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Grenoble, France
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Abstract

Uncertainties of snowpack models and of their meteorological forcings limit their use by

avalanche hazard forecasters, or for glaciological and hydrological studies. The spatial-

ized simulations currently available for avalanche hazard forecasting are only assimilating

sparse meteorological observations. As suggested by recent studies, their forecasting skills

could be significantly improved by assimilating satellite data such as snow reflectances

from satellites in the visible and the near-infrared spectra. Indeed, these data can help

constrain the microstructural properties of surface snow and light absorbing impurities

content, which in turn affect the surface energy and mass budgets. This paper inves-

tigates the prerequisites of satellite data assimilation into a detailed snowpack model.

An ensemble version of Météo-France operational snowpack forecasting system (named

S2M) was built for this study. This operational system runs on topographic classes in-

stead of grid points, so-called ’semi-distributed’ approach. Each class corresponds to

one of the 23 mountain massifs of the French Alps (about 1000km2 each), an altitu-

dinal range (by step of 300m) and aspect (by step of 45o). We assess the feasability

of satellite data assimilation in such a semi-distributed geometry. Ensemble simulations
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are compared with satellite observations from MODIS and Sentinel-2, and with in-situ

reflectance observations. The study focuses on the 2013-2014 and 2016-2017 winters in

the Grandes-Rousses massif. Substantial Pearson R2 correlations (0.75-0.90) of MODIS

observations with simulations are found over the domain. This suggests that assimilat-

ing it could have an impact on the spatialized snowpack forecasting system. However,

observations contain significant biases (0.1-0.2 in reflectance) which prevent their direct

assimilation. MODIS spectral band ratios seem to be much less biased. This may open

the way to an operational assimilation of MODIS reflectances into the Météo-France

snowpack modelling system.

Keywords: Snowpack Modelling, Ensemble, Spatialization, MODIS, Sentinel-2,

Assimilation

Highlights1

- Ensemble simulations of the snowpack are compared with satellite reflectances2

- Spatial aggregation into the semi-distributed geometry filters the observation noises3

- Satellite reflectances carry useful information worth to assimilate4

- MODIS reflectances can not be directly assimilated because they are biased5

- Ratios of MODIS reflectances show no evidence of bias and could be assimilated6

7

1. Introduction8

The avalanche forecasting services of some countries use a chain composed of mete-9

orological forcings, coming from either a Numerical Weather Prediction model (NWP) or10

observations, and a detailed multilayer snowpack model such as Crocus (Vionnet et al.,11

2012) or SNOWPACK (Lehning et al., 2002). Both meteorological forcings and snow-12

pack modelling induce errors and uncertainties in the simulations (Essery et al., 2013;13
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Vernay et al., 2015; Raleigh et al., 2015; Günther et al., 2019). These errors are consid-14

erably limiting the use of snowpack models by avalanche hazard forecasters (Morin et al.,15

2018). The representativeness of simulations is also limited in complex mountain terrain16

(Fiddes and Gruber, 2012). In addition, most of these snowpack modelling chains do17

not operationally assimilate any available information on the snowpack properties (either18

in-situ or remotely-sensed) (Helmert et al., 2018). There are several reasons for that19

: (1) snowpack in-situ observations are sparse and lack representativeness (2) satellite20

observations retrieval is challenging (Nolin, 2011; Helmert et al., 2018), (3) preserving21

state variable consistency within detailed snowpack models, which is a key point for22

avalanche forecasting, requires sophisticated assimilation algorithms (Magnusson et al.,23

2017). As a consequence, the errors often accumulate along the snow season leading24

to increasingly poor model performance and utility for avalanche hazard forecasting and25

other operational applications.26

27

Data assimilation systems using ensemble approaches is the best way to reduce snow-28

pack modelling errors (Charrois et al., 2016; Larue et al., 2018; Piazzi et al., 2018;29

Winstral et al., 2019). The Particle Filter (PF) ensemble assimilation algorithm seems to30

be especially well suited to reduce detailed snowpack modelling errors (Magnusson et al.,31

2017). Indeed, ensembles enable to quantify the uncertainties of (1) meteorological forc-32

ings, using physically based ensembles (Vernay et al., 2015) or statistical perturbations33

(Charrois et al., 2016; Winstral et al., 2019), and (2) snowpack modelling, using multi-34

physical systems (Essery, 2015; Lafaysse et al., 2017). Charrois et al. (2016) did the first35

application of a PF within a detailed snowpack model, but only at one specific location36

and their ensemble only described the meteorological uncertainty, not model uncertainty.37

They were followed by Magnusson et al. (2017) and Larue et al. (2018). Recently, Piazzi38

et al. (2018) and Smyth et al. (2019) applied the PF to a combination of meteorological39
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and model ensembles, but with a less complex model and at the local scale as well. In40

parallel, spatialized application of PF has been done in several studies (Thirel et al., 2013;41

Baba et al., 2018), but with deterministic and low complexity snow models, not suited42

for avalanche hazard forecasting. This paper fills a gap by implementing a combination43

of a meteorological ensemble and a multiphysical system of detailed snow models in a44

spatialized context.45

46

Daily moderate-resolution observations (250 to 500 m) in the visible (VIS) and near47

infra-red (NIR) spectrum from the MODerate Resolution Imaging Spectroradiometer48

(MODIS) are suitable to monitor the snowpack properties (Hall et al., 2002). Sentinel-249

(S2) has a coarser revisit time (5 days) but captures much finer spatial scales (10-20 m).50

From MODIS and S2 spectral Top Of Atmosphere (TOA) radiance products, it is possible51

to retrieve the snowpack extent as a Snow Cover Fraction by pixel (SCF) and Bottom52

of Atmosphere (BOA) reflectances which requires to account for the complexity of the53

radiative transfer in mountainous area (Richter, 1998; Sirguey, 2009). Many studies fo-54

cus on the assimilation of SCF, showing a strong impact of assimilation in hydrological55

models (De Lannoy et al., 2012; Thirel et al., 2013; Stigter et al., 2017; Aalstad et al.,56

2018; Baba et al., 2018). However, SCF is expected to be of less interest for detailed57

snowpack modelling in alpine terrain, because the information content is limited to the58

snow line (Andreadis and Lettenmaier, 2006; Toure et al., 2018). Meanwhile, it is ex-59

pected for the BOA reflectances to carry useful information on the temporal and spatial60

variability of the snowpack surface properties such as Light Absorbing Particles concen-61

tration (LAP, [kg kg−1
snow]) and snow microstructure (quantified by the Specific Surface62

Area, SSA, [m2 kg−1]) (Dozier et al., 2009; Kokhanovsky et al., 2018). Indeed, these63

variables drive the shortwave (SW) radiation absorption of the snowpack, and thus carry64

crucial information on the snow surface energy budget (Skiles et al., 2018; Mauro et al.,65
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2019). Moreover, monitoring the surface snow microstructure can help detect precipi-66

tation (solid and liquid) and melting events, while frequent observations of surface LAP67

contents can enable to constrain LAP vertical layering within the snowpack. In line with68

this, Charrois et al. (2016) showed that assimilating satellite reflectances could help re-69

duce Snow Water Equivalent (SWE, [kg m−2]) modelling uncertainties by up to 45%.70

71

The most detailed snow models are also able to compute reflectances from the snow-72

pack properties, through the use of a detailed radiative transfer (Libois et al., 2015;73

Skiles and Painter, 2019) and the explicit evolution of SSA (Carmagnola et al., 2013)74

and LAP (Tuzet et al., 2017). Such radiative transfer models play the role of observation75

operators, computing observation-like variables from the model state variables. However,76

modelling geometries often differ from the distributed geometry of satellite retrievals77

(Mary et al., 2013). For instance, Météo-France multilayer snowpack model Crocus is78

operationally applied on several topographical classes (by 300 m elevation bands, for 879

different aspects and 3 different slopes, so-called ”semi-distributed” geometry) inside so-80

called ”massif” regions of about 1000 km2 (Durand et al., 1999; Lafaysse et al., 2013).81

This semi-distributed framework, with around 200 topographical classes, was proven to82

be sufficient to represent the main features of snowpack variability with topography com-83

pared to fully distributed simulations at 25 to 250 m resolution (Fiddes and Gruber, 2012;84

Revuelto et al., 2018). However, the feasibility of the assimilation of satellite reflectances85

in Crocus semi-distributed model using the PF ensemble data assimilation algorithm, still86

needs to be assessed.87

88

The main objective of this paper is to assess the potential for semi-distributed assim-89

ilation of satellite observations of snowpack reflectances into ensemble snowpack simula-90

tions. For that purpose, we present extended comparisons of openloop simulations (e.g.91
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without assimilation) with satellite observations from MODIS and S2 aggregated in this92

geometry. Sec. 2 presents the data and the modelling framework, while Sec. 3 intro-93

duces the aggregation method and defines the points of comparison from the assimilation94

perspective. Then Sec. 4 presents the comparison results, which are discussed in Sec. 5.95

96

2. Data and model97

2.1. Case study98

This study focuses on two snow seasons (2013-2014 and 2016-2017) in the Grandes-99

Rousses (see Fig. 1). The area of about 500 km2 is located in the Central French Alps,100

and is characterized by a wide elevation range from the bottom of Romanche valley101

(about 700 m a.s.l.) to the top of Aiguilles d’Arve (3514 m a.s.l.). This specific mas-102

sif was chosen because it encompasses the Col du Lautaret (2058 m a.s.l.), where field103

campaigns have been carried out since winter 2016-2017 close to an automatic weather104

station (Tuzet et al., 2019).105

The two snow seasons have been selected because they show contrasted snow conditions.106

2013-2014 is characterised by above average snow depths, with frequent snowfall events107

and two major dust deposition events (end of February, end of March) (Dumont et al.,108

2017; Di Mauro et al., 2015). 2016-2017 was a warm winter, without significant snowfall109

between late November and beginning of January, and early melting in spring. In addi-110

tion, several minor dust deposition events occurred after the end of February according111

to MOCAGE outputs.112

113
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2.2. Digital Elevation Model (DEM) and landcover114

2.2.1. DEM115

Digital Elevation Models (DEM) of the study area are used here to retrieve satellite116

data and to perform a topographical aggregation of observations into the model semi-117

distributed geometry. For that purpose, DEM BD Alti R©1 (IGN25) from the French118

Geographical Institute (Institut National de l’information Géographique et forestière, IGN)119

with native 25 m resolution was used in this study at different scales : 125 m for the120

retrieval of MODIS images (IGN125) (see Sec. 2.3.1) and 250 m (IGN250) for the121

topographical aggregation. In addition, a different DEM from Shuttle Radar Topography122

Mission (SRTM, Farr et al. (2007)) with 90 m resolution (SRTM90) is employed in the123

retrieval of S2 data (see Sec. 2.3.2).124

2.2.2. Land Cover125

CORINE Land Cover database2 was used to filter the land cover types of the region.126

Only land cover types 321 (grassland), 322 (moorland), 332 (bare rocks), 333 (sparse127

vegetation) and 335 (glaciers and perennial snow) were considered valid, hence excluding128

forests, urbanized area, and water bodies from this study since both modelling and satellite129

retrieval are difficult in such areas (Gascoin et al., 2019).130

2.3. Snow observations131

2.3.1. MODIS observations132

MODIS top of atmosphere radiance in the first seven spectral bands are available at133

250 to 500 m spatial resolution depending on the channel (see. Tab. 1). As depicted in134

Fig. 2 and Tab. 1, reflectance in visible bands (1,3,4) is mostly affected by the impurities135

1http://professionnels.ign.fr/bdalti
2https://www.data.gouv.fr/fr/datasets/corine-land-cover-occupation-des-sols-en-france/
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content in snow (BC and dust) whereas it depends mostly on SSA in the near-infrared136

spectral bands (2,5,6,7) (Dozier et al., 2009).137

We extracted and post-processed these data in a 36x41 km2 region (23616 pixels of138

250 m resolution, see Fig. 1) including the Grandes-Rousses and Col du Lautaret field139

site during 2013-2014 and 2016-2017 snow seasons with MODImLab retrieval algorithm.140

In such context of complex terrain, MODImLab retrieval algorithm (Sirguey, 2009) was141

shown to outperform other products in many studies (Dumont et al., 2012; Charrois et al.,142

2013)). Indeed, MODImLab accounts for atmospherical radiative transfer, direct and dif-143

fuse contribution, multiple topographical reflection, terrain shading and snow reflectance144

anisotropy (see. Fig. 3).145

For mixed pixels, MODImLab’s spectral unmixing algorithm computes the reflectance146

of the snow fraction of the pixel together with a Snow Cover Fraction (SCF). For all the147

pixels, resulting product is the bi-hemispherical reflectance (accounting in particular for148

snow Bidirectional Refletance Density Function (BRDF), (Dumont et al., 2011)), with149

250 m resolution in all bands. MODImLab provides additional masks for shadows (self150

and cast, see Fig. 3) and clouds. For both snow seasons, dates with good geometrical151

acquisition properties (Sensor Zenithal Angle (SZA) ≤ 30o), and clear sky were selected152

(see Tab. A.1 in Appendix) in order to ensure a maximal accuracy, following Sirguey153

et al. (2016) and Charrois et al. (2016).154

2.3.2. Sentinel-2 observations155

S2 is an ESA-Copernicus satellite program operational since 2016, carrying a multi-156

spectral high resolution (10-20 m) VIS/NIR sensor with several bands coinciding with157

MODIS wavelengths (see Tab. 1 and Fig. 2). Sentinel-2 ground flat bi-hemispherical158

reflectance products (product FRE, assuming a Lambertian surface) are retrieved by the159

MAJA processor (Hagolle et al., 2017), which is similar to MODImLab. Snow masks are160
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retrieved by Let It Snow algorithm3 and distributed by Theia Land data center4 (Gascoin161

et al., 2019). Acquisition is done close to nadir, with SZA ≤ 10o. Seven clear sky dates162

were selected during the 2016-2017 snow season (see Tab. A.1 in Appendix).163

2.3.3. In-situ observations164

Autosolalb is a high accuracy instrument measuring snow bi-hemispherical reflectance165

in the VIS/NIR spectrum (200-1100 nm, 3 nm resolution) including MODIS bands 1-166

4 (Dumont et al., 2017). In-situ Autosolalb observations of snowpack bi-hemispherical167

reflectance were acquired at Col du Lautaret field site (see Fig. 1 for location) during168

2016-2017 winter. The acquisition time step is 12 minutes and acquisition for 2016-2017169

winter started on 2017, February 16th. For a given observation time (see Tab. A.1 in170

Appendix), observation was computed as the mean of all available measurements within171

+30/-30 minutes and corrected for local slope effects as in Dumont et al. (2017).172

173

2.4. Model174

In S2M (SAFRAN-SURFEX/ISBA/Crocus-MEPRA), the Meteo-France operational175

modelling system of the snowpack, meteorological forcings from SAFRAN analysis (Du-176

rand et al., 1993) are used as inputs to the coupled multilayer ground/snowpack model177

SURFEX/ISBA/Crocus (Vionnet et al., 2012). Ensemble versions for these two compo-178

nents were used here.179

3http://tully.ups-tlse.fr/grizonnet/let-it-snow/blob/master/doc/tex/ATBD_

CES-Neige.pdf
4CNES.; Gascoin, S.; Grizonnet, M.; Hagolle, O.; Salgues, G. Theia Snow collection, 2017
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2.4.1. Ensemble of Meteorological Forcings180

In SAFRAN, a meteorological guess from the NWP model ARPEGE is adjusted with181

weather observations within each massif on the semi-distributed geometry. Here, in order182

to represent the uncertainties of this analysis, an ensemble of 35 meteorological forc-183

ings was generated by stochastic perturbations on all the meteorological variables of the184

reference SAFRAN analysis for the Grandes-Rousses. Following Charrois et al. (2016),185

the magnitude of perturbations was adjusted by a local assessment of SAFRAN errors.186

SAFRAN does not provide impurities deposition fluxes. Therefore, LAP wet and dry187

deposition fluxes for BC and dust were extrapolated from MOCAGE chemistry-transport188

model (Josse et al., 2004) at Lautaret field site (see Fig. 1). For LAP fluxes, Tuzet et al.189

(2017) showed that the order of magnitude were badly captured by ALADIN-Climate190

chemistry-transport model (Nabat et al., 2015), while the timing of events was well cap-191

tured. Similar behaviour was found with MOCAGE, with an over estimation of BC fluxes192

in particular. As a consequence, each of the 4 LAP fluxes variables, for each of the193

35 members, was multiplied by a constant random factor along the forcing time period,194

following a lognormal law (µ = 0.01, σ = 10) for BC, and (µ = 1, σ = 10) for dust.195

196

2.4.2. Ensemble of snow models197

ESCROC (Lafaysse et al., 2017) is the multiphysical ensemble version of SURFEX/ISBA/Crocus198

handling 7774 different model configurations. For this study, the last developments of199

the radiative transfer model TARTES and LAP handling in Crocus were mandatory to200

properly model the snowpack reflectance (T17 option of radiative transfer, Tuzet et al.201

(2017)), which were not included in Lafaysse et al. (2017). An ensemble of 1944 mem-202

bers using T17 option, so-called ”E1tartes” was built for this study, including all the203

physical options described by Lafaysse et al. (2017) except for options of solar radiation204
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absorption scheme.205

2.4.3. Model chain206

The ensemble modelling chain setup is summarized in Fig. 4. At the beginning of207

a simulation, 35 model configurations are randomly drawn from E1tartes. Each one is208

associated with a perturbed forcing file to perform the simulation for the whole year,209

totalling 35 different snowpack simulations.210

3. Methods211

3.1. Topographic aggregation212

An aggregation process is used to adapt the observations to the model semi-distributed213

geometry with the aim of assimilation. Another added value of the aggregation is to214

reduce random observation errors and average out features that are not accounted for in215

the model (Hyer et al., 2011).216

3.1.1. DEM and topographical classification217

In our modelling framework, a topographical class Ci is described by a triplet (ei, ai, si)218

where the elevation ei ∈ [600, 900, ..., 3600], the aspect ai ∈ [0, 45, 90, ...315] (in degrees,219

clockwise from North), and the slope si ∈ [20, 40] (in degrees). Flat classes are described220

by a triplet (ei,−, 0). In our case, there is a total of 187 different topographical classes.221

For each pixel p, a triplet (e,a,s) is computed from the IGN250 DEM (see Sec. 2.2.1)222

and thus is attributed to a topographical class. The classification rule is described as223

follows for tilted classes (Eq. 1) and for flat classes ( Eq. 2):224

p(e, a, s) ∈ Ci(ei, ai, si) ⇐⇒


e ∈ [ei − 150, ei + 150[

s ∈ [si − 10, si + 10[

a ∈ [ai − 22.5, ai + 22.5[

(1)
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p(e, a, s) ∈ Ci(ei,−, 0) ⇐⇒

 e ∈ [ei − 150, ei + 150[

s < 10
(2)

Note that this classification process excludes pixels steeper than 50 degrees were both225

modelling and remote sensing are unsound.226

3.1.2. MODIS aggregation227

An algorithm is used to aggregate MODIS distributed observations into semi-distributed228

observations in order to compare it with model outputs. In this process, a particular atten-229

tion is paid to the validity and spatial representativeness of the observations, as described230

in Fig. 5. Regarding the validity, pixels with clouds, self/cast shadows, invalid CORINE231

land covers (see Sec. 2.2.2) as well as pixel lying outside the Grandes-Rousses are filtered232

out (A label in Fig. 5). Then for reflectance only, pixels with Snow Cover Fraction233

SCFpix inferior to 0.85, are discarded (B), since MODImLab reflectance product is less234

accurate for mixed pixels (Mary et al., 2013). The product (B) is referred to as ”dis-235

tributed reflectance”.236

Finally, reflectance and SCF are aggregated into semi-distributed products by taking the237

median value within each class. In order to ensure the spatial representativeness of the238

aggregated observations, classes where the number of valid pixels is below ten and having239

less than 10% of pixels with reflectance observations are filtered out in this process (C240

and D). For the same reason, classes where the average Snow Cover Fraction SCFclass241

is inferior to 0.85 are masked for reflectance in a final step (E).242

243

3.1.3. Sentinel-2 aggregation244

S2 images were aggregated to the semi-distributed geometry in a similar process as245

for MODIS (see Sec. 3.1.2), as described in Fig. 6. In a first step, a validity masking is246
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performed on Theia L2B Snow Mask using Theia L2A Clouds and Geophysical masks (A).247

Then, we produce the distributed S2 product (B) by classifying using the IGN250 DEM248

and discarding non-snow pixels. The aggregated SCF value (D) was here computed as249

the ratio between snowy and valid populations, when the valid population was above 10250

pixels and 10 % of the total population (as described in the previous paragraph). Finally,251

aggregated SCF was used to filter the semi-distributed reflectance (D) as in Sec. 3.1.2.252

3.2. Assessing the feasibility of data assimilation253

Data assimilation algorithms generally require that systematical bias between the254

ensemble and the observations is negligible for a proper functioning (Dee and Da Silva,255

1998). In addition, for ensemble data assimilation such as the PF, the observation should256

usually lie within the ensemble envelope, otherwise the algorithm is likely to collapse257

(Charrois et al., 2016). Rank diagrams are commonly used in the ensemble forecasting258

community to check for both issues by computing the histogram of the position of the259

observation within the ensemble for all available dates and places (Hamill, 2001). Further-260

more, apart from these considerations, correlations between ensemble and observations261

timeseries can help quantify the information content from observation and its potential262

for assimilation (Reichle et al., 2004). If timeseries are weakly correlated, this means that263

it is likely that observations carry substantial information valuable for the ensemble, but264

that data assimilation of such different datasets will be a difficult task.265

266

In order to assess the potential of applying assimilation algorithms to our spatialized267

ensemble simulation, a thorough comparison of observed and openloop (i.e. whithout268

assimilation) simulated reflectances is carried out here : (1) We assess the consistency269

of the spatial and temporal variations of the ensemble and observations based on two270

examples (one date and one topographic class). (2) We evaluate the products against271
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in-situ observations, in order to detect systematic biases and errors. (3) We compute272

Pearson correlations (R) between the ensemble median and semi-distributed observations273

timeseries in a wide range of topographic classes, to have additional information on the274

potential of information. (4) We generalize the results by computing rank diagrams,275

looking for bias and observation position within the ensemble at the same time and over276

numerous topographic classes and dates.277

278

4. Results279

4.1. Comparison of observed and simulated variables280

4.1.1. Spatial comparison on a specific date281

Fig. 7 shows maps of NIR semi-distributed reflectance (MODIS band 2) for the two282

satellite products (MODIS and S2) and the ensemble mean on February 18-19th, 2017.283

All pixels within the same topographical class are attributed the same value, and in many284

classes, observations and model are masked out because of shadows.285

MODIS and S2 remarkably agree on the snowpack extent, while the ensemble mean286

seems to overestimate it. Both satellite products show on average more contrasted and287

lower reflectance values than the model. However, MODIS and the model agree on the288

reflectance dependence on aspect (lower in South-Eastern slopes), contrary to S2.289

290

4.1.2. Ensemble and satellite reflectance timeseries291

Fig. 8 shows the timeseries of ensemble and observations in MODIS bands 4 (VIS)292

and 2 and 5 (NIR) for the two snow seasons, in 2400 m flat class. This specific class293

was chosen here because it is flat, above the tree line and with a long snow covered294

season, thus easing the comparison all along the snow season. Although there is a strong295
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departure among observations and simulations (0.1-0.2 in bands 4 and 2, 0.1 in band296

5), consistent time variations can be seen between semi-distributed observations (green297

stars) and the ensemble median (blue stars), for example in December and January of298

both snow seasons for band 5. For 2013-2014 winter (Fig. 8 a,c,e), high values of re-299

flectance in all bands during the mid-winter are consistent with the recent snowfall at300

observation dates during this period (fresh snow has a high SSA, thus a high reflectance301

as shown in Fig. 2. Decrease in reflectance in all bands from November 2013 to mid302

December and on January 12th is related with extended periods without snowfall as seen303

on the HS curve. At the end of the snow season, the snow melt causes a decrease in304

SSA (i.e. low reflectance in band 2 and 5) due to wet metamorphism (Carmagnola et al.,305

2014) . Meanwhile, two dust deposition events (end of February 2014, end of March306

2014 in MOCAGE model) can explain drops in band 4 reflectance through an increase in307

the snowpack surface LAP content. All those events appear in both ensemble and obser-308

vation timeseries as well as in simulated surface impurities concentrations (not shown).309

Season 2016-2017 (Fig. 8b,d,f) had few, intense snowfall and extended dry periods with310

clear sky, allowing observe more pronounced reflectance variations.311

Regarding the ensemble behaviour, in the visible bands, the ensemble Inter-Quartile Range312

(IQR) (blue boxes) seems generally lower during 2013-2014 winter than in 2016-2017.313

For all bands, the IQR is reduced after a snowfall (0.01-0.02 in bands 4 and 2, 0.02-0.03314

in band 5), and increases with the time elapsed since the last snowfall and all along the315

melting season (up to 0.1 in bands 4 and 2 and 0.05 in band 5).316

However, the main feature here is the strong departure between the ensemble and MODIS317

observations. For almost all dates of both winters, the semi-distributed observation is318

under all the members of the ensemble in bands 4 and 2. This deviation is smaller in319

band 5. Note also that the distributed observations IQR (green boxes) is considerable,320

and notably lower in band 5 (0.02-0.05) than in bands 2 and 4 (0.05-0.1). Regarding S2321
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observations, (Fig. 8b,d), agreement of semi-distributed observations (red stars) with the322

ensemble is good for fresh snow (2016, December 1st) but a strong departure (0.1-0.2)323

appears after extended periods without snowfall (2016, December 31th for exambple).324

Furthermore, the IQR of S2 distributed observations (red boxes) is 2-3 times larger than325

for MODIS.326

327

4.1.3. Comparison with in-situ measurements328

Comparison with field measurements at Col du Lautaret (Height of Snow (HS) and329

reflectance in bands 4 and 2) is possible for the 2100 m a.s.l flat class during 2016-2017330

winter (see Fig. 9). First and foremost, there is a strong bias of MODIS observations331

with respect to in-situ Autosolalb observations (about 0.2 in band 4 and 0.1-0.15 in band332

2). However, their time variations reproduce the temporal pattern obtained from in-situ333

observations for example between March 20th and 27th when an increase of reflectance334

is occurring in both products.335

Meanwhile, the ensemble reflectance generally has the same magnitude as the in-situ336

observations in both bands. In band 4, the in-situ observations lie within the ensemble337

for fresh snow, for example on February 18th, March 27th and April 3rd. In band 2, re-338

flectance is underestimated by the ensemble for those dates, except on March 27th. In339

addition, most of the members are overestimating reflectance in both bands during early340

melt (11th and 13th of March), while the comparison of the ensemble median and in-situ341

observed HS (blue and orange lines in Fig. 9) show that melt might be underestimated in342

the model. On March 20th, ensemble band 4 reflectance generally decreases while band343

2 increases, together with a light snowfall in the model. Meanwhile, in-situ observations344

of HS show that there was no snowfall for this date.345

346
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4.1.4. Comparison over all reliable topographical classes347

To investigate the distribution of this bias over time and space, MODIS observed348

semi-distributed values were plotted against the ensemble median. We restricted this349

study to topographical classes where the observation process is the most reliable, i.e.350

with low probability of being mixed/rocky (20o maximal slope) and with large enough351

pixel populations over the whole snow seasons (1800-3000 m.a.s.l.). In bands 4 and 2,352

Figs. 10a and 10b show a strong deviation from the 1:1 line. Moreover, the value range353

in band 4 is much lower in the model (about 0.05) than in the observations (about 0.3).354

In band 5 (Fig. 10c), observations and model better align with the 1:1 line.355

356

In order to refine this analysis over space, linear regressions were systematically carried357

out between the ensemble median and the semi-distributed observations for each band358

inside each reliable topographical class (e.g. computing regressions between timeseries359

of blue stars and green stars in Fig. 8). The associated Pearson R2, slope and intercept360

coefficients are shown in Figs. 11a and 11b for bands 2 and 5. In the absence of model361

or observational bias, Slope should be close to 1 and Intercept to 0.362

In band 2, overall high and significant R2 (0.75-0.85) are noted. Slope is generally > 1,363

and Intercept < -0.4. However, regression is close to identity in the sunny slopes (strong364

dependence on aspect) with higher correlations. Band 5 shows high and significant R2
365

as well (about 0.8-0.9). Slope and Intercept moderately deviates from Identity (Slope <366

1).367

4.2. Spectral bands reflectance ratio368

4.2.1. Timeseries comparison between the model and satellite products369

The bias between observations and model described in Sec. 4.1 is likely to be prob-370

lematic for data assimilation. Computing a ratio between the reflectances in two different371
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bands (so-called ”band ratio”) might reduce this issue.372

To that aim, the ratios between bands 5 and 4 (r54) and bands 5 and 2 (r52) were373

computed for MODIS observations. To do so, each ratio was computed on every pixel374

of the distributed reflectance (label B in Fig. 5), and aggregated and masked with the375

same method as for raw reflectances.376

Fig.12 shows the temporal evolution of these variables in the 2400 m flat class. Time377

variations of the ensemble median and semi-distributed observations have compatible378

values (for example in r54 0.6-0.7 for fresh snow, and 0.25-0.4 in the late season). In379

about 50% of the cases, the semi-distributed observation falls within the ensemble IQR380

(blue boxes) for r54. In addition, note that r52 and r54 signals are very similar, be it in381

the model or the observations.382

383

4.2.2. Comparison over all the reliable classes384

Fig. 13 shows the semi-distributed observations against the ensemble medians for the385

ratios for all the reliable classes and the two snow seasons as in Sec. 4.1.4. There is no386

notable systematic bias between the observed ratios and the modelled ones.387

388

Statistics of linear regression in Figs. 14a, and 14b show high R2 values generally389

above 0.85, similar to those for band 5 in Fig. 11b. More interestingly, regression pa-390

rameters are now around identity (Slope=1, Intercept=0) which illustrates the better391

agreement (no systematic bias) of observations and model for these ratios. While cor-392

relation patterns are almost identical for r54 and r52, Slope parameter is generally more393

departing from identity for r52 than for r54, with a significant dependence on aspect394

(lower Slopes in sunny aspects).395

396
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4.3. Towards assimilation397

Fig. 15a shows the rank diagram for the raw reflectance of band 4, over all considered398

dates and topographical classes of the two snow seasons. In this graph, the observations399

lie in rank 0 (under all members of the ensemble) about 60 % of the occurrences, con-400

sistently with the negative bias depicted in previous section. On the contrary, the rank401

diagram for band ratio r54 in Fig. 15b is highly improved with respect to band 4, the402

observation being in the ensemble 80 % of the occurrences. Result is similar for r52 (not403

shown). Though overestimation of frequency of ranks 0 (under the ensemble) and 36404

(over the ensemble) denote that the ensemble dispersion is insufficient, the rank diagram405

is flat, all the ranks having similar frequencies.406

407

5. Discussion408

5.1. On the relevance of the comparison in the semi-distributed framework409

The semi-distributed framework was chosen for the comparison between observed and410

simulated reflectances because it is the basis of the French operational snowpack mod-411

elling system, and considering that running this model on a 250m-grid requires about 100412

times more computer resources. Since it is quite specific, the different types of errors413

in observations and simulations in this semi-distributed geometry must be discussed for414

a correct interpretation of our results. Within a topographical class, observations are415

affected by (1) natural variability, (2) retrieval errors and (3) classification errors. In par-416

ticular, DEM errors and resolution have a strong impact in satellite retrievals via shadows417

and subgrid topography (Baba et al., 2019; Davaze et al., 2018), leading to about ±10%418

errors in broadband albedo for MODIS data (Dumont et al., 2012). Moreover, S2 data419

are particularly affected by the three sources, since the retrieval DEM (SRTM90) in the420

19



MAJA processor is too coarse to capture the topographic variability at the scale of the421

pixels (10-20 m) and because the classification is done to an even much coarser scale422

(IGN250). The resulting intraclass variability of S2 and MODIS is particularly visible in423

Figs 7e, 8 and 9.424

However, the resulting distributions of the observations within the classes are reasonably425

gaussian (see Fig. Appendix B.1), meaning that semi-distributed observations, aggre-426

gated by taking the median, should remove random unbiased noises and outliers.427

From the model point of view, the ensemble approach in this study is expected to sat-428

isfactorily assess snowpack modelling errors by the combination of meteorological and429

multiphysical model ensembles. However the semi-distributed simulations can have a430

limited spatial representativeness due to the snowpack natural variability, for example431

when the snow line or rain-snow line lies within the topographic class. In the general432

case, though, we expect this issue to be of limited importance, in the line with other433

studies (Mary et al., 2013).434

435

5.2. Assets and limits of the satellite products436

Since we consider that the observation process is not reliable in shadowed area, we437

filter out many observations, thus reducing the amount of spatial information available438

for assimilation. This means that from November to February, North facing slopes will439

likely not be observed. Therefore, ensemble simulations would not be corrected there440

during this period, if the assimilation were to be carried out on each topographic class441

independently. This stresses the need for a spatially coherent data assimilation algo-442

rithm, e.g. assimilating all observed topographic classes at the same time, in order to443

spatially propagate the effect of assimilation and to avoid inconsistent spatial patterns.444

Furthermore, a spatially comprehensive assimilation of SCF would be needed beforehand445
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to detect topographic classes where the ensemble and observations disagree on the pres-446

ence of snow and assess where reflectance can be compared, similarly as in Baba et al.447

(2018).448

449

Observations are also affected by significant errors and biases that are problematic for450

assimilation. S2 reflectance observations suffer from two significant inconsistencies. (1)451

The dependence of reflectance on aspect is too strong and unexpected. Higher band 2452

reflectance are obtained in South-Eastern slopes where SSA should preferentially decrease453

owing to sun exposure (causing a decrease in reflectance through enhanced metamor-454

phism) and lower SZA (Fig. 7) (Warren, 1982). (2) Reflectance decrease with time in455

the absence of snowfall in the early 2016-2017 snow season is too pronounced (Fig. 8b456

and d). These two considerations can be explained by retrieval errors in the MAJA algo-457

rithm, probably owing to the representation of topography and atmosphere, which was458

not specifically designed for snow reflectance retrieval in complex terrain (Hagolle et al.,459

2017). In addition, the reflectance retrieval is also affected by the use in MAJA retrieval460

of a coarse DEM (SRTM90) compared to the native resolution of the data (10-20 m).461

For all those reasons, improvements in the retrieval of S2 absolute reflectance values is462

necessary before considering their future assimilation.463

MODIS reflectance observations also have a strong bias with the model. This bias is un-464

ambiguously attributed to MODIS according to the comparison with in-situ observations465

(Fig. 9). It is much higher than the intraclass variability of the observations and the466

ensemble IQR. In addition, Figs. 10 and 11 show that this bias is well described by a467

linear function of reflectance which is rather invariant in space and well stable in time.468

However, MODIS semi-distributed product (median) seems consistent, because : (1) we469

demonstrate that the median of the observations within the topographical classes is a470

representative value of the distribution in the general case, (2) reflectance dependence471
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on aspect corresponds to the model one (Fig. 7) (3) date-to-date time variations notably472

match those of the ensemble, (4) these variations sometimes better matches in-situ ob-473

servations than the ensemble, which proves that their information content is good (Fig.474

9, in March). All these considerations give us good confidence in the intrinsic quality475

and information content of MODIS observations, but a solution to this bias is required476

for assimilation.477

478

5.3. Assimilating band ratios479

Biases are a common issue of snowpack remote sensing (Veyssière et al., 2019; Bal-480

samo et al., 2018) and require a proper estimation or correction before assimilation. Many481

methods exist in the NWP community to correct for the bias or dynamically estimate482

it in a data assimilation system (Draper et al., 2015; Auligné et al., 2007). However,483

these methods would require either (1) to assume a non-biased model (2) a representa-484

tive in-situ reflectance dataset to analyse and model the bias before correcting it on-line485

(3) extensive, representative, and continuous in-situ observations of snowpack variables486

to constrain satellite reflectance biases (4) additional data from other satellite sources487

(Balsamo et al., 2018). All of those suffer from limitations owing to the specificities of488

snowpack modelling and monitoring in a complex terrain, respectively : (1) snowpack re-489

flectance modelling probably suffers from some biases (Tuzet et al., 2017) (2) absence of490

any operational network measuring in-situ snowpack reflectance (3) sparse in-situ snow-491

pack measurements in general (4) lack of reliable reflectance retrieval from other satellite492

sources (as shown here for S2).493

494

Therefore, computing reflectance ratios for assimilation could be an appropriate so-495

lution in the current state of the art, because it does not require any assumption on the496
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bias attribution (observations and/or model) and nature. Results show that this method497

outstandingly allows to unbias the observations using r54 and r52 (Figs. 13 and 14).498

Furthermore, band ratios are at the core of snowpack surface properties retrieval from499

satellites (Lyapustin et al., 2009; Negi and Kokhanovsky, 2011; Dumont et al., 2014;500

Kokhanovsky et al., 2018). It is not clear, however, whether all the precious information501

content of reflectance variables is preserved when computing band ratios. Firstly, the cor-502

relation of the two unbiased ratios is very high (≥ 0.9), as already noted by (Lyapustin503

et al., 2009), and these variables have similar temporal variations than MODIS band 5504

(only sensitive to SSA) (see Figs. 8e,f and 12), suggesting that some information on the505

LAP content might be lost. Since it has been stated that reflectance assimilation requires506

at least two degrees of freedom, given the dependence of reflectance on LAP and SSA507

(Charrois et al., 2016), further work is required to infer whether these band ratios are508

varying sufficiently between polluted and pristine snowpacks. Other band combinations,509

with a higher sensitivity to LAP could also be used (if unbiased), as implemented in510

Di Mauro et al. (2015).511

Nevertheless, rank diagrams are greatly improved compared to reflectance variables (Fig.512

15). The obtained almost flat rank diagram for r54 shows that this variable is very likely513

to fall within the ensemble without any preferential position, for any topographical class514

and date. This is really encouraging towards spatialized assimilation of such variables.515

516

5.4. Ensemble modelling517

The remaining underdispersion of the ensemble evidenced by the over representation518

of the extremal positions in the rank diagrams, could be improved in the near future by a519

better characterization of the modelling chain uncertainties. (1) Increasing the amplitude520

of meteorological/impurities fluxes perturbations (Charrois et al., 2016) or using physi-521

23



cal NWP ensemble such as PEARP (Descamps et al., 2015; Vernay et al., 2015) could522

allow to better account for NWP modelling uncertainties and intra-massif variability of523

weather conditions. (2) Including recent developments in Crocus such as blowing snow524

within the semi-distributed geometry (SYTRON, (Vionnet et al., 2018)) (3) Including dif-525

ferent impurities scavenging parameter and optical properties configurations within the526

multiphysical ensemble (Tuzet et al., 2017).527

528

Furthermore, adaptations to the presented ensemble modelling chain could make it529

more suitable for assimilation. First, the ensemble population (N = 35) is small compared530

to recent local ensemble assimilation attempts in snowpack modelling (e.g. Piazzi et al.531

(2018), Larue et al. (2018), Charrois et al. (2016)). However ensemble size must be kept532

to reasonable values for larger scale operational applications, and scores are not expected533

to highly depend on ensemble size for openloop simulations (Leutbecher, 2018). In addi-534

tion, though increasing the ensemble population would allow to run several combinations535

of the forcings with ESCROC members, note that combining each forcing member with536

only one physical configuration of the model, therefore limiting the combinations, is a537

current practice in NWP to sample uncertainties (Descamps et al., 2015). Secondly, the538

choice of randomly drawing ”N” ESCROC configurations versus carefully building a given539

subset of ”N” members can be discussed. Indeed, Lafaysse et al. (2017) showed that the540

ensemble error representativeness could be improved by an appropriate optimized sample541

of members. However, this sample could not be tested here because it did not include542

T17 radiative transfer option (Tuzet et al., 2017), mandatory for reflectance modelling.543

Moreover, site-specific calibrations are expected to be suboptimal when applied over a544

wide diversity of sites (Krinner et al., 2018).545

546
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6. Conclusions547

This study investigated the potential for assimilation of MODIS reflectance observa-548

tions in ensemble snowpack simulations within a semi-distributed framework.549

550

First, it is shown that MODIS observations of reflectance aggregated by topographic551

classes can be compared with semi-distributed ensemble simulation outputs, and that they552

convey substantial information content. However, it also clearly appears that MODIS ob-553

servations are noisy and biased, due to the difficulty of retrieving surface reflectances in554

a complex terrain. In addition, it seems that S2 reflectance retrieval was affected by even555

bigger errors.556

557

Meanwhile, it seems that the semi-distributed framework is particularly adapted to558

reflectance assimilation. First, it enables to efficiently remove observational noise thanks559

to aggregation within topographical classes. It is clear though, that monitoring the sub-560

stantial intraclass natural variability of reflectance is then out of reach. Furthermore,561

state-of-the-art distributed snowpack modelling is currently not able to represent this562

spatial variability either. Reaching this goal would require the use of high resolution me-563

teorological forcings (Quéno et al., 2016), and modelling of snow redistribution by wind564

and gravitation (Vionnet et al., 2014; Mott and Lehning, 2010; Freudiger et al., 2017)565

in distributed simulations. However, such simulations would require intensive computa-566

tional resources compared to the semi distributed framework, added to the increase in567

computational cost due to ensemble forecasting already present here.568

569

This study was also the first attempt of spatialized ensemble detailed snowpack mod-570

elling using a combination of meteorological and model ensembles. Results showed that571
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the semi-distributed setup is able to represent the associated errors and uncertainties in572

the modelling of reflectance well, and identified paths to make it more suitable to data573

assimilation.574

575

Therefore, we are confident on the potential for assimilation to take full advantage of576

reflectance observations and detailed snowpack modelling in such a geometry. However,577

the remaining strong bias in MODIS semi-distributed reflectance observations prevents578

from directly assimilating them. A workaround was proposed for MODIS bias by com-579

puting ratios of reflectances, a simple method that should preserve the observations580

information content. We are confident that assimilating such variables is possible and581

could be beneficial for snowpack modelling in the near future. Furthermore, efforts to582

improve the retrieval of reflectances in complex terrain must be conducted, in order to583

reduce retrieval errors and bias, and implement retrieval of other medium-resolution satel-584

lite sources such as VIIRS and Sentinel3.585

586
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and documentation can be found at https://opensource.umr-cnrm.fr/projects/603

snowtools_git/wiki/Procedure_for_new_users and hhttps://opensource.umr-cnrm.604

fr/projects/snowtools_git/wiki/Data_assimilation_of_snow_observations. For605

reproducibility of results, the version used in this work is tagged as cluzetCRST. Process-606

ing of the albedo images has been performed using the open-source MODImLab algo-607

rithm, (version 1.2.5.d). This algorithm can be accessed by contacting its administrator,608

P. Sirguey.609

27



References610

Aalstad, K., Westermann, S., Schuler, T. V., Boike, J., Bertino, L., jan 2018. Ensemble-611

based assimilation of fractional snow-covered area satellite retrievals to estimate the612

snow distribution at arctic sites. The Cryosphere 12 (1).613

URL https://doi.org/10.5194%2Ftc-12-247-2018614

Andreadis, K. M., Lettenmaier, D. P., 2006. Assimilating remotely sensed snow observa-615

tions into a macroscale hydrology model. Advances in water resources 29 (6), 872–886.616

Auligné, T., McNally, A., Dee, D., 2007. Adaptive bias correction for satellite data in617

a numerical weather prediction system. Quarterly Journal of the Royal Meteorological618

Society 133 (624), 631–642.619

Baba, M., Gascoin, S., Hanich, L., dec 2018. Assimilation of sentinel-2 data into a620

snowpack model in the high atlas of morocco. Remote Sensing 10 (12), 1982.621

URL https://doi.org/10.3390%2Frs10121982622

Baba, M. W., Gascoin, S., Kinnard, C., Marchane, A., Hanich, L., jul 2019. Effect of623

digital elevation model resolution on the simulation of the snow cover evolution in the624

high atlas. Water Resources Research 55 (7), 5360–5378.625

URL https://doi.org/10.1029%2F2018wr023789626

Balsamo, G., et al., 2018. Satellite and in situ observations for advancing global earth627

surface modelling: A review. Remote Sensing 10 (12).628

URL http://www.mdpi.com/2072-4292/10/12/2038629

Carmagnola, C. M., Domine, F., Dumont, M., Wright, P., Strellis, B., Bergin, M., Dibb,630

J., Picard, G., Libois, Q., Arnaud, L., Morin, S., 2013. Snow spectral albedo at summit,631

28



greenland: measurements and numerical simulations based on physical and chemical632

properties of the snowpack. The Cryosphere 7 (6), 1139–1160.633

Carmagnola, C. M., Morin, S., Lafaysse, M., Domine, F., Lesaffre, B., Lejeune, Y., Picard,634

G., Arnaud, L., 2014. Implementation and evaluation of prognostic representations of635

the optical diameter of snow in the surfex/isba-crocus detailed snowpack model. The636

Cryosphere 8 (2), 417–437.637

Charrois, L., Cosme, E., Dumont, M., Lafaysse, M., Morin, S., Libois, Q., Picard, G.,638

2016. On the assimilation of optical reflectances and snow depth observations into a639

detailed snowpack model. The Cryosphere 10 (3), 1021–1038.640

Charrois, L., Dumont, M., Sirguey, P., Morin, S., Lafaysse, M., Karbou, F., 2013. Com-641

paring different modis snow products with distributed simulation of the snowpack in the642

french alps. In: Proceedings of the International Snow Science Workshop. Innsbruck,643

Austria.644

Davaze, L., Rabatel, A., Arnaud, Y., Sirguey, P., Six, D., Letreguilly, A., Dumont, M.,645

2018. Monitoring glacier albedo as a proxy to derive summer and annual surface mass646

balances from optical remote-sensing data. The Cryosphere 12 (1), 271–286.647

URL https://www.the-cryosphere.net/12/271/2018/648

De Lannoy, G. J., Reichle, R. H., Arsenault, K. R., Houser, P. R., Kumar, S., Ver-649

hoest, N. E., Pauwels, V. R., 2012. Multiscale assimilation of advanced microwave650

scanning radiometer–eos snow water equivalent and moderate resolution imaging spec-651

troradiometer snow cover fraction observations in northern colorado. Water Resources652

Research 48 (1).653

29



Dee, D. P., Da Silva, A. M., 1998. Data assimilation in the presence of forecast bias.654

Quarterly Journal of the Royal Meteorological Society 124 (545), 269–295.655

Descamps, L., Labadie, C., Joly, A., Bazile, E., Arbogast, P., Cébron, P., 2015. Pearp, the656
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Figure 1: Map of the study area of the Grandes-Rousses (red), located in the central French Alps.

Lautaret field site (diamond) and satellite retrieval tiles (boxes) are also indicated, together with the

limits of other SAFRAN massifs (black). Source : Shuttle Radar Topography Mission (SRTM), resolution

: 90m.

MODIS ID /S2 ID B3/B2 B4/B3 B1/B4 B2/B8A B5 B6/B11 B7/B12

Central Wavelength (nm) 469/497 555/560 645/665 858.5/865 1240 1640/1614 2130/2202

Bandwidth (nm) 20/100 20/45 50/40 35/33 20 24/143 50/242

Resol. at Nadir (m) 500/10 500/10 250/10 250/20 500 500/20 500

Spectral Domain VIS VIS VIS VIS/NIR NIR IR IR

Sensitivity to LAP ++ ++ ++ +

Sensitivity to SSA + + + ++ +++ ++ ++

Penetration depth (m) up to 10-20cm a few cm a few cm a few cm mm mm mm

Table 1: MODIS considered spectral band properties together with the closest matching Sentinel-2 band.
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(a) (b)

Figure 2: Computation of snow diffuse reflectances using TARTES for varying soot concentrations

(SSA=40m2 kg−1) (2a) and varying SSA (2b), for 1 m of 300kg m−3 density uniform snowpack, together

with MODIS and S2 spectral bands.

Source : http://snowtartes.pythonanywhere.com

Self Shadow Cast Shadows

Trees
Mixed pixels

Figure 3: Example of the complexity of the retrieval of reflectance affected by shadows, trees, and mixed

snow covers in a complex terrain. (Bertrand Cluzet, Col du Lautaret, December 20th 2017)
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Figure 4: Setup of the ensemble modelling chain.
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42



10

20

30

(km)

(a)

Aspect map

(b)

Ensemble median

10 20 30 (km)

10

20

30

(km)

(c)

MODIS B2

10 20 30 (km)

(d)

S2 B8A

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

N

NW

W

SW

S

SE

E

NE

flat N NE E SE S SW W NW
Aspect

0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
e
fl
e
ct

a
n
ce

(e)

2400m, flat and 20o slope

Ensemble

MODIS

S2

Figure 7: Map of aspect in the Grandes-Rousses (a), and comparison of the 3 reflectance products

in the NIR (860nm) on 2017-02-18, 10:00 am: ensemble median (b), semi-distributed MODIS band 2

(c) and S2 Band 8A (2017-02-19, 11:00am) (e). Boxplots (quartiles and medians) for the ensemble

(blue), distributed MODIS (green) and S2 (red) in the 2400m, flat and 20o slope classes. On the maps

(a-d), the contours denote the model’s 300m elevation bands, orange arrows show the approximate sun

direction and shadows are masked.
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Figure 8: 2013-2014 (a,c,e) and 2016-2017 (b,d,f) timeseries of reflectance in MODIS band 4 (a,b), 2 (c,d) and 5 (e,f) for the three

different products (ensemble in blue, MODIS in green, S2 in red). The stars denote the median of the ensemble and the semi-distributed

satellite products. The boxes shows the ensemble and distributed satellite products quartiles. See Tab.1 for the wavelengths and S2

corresponding bands. The blue line denotes the ensemble median Height of Snow (HS).
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Figure 9: Same as Fig. 8, in 2100 m.a.s.l flat class for 2016-2017 winter in MODIS band 4 (a) and 2

(b). In addition, Lautaret data from Autosolalb (orange diamonds), and observed HS (orange line) are

displayed. Note that bars denote the ensemble 5-95thpercentiles.
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Figure 10: Semi-distributed MODIS observations in band 4 (a), 2 (b) and 5 (c) against ensemble

median (density in color), for the 45 topographical classes within 1800-3000m and 0-20 slope, for all

the observation dates of 2013-2014 and 2016-2017 snow seasons.
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(a) (b)

Figure 11: Linear regression statistics (upper panel : squared Pearson correlations R2, center panel :

regression slope, bottom panel : regression intercept) in band 2 (a) and 5 (b) between the time series

of ensemble median and semi-distributed observations for the 45 classes within 1800-3000 m.a.s.l and

0-20 degrees of slope, during 2013-2014 and 2016-2017 snow seasons. Regressions with p-values > 0.01

and less than 6 dates overall are greyed out.
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Figure 12: Same as Fig. 8 for band ratios r54 (a,b) and r52 (c,d).
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Figure 13: Same as Fig. 10 for r54 (a) and r52 (b).
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Figure 14: Same as Fig. 11a for r54 (14a) and r52 (14b).
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Figure 15: Rank diagrams for the semi-distributed MODIS observations in band 4 (a) and r54 (b) within

the ensemble for all classes between 1800 and 3000 m.a.s.l. and between 0 and 20o of slope, and all

dates of 2013-2014 and 2016-2017 snow seasons (1009 occurrences).
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Appendix A. Table of observation dates853

Date MODIS S2 Autosolalb Date MODIS S2 Autosolalb

2013-11-11 11:00 X 2016-12-14 10:00 X

2013-11-22 10:00 X 2016-12-23 10:00 X

2013-11-29 10:00 X 2016-12-28 11:00 X

2013-12-04 11:00 X 2016-12-31 10:00 X

2013-12-13 11:00 X 2017-01-06 11:00 X

2013-12-29 11:00 X 2017-01-11 11:00 X

2014-01-05 11:00 X 2017-01-15 11:00 X

2014-01-12 11:00 X 2017-01-20 11:00 X

2014-01-25 10:00 X 2017-01-24 10:00 X

2014-02-06 11:00 X 2017-01-29 11:00 X

2014-02-22 11:00 X 2017-02-16 11:00 X X

2014-03-05 10:00 X 2017-02-18 10:00 X X

2014-03-17 11:00 X 2017-02-19 11:00 X X

2014-03-28 10:00 X 2017-02-25 10:00 X X

2014-04-06 10:00 X 2017-03-11 11:00 X X

2014-04-15 10:00 X 2017-03-13 10:00 X X

2014-06-05 11:00 X 2017-03-20 11:00 X X

Winter 2016-2017 2017-03-27 11:00 X X

2016-11-01 11:00 X 2017-04-03 11:00 X X

2016-11-12 10:00 X 2017-04-14 10:00 X X

2016-11-15 11:00 X 2017-04-20 10:00 X X

2016-11-28 10:00 X 2017-05-09 10:00 X

2016-12-01 11:00 X 2017-05-16 10:00 X

2016-12-05 11:00 X 2017-05-21 11:00 X

2016-12-11 11:00 X 2017-06-08 11:00 X

Table A.1: Summary of observation dates for MODIS, S2 and Autosolalb sensors over 2013-14 and

2016-2017 winters. Time is given for the corresponding closest model output time step (hour).

Appendix B. Intraclass distribution of observations854
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Figure Appendix B.1: Histograms of MODIS band 5 reflectance in flat and 20o slope classes at 2400m

on 2017, February the 25th, 10:40am.
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