 at Men’s and Women’s Asian Team

Championships. Players win a set by two clear points, i.e., if the score reaches 10–10, play

continues until one player wins two consecutive points. Battles are the best-of-five sets, and the

contest is a best-of-three battle.

Finally, we collected professional players’ monthly world rankings, which are published by

the Professional Squash Association (PSA).15 These rankings are based solely on players’ per-

formance in individual tournaments and, as such, are not correlated with their performance in

past team tournaments. We use the PSA rankings as a proxy for players’ ability.

3.2.3 Descriptive statistics

This section provides a series of descriptive statistics on international squash team confrontations

from 1998 to 2016.

We first compare the rankings of the players involved in battle 1, battle 2 and battle 3.

This allows us to ensure that (i) PSA rankings reflect correctly players’ ability and (ii) the

professional squash events comply with World Squash Championship Regulations. According

to these regulations, each National Squash Association has to rank its players by descending

order of strength. We do not identify each player’s position (i.e., first, second or third) within

his team, but this should be correlated with PSA rankings. Moreover, these regulations impose

that the order of the three battles is randomly drawn from the following four possibilities: 1-2-3

(i.e., players ranked first play the first game, players ranked second play the second game and

players ranked third play the third game), 1-3-2, 2-1-3, and 3-1-2. Therefore, the corresponding

14The 2015 Men’s World Team Championship, which was to be held in Cairo, Egypt, has been canceled.

15Note that amateur squash players that might be involved in team championships have no PSA ranking.
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theoretical probabilities that battle i involves a player ranked first, second or third are as follows

(see table 1).

Table 1: Within-team rankings of players involved in each battle according to WSF regulation

Battle 1 Battle 2 Battle 3

Probability that battle i involves players ranked

First 50% 50% 0%

Second 25% 25% 50%

Third 25% 25% 50%

Total 100% 100% 100%

Accordingly, the distribution of the PSA rankings of the players involved in battle 1 and

battle 2 should be similar: the first two confrontations involve players who are ranked first with

a 50% probability and ranked second or third with a 25% probability. On average, the PSA

rankings of the players involved in battle 3 should be higher than that of those competing in

battle 1 and battle 2. In battle 3, there are no top-ranked players, and players ranked second

and third are equally distributed. Figure 1 provides the distribution of the rankings of the

players involved in battle 1, battle 2 and battle 3. As expected, ranking distributions are similar

for the first two rounds. Moreover, players involved in battle 3 have, on average, a higher

PSA ranking than teammates involved in previous confrontations. This is perfectly consistent

with the fact that (i) each National Squash Association ranks its players by descending order

of ability; and that (ii) the order of the three confrontations is randomly drawn from the four

scenarios described above (1-2-3, 1-3-2, 2-1-3 and 3-1-2). This also shows that PSA rankings

correctly reflect players’ ability.
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Figure 1: Distribution of players’ monthly PSA rankings, per round – 1998-2016

Furthermore, we compare the characteristics of the matches that take place in battle 1,

battle 2, and battle 3. We do so to check if there are any significant differences between these

confrontations to ensure that, in battle 2, the player in the lagging team does not adopt a risky

strategy, as he must win to keep his team in the contest. If this were the case, one would

expect to observe significant differences amongst the main characteristics of battle 1 and battle

2 matches. In particular, risky strategies should reduce the duration of a match: a player who

gambles effectively tries to shorten each rally by attempting winning shots.

Table 2 displays, for each round (i.e., battle 1, battle 2 and battle 3), the average number

of sets per match; the proportion of three-set matches (whose final score is necessarily 3-0),

four-set matches (3-1) and five-set matches (3-2); the average number of points per match and

per set; the average proportion of points won by the winner; and the average match duration.
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Table 2: Characteristics of international squash team matches, per round – 1998-2016

Battle 1 Battle 2 Battle 3 Total

Average number of sets per match 3.5 3.5 3.5 3.5

% of matches with a final score of

3-0 60.7% 61.2% 64.9% 61.8%

3-1 26.2% 23.4% 23.7% 24.6%

3-2 13.1% 15.3% 11.4% 13.6%

Average number of points per match 52.2 53.6 52.8 52.9

Average number of points per set 14.9 15.3 15.1 15.1

Average duration (minutes) 38.2 38.8 33.7 37.3

These descriptive statistics show that battle 1 and battle 2 matches have similar character-

istics. In addition, figure 2 shows the distribution of the average duration of a point in matches

that take place in battle 1, battle 2 and battle 3. For each confrontation, we compute the ratio

of the total duration of the match and the number of points played. If the players who belong to

the lagging team gambled in battle 2, the average duration of a rally in battle 2 would be shorter

than in battle 1, where none of the players has reason to adopt a particularly risky strategy.

This is not what is observed in our data: Figure 2 shows that the distribution of the average

duration of points played in battle 2 matches is the same as in battle 1 games.
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Figure 2: Distribution of the average duration of points played in squash matches, per round –

1998-2016

The descriptive statistics confirm that players do not adopt a risky strategy based on the

result of the first confrontation. Battle 1 and battle 2 matches display similar observable char-

acteristics.

3.2.4 Measures of players’ relative ability

In this paper, we want to estimate how past battles may affect the current battle outcome, in

order to further analyze individual behaviors in teams. The outcome of a given battle mainly

depends on the relative ability of both competing players. As mentioned in section 3.2.3, PSA

rankings correctly reflect players’ ability. In our empirical analysis, we use three different mea-

sures of players’ ability based on PSA rankings as control variables.

First, we use rankings as a categorical variable with seven modalities: Top 5; 6-15; 16-30;

31-50; 51-75; 76-105; and 106-450. These specific modalities are constructed by increasing the

size of the ranking range by 5 from one category to the next (except for the last one). This

accounts for the fact that a small gap between two top players reflects a significant difference in

their respective ability compared to a similar ranking gap between two second-tier professional

players. These categories allow us to strike a good balance between an accurate measure of

players’ ability and a sufficient number of observations in each modality.

Second, we introduce each possible interaction between the aforementioned categories into

our empirical models (e.g. Top 5 vs 16-30). We therefore generate 49 variables, which correspond
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to the couple of ranking categories for each pair of competing players.

Finally, we consider the ratio of players’ rankings. When this ratio is used as a control

variable in our empirical model, we define it in such a way that it always lies between 0 and

1, i.e., we always consider the ratio of the ranking of the best player, with the lowest ranking,

against the ranking of the worst. This allows us to avoid extreme values. However, the ratio of

the worst player’s ranking on the best player’s ranking, which is larger than 1, is more relevant

when we want to use this measure to restrict the sample to players of similar rankings.

All the results presented in the remainder of this paper are robust to these three different

measures of players’ relative ability.

3.3 Testing for neutrality in multiple pairwise battles

According to Fu, Lu & Pan (2015)’s model, the probability of winning a battle is not affected by

the outcome of previous battles – all that matters is the relative ability of the players involved

in a given battle. Neutrality is derived from the fact that both players have the same incentive

to win because they have the same prize spread (i.e., the same utility gap between winning and

losing).

Test 1. There is evidence in support of neutrality if winning battle 1 does not affect the probability

of winning battle 2.

3.3.1 The absence of neutrality: statistical evidence

The most direct way to assess whether winning the first battle affects the probability of winning

the second is to construct a sample in which players from both teams involved in the second

battle have similar rankings. Based on this sample of equally skilled players, one would expect,

if there were neutrality, half of the contests to be won by the player who belongs to the leading

team.16

We use two different methods to restrict our sample of equally skilled players. The first

method is based on the ratio of the rankings of both players involved in the second battle, and

we restrict our sample to observations where this ratio is close to 1. In this case, the difference

in rankings is easier to assess if the ratio is larger than 1: we thus consider the ratio of the worst

16This type of identification strategy is implemented by Malueg & Yates (2010), who construct a sample of

tennis matches with equally skilled players.
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player’s ranking on the best player’s, and we consider the following thresholds: (i) ratio < 1.5 –

variant 1, (ii) ratio < 1.4 – variant 2, (iii) ratio < 1.3 – variant 3 and finally (iv) ratio < 1.2 –

variant 4. According to this definition, a match between a player ranked 15 and a player ranked

25 will not be included in any variant (the ratio of these rankings being 1.66), while a match

between a player ranked 15 and a player ranked 17 will be included in the four variants (the

ratio of these rankings being 1.13). The second approach consists in considering only battle 2

matches in which both players’ rankings belong to the same category (Top 5; 6-15; 16-30; 31-5;

51-75; 76-105; and 106-450). Therefore, we only take into account a confrontation that involves

a player ranked e.g. 6-15 if his opponent’s ranking lies within the same category.

We note X1 the player who won the first battle against Y1, and X2 the player who belongs

to the leading team involved in battle 2 against Y2. Table 3 reports the empirical probability

that X2 wins the second battle for each of the variants considered.

Table 3: Satistical evidence against neutrality

Ratio of rankings lower than
Same category

1.5 1.4 1.3 1.2

X2 wins battle 2 59.7%∗∗∗ 59.1%∗∗ 60.4%∗∗ 60.4%∗∗ 56.7%∗

Number of observations 211 181 139 91 203

Statistically different from 50% at ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The results presented in table 3 show that the probability that the player on the leading

team wins is greater than 50%. In other terms, the figures suggest the absence of neutrality:

winning the first battle increases the probability of winning the second one.

3.3.2 Evidence against neutrality: main specification

Restricting the sample to players who have similar rankings is a simple way to control for players’

relative ability but it considerably reduces the number of observations. We therefore integrate

our measures of players’ relative ability as a control variable in order to use our entire sample.

To do so, we label the two opposing teams as “Team A” and “Team B”17 and their players

17In the remainder of this paper, we label “Team A” and “Team B” each of the opposing teams in a given

confrontation, with no further conditions on the outcome of the first battle. When we deliberately choose the

team that won the first battle, we refer to it as “Team X”, or “X”.
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as A1, A2, A3, B1, B2 and B3, where the subscript indicates the battle in which the player is

engaged. We can test for neutrality by assessing whether the probability that A2 defeats B2

is higher when A1 won against B1 in the previous battle, controlling for A2’s and B2’s ability.

Thus we regress the dummy variable indicating whether A2 wins or loses battle 2 on a dummy

variable indicating whether A1 won or lost battle 1 and on a measure of A2 and B2’s relative

ability based on their rankings. The tested econometric specification is as follows.

A2 wins battle 2 = β0+βNon−neutrality×A1 won battle 1+f(RankingA2 , RankingB2)+εAB2,

where f(RankingA2 , RankingB2) refers to one of the three measures of players’ relative ability

described in the previous section: i) ranking modalities, (ii) interacted ranking modalities, (iii)

the ratio of rankings. We integrate these measures of players’ ability taking into account the

symmetric structure of the dataset: the outcome of a battle depends on the characteristics of the

two players. Hence, when we use ranking modalities and interacted modalities, we break down

every battle into two observations and weight each observation by 1
2 so as to adjust standard

errors correctly. When we use the ratio of rankings as a proxy for relative ability, we define

player Ai as the player who has the better ranking, so that the ratio of rankings always lies

between 0 and 1.

We use a linear probability model as it makes the interpretation of the coefficients of interest

easy.18 The results are displayed in columns (1), (3), (5) of table 4. The coefficient associated

with A1 won battle 1 is significant at the 0.1% level using any of the measures of players’ ability.

The magnitude of the effect is very strong (from 9.8 to 14.2 percentage points depending on the

ability measure used). This means that in a battle involving two players with similar rankings,

the player on the leading team wins with a probability that lies between 54.9% and 57.1%.

This series of results suggests the absence of neutrality. However, as explained above, we

need to account for potential peer effects. Being on a team with high-performing teammates

may increase a player’s productivity, as a more stimulating environment may boost perfor-

mance. Since high-performing players tend to win their battle, the player on the leading team

is likely to be surrounded by more talented teammates than the player on the lagging team.

Therefore, peer effects might be a confounding factor for sequence dependence. We take into

account environment effects and other unobservables, such as the relative quality of the teams’

18We obtain very similar results with probit and logit estimations. The result of logit and probit estimations

are displayed in Appendix.
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managers and the cohesiveness between players, by including the teams’ rankings (each team is

seeded) as additional continuous control variables in specifications (2), (4) and (6). The teams’

rankings reflect the extent to which they are favorites and are determined before the beginning

of the competition by specialists, who base their judgment on all available information. As

such, the rankings encompass most of the environment effects that may be at play, including

the current physical condition of each player. We also add controls regarding the location of

the confrontation, as playing at home can affect the outcome. Accordingly, we add dummies

indicating whether team A is playing at home or away (the reference being the neutral field).

Winning the first battle remains significant at the 0.1% level once teams’ rankings are in-

troduced. The magnitude of the effect decreases slightly but remains substantial (from 8.7 to

11.4 percentage points depending on the specification). This is clear evidence that sequence

dependence is not caused by confounding peer effects.
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We find strong evidence that winning the first battle increases the probability of winning the

second one. This contradicts neutrality.

4 The role of individual contribution to team success

In this section, we explain the absence of neutrality by providing compelling evidence, based on

the predictions of the model developed in section 3.1, that individuals are willing to contribute

to the success of their team. The outcomes of subsequent battles are dependent because players

value being responsible for their team’s success. Outcome dependence is driven by what we refer

to as “individual contribution.” Furthermore, we perform robustness checks, which confirm

the existence of individual contribution in multiple pairwise battles and rule out alternative

explanations developed in the existing literature on other team settings. In particular, we rule

out guilt aversion, which refers to the symmetric effect of individual contribution: in such a

case, players might suffer from being (partly) responsible for the failure of their team.

4.1 Evidence for individual contribution

Players might value being partly responsible for the success of their team. If players individu-

ally value their contribution to the team, they get an additional reward c (c > 0) when their

victory leads their team to success. Table 5 displays players’ payoffs when there is individual

contribution.

Table 5: Payoffs in the individual contribution scenario

Player’s team wins Player’s team loses

Player wins v + V + c v

Player loses V 0

In such a case, the main intuition is that the player on the leading team would have more

incentive to win the second battle than the player on the lagging team because the former is

sure to contribute to his team’s success if he wins while the player on the lagging team will be

“success-responsible” if and only if his teammate also wins the third battle. This asymmetry of

incentives between the two players depends on the expected outcome of battle 3. For example,

if X1 wins battle 1 and X3 has a extremely low probability of winning the third match (i.e., p∗3

falls to 0), both players can contribute to their team’s victory by winning battle 2, and both
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players would make a symmetrical positive effort to get the additional reward. In this extreme

case, winning the first battle should have no effect on the probability of winning the second

one. Conversely, in the extreme case where X1 wins battle 1 and X3 has an extremely high

probability of winning the third match (i.e., p∗3 increases to 1), the asymmetry between the two

players reaches its maximum: X2 is certain to receive the contribution reward if he wins while

Y2 has no chance of getting it.

Main test Formally, we obtain the following predictions, which confirm the role played by

p∗3 in the individual contribution scenario:19

p∗2IC =
θX2(v + (1− p∗3)V + c)

θX2(v + (1− p∗3)V + c) + θY2(v + (1− p∗3)(V + c))
,

where team X won battle 1.

This gives the two following results: first, p∗2IC >
θX2

θX2
+θY2

, so winning battle 1 increases the

probability of winning battle 2. Second,
∂p∗2IC
∂p∗3

> 0 and
∂(1−p∗2IC)

∂(1−p∗3) > 0, so the probability of

winning battle 2 increases with the teammate’s probability of winning battle 3. This allows us

to derive the following empirical test for individual contribution.

Test 2. There is evidence in support of an “individual contribution” effect if

• Winning battle 1 increases the probability of winning battle 2.

• The probability of winning battle 2 increases with the probability of winning battle 3.

The first condition given by test 2 is satisfied, as the results of test 1 show. We can test

for the second condition of test 2 by assessing whether the probability that A2 wins against

B2 increases with the extent to which A3 is the favorite in battle 3. We use the gap between

A3’s and B3’s ranking modalities, labelled RMA3 − RMB3 , as a proxy for the probability of

winning of A3. For example, when A3 ranks in the Top 5 and B3 ranks between 16 and 30,

RMA3 −RMB3 = 2.20

We regress the dummy variable indicating whether A2 wins battle 2 on RMA3 − RMB3 , on

a measure of A2’s and B2’s relative ability and on the control variables used previously (playing

19See Appendix for detailed computations.

20In order to perform the estimation on the same sample as the one used to test for neutrality (table 4), we
create an additional ranking modality for amateur squash players involved in battle 3, whose level is too low to
have a PSA ranking. Hence, if a player A3 ranked 51-75 is opposed to an amateur player B3, RMA3 −RMB3 = 2.
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home/away and teams’ rankings). The tested econometric specification is therefore as follows.

A2 wins battle 2 = β0 + βIC × (RMA3 −RMB3) + f(RankingA2 , RankingB2)

+βhome×HomeA+βaway×AwayA+βtA×Team′srankingA−βtB×Team′srankingB+εAB2.

The results obtained with the three measures of players’ relative ability are reported in columns

(1), (3) and (5) of table 6. As predicted in the individual contribution scenario, the variable

RMA3 − RMB3 is positive and significant at the 1% level in the three specifications, showing

that the probability of winning battle 2 increases with the probability of winning battle 3. When

the difference in ranking modalities between the two players involved in battle 3 increases by 1,

the probability of winning battle 2 increases by about 2 percentage points. Hence, a gap of 5

ranking modalities – which comes very close to the extreme case where p∗3 goes to 1 – increases

the probability of winning battle 2 by 0.1. This effect is about as strong as the estimated

effect of winning battle 1 (see table 4). This finding is perfectly consistent with the individual

contribution effect, according to which winning battle 1 has no effect on battle 2 when the

opposing team is expected to win battle 3.

One potential concern with specifications (1), (3) and (5) is confounding peer effects: being

the favorite in battle 3 might be significant because it might imply that the player is in a

more stimulating environment with more able teammates. If such an effect were at play, being

the favorite in battle 1 should have the same effect, as there is no reason to believe that the

influence of the teammate involved in battle 1 would be different from the influence of the

teammate playing battle 3. In specifications (2), (4) and (6), we include the gap between A1’s

and B1’s ranking modalities (labelled RMA1 −RMB1) as a control to test for peer effects. The

variable RMA1 −RMB1 is not significant in any of the specifications and its inclusion does not

affect the coefficient associated with our variable of interest, RMA3−RMB3 . This confirms that

peer effects are not at play and provides compelling evidence that individual contribution drives

the observed linkage between subsequent battles.
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Additional test One may argue that the individual contribution effect should also be at

play in a trivial battle 3 – where, by definition, the winning team has already been determined.

In a best-of-three team contest, battle 3 is trivial if one team has already won the two previous

confrontations. A player involved in a trivial battle 3 whose team has already won the contest

should also value winning his match, so as to take part, albeit less directly than his teammates,

in the success of his team. Winning allows him to be part of his team’s victory even if he was

randomly assigned to the third battle, which happens to be trivial. Therefore, if individual

contribution is at play, we should observe that his probability of winning the last trivial battle

is ceteris paribus higher than his opponent’s. Formally, we obtain the following prediction:21

p∗3ICtrivial =
θX3(v + c)

θX3(v + c) + θY3v
,

where team X won battle 1 and battle 2. As p∗3ICtrivial >
θX3

θX3
+θY3

, we can derive the following

empirical test for individual contribution.

Test 3. There is evidence in support of an “individual contribution” effect if winning battle 1
and battle 2 increases the probability of winning trivial battle 3.

We implement this additional test by restricting our sample to trivial battles 322 and assessing

whether being in the team that won the first two battles increases the probability of winning

the last. The tested econometric specification is as follows.

A3 wins battle 3 = β0+βIC×A1 won battle 1 and A2 won battle 2+f(RankingA3 , RankingB3)

+βhome×HomeA+βaway×AwayA+βtA×Team′srankingA−βtB×Team′srankingB+εAB3.

The results are reported in table 7 for the three measures of the relative ability of players

involved in trivial battles 3. The coefficient of interest is statistically significant and positive in

the three specifications. This confirms that a player – whatever the stake of the battle he has

been randomly assigned to – is motivated to participate in his team’s success.

21See Appendix for detailed computations.

22This is why the number of observations drops to 378 in table 7.
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Table 7: Individual contribution – Additional test

Dep. var: A3 wins battle 3 (1) (2) (3)

A1 won battle 1 and A2 won battle 2 0.273∗∗∗ (0.055) 0.176∗∗ (0.060) 0.133∗ (0.055)

A3’s ranking: Top 5 0.417∗∗∗ (0.111)

A3’s ranking: 6-15 0.326∗∗∗ (0.077)

A3’s ranking: 16-30 0.318∗∗∗ (0.068)

A3’s ranking: 31-50 0.191∗∗ (0.062)

A3’s ranking: 51-75 0.059 (0.061)

A3’s ranking: 76-105 0.122∗ (0.058)

B3’s ranking: Top 5 -0.417∗∗∗ (0.111)

B3’s ranking: 6-15 -0.326∗∗∗ (0.077)

B3’s ranking: 16-30 -0.318∗∗∗ (0.068)

B3’s ranking: 31-50 -0.191∗∗ (0.062)

B3’s ranking: 51-75 -0.059 (0.061)

B3’s ranking: 76-105 -0.122∗ (0.058)

A3’s ranking vs B3’s ranking X
RankingA3
RankingB3

(< 1) -0.241∗∗ (0.076)

A3 at home 0.064 (0.071) 0.042 (0.072) 0.124∗ (0.058)

B3 at home -0.064 (0.071) -0.042 (0.072) 0.075 (0.079)

A3’s team ranking -0.012∗∗ (0.004) -0.014∗∗ (0.005) -0.012∗ (0.005)

B3’s team ranking 0.012∗∗ (0.004) 0.014∗∗ (0.005) 0.008∗ (0.004)

Constant 0.364∗∗∗ (0.075) 0.412∗∗∗ (0.088) 0.823∗∗∗ (0.068)

Controls for players’ ability
Ranking category YES NO NO
Interaction of rkg categories NO YES NO
Ratio of rankings NO NO YES

Observations 378 378 378
R2 0.59 0.64 0.17

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Thus, our results show that the absence of neutrality is driven by the fact that players

individually value being responsible for their team’s success.

4.2 Robustness checks and alternative explanations

The empirical strategy based on our theoretical predictions shows that the dynamic linkage

between subsequent battles observed in our data is in line with an individual contribution effect.

Players value being responsible for collective success.

We confirm the existence of individual contribution by testing for alternative effects, which
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could also explain the observed dependence of the outcomes of the first two battles.

These effects are summarized in table 8.

Table 8: Individual contribution and alternative explanations

Type Effect Description

Asymmetry in

prize spreads

Individual contribution Individuals value being responsible for collective success

Guilt aversion Individuals dread being responsible for collective failure

Inequity aversion Individuals dread performing differently compared to teammates

Altruism Individuals internalize their teammates’ costs of effort

Alteration of

players’ ability

Choking under pressure Pressure has a detrimental effect on performance

Momentum Recent success increases confidence

Other effects that generate a gap in prize spreads: Guilt aversion, inequity aversion

and altruism

Guilt aversion Players might suffer from being (partly) responsible for the failure of their

team. In this case, a player who loses his battle and consequently contributes to his team’s

overall defeat bears an additional loss (−s, s > 0). This additional loss asymmetrically affects

players’ prize spreads and therefore may explain the absence of neutrality (see table 9).

Table 9: Payoffs in the guilt aversion scenario

Player’s team wins Player’s team loses

Player wins v + V v

Player loses V −s

Under this scenario, we derive from Result 1 the following predictions:23

p∗2GA =
θX2(v + (1− p∗3)(V + s))

θX2(v + (1− p∗3)(V + s)) + θY2(v + (1− p∗3)V + s)
,

where team X is defined as the team that won battle 1. p∗2GA <
θX2

θX2
+θY2

, which yields the

following empirical test.

Test 4. There is evidence in support of guilt aversion if winning battle 1 decreases the probability
of winning battle 2.

23See Appendix for detailed computations.
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Guilt aversion implies that winning battle 1 decreases the probability of winning battle 2.

The main intuition that explains this result is as follows: The player on the leading team would

have a lower incentive to exert significant effort in the second battle than the player on the

trailing team because the former feels guilty when losing only when his team also loses the third

battle. This is not the case for the player from the trailing team, who feels guilty for sure when

losing.

In our setting, winning battle 1 increases the probability of winning battle 2 (see table 4).

Non-neutrality is not driven by guilt aversion.

Inequity aversion A player may dread losing in a team that performs very well, and

winning in a team that underperforms. We refer to this phenomenon as ”inequity aversion.”

This effect clearly depends on whether teammates won their own battles. It also depends

on teammates’ performance: losing when a teammate won while was expected to lose (i.e.,

overperformed) is even costlier for the current player. In that case, inequity aversion should

therefore induce the current player to exert significant effort. Accordingly, the player who

belongs to the leading team has more incentive to win battle 2 than his opponent. Indeed, if he

wins, he will not have to pay the inequity aversion cost, whereas the player in the lagging team

will not have to pay it only if his teammate involved in battle 3 also wins.

Table 10: Payoffs in the inequity aversion scenario

Player’s team wins Player’s team loses

Player wins v + V v −Υ−i

Player loses V − Ω−i 0

Υ−i corresponds to the aggregated underperformance of the two players who lose in case

of collective defeat and Ω−i corresponds to the aggregated overperformance of the two players

who win their individual battles in case of collective victory. A player overperforms if he wins

against an opponent whose ranking lies in a better ranking modality. For example, if a player

ranked in the 6-15 modality wins against a player in the top 5, his overperformance is 1. If a

player in the 16-30 ranking modality wins against a player in the top 5, his overperformance is

2 (gap of two ranking modalities) and so on. If the player wins against a player whose ranking

lies in the same or in a worse category than his, we consider that he does not overperform (his
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overperformance is therefore equal to 0). Symmetrically, if a player loses against a player in the

same modality or in a better modality, he does not underperform (underperformance is equal to

0). If he loses against a player in a worse ranking modality, his underperformance corresponds to

the gap in ranking modalities. Given this symmetry, the overperformance of one team is equal

to the underperformance of the other team (if team X is the winning team, ΩX−i = ΥY−i),

which allows us to simplify the computation. We derive the following prediction from Result

1:24

p∗2IA =
θX2(v + (1− p∗3)V + p∗3ΩX1,X3)

θX2v + (1− p∗3)V + p∗3ΩX1,X3) + θY2(v + (1− p∗3)V − p∗3ΩX1,X3)
,

where team X won battle 1.

This gives the three following results: first, p∗2IA >
θX2

θX2
+θY2

, so winning battle 1 increases

the probability of winning battle 2. Second,
∂p∗2IA
∂p∗3

> 0 and
∂(1−p∗2IA)

∂(1−p∗3) > 0, so the probability

of winning battle 2 increases with the teammate’s probability of winning battle 3. Third,

∂p∗2IA
∂ΩX1,X3

> 0 so the probability of winning battle 2 increases when the teammate implied in

battle 1 overperformed and decreases when the teammate implied in battle 1 underperformed.

Test 5. There is evidence in support of an “inequity aversion” effect if

• Winning battle 1 increases the probability of winning battle 2;

• The probability of winning battle 2 increases with the probability of winning battle 3;

• The probability of winning battle 2 increases when the teammate implied in battle 1 over-
performed and decreases when the teammate involved in battle 1 underperformed.

The two first conditions are met in the data (see Table 4 and Table 6). We test the third con-

dition. We add in the non-neutrality specification, the variables associated to overperformance

and underperformance.

A2 wins battle 2 = β0 + βNon−neutrality ×A1 won battle 1

+ βΩ ×A1 won battle 1× 1(RMA1
<RMB1

) × (RMB1 −RMA1)

+ βΥ × (1−A1 won battle 1)× 1(RMA1
>RMB1

) × (RMA1 −RMB1)

+ f(RankingA2 , RankingB2) + βhome ×HomeA + βaway ×AwayA

+ βtA × Team′srankingA − βtB × Team′srankingB + εAB2

24See Appendix for detailed computation.
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The inequity aversion scenario implies that the player involved in battle 2 will have stronger

incentives to win if his teammate overperformed in battle 1 (i.e., won against an opponent with

a better ranking) and he will have lower incentives to win if his teammate underperformed in

battle 1 (i.e., lost against an opponent with a worse ranking). Therefore, inequity aversion

implies that βΩ should be significant and positive and βΥ should be significant and negative.

Results with the three measures of players’ relative ability are reported in table 11. βΩ and

βΥ are not significant with any of the three measures. This result rules out inequity aversion

and confirms the individual contribution effect. Indeed, according to the individual contribution

effect, players only value bringing one point back for their team. Therefore, βΩ and βΥ should

not be significant.
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Table 11: Evidence against inequity aversion

Dep. var: A2 wins battle 2 (1) (2) (3)

A1 won battle 1 0.097∗∗ (0.034) 0.069∗ (0.034) 0.056 (0.033)

A1’s Ω -0.011 (0.021) 0.000 (0.021) 0.009 (0.021)

A1’s Υ 0.011 (0.021) -0.000 (0.021) -0.002 (0.019)

A2’s ranking: Top 5 0.658∗∗∗ (0.071)

A2’s ranking: 6-15 0.530∗∗∗ (0.057)

A2’s ranking:: 16-30 0.427∗∗∗ (0.051)

A2’s ranking: 31-50 0.269∗∗∗ (0.047)

A2’s ranking: 51-75 0.171∗∗∗ (0.050)

A2’s ranking: 76-105 0.076 (0.050)

B2’s ranking: Top 5 -0.658∗∗∗ (0.071)

B2’s ranking: 6-15 -0.530∗∗∗ (0.057)

B2’s ranking: 16-30 -0.427∗∗∗ (0.051)

B2’s ranking: 31-50 -0.269∗∗∗ (0.047)

B2’s ranking: 51-75 -0.171∗∗∗ (0.050)

B2’s ranking: 76-105 -0.076 (0.050)

A2’s ranking vs B2’s ranking X
RankingA2
RankingB2

(< 1) -0.527∗∗∗ (0.055)

A2 at home 0.018 (0.052) 0.019 (0.052) 0.080 (0.048)

B2 at home -0.018 (0.052) -0.019 (0.052) 0.033 (0.050)

A2’s team ranking -0.007∗ (0.004) -0.008∗ (0.004) -0.002 (0.004)

B2’s team ranking 0.007∗ (0.004) 0.008∗ (0.004) 0.004 (0.003)

Constant 0.451∗∗∗ (0.060) 0.466∗∗∗ (0.071) 0.949∗∗∗ (0.044)

Controls for players’ ability
Ranking category YES NO NO
Interaction of rkg categories NO YES NO
Ratio of rankings NO NO YES

Observations 874 874 874
R2 0.42 0.46 0.17

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Altruism Our results up to this point have been based on the assumption that players

do not take into account their teammates’ costs of effort. However, the observed link between

the first two battles of the contest could be driven by the fact that individuals internalize their

teammates’ effort costs. This effect could be referred to as “altruism,” signifying that each

player on a team maximizes his utility function, taking into account not only his own effort

cost but also his teammates’. For instance, the player on the leading team involved in battle 2
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could make an additional effort in order to win, thereby preventing his teammate from playing

a decisive battle 3 and incurring the corresponding effort cost.

The idea that individuals internalize their teammates’ costs calls for the following two re-

marks. First, we refer to this phenomenon as “altruism,” but one may argue that a player

might internalize the effort cost of teammates involved in battle 3 in order to prevent them

from playing a high-stake match because it is in his interest to preserve their stamina for the

next rounds. This interpretation would not affect the empirical test presented below. Second,

players could internalize not only their partners’ effort costs, but also the various benefits they

derive from playing a match. If the benefits from playing are greater than the afferent costs, an

altruistic player would behave in a way that enables his teammate to play. This would imply

that winning battle 1 has a negative impact on the probability of winning battle 2, which is not

supported by our data (see table 4).

We develop a test to address the fact that individuals may internalize their teammates’ costs.

This test allows us to distinguish between individual contribution and altruism. Intuitively, our

identification strategy is based on the fact that, in a best-of-three contest, altruistic players

involved in the first battle cannot prevent their teammates from playing a high-stake second

match, and can only internalize the cost of effort of the players involved in the third (potentially

trivial) battle. Accordingly, we focus on battle 1 and limit our sample to contests where the

favorites in battles 2 and 325 do not belong to the same team. Hence, there are only two possible

scenarios regarding future battles: either i) A2 is the favorite and A3 is the underdog or ii) A2 is

the underdog and A3 is the favorite. According to the individual contribution effect, these two

scenarios are equivalent, as player A1 is equally likely to get the contribution reward in either

setting. On the contrary, if players were altruistic, the scenario A2 favorite, A3 underdog would

be much more motivating for player A1. Indeed, when A2 is favorite, A1 knows that winning

battle 1 implies that his teammate A3 will probably not have to play a decisive battle 3 and

thereby make a significant effort. On the other hand, when A2 is underdog, A1 knows that

winning battle 1 implies that his teammate A3 is very likely to play a decisive battle 3 and to

exert a significant effort. Thus, altruism implies that A1 has more incentive to win when A2 is

the favorite and A3 is the underdog than in the symmetric situation.26

Test 6. There is evidence in support of

25A player is defined as the favorite when he has a better ranking than his opponent.

26See Appendix for more formal details on this test.
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• Altruism if the probability that A1 wins battle 1 is larger ceteris paribus in the scenario
“A2 favorite, A3 underdog” than in the scenario “A2 underdog, A3 favorite.”

• Individual contribution if the probability that A1 wins battle 1 is the same in both scenarii.

Accordingly, we regress A1’s victory on a dummy variable indicating the situation regarding

battles 2 and 3 (which equals 1 when A2 is favorite and A3 is underdog, and 0 when A2 is the

underdog and A3 is the favorite), on a measure of A1’s and B1’s relative ability as well as the

usual control variables (playing home/away and teams’ rankings).

A1 wins battle 1 = β0 + βaltruism ×A2 favorite, A3 underdog + f(RankingA1 , RankingB1)

+βhome×HomeA+βaway×AwayA+βtA×Team′srankingA−βtB×Team′srankingB+εAB1.

Individual contribution predicts that the variable A2 favorite, A3 underdog has no significant

effect on the probability that A1 wins battle 1. On the contrary, if players were altruistic,

our model would predict that the variable A2 favorite, A3 underdog should have a statistically

significant positive effect on the probability that A1 wins battle 1. Results are reported in

table 12. The coefficient associated with the variable of interest is negative and not statistically

significant using any of the three measures of players’ ability. This confirms the individual

contribution effect and rules out altruism: players do not internalize their teammates’ effort

costs in our setting.
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Table 12: Evidence against altruism

Dep. var: A1 wins battle 1 (1) (2) (3)

A2 favorite, A3 underdog -0.086 (0.065) -0.086 (0.071) -0.106 (0.061)

A1’s ranking: Top 5 0.837∗∗∗ (0.188)

A1’s ranking: 6-15 0.695∗∗∗ (0.153)

A1’s ranking: 16-30 0.462∗∗∗ (0.134)

A1’s ranking: 31-50 0.361∗ (0.141)

A1’s ranking: 51-75 0.301∗ (0.124)

A1’s ranking: 76-105 0.167 (0.128)

B1’s ranking: Top 5 -0.837∗∗∗ (0.188)

B1’s ranking: 6-15 -0.695∗∗∗ (0.153)

B1’s ranking: 16-30 -0.462∗∗∗ (0.134)

B1’s ranking: 31-50 -0.361∗ (0.141)

B1’s ranking: 51-75 -0.301∗ (0.124)

B1’s ranking: 76-105 -0.167 (0.128)

A1’s ranking vs B1’s ranking X
RankingA1
RankingB1

(< 1) -0.522∗∗∗ (0.129)

A1 at home 0.080 (0.130) 0.082 (0.144) 0.137 (0.125)

B1 at home -0.080 (0.130) -0.082 (0.144) 0.002 (0.121)

A1’s team ranking -0.007 (0.010) -0.005 (0.011) -0.001 (0.010)

B1’s team ranking 0.007 (0.010) 0.005 (0.011) 0.002 (0.009)

Constant 0.543∗∗∗ (0.159) 0.543∗∗ (0.189) 1.027∗∗∗ (0.102)

Controls for players’ ability
Ranking category YES NO NO
Interaction of rkg categories NO YES NO
Ratio of rankings NO NO YES

Observations 208 208 208
R2 0.25 0.28 0.11

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Effects that alter players’ ability: Choking under pressure and psychological mo-

mentum

Choking under pressure Dynamic competitive settings may exert psychological pressure

on competitors, thereby affecting their performance. In period 2, the player who belongs to the

lagging team might – all other things being equal – face more pressure than the player in the

leading team, as the former needs to win to ensure that his team remains in the contest. Such

a phenomenon might explain why we observe a positive effect of a win in the first game on the
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probability of winning the next.

We incorporate choking under pressure into our theoretical setting by multiplying by η

(0 < η < 1) the ability of players who must win their individual battle to ensure that their

team remains in the contest. In T=2, the player in the leading team (X2) does not face pressure

because losing his battle does not imply that his team loses. On the contrary, the player in the

lagging team (Y2) might choke under pressure because losing his battle induces that his team

loses. Hence, the choking-under-pressure effect yields the following prediction in battle 2:27

p∗2CUP =
θX2

θX2 + θY2η
>

θX2

θX2 + θY2

where team X is defined as the team that won battle 1.

In a trivial battle 3 (i.e. one team has already won two battles), none of the players face

pressure because the outcome of their individual battle does not affect the collective outcome.

Therefore, we obtain the following prediction:28

p∗3CUPtrivial = p∗3 =
θX3

θX3 + θY3
.

where team X is defined as the team that won battles 1 and 2.

As p∗2CUP >
θX2

θX2
+θY2

and p∗3CUPtrivial =
θX3

θX3
+θY3

, the following empirical test can be derived

from our theoretical setting.

Test 7. There is evidence in support of a “choking-under-pressure” effect if:

1. Winning battle 1 increases the probability of winning battle 2.

2. Winning battle 1 and battle 2 does not affect the probability of winning a trivial battle 3.

The first condition is met (see table 4) while the second condition is not. Indeed, our

additional test on the individual contribution effect shows that winning battles 1 and 2 has a

statistically significant effect on the probability of winning a trivial battle 3. Depending on the

measure of relative ability that is used, the effect ranges from 13 to 27 percentage points (see

table 7). This allows us to reject choking under pressure and to put forward the individual

contribution effect.

27See Appendix for detailed computations.

28See Appendix for detailed computations.
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Psychological momentum Psychological momentum implies that winning a battle in-

creases a player’s confidence and makes him more likely to win the next one (“success breeds

success”).

We incorporate psychological momentum into our theoretical setting by multiplying by ψ

(ψ > 1) the ability of the player whose team won the last battle. This changes the probability

that player X2 and player X3 win. In this case,29

p∗3PM =
θX3

θX3 + θY3ψ
,

where team X is defined as the team that won battle 1 and lost battle 2.

p∗2PM =
θX2ψ

θX2ψ + θY2
,

where team X is defined as the team that won battle 1.

As p∗2PM >
θX2

θX2
+θY2

and p∗3PM <
θX3

θX3
+θY3

, the following empirical test can be derived from

our theoretical setting.

Test 8. There is evidence in support of psychological momentum if:

1. Winning battle 1 increases the probability of winning battle 2.

2. In a non-trivial battle 3, the player in the team that won battle 2 is more likely to win than
the player in the team that won battle 1.30

To test for the second condition, we focus on the subsample of non-trivial battle 3s (i.e., the

matches in which the winning team had not been determined after the first two battles). For

these matches, there are only two possible scenarios regarding the outcome of the two previous

battles: either A1 won battle 1 and A2 lost battle 2, or A1 lost battle 1 and A2 won battle

2. We create a dummy variable that is equal to 0 in the first scenario and to 1 in the second

scenario. Psychological momentum would imply that this variable has a positive and statistically

significant effect on A3 wins battle 3. On the contrary, individual contribution predicts that this

variable should not have any effect, as both players face symmetric incentives in a decisive battle

29See Appendix for detailed computations.

30This identification strategy is also used by Malueg & Yates (2010) and Mago et al. (2013).
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3. The model is therefore given by:

A3 wins battle 3 = β0+βPM×A1 lost battle 1 and A2 won battle 2+f(RankingA3 , RankingB3)

+βhome×HomeA+βaway×AwayA+βtA×Team′srankingA−βtB×Team′srankingB +εAB3

Table 13 reports the results obtained with the three measures of players’ ability. The effect

of the sequence variable A1 lost battle 1 and A2 won battle 2 is not statistically significant in

any of the three specifications. This is evidence in favor of individual contribution and against

psychological momentum.
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Table 13: Evidence against psychological momentum

Dep. var: A3 wins battle 3 (1) (2) (3)

A1 lost battle 1 and A2 won battle 2 -0.026 (0.067) -0.027 (0.072) -0.002 (0.063)

A3’s ranking: Top 5 0.765∗∗ (0.261)

A3’s ranking: 6-15 0.548∗∗∗ (0.153)

A3’s ranking: 16-30 0.376∗∗ (0.141)

A3’s ranking: 31-50 0.261∗ (0.127)

A3’s ranking: 51-75 0.185 (0.114)

A3’s ranking: 76-105 0.006 (0.116)

B3’s ranking: Top 5 -0.765∗∗ (0.261)

B3’s ranking: 6-15 -0.548∗∗∗ (0.153)

B3’s ranking: 16-30 -0.376∗∗ (0.141)

B3’s ranking: 31-50 -0.261∗ (0.127)

B3’s ranking: 51-75 -0.185 (0.114)

B3’s ranking: 76-105 -0.006 (0.116)

A3’s ranking vs B3’s ranking X
RankingA3
RankingB3

(< 1) -0.364∗∗ (0.134)

A3 at home -0.018 (0.127) -0.039 (0.143) -0.126 (0.114)

B3 at home 0.018 (0.127) 0.039 (0.143) -0.071 (0.123)

A3’s team ranking -0.020 (0.011) -0.019 (0.012) -0.021∗ (0.011)

B3’s team ranking 0.020 (0.011) 0.019 (0.012) 0.015 (0.010)

Constant 0.513∗∗∗ (0.142) 0.514∗∗ (0.161) 0.971∗∗∗ (0.106)

Controls for players’ ability
Ranking category YES NO NO
Interaction of rkg categories NO YES NO
Ratio of rankings NO NO YES

Observations 191 191 191
R2 0.26 0.29 0.10

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

5 Conclusion

Using team squash championships as a randomized natural experiment, we provide compelling

empirical evidence against neutrality in multiple pairwise battles: in a best-of-three team contest,

winning the first battle increases, ceteris paribus, the probability of winning the second battle.

We show that this team dynamic is not driven by effects that would alter players’ ability such

as choking under pressure or psychological momentum. We further show that guilt aversion,

inequity aversion and altruism, three effects that affect players’ prize spread, also fail to explain
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the absence of neutrality.

The observed dynamic linkage is driven by another incentive effect, which we refer to as

individual contribution: people derive utility from contributing to their team’s success. To the

best of our knowledge, this is the first paper providing empirical field evidence that individuals

value contributing to their team’s success. These findings cast new light on the way individuals

behave in teams and open several potential avenues for future research.

While this effect should exist in other settings and in other kinds of contests outside the ones

studied here, the subject merits further scrutiny. One important pending question is whether

individual contribution depends on the observability of each teammate’s performance. This

has crucial implications with regard to management practices and contest design. If individual

contribution only comes into play when performance is observable – as it is in the setting under

scrutiny – organizations should design contests and team-based contracts in such a way that

each teammate’s performance is made public and the link between individual outcomes and team

success is easily appreciable. For instance, the temporal structure of contests could play a major

role in enabling organizations to reap the benefits of individual contribution, and sequential

rounds could be much more efficient than simultaneous contests in inducing individuals to make

a significant effort.

In any case, this effect is of prime importance to understanding team-based contests and

contracts. Economic models of teams predict that individuals have an incentive to free ride, as

they do not internalize the benefits accrued by other members of the team when making effort

decisions.31 Hence, the optimal level of effort exerted in individual contests should be higher

than the effort observed in team-based incentive contests when the individual reward is based

on team production. However, this theoretical result seems to contradict both experimental and

behavioral literature on teams.32 Individual contribution is a mechanism that mitigates free-

riding behaviors. Each teammate values being responsible for collective success and therefore

makes a significant effort, which could be higher than the effort that he would make in an

individual contest. Individual contribution appears to be one of the reasons why so many firms

use collective incentive and profit-sharing plans.

31See Lazear & Rosen (1981) for a seminal analysis of the relation between compensation and incentives in
the presence of costly monitoring of worker’s effort and output; and Prendergast (1999) for a survey of team
production.

32See, for instance, Kandel & Lazear (1992). Chen & Lim (2013) show, using an experiment, that guilt is at
play in teams and can explain why team-based incentives are more efficient that individual-based contracts.

41



References

Alchian, A. A. & Demsetz, H. (1972), ‘Production, Information Costs, and Economic Organiza-

tion’, American Economic Review 62(5), 777–795.

Apesteguia, J. & Palacios-Huerta, I. (2010), ‘Psychological Pressure in Competitive Environ-

ments: Evidence from a Randomized Natural Experiment’, American Economic Review

100(5), 2548–2564.

Ariely, D., Gneezy, U., Loewenstein, G. & Mazar, N. (2009), ‘Large Stakes and Big Mistakes’,

Review of Economic Studies 76(2), 451–469.

Baumeister, R. F., Stillwell, A. M. & Heatherton, T. F. (1994), ‘Guilt: an interpersonal ap-

proach.’, Psychological bulletin 115(2), 243.

Beilock, S. (2010), Choke: What the secrets of the brain reveal about getting it right when you

have to, Simon and Schuster.

Berger, J. & Pope, D. (2011), ‘Can Losing Lead to Winning?’, Management Science 57(5), 817–

827.

Brown, J. (2011), ‘Quitters never win: The (adverse) incentive effects of competing with super-

stars’, Journal of Political Economy 119(5), 982–1013.

Buchanan, J. M., Tollison, R. D. & Tullock, G. (1980), Toward a Theory of the Rent-seeking

Society, number 4, Texas A & M Univ Pr.

Charness, G. & Dufwenberg, M. (2006), ‘Promises and Partnership’, Econometrica 74(6), 1579–

1601.

Chen, H. & Lim, N. (2013), ‘Should Managers Use Team-based Contests?’, Management Science

59(12), 2823–2836.

Dechenaux, E., Kovenock, D. & Sheremeta, R. M. (2015), ‘A Survey of Experimental Research

on Contests, All-pay Auctions and Tournaments’, Experimental Economics 18(4), 609–669.

Dong, L. & Huang, L. (2018), ‘Is there no ‘I’ in team? Strategic effects in multi-battle team

competition’, Journal of Economic Psychology .

42



Festinger, L. (1954), ‘A theory of social comparison processes’, Human relations 7(2), 117–140.

Fu, Q., Ke, C. & Tan, F. (2015), ‘“Success Breeds Success” or “Pride Goes Before a Fall”: Teams

and Individuals in Multi-Contest Tournaments’, Games and Economic Behavior 94, 57–79.

Fu, Q., Lu, J. & Pan, Y. (2015), ‘Team Contests with Multiple Pairwise Battles’, American

Economic Review 105(7), 2120–40.

Gauriot, R. & Page, L. (2014), ‘Does success breed success? a quasi-experiment on strategic

momentum in dynamic contests’, QUT Business School Discussion paper (028).

Guryan, J., Kroft, K. & Notowidigdo, M. J. (2009), ‘Peer Effects in the Workplace: Evidence

from Random Groupings in Professional Golf Tournaments’, American Economic Journal:

Applied Economics 1(4), 34–68.

Harris, C. & Vickers, J. (1987), ‘Racing with Uncertainty’, Review of Economic Studies 54(1), 1–

21.

Huang, L. & Murad, Z. (2017), ‘Fighting Alone or Fighting for a Team: Evidence from Experi-

mental Pairwise Contests’, Better for Less, Discussion Paper Series (06/2016).

Kandel, E. & Lazear, E. P. (1992), ‘Peer Pressure and Partnerships’, Journal of Political Econ-

omy 100(4), 801–817.

Klumpp, T. & Polborn, M. K. (2006), ‘Primaries and the New Hampshire Effect’, Journal of

Public Economics 90(6), 1073–1114.

Knoeber, C. R. & Thurman, W. N. (1994), ‘Testing the Theory of Tournaments: An Empirical

Analysis of Broiler Production’, Journal of Labor Economics 12(2), 155–179.

Kocher, M. G., Lenz, M. V. & Sutter, M. (2012), ‘Psychological Pressure in Competitive En-

vironments: New Evidence from Randomized Natural Experiments’, Management Science

58(8), 1585–1591.

Konrad, K. A. & Kovenock, D. (2009), ‘Multi-battle Contests’, Games and Economic Behavior

66(1), 256–274.

Lazear, E. P. & Rosen, S. (1981), ‘Rank-order Tournaments as Optimum Labor Contracts’,

Journal of Political Economy 89(5), 841–864.

43



Mago, S. D., Sheremeta, R. M. & Yates, A. (2013), ‘Best-of-three contest experiments: Strate-

gic versus psychological momentum’, International Journal of Industrial Organization

31(3), 287–296.

Malueg, D. A. & Yates, A. J. (2010), ‘Testing Contest Theory: Evidence from best-of-three

Tennis Matches’, Review of Economics and Statistics 92(3), 689–692.

Mas, A. & Moretti, E. (2009), ‘Peers at Work’, American Economic Review 99(1), 112–145.

Prendergast, C. (1999), ‘The Provision of Incentives in Firms’, Journal of Economic Literature

37(1), 7–63.

Rosenqvist, O. & Skans, O. N. (2015), ‘Confidence Enhanced Performance? – The Causal Effects

of Success on Future Performance in Professional Golf Tournaments’, Journal of Economic

Behavior & Organization 117, 281–295.

Sheremeta, R. M. (2017), ‘Behavior in Group Contests: A Review of Experimental Research’,

Journal of Economic Surveys .

44



Appendix A – Proofs

Result 1

Let UJi |WinKi (respectively UJi |LossKi) be the utility of player Ji, Ji ∈ {Xi, Yi}, when Ki wins

(respectively loses) battle i, Ki ∈ {Xi, Yi}.

Both players choose their level of effort to maximize their expected utility:

max
xi

(
xi

xi + yi
(UXi |WinXi) +

yi
xi + yi

(UXi |LossXi)−
xi
θXi

)
,

max
yi

(
yi

xi + yi
(UYi |LossXi) +

xi
xi + yi

(UYi |WinXi)−
yi
θYi

)
.

Assuming that Us are independent of xi and yi, the first order conditions yield the following

optimal levels of effort and equilibrium probability of winning p∗i :

x∗i =
(θXi∆UXi

)2θY i∆UY i

(θXi∆UXi
+ θY i∆UY i

)2
,

y∗i =
θXi∆UXi

(θY i∆UY i
)2

(θXi∆UXi
+ θY i∆UY i

)2
.

Finally,

p∗i =
θXi∆UXi

θXi∆UXi
+ θY i∆UY i

.

where ∆UXi
= (UXi |WinXi)−(UXi |LossXi) – respectively, ∆UY i

= (UYi |LossXi)−(UYi |WinXi),

denotes player Xi’s – respectively, player Yi’s prize spread.

Neutrality

T=3 (decisive battle) Both teams won one individual battle. Players X3 and Y3 are now

facing off in a decisive game. If X3 wins, which occurs with a probability x3
x3+y3

, he gets both the

individual battle reward v and the collective reward V . If he loses, he gets a payoff 0. Whatever

the result, he has to pay the cost of effort x3
θX3

. X3’s maximization problem is therefore given by

max
x3

(
x3

x3 + y3
(v + V )− x3

θX3

)
.
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Symmetrically, for player Y3:

max
y3

(
y3

x3 + y3
(v + V )− y3

θY 3

)
.

First-order conditions give the optimal levels of effort and p∗3:

x∗3 = (v + V )
θ2
X3
θY3

(θX3 + θY3)2
,

y∗3 = (v + V )
θX3θ

2
Y3

(θX3 + θY3)2
,

p∗3 =
θX3

θX3 + θY3
.

This yields the following prediction:

Prediction The outcome of a decisive battle 3 depends solely on the relative ability of the

players involved in battle 3.

T=2 Team X won the first battle (X1 won against Y1).

X2 chooses his level of effort x2 to maximize his utility. If he wins, which occurs with a

probability x2
x2+y2

, he gets both the battle reward and the collective reward (v + V ). If he loses,

which occurs with a probability y2
x2+y2

, he can still get the collective reward V if his teammate

X3 wins the third battle (which occurs with a probability p∗3). Finally, whatever the outcome

of the battle, he has to pay the cost of his effort x2
θX2

. X2’s maximization problem is therefore

given by:

max
x2

(
x2

x2 + y2
(v + V ) +

y2

x2 + y2
p∗3V −

x2

θX2

)
.

Y2 chooses his level of effort y2 to maximize his utility. If he wins, which occurs with a

probability y2
x2+y2

, he will get a payoff v + (1− p∗3)V . If he loses, the match ends and he gets a

payoff 0. He has to pay the cost of effort y2
θY2

, whatever the outcome of the battle. Note that in

the neutrality model, the two players have the same prize spread (difference of utility between

winning and losing): v + (1− p∗3)V . Y2’s maximization problem is

max
y2

(
y2

x2 + y2
(v + (1− p∗3)V )− y2

θY2

)
.
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First-order conditions yield the optimal levels of effort and p∗2:

x∗2 = (v + (1− p∗3)V )
θ2
X2
θY2

(θX2 + θY2)2
;

y∗2 = (v + (1− p∗3)V )
θX2θ

2
Y2

(θX2 + θY2)2
;

p∗2 =
θX2

θX2 + θY2
.

This yields the two following predictions.

Prediction 1 Winning battle 1 does not affect the probability of winning battle 2.

Prediction 2 The outcome of battle 2 only depends on the two players involved in battle 2.

Individual contribution

When a player wins and his team wins, he gets an additional payoff of individual contribution

c.

Player’s team wins Player’s team loses

Player wins v + V + c v

Player loses V 0

T=3 (trivial battle) Team X won battle 1 and battle 2, so battle 3 is trivial. If X3 wins,

which occurs with a probability x3
x3+y3

, he gets a payoff v + V + c corresponding to the battle

reward, the collective reward and the individual contribution effect. If he loses, he gets a payoff

V (his team wins but he does not get the battle reward nor the individual contribution reward).

Whatever the result, he has to pay the cost of effort x3
θX3

.

max
x3

(
x3

x3 + y3
(v + V + c) +

y3

x3 + y3
V − x3

θX3

)
.

For player Y3, the only stake is the battle reward v. As his team already lost, he is sure he

will not get the collective reward, nor the individual contribution reward:

max
y3

(
y3

x3 + y3
v − y3

θY 3

)
.
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The first-order conditions give the optimal levels of effort and p∗3ICtrivial:

x∗3ICtrivial =
(θX3(v + c))2θY3v

(θX3(v + c) + θY3v)2
,

y∗3ICtrivial =
θX3(v + c)(θY3v)2

(θX3(v + c) + θY3v)2
,

p∗3ICtrivial =
θX3(v + c)

θX3(v + c) + θY3v
.

This yields the following prediction.

Prediction Winning battle 1 and battle 2 increases the probability of winning a trivial battle

3.

T=3 (decisive battle) Both teams won one individual battle. Players X3 and Y3 are now

facing off in a decisive game. If X3 wins, which occurs with a probability x3
x3+y3

, his team wins

and he gets a payoff v + V + c. If he loses, he gets a payoff 0. Whatever the result, he has to

pay the cost of effort x3
θX3

.

max
x3

(
x3

x3 + y3
(v + V + c)− x3

θX3

)
.

Symmetrically for player Y3:

max
y3

(
y3

x3 + y3
(v + V + c)− y3

θY 3

)
.

The first-order conditions give the optimal levels of effort and p∗3ICdecisive:

x∗3ICdecisive = (v + V + c)
θY3θ

2
X3

(θX3 + θY3)2
;

y∗3ICdecisive = (v + V + c)
θX3θ

2
Y3

(θX3 + θY3)2
;

p∗3ICdecisive = p∗3 =
θX3

θX3 + θY3
.

This yields the following prediction.

Prediction The outcome of a decisive battle 3 depends solely on the relative ability of the

players involved in this battle.
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T=2 Team X won the first battle (X1 won against Y1). Contrary to T=3 (decisive battle),

the two players do not face the same optimization problem. X2 chooses his level of effort x2

to maximize his utility. If he wins, he gets a payoff of v + V + c. If he loses, he gets a payoff

of p∗3V (he will get neither the private reward nor the “contribution reward” but he will get

the collective reward if his teammate wins in T=3, which will occur with a probability p∗3).

Therefore, X2’s maximization problem is given by

max
x2

(
x2

x2 + y2
(v + V + c) +

y2

x2 + y2
p∗3V −

x2

θX2

)
.

Y2 chooses his level of effort y2 to maximize his utility. If he wins he gets a payoff of

v + (1− p∗3)(V + c) because he will get the battle reward for sure and the collective reward and

the individual contribution reward if his teammate wins, which will occur with a probability

(1− p∗3). If he loses he does not get any reward and ends up with a payoff 0:

max
y2

(
y2

x2 + y2
(v + (1− p∗3)(V + c))− y2

θY2

)
.

Thus, X2 has more incentive to win than Y2 because X2 is sure to get the “contribution

reward” if he wins his battle while Y2 will get the “responsibility reward” if and only if his

teammate also wins in T=3.

The first-order conditions yield the optimal levels of effort and p∗2IC :

x∗2IC =
θ2
X2

(v + (1− p∗3)V + c)2θY2(v + (1− p∗3)(V + c))

[θX2(v + (1− p∗3)V + c) + θY2(v + (1− p∗3)(V + c))]2
,

y∗2IC =
θX2(v + (1− p∗3)V + c)θ2

Y2
(v + (1− p∗3)(V + c))2

[θX2(v + (1− p∗3)V + c) + θY2(v + (1− p∗3)(V + c))]2
,

p∗2IC =
θX2(v + (1− p∗3)V + c)

θX2(v + (1− p∗3)V + c) + θY2(v + (1− p∗3)(V + c))
.

As p∗2IC >
θX2

θX2
+θY2

and ∂p2IC
∂p∗3

> 0, this yields the two following predictions.

Prediction 1 Winning battle 1 increases the probability of winning battle 2.

Prediction 2 The probability of winning battle 2 increases with the probability of winning

battle 3.
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Guilt aversion

When a player loses and his team loses, he gets a negative payoff payoff −s.

Player’s team wins Player’s team loses

Player wins v + V v

Player loses V −s

T=3 (decisive battle) Both teams won one individual battle. Players X3 and Y3 are now

facing off in a decisive game. If X3 wins, which occurs with a probability x3
x3+y3

, his team wins

and he gets a payoff v + V . If he loses, he gets a payoff −s because he is “guilt-averse:” being

partly responsible for the failure of his team is costly for him. Whatever the result, he has to

pay the cost of effort x3
θX3

and faces the following maximization problem:

max
x3

(
x3

x3 + y3
(v + V ) +

y3

x3 + y3
(−s)− x3

θX3

)
.

Symmetrically for player Y3:

max
y3

(
y3

x3 + y3
(v + V ) +

x3

x3 + y3
(−s)− y3

θY 3

)
.

The optimal levels of effort and p∗3GA are given by:

x∗3GA = (v + V + s)
θ2
X3
θY3

(θX3 + θY3)2
,

y∗3GA = (v + V + s)
θX3θ

2
Y3

(θX3 + θY3)2
,

p∗3GA = p∗3 =
θX3

θX3 + θY3
.

This yields the following prediction.

Prediction The outcome of a decisive battle 3 depends solely on the relative ability of the

players involved in this battle.

50



T=2 Team X won the first battle (X1 won against Y1). X2 chooses his level of effort x2 to

maximize his utility. If he wins, which occurs with a probability x2
x2+y2

, he gets a payoff v + V .

If he loses, which occurs with a probability y2
x2+y2

, he gets a payoff V with a probability p∗3 and

−s with a probability 1 − p∗3. Finally, whatever the outcome of the battle, he has to pay the

cost of his effort x2
θX2

. His maximization problem is:

max
x2

(
x2

x2 + y2
(v + V ) +

y2

x2 + y2
(p∗3V + (1− p∗3)(−s))− x2

θX2

)
.

Y2 chooses his level of effort y2 to maximize his utility. If he wins, which occurs with a

probability y2
x2+y2

, he will get a payoff v + (1− p∗3)V . If Y2 loses, the match ends and he gets a

payoff −s. He has to pay the cost of effort y2
θY2

, whatever the outcome of the battle.

max
y2

(
y2

x2 + y2
(v + (1− p∗3)V ) +

x2

x2 + y2
(−s)− y2

θY2

)
.

Thus, Y2 has more incentive to win than X2 because Y2 is sure to be partly “defeat-

responsible” if he loses his battle while X2 will be “defeat-responsible” if and only if his teammate

also loses in T=3.

Deriving the first-order conditions yield the optimal levels of effort and p∗2GA:

x∗2GA =
θ2
X2

(v + (1− p∗3)(V + s))2θY2(v + (1− p∗3)V + s)

[θX2(v + (1− p∗3)(V + s)) + θY2(v + (1− p∗3)V + s)]2
,

y∗2GA =
θX2(v + (1− p∗3)(V + s))θ2

Y2
(v + (1− p∗3)V + s)2

[θX2(v + (1− p∗3)(V + s)) + θY2(v + (1− p∗3)V + s)]2
,

p∗2GA =
θX2(v + (1− p∗3)(V + s))

θX2(v + (1− p∗3)(V + s)) + θY2(v + (1− p∗3)V + s)
.

As p∗2GA <
θX2

θX2
+θY2

and ∂p2GA
∂p∗3

< 0, this yields the two following predictions, this yields the

two following predictions.

Prediction 1 Winning battle 1 decreases the probability of winning battle 2.

Prediction 2 The probability of winning battle 2 decreases with the probability of winning

battle 3.
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Inequity aversion

According to the inequity aversion scenario, a player dreads losing when his teammates over-

perform and vice versa. Hence, a negative component enters in the player’s utility if he wins

and his two teammates lose; or if he loses and his two teammates win. The magnitude of this

effect increases with the extent of the underperformance or overperformance of his teammates

(denoted Υ−i and Ω−i below).

Table 14: Payoffs in the inequity aversion scenario

Player’s team wins Player’s team loses

Player wins v + V v −Υ−i

Player loses V − Ω−i 0

T=3 (decisive battle) Both teams won one individual battle. Players X3 and Y3 are now

facing off in a decisive game. If X3 wins, which occurs with a probability x3
x3+y3

, his team wins

and he gets a payoff v + V . If he loses, he gets a payoff 0. Whatever the result, he has to pay

the cost of effort x3
θX3

and faces the following maximization problem:

max
x3

(
x3

x3 + y3
(v + V )− x3

θX3

)
.

Symmetrically for player Y3:

max
y3

(
y3

x3 + y3
(v + V )− y3

θY 3

)
.

The optimal levels of effort and p∗3IA are given by:

x∗3IA = (v + V )
θ2
X3
θY3

(θX3 + θY3)2
,

y∗3IA = (v + V )
θX3θ

2
Y3

(θX3 + θY3)2
,

p∗3IA = p∗3 =
θX3

θX3 + θY3
.

This yields the following prediction.
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Prediction The outcome of a decisive battle 3 depends solely on the relative ability of the

players involved in this battle.

T=2 Team X won the first battle (X1 won against Y1). X2 chooses his level of effort x2 to

maximize his utility. If he wins, which occurs with a probability x2
x2+y2

, he gets v + V . If he

loses, which occurs with a probability y2
x2+y2

, he gets (V −ΩX1,X3) if his teammate wins in T=3

(probability p∗3) and 0 if his teammate loses in T=3 (probability 1− p∗3). Whatever the outcome

of the battle, he has to pay the cost of his effort x2
θX2

. His maximization problem is given by:

max
x2

(
x2

x2 + y2
(v + V ) +

y2

x2 + y2
(p∗3(V − ΩX1,X3))− x2

θX2

)
.

Y2 chooses his level of effort y2 to maximize his utility. If he wins, which occurs with a

probability y2
x2+y2

, he gets (v + V ) if his teammate wins battle 3 (probability (1 − p∗3)), and

(v − ΥY 1,Y 3) if his teammate loses battle 3 (probability p∗3). If Y2 loses, the contest ends and

he gets a payoff 0. He has to pay the cost of effort y2
θY2

, whatever the outcome of the battle. As

ΥY 1,Y 3 = ΩX1,X3 , player Y2 faces the following maximization problem:

max
y2

(
y2

x2 + y2
((1− p∗3)(v + V ) + p∗3(v − ΩX1,X3))− y2

θY2

)
.

Thus, X2 has more incentive to win than Y2 because X2 is sure to avoid the inequity cost

if he wins whereas Y2 will avoid the inequity cost if he wins, only if his teammate also wins in

T=3.

Deriving the first-order conditions yield the optimal levels of effort and p∗2IA:

x∗2IA =
θ2
X2

(v + (1− p∗3)V + p∗3ΩX1,X3))2θY2(v + (1− p∗3)V − p∗3ΩX1,X3))

[θX2(v + (1− p∗3)V + p∗3ΩX1,X3)) + θY2(v + (1− p∗3)V − p∗3ΩX1,X3))]2
,

y∗2IA =
θX2(v + (1− p∗3)V + p∗3ΩX1,X3))θ2

Y2
(v + (1− p∗3)V − p∗3ΩX1,X3))2

[θX2(v + (1− p∗3)V + p∗3ΩX1,X3)) + θY2(v + (1− p∗3)V − p∗3ΩX1,X3))]2
,

p∗2IA =
θX2(v + (1− p∗3)V + p∗3ΩX1,X3))

θX2(v + (1− p∗3)V + p∗3ΩX1,X3)) + θY2(v + (1− p∗3)V − p∗3ΩX1,X3))
.

As p∗2IA >
θX2

θX2
+θY2

; ∂p2IA
∂p∗3

> 0 and ∂p2IA
∂ΩX1,X3

> 0, we obtain the three following predictions.

Prediction 1 Winning battle 1 decreases the probability of winning battle 2.
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Prediction 2 The probability of winning battle 2 increases with the probability of winning

battle 3.

Prediction 3 The probability of winning battle 2 increases when the teammate involved in

battle 1 overperformed.

Disentangling individual contribution and altruism

We compare the predictions of individual contribution and altruism in battle 1 in the case where

the favorites for battles 2 and 3 do not belong to the same team. Let X denote the team whose

players are favorites in battle 2 and underdogs in battle 3. For simplicity, we furthermore assume

that X2 will win with certainty and X3 will lose with certainty.33

Individual contribution Player X1 gets the battle reward v, the collective reward V , and

the individual contribution reward c if he wins (as his teammate X2 will win battle 2 and end

the contest) and he gets a payoff 0 if he loses. Player Y1 faces the same prize spread as he also

gets V + v + c if he wins and 0 if he loses:

∆UX1
= ∆UY 1

= v + V + c.

Altruism If players X1 and Y1 were altruistic, their incentives would no longer be symmetric.

If X1 wins, he will get both the battle reward v and the collective reward V and he will prevent

his teammate X3 from making a high effort in a decisive battle 3 (as the contest will be won

after battle 2 thanks to the victory of X2). On the contrary, if X1 loses, he will get neither the

battle reward nor the collective reward and he will force his teammate X3 to play, which induces

a negative payoff −αC(X3) where C(X3) is the cost of effort of X3 in a decisive battle 3 and α

reflects the degree to which X1 internalizes this cost (0 < α < 1). Hence the prize spread of X1

will be v + V + αC(X3). His opponent Y1 faces a different problem. If he wins, he gets both v

and V as his team will win the contest but he forces his teammate Y3 to play a decisive battle

3, which is partly internalized by him (−αC(Y3)). If Y1 loses, he gets neither v nor V but he

prevents Y3 from playing. Hence his prize spread is v + V − αC(Y3).

33Note that the logic would be the same with a more general framework where X2 is “as much of a favorite as
X3 is an underdog”.
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∆UX1
= v + V + αC(X3) > ∆UY 1

= v + V − αC(Y3)

Different predictions Thus, individual contribution predicts that X1 and Y1 have the same

prize spread while altruism predicts that X1 has a higher prize spread than Y1. Since p∗1 =
θX1∆UX1

θX1∆UX1
+θY 1∆UY 1

, individual contribution predicts that being the favorite in battle 2 is equiva-

lent to being the favorite in battle 3 whereas altruism predicts that being the favorite in battle

2 is preferable to being the favorite in battle 3. This finding is the basis for our empirical test

in section 4.2.

Choking under pressure

T=3 (trivial battle) Team X already won battles 1 and 2, so battle 3 becomes stakeless

(except for the battle reward) and neither of the two players faces pressure. Hence their cost of

effort are not affected.

Player X3 is sure to get the collective reward V whatever the outcome of battle 3 but he will

get the battle reward v only if he wins battle 3.

max
x3

(
V +

x3

x3 + y3
v − x3

θX3

)
Player Y3 will not get the collective reward but he can get the battle reward v if he wins.

max
x3

(
y3

x3 + y3
v − y3

θY 3

)
First-order conditions give the optimal levels of effort and p∗3CUPtrivial:

x∗3CUPtrivial = v
θ2
X3
θY3

(θX3 + θY3)2
,

y∗3CUPtrivial = v
θX3θ

2
Y3

(θX3 + θY3)2
,

p∗3CUPtrivial = p∗3 =
θX3

θX3 + θY3
.

This yields the following prediction.

Prediction Winning battle 1 and battle 2 does not affect the probability of winning a trivial

battle 3.
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T=3 (decisive battle) Both team won one individual battle. Players X3 and Y3 are now

opposed in a decisive game. Since battle 3 is pivotal, players X3 and Y3 might both choke under

pressure as losing the battle implies the defeat of their team. This is conceptually equivalent to

multiplying their ability by η with 0 < η < 1.

max
x3

(
x3

x3 + y3
(v + V )− x3

θX3η

)
Symmetrically for player Y3:

max
y3

(
y3

x3 + y3
(v + V )− y3

θY 3η

)
Deriving the FOCs yield the optimal levels of effort and p∗3:

x∗3CUPdecisive = (v + V )η
θ2
X3
θY3

(θX3 + θY3)2

y∗3CUPdecisive = (v + V )η
θX3θ

2
Y3

(θX3 + θY3)2

p∗3CUPdecisive = p∗3 =
θX3

θX3 + θY3

This yields the following prediction.

Prediction The outcome of a decisive battle 3 depends solely on the relative ability of the

players involved in this battle.

T=2 Team X won the first battle (X1 won against Y1). There is an asymmetry between the

two players. Player X2 has no reason to choke under pressure because his team will remain in

the contest if he loses battle 2. On the contrary, player Y2 knows that losing battle 2 implies

that his team loses the contest. Thus, he may choke under pressure, which can be modelled by

multiplying his ability by a factor η (0 < η < 1).

max
x2

(
x2

x2 + y2
(v + V ) +

y2

x2 + y2
p∗3V −

x2

θX2

)
.

max
y2

(
y2

x2 + y2
(v + (1− p∗3)V )− y2

θY2η

)
.

First-order conditions yield the optimal levels of effort and p∗2:
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x∗2CUP = (v + (1− p∗3)V )
θ2
X2
θY2η

(θX2 + θY2η)2
;

y∗2CUP = (v + (1− p∗3)V )
θX2(θY2η)2

(θX2 + θY2η)2
;

p∗2CUP =
θX2

θX2 + θY2η

As p∗2CUP >
θX2

θX2
+θY2

, this yields the following prediction.

Prediction Winning battle 1 increases the probability of winning battle 2.

Psychological momentum

T=3 (decisive battle) Team X won the first battle and lost the second battle (X1 won

against Y1 and X2 lost against Y2). Y3 has psychological momentum because his teammate won

the previous battle. This is conceptually equivalent to multiplying his ability by a factor ψ (with

ψ > 1). The maximization problem is:

max
x3

(
x3

x3 + y3
(v + V )− x3

θX3

)
,

max
y3

(
y3

x3 + y3
(v + V )− y3

θY 3ψ

)
.

Optimal levels of effort and p∗3PM are therefore given by:

x∗3PM = (v + V )
θ2
X3

(θY3ψ)

(θX3 + θY3ψ)2
,

y∗3PM = (v + V )
θX3(θY3ψ)2

(θX3 + θY3ψ)2
,

p∗3PM =
θX3

θX3 + θY3ψ
.

As p∗3PM <
θX3

θX3
+θY3

, this yields the following prediction.

Prediction In a decisive battle 3, the player in the team that won battle 2 is more likely to

win than the player in the team that won battle 1.
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T=2 Team X won the first battle (X1 won against Y1). X2 has psychological momentum

because his teammate won the previous battle. This is conceptually equivalent to multiplying

his ability by a factor ψ (with ψ > 1). We therefore have the following maximization problems:

max
x2

(
x2

x2 + y2
(v + V ) +

y2

x2 + y2
p∗3PMV −

x2

θX2ψ

)
,

max
y2

(
y2

x2 + y2
(v + (1− p∗3PM )V )− y2

θY2

)
.

Deriving the first order conditions yield the optimal levels of effort and p∗2PM :

x∗2PM = (v + (1− p∗3PM )V )
(θX2ψ)2θY2

(θX2ψ + θY2)2
;

y∗2PM = (v + (1− p∗3PM )V )
(θX2ψ)θ2

Y2

(θX2ψ + θY2)2
;

p∗2PM =
θX2ψ

θX2ψ + θY2
.

As p∗2PM >
θX2

θX2
+θY2

, this yields the following prediction.

Prediction Winning battle 1 increases the probability of winning battle 2.
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Appendix B – Probit and Logit estimations

Probit estimations

Table 15: Evidence against neutrality (PROBIT estimation - average marginal effects)

(1) (2) (3) (4) (5) (6)

A1 won battle 1 0.105∗∗∗ 0.073∗∗ 0.117∗∗∗ 0.081∗∗ 0.083∗∗∗ 0.063∗

(0.025) (0.027) (0.027) (0.029) (0.024) (0.026)

Controls for players’ ability
Ranking category YES YES NO NO NO NO
Interaction of rkg categories NO NO YES YES NO NO
Ratio of rankings NO NO NO NO YES YES

Other controls
Playing home + teams’ rankings NO YES NO YES NO YES

Observations 934 896 934 896 934 896

Standard errors in parentheses: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Reading note (column 1): the average marginal effect of winning battle 1 on the probability of winning battle 2 is 10.5 pp.

Note: the number of observations decreases from 934 in specifications (1), (3), (5) to 896 in specifications (2), (4),(6)

because there are 38 contests for which teams’ rankings are missing.
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Logit estimation

Table 17: Evidence against neutrality (LOGIT estimation - average marginal effects)

(1) (2) (3) (4) (5) (6)

A1 won battle 1 0.101∗∗∗ 0.071∗∗ 0.113∗∗∗ 0.078∗∗ 0.084∗∗∗ 0.064∗

(0.024) (0.026) (0.026) (0.029) (0.024) (0.026)

Controls for players’ ability
Ranking category YES YES NO NO NO NO
Interaction of rkg categories NO NO YES YES NO NO
Ratio of rankings NO NO NO NO YES YES

Other controls
Playing home + teams’ rankings NO YES NO YES NO YES

Observations 934 896 934 896 934 896

Standard errors in parentheses: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Reading note (column 1): the average marginal effect of winning battle 1 on the probability of winning battle 2 is 10.1 pp.

Note: the number of observations decreases from 934 in specifications (1), (3), (5) to 896 in specifications (2), (4),(6)

because there are 38 contests for which teams’ rankings are missing.
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