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Introduction

The avalanche forecasting services of some countries use a chain composed of meteorological forcings, coming from either a Numerical Weather Prediction model (NWP) or observations, and a detailed multilayer snowpack model such as Crocus (Vionnet et al., 2012) or SNOWPACK [START_REF] Lehning | A physical SNOW-PACK model for the Swiss avalanche warning. part II: snow microstructure[END_REF]. Both meteorological forcings and snowpack modelling induce errors and uncertainties in the simulations [START_REF] Essery | A comparison of 1701 snow models using observations from an alpine site[END_REF]Vernay et al., 2015;[START_REF] Raleigh | Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework[END_REF][START_REF] Günther | Uncertainties in snowpack simulations-assessing the impact of model structure, parameter choice, and forcing data error on point-scale energy balance snow model performance[END_REF]. These errors are considerably limiting the use of snowpack models by avalanche hazard forecasters [START_REF] Morin | Application of physical snowpack models in support of operational avalanche hazard forecasting: a status report on current implementations and prospects for the future[END_REF]. The representativeness of simulations is also limited in complex mountain terrain [START_REF] Fiddes | Toposub: a tool for efficient large area numerical modelling in complex topography at sub-grid scales[END_REF]. In addition, most of these snowpack modelling chains do not operationally assimilate any available information on the snowpack properties (either in-situ or remotely-sensed) [START_REF] Helmert | Review of snow data assimilation methods for hydrological, land surface, meteorological and climate models: Results from a cost harmosnow survey[END_REF]. There are several reasons for that : (1) snowpack in-situ observations are sparse and lack representativeness (2) satellite observations retrieval is challenging [START_REF] Nolin | Recent advances in remote sensing of seasonal snow[END_REF][START_REF] Helmert | Review of snow data assimilation methods for hydrological, land surface, meteorological and climate models: Results from a cost harmosnow survey[END_REF], (3) preserving state variable consistency within detailed snowpack models, which is a key point for avalanche forecasting, requires sophisticated assimilation algorithms [START_REF] Magnusson | Improving physically based snow simulations by assimilating snow depths using the particle filter[END_REF]. As a consequence, the errors often accumulate along the snow season leading to increasingly poor model performance and utility for avalanche hazard forecasting and other operational applications. Data assimilation systems using ensemble approaches is the best way to reduce snowpack modelling errors [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF][START_REF] Larue | Simulation and assimilation of passive microwave data using a snowpack model coupled to a calibrated radiative transfer model over northeastern canada[END_REF][START_REF] Piazzi | A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an alpine environment[END_REF]Winstral et al., 2019). The Particle Filter (PF) ensemble assimilation algorithm seems to be especially well suited to reduce detailed snowpack modelling errors [START_REF] Magnusson | Improving physically based snow simulations by assimilating snow depths using the particle filter[END_REF]. Indeed, ensembles enable to quantify the uncertainties of (1) meteorological forcings, using physically based ensembles (Vernay et al., 2015) or statistical perturbations [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF]Winstral et al., 2019), and (2) snowpack modelling, using multiphysical systems [START_REF] Essery | A factorial snowpack model (fsm 1.0)[END_REF][START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF]. [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF] did the first application of a PF within a detailed snowpack model, but only at one specific location and their ensemble only described the meteorological uncertainty, not model uncertainty.

They were followed by [START_REF] Magnusson | Improving physically based snow simulations by assimilating snow depths using the particle filter[END_REF] and [START_REF] Larue | Simulation and assimilation of passive microwave data using a snowpack model coupled to a calibrated radiative transfer model over northeastern canada[END_REF]. Recently, [START_REF] Piazzi | A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an alpine environment[END_REF] and [START_REF] Smyth | Particle filter data assimilation of monthly snow depth observations improves estimation of snow density and SWE[END_REF] applied the PF to a combination of meteorological and model ensembles, but with a less complex model and at the local scale as well. In parallel, spatialized application of PF has been done in several studies [START_REF] Thirel | Assimilation of modis snow cover area data in a distributed hydrological model using the particle filter[END_REF][START_REF] Baba | Assimilation of sentinel-2 data into a snowpack model in the high atlas of morocco[END_REF], but with deterministic and low complexity snow models, not suited for avalanche hazard forecasting. This paper fills a gap by implementing a combination of a meteorological ensemble and a multiphysical system of detailed snow models in a spatialized context.

Daily moderate-resolution observations (250 to 500 m) in the visible (VIS) and near infra-red (NIR) spectrum from the MODerate Resolution Imaging Spectroradiometer (MODIS) are suitable to monitor the snowpack properties [START_REF] Hall | Modis snow-cover products[END_REF]. Sentinel-2 (S2) has a coarser revisit time (5 days) but captures much finer spatial scales (10-20 m).

From MODIS and S2 spectral Top Of Atmosphere (TOA) radiance products, it is possible to retrieve the snowpack extent as a Snow Cover Fraction by pixel (SCF) and Bottom of Atmosphere (BOA) reflectances which requires to account for the complexity of the radiative transfer in mountainous area [START_REF] Richter | Correction of satellite imagery over mountainous terrain[END_REF][START_REF] Sirguey | Simple correction of multiple reflection effects in rugged terrain[END_REF]. Many studies focus on the assimilation of SCF, showing a strong impact of assimilation in hydrological models [START_REF] De Lannoy | Multiscale assimilation of advanced microwave scanning radiometer-eos snow water equivalent and moderate resolution imaging spectroradiometer snow cover fraction observations in northern colorado[END_REF][START_REF] Thirel | Assimilation of modis snow cover area data in a distributed hydrological model using the particle filter[END_REF][START_REF] Stigter | Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a himalayan catchment[END_REF][START_REF] Aalstad | Ensemblebased assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at arctic sites[END_REF][START_REF] Baba | Assimilation of sentinel-2 data into a snowpack model in the high atlas of morocco[END_REF]. However, SCF is expected to be of less interest for detailed snowpack modelling in alpine terrain, because the information content is limited to the snow line [START_REF] Andreadis | Assimilating remotely sensed snow observations into a macroscale hydrology model[END_REF][START_REF] Toure | Assimilation of modis snow cover fraction observations into the nasa catchment land surface model[END_REF]. Meanwhile, it is expected for the BOA reflectances to carry useful information on the temporal and spatial variability of the snowpack surface properties such as Light Absorbing Particles concentration (LAP, [kg kg -1 snow ]) and snow microstructure (quantified by the Specific Surface Area, SSA, [m 2 kg -1 ]) [START_REF] Dozier | Interpretation of snow properties from imaging spectrometry[END_REF][START_REF] Kokhanovsky | On the reflectance spectroscopy of snow[END_REF]. Indeed, these variables drive the shortwave (SW) radiation absorption of the snowpack, and thus carry crucial information on the snow surface energy budget [START_REF] Skiles | Radiative forcing by light-absorbing particles in snow[END_REF][START_REF] Mauro | Saharan dust events in the european alps: role in snowmelt and geochemical characterization[END_REF]. Moreover, monitoring the surface snow microstructure can help detect precipitation (solid and liquid) and melting events, while frequent observations of surface LAP contents can enable to constrain LAP vertical layering within the snowpack. In line with this, [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF] showed that assimilating satellite reflectances could help reduce Snow Water Equivalent (SWE, [kg m -2 ]) modelling uncertainties by up to 45%.

The most detailed snow models are also able to compute reflectances from the snowpack properties, through the use of a detailed radiative transfer [START_REF] Libois | Summertime evolution of snow specific surface area close to the surface on the Antarctic Plateau[END_REF][START_REF] Skiles | Toward understanding direct absorption and grain size feedbacks by dust radiative forcing in snow with coupled snow physical and radiative transfer modeling[END_REF] and the explicit evolution of SSA [START_REF] Carmagnola | Snow spectral albedo at summit, 28 greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack[END_REF] and LAP [START_REF] Tuzet | A multilayer physically based snowpack model[END_REF]. Such radiative transfer models play the role of observation operators, computing observation-like variables from the model state variables. However, modelling geometries often differ from the distributed geometry of satellite retrievals [START_REF] Mary | Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of a semi-distributed snowpack model[END_REF]. For instance, Météo-France multilayer snowpack model Crocus is operationally applied on several topographical classes (by 300 m elevation bands, for 8 different aspects and 3 different slopes, so-called "semi-distributed" geometry) inside socalled "massif" regions of about 1000 km 2 [START_REF] Durand | A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting[END_REF][START_REF] Lafaysse | Toward a new chain of models for avalanche hazard forecasting in french mountain ranges, including low altitude mountains[END_REF].

This semi-distributed framework, with around 200 topographical classes, was proven to be sufficient to represent the main features of snowpack variability with topography compared to fully distributed simulations at 25 to 250 m resolution [START_REF] Fiddes | Toposub: a tool for efficient large area numerical modelling in complex topography at sub-grid scales[END_REF][START_REF] Revuelto | Multi-criteria evaluation of snowpack simulations in complex alpine terrain using satellite and in situ observations[END_REF]. However, the feasibility of the assimilation of satellite reflectances in Crocus semi-distributed model using the PF ensemble data assimilation algorithm, still needs to be assessed.

The main objective of this paper is to assess the potential for semi-distributed assimilation of satellite observations of snowpack reflectances into ensemble snowpack simulations. For that purpose, we present extended comparisons of openloop simulations (e.g.

without assimilation) with satellite observations from MODIS and S2 aggregated in this geometry. Sec. 2 presents the data and the modelling framework, while Sec. 3 introduces the aggregation method and defines the points of comparison from the assimilation perspective. Then Sec. 4 presents the comparison results, which are discussed in Sec. 5.

Data and model

Case study

This study focuses on two snow seasons (2013-2014 and 2016-2017) in the Grandes-Rousses (see Fig. 1). The area of about 500 km 2 is located in the Central French Alps, and is characterized by a wide elevation range from the bottom of Romanche valley (about 700 m a.s.l.) to the top of Aiguilles d'Arve (3514 m a.s.l.). This specific massif was chosen because it encompasses the Col du Lautaret (2058 m a.s.l.), where field campaigns have been carried out since winter 2016-2017 close to an automatic weather station [START_REF] Tuzet | Influence of light-absorbing particles on snow spectral irradiance profiles[END_REF].

The two snow seasons have been selected because they show contrasted snow conditions.

2013-2014 is characterised by above average snow depths, with frequent snowfall events and two major dust deposition events (end of February, end of March) [START_REF] Dumont | In situ continuous visible and near-infrared spectroscopy of an alpine snowpack[END_REF][START_REF] Mauro | Mineral dust impact on snow radiative properties in the european alps combining ground, uav, and satellite observations[END_REF]. 2016-2017 was a warm winter, without significant snowfall between late November and beginning of January, and early melting in spring. In addition, several minor dust deposition events occurred after the end of February according to MOCAGE outputs. [START_REF] Dozier | Interpretation of snow properties from imaging spectrometry[END_REF].

Digital Elevation

We extracted and post-processed these data in a 36x41 km 2 region (23616 pixels of 250 m resolution, see Fig. 1) including the Grandes-Rousses and Col du Lautaret field site during 2013-2014 and 2016-2017 snow seasons with MODImLab retrieval algorithm.

In such context of complex terrain, MODImLab retrieval algorithm [START_REF] Sirguey | Simple correction of multiple reflection effects in rugged terrain[END_REF] was

shown to outperform other products in many studies [START_REF] Dumont | Linking glacier annual mass balance and glacier albedo retrieved from modis data[END_REF][START_REF] Charrois | Comparing different modis snow products with distributed simulation of the snowpack in the french alps[END_REF]). Indeed, MODImLab accounts for atmospherical radiative transfer, direct and diffuse contribution, multiple topographical reflection, terrain shading and snow reflectance anisotropy (see. Fig. 3).

For mixed pixels, MODImLab's spectral unmixing algorithm computes the reflectance of the snow fraction of the pixel together with a Snow Cover Fraction (SCF). For all the pixels, resulting product is the bi-hemispherical reflectance (accounting in particular for snow Bidirectional Refletance Density Function (BRDF), [START_REF] Dumont | Monitoring spatial and temporal variations of surface albedo on Saint Sorlin Glacier (French Alps) using terrestrial photography[END_REF] 

Model

In S2M (SAFRAN-SURFEX/ISBA/Crocus-MEPRA), the Meteo-France operational modelling system of the snowpack, meteorological forcings from SAFRAN analysis [START_REF] Durand | A meteorological estimation of relevant parameters for snow models[END_REF] 

Ensemble of Meteorological Forcings

In SAFRAN, a meteorological guess from the NWP model ARPEGE is adjusted with weather observations within each massif on the semi-distributed geometry. Here, in order to represent the uncertainties of this analysis, an ensemble of 35 meteorological forcings was generated by stochastic perturbations on all the meteorological variables of the reference SAFRAN analysis for the Grandes-Rousses. Following [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF], the magnitude of perturbations was adjusted by a local assessment of SAFRAN errors.

SAFRAN does not provide impurities deposition fluxes. Therefore, LAP wet and dry deposition fluxes for BC and dust were extrapolated from MOCAGE chemistry-transport model [START_REF] Josse | Radon global simulations with the multiscale chemistry and transport model mocage[END_REF] at Lautaret field site (see Fig. 1). For LAP fluxes, Tuzet et al.

(2017) showed that the order of magnitude were badly captured by ALADIN-Climate chemistry-transport model [START_REF] Nabat | Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol-atmosphere-ocean model over the mediterranean[END_REF], while the timing of events was well captured. Similar behaviour was found with MOCAGE, with an over estimation of BC fluxes in particular. As a consequence, each of the 4 LAP fluxes variables, for each of the 35 members, was multiplied by a constant random factor along the forcing time period, following a lognormal law (µ = 0.01, σ = 10) for BC, and (µ = 1, σ = 10) for dust.

Ensemble of snow models

ESCROC [START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF] 2017). An ensemble of 1944 members using T17 option, so-called "E1tartes" was built for this study, including all the physical options described by [START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF] except for options of solar radiation absorption scheme.

Model chain

The ensemble modelling chain setup is summarized in Fig. 4. At the beginning of a simulation, 35 model configurations are randomly drawn from E1tartes. Each one is associated with a perturbed forcing file to perform the simulation for the whole year, totalling 35 different snowpack simulations.

Methods

Topographic aggregation

An aggregation process is used to adapt the observations to the model semi-distributed geometry with the aim of assimilation. Another added value of the aggregation is to reduce random observation errors and average out features that are not accounted for in the model [START_REF] Hyer | An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of modis collection 5 optical depth retrievals[END_REF].

DEM and topographical classification

In our modelling framework, a topographical class C i is described by a triplet (e i , a i , s i )

where the elevation e i ∈ [600, 900, ..., 3600], the aspect a i ∈ [0, 45, 90, ...315] (in degrees, clockwise from North), and the slope s i ∈ [20, 40] (in degrees). Flat classes are described by a triplet (e i , -, 0). In our case, there is a total of 187 different topographical classes.

For each pixel p, a triplet (e,a,s) is computed from the IGN250 DEM (see Sec. 2.2.1) and thus is attributed to a topographical class. The classification rule is described as follows for tilted classes (Eq. 1) and for flat classes ( Eq. 2):

p(e, a, s)

∈ C i (e i , a i , s i ) ⇐⇒          e ∈ [e i -150, e i + 150[ s ∈ [s i -10, s i + 10[ a ∈ [a i -22.5, a i + 22.5[ (1) 
p(e, a, s)

∈ C i (e i , -, 0) ⇐⇒    e ∈ [e i -150, e i + 150[ s < 10 (2)
Note that this classification process excludes pixels steeper than 50 degrees were both modelling and remote sensing are unsound.

MODIS aggregation

An algorithm is used to aggregate MODIS distributed observations into semi-distributed observations in order to compare it with model outputs. In this process, a particular attention is paid to the validity and spatial representativeness of the observations, as described in Fig. 5. Regarding the validity, pixels with clouds, self/cast shadows, invalid CORINE land covers (see Sec. 2.2.2) as well as pixel lying outside the Grandes-Rousses are filtered out (A label in Fig. 5). Then for reflectance only, pixels with Snow Cover Fraction SCF pix inferior to 0.85, are discarded (B), since MODImLab reflectance product is less accurate for mixed pixels [START_REF] Mary | Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of a semi-distributed snowpack model[END_REF]. The product (B) is referred to as "distributed reflectance".

Finally, reflectance and SCF are aggregated into semi-distributed products by taking the median value within each class. In order to ensure the spatial representativeness of the aggregated observations, classes where the number of valid pixels is below ten and having less than 10% of pixels with reflectance observations are filtered out in this process (C and D). For the same reason, classes where the average Snow Cover Fraction SCF class is inferior to 0.85 are masked for reflectance in a final step (E).

Sentinel-2 aggregation

S2 images were aggregated to the semi-distributed geometry in a similar process as for MODIS (see Sec. 3.1.2), as described in Fig. 6. In a first step, a validity masking is performed on Theia L2B Snow Mask using Theia L2A Clouds and Geophysical masks (A).

Then, we produce the distributed S2 product (B) by classifying using the IGN250 DEM and discarding non-snow pixels. The aggregated SCF value (D) was here computed as the ratio between snowy and valid populations, when the valid population was above 10 pixels and 10 % of the total population (as described in the previous paragraph). Finally, aggregated SCF was used to filter the semi-distributed reflectance (D) as in Sec. 3.1.2.

Assessing the feasibility of data assimilation

Data assimilation algorithms generally require that systematical bias between the ensemble and the observations is negligible for a proper functioning [START_REF] Dee | Data assimilation in the presence of forecast bias[END_REF]. In addition, for ensemble data assimilation such as the PF, the observation should usually lie within the ensemble envelope, otherwise the algorithm is likely to collapse [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF]. Rank diagrams are commonly used in the ensemble forecasting community to check for both issues by computing the histogram of the position of the observation within the ensemble for all available dates and places [START_REF] Hamill | Interpretation of rank histograms for verifying ensemble forecasts[END_REF]. Furthermore, apart from these considerations, correlations between ensemble and observations timeseries can help quantify the information content from observation and its potential for assimilation [START_REF] Reichle | Global soil moisture from satellite observations, land surface models, and ground data: Implications for data assimilation[END_REF]. If timeseries are weakly correlated, this means that it is likely that observations carry substantial information valuable for the ensemble, but that data assimilation of such different datasets will be a difficult task.

In order to assess the potential of applying assimilation algorithms to our spatialized MODIS and S2 remarkably agree on the snowpack extent, while the ensemble mean seems to overestimate it. Both satellite products show on average more contrasted and lower reflectance values than the model. However, MODIS and the model agree on the reflectance dependence on aspect (lower in South-Eastern slopes), contrary to S2. For all bands, the IQR is reduced after a snowfall (0.01-0.02 in bands 4 and 2, 0.02-0.03 in band 5), and increases with the time elapsed since the last snowfall and all along the melting season (up to 0.1 in bands 4 and 2 and 0.05 in band 5).

Ensemble and satellite reflectance timeseries

However, the main feature here is the strong departure between the ensemble and MODIS observations. For almost all dates of both winters, the semi-distributed observation is under all the members of the ensemble in bands 4 and 2. This deviation is smaller in band 5. Note also that the distributed observations IQR (green boxes) is considerable, and notably lower in band 5 (0.02-0.05) than in bands 2 and 4 (0.05-0.1). Regarding S2 observations, (Fig. 8b,d), agreement of semi-distributed observations (red stars) with the ensemble is good for fresh snow (2016, December 1 st ) but a strong departure (0.1-0.2) appears after extended periods without snowfall (2016, December 31 th for exambple).

Furthermore, the IQR of S2 distributed observations (red boxes) is 2-3 times larger than for MODIS.

Comparison with in-situ measurements

Comparison with field measurements at Col du Lautaret (Height of Snow (HS) and reflectance in bands 4 and 2) is possible for the 2100 m a.s.l flat class during 2016-2017 winter (see Fig. 9). First and foremost, there is a strong bias of MODIS observations with respect to in-situ Autosolalb observations (about 0.2 in band 4 and 0.1-0.15 in band 2). However, their time variations reproduce the temporal pattern obtained from in-situ observations for example between March 20 th and 27 th when an increase of reflectance is occurring in both products.

Meanwhile, the ensemble reflectance generally has the same magnitude as the in-situ observations in both bands. In band 4, the in-situ observations lie within the ensemble for fresh snow, for example on February 18 th , March 27 th and April 3 rd . In band 2, reflectance is underestimated by the ensemble for those dates, except on March 27 th . In addition, most of the members are overestimating reflectance in both bands during early melt (11 th and 13 th of March), while the comparison of the ensemble median and in-situ observed HS (blue and orange lines in Fig. 9) show that melt might be underestimated in the model. On March 20th, ensemble band 4 reflectance generally decreases while band 2 increases, together with a light snowfall in the model. Meanwhile, in-situ observations of HS show that there was no snowfall for this date.

Comparison over all reliable topographical classes

To investigate the distribution of this bias over time and space, MODIS observed semi-distributed values were plotted against the ensemble median. We restricted this study to topographical classes where the observation process is the most reliable, i.e.

with low probability of being mixed/rocky (20 o maximal slope) and with large enough pixel populations over the whole snow seasons (1800-3000 m.a.s.l.). In bands 4 and 2, Figs. 10a and 10b show a strong deviation from the 1:1 line. Moreover, the value range in band 4 is much lower in the model (about 0.05) than in the observations (about 0.3).

In band 5 (Fig. 10c), observations and model better align with the 1:1 line.

In order to refine this analysis over space, linear regressions were systematically carried out between the ensemble median and the semi-distributed observations for each band inside each reliable topographical class (e.g. computing regressions between timeseries of blue stars and green stars in Fig. 8). The associated Pearson R 2 , slope and intercept coefficients are shown in Figs. 11a and 11b for bands 2 and 5. In the absence of model or observational bias, Slope should be close to 1 and Intercept to 0.

In band 2, overall high and significant R 2 (0.75-0.85) are noted. Slope is generally > 1, and Intercept < -0.4. However, regression is close to identity in the sunny slopes (strong dependence on aspect) with higher correlations. Band 5 shows high and significant R 2

as well (about 0.8-0.9). Slope and Intercept moderately deviates from Identity (Slope < 1).

Spectral bands reflectance ratio

Timeseries comparison between the model and satellite products

The bias between observations and model described in Sec. 4.1 is likely to be problematic for data assimilation. Computing a ratio between the reflectances in two different bands (so-called "band ratio") might reduce this issue.

To that aim, the ratios between bands 5 and 4 (r54) and bands 5 and 2 (r52) were computed for MODIS observations. To do so, each ratio was computed on every pixel of the distributed reflectance (label B in Fig. 5), and aggregated and masked with the same method as for raw reflectances. 

Comparison over all the reliable classes

Fig. 13 shows the semi-distributed observations against the ensemble medians for the ratios for all the reliable classes and the two snow seasons as in Sec. 4.1.4. There is no notable systematic bias between the observed ratios and the modelled ones.

Statistics of linear regression in Figs. 14a, and 14b show high R 2 values generally above 0.85, similar to those for band 5 in Fig. 11b. More interestingly, regression parameters are now around identity (Slope=1, Intercept=0) which illustrates the better agreement (no systematic bias) of observations and model for these ratios. While correlation patterns are almost identical for r54 and r52, Slope parameter is generally more departing from identity for r52 than for r54, with a significant dependence on aspect (lower Slopes in sunny aspects).

Towards assimilation

Fig. 15a shows the rank diagram for the raw reflectance of band 4, over all considered dates and topographical classes of the two snow seasons. In this graph, the observations lie in rank 0 (under all members of the ensemble) about 60 % of the occurrences, consistently with the negative bias depicted in previous section. On the contrary, the rank diagram for band ratio r54 in Fig. 15b is highly improved with respect to band 4, the observation being in the ensemble 80 % of the occurrences. Result is similar for r52 (not shown). Though overestimation of frequency of ranks 0 (under the ensemble) and 36

(over the ensemble) denote that the ensemble dispersion is insufficient, the rank diagram is flat, all the ranks having similar frequencies.

Discussion

On the relevance of the comparison in the semi-distributed framework

The semi-distributed framework was chosen for the comparison between observed and simulated reflectances because it is the basis of the French operational snowpack modelling system, and considering that running this model on a 250m-grid requires about 100 times more computer resources. Since it is quite specific, the different types of errors in observations and simulations in this semi-distributed geometry must be discussed for a correct interpretation of our results. Within a topographical class, observations are affected by (1) natural variability, (2) retrieval errors and (3) classification errors. In particular, DEM errors and resolution have a strong impact in satellite retrievals via shadows and subgrid topography [START_REF] Baba | Effect of digital elevation model resolution on the simulation of the snow cover evolution in the high atlas[END_REF][START_REF] Davaze | Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data[END_REF], leading to about ±10% errors in broadband albedo for MODIS data [START_REF] Dumont | Linking glacier annual mass balance and glacier albedo retrieved from modis data[END_REF]. Moreover, S2 data are particularly affected by the three sources, since the retrieval DEM (SRTM90) in the MAJA processor is too coarse to capture the topographic variability at the scale of the pixels (10-20 m) and because the classification is done to an even much coarser scale (IGN250). The resulting intraclass variability of S2 and MODIS is particularly visible in From the model point of view, the ensemble approach in this study is expected to satisfactorily assess snowpack modelling errors by the combination of meteorological and multiphysical model ensembles. However the semi-distributed simulations can have a limited spatial representativeness due to the snowpack natural variability, for example when the snow line or rain-snow line lies within the topographic class. In the general case, though, we expect this issue to be of limited importance, in the line with other studies [START_REF] Mary | Intercomparison of retrieval algorithms for the specific surface area of snow from near-infrared satellite data in mountainous terrain, and comparison with the output of a semi-distributed snowpack model[END_REF].

Assets and limits of the satellite products

Since we consider that the observation process is not reliable in shadowed area, we filter out many observations, thus reducing the amount of spatial information available for assimilation. This means that from November to February, North facing slopes will likely not be observed. Therefore, ensemble simulations would not be corrected there during this period, if the assimilation were to be carried out on each topographic class independently. This stresses the need for a spatially coherent data assimilation algorithm, e.g. assimilating all observed topographic classes at the same time, in order to spatially propagate the effect of assimilation and to avoid inconsistent spatial patterns.

Furthermore, a spatially comprehensive assimilation of SCF would be needed beforehand to detect topographic classes where the ensemble and observations disagree on the presence of snow and assess where reflectance can be compared, similarly as in [START_REF] Baba | Assimilation of sentinel-2 data into a snowpack model in the high atlas of morocco[END_REF].

Observations are also affected by significant errors and biases that are problematic for assimilation. S2 reflectance observations suffer from two significant inconsistencies. ( 1)

The dependence of reflectance on aspect is too strong and unexpected. Higher band 2 reflectance are obtained in South-Eastern slopes where SSA should preferentially decrease owing to sun exposure (causing a decrease in reflectance through enhanced metamorphism) and lower SZA (Fig. 7) (Warren, 1982). ( 2) Reflectance decrease with time in the absence of snowfall in the early 2016-2017 snow season is too pronounced (Fig. 8b andd). These two considerations can be explained by retrieval errors in the MAJA algorithm, probably owing to the representation of topography and atmosphere, which was not specifically designed for snow reflectance retrieval in complex terrain [START_REF] Hagolle | Maja algorithm theoretical baseline document[END_REF]. In addition, the reflectance retrieval is also affected by the use in MAJA retrieval of a coarse DEM (SRTM90) compared to the native resolution of the data (10-20 m).

For all those reasons, improvements in the retrieval of S2 absolute reflectance values is necessary before considering their future assimilation.

MODIS reflectance observations also have a strong bias with the model. This bias is unambiguously attributed to MODIS according to the comparison with in-situ observations (Fig. 9). It is much higher than the intraclass variability of the observations and the ensemble IQR. In addition, Figs. 10 and 11 show that this bias is well described by a linear function of reflectance which is rather invariant in space and well stable in time.

However, MODIS semi-distributed product (median) seems consistent, because : (1) we demonstrate that the median of the observations within the topographical classes is a representative value of the distribution in the general case, (2) reflectance dependence on aspect corresponds to the model one (Fig. 7) (3) date-to-date time variations notably match those of the ensemble, (4) these variations sometimes better matches in-situ observations than the ensemble, which proves that their information content is good (Fig. 9, in March). All these considerations give us good confidence in the intrinsic quality and information content of MODIS observations, but a solution to this bias is required for assimilation.

Assimilating band ratios

Biases are a common issue of snowpack remote sensing (Veyssière et al., 2019;[START_REF] Balsamo | Satellite and in situ observations for advancing global earth surface modelling: A review[END_REF] and require a proper estimation or correction before assimilation. Many methods exist in the NWP community to correct for the bias or dynamically estimate it in a data assimilation system [START_REF] Draper | A dynamic approach to addressing observation-minus-forecast bias in a land surface skin temperature data assimilation system[END_REF][START_REF] Auligné | Adaptive bias correction for satellite data in a numerical weather prediction system[END_REF]. However, these methods would require either (1) to assume a non-biased model (2) a representative in-situ reflectance dataset to analyse and model the bias before correcting it on-line

(3) extensive, representative, and continuous in-situ observations of snowpack variables to constrain satellite reflectance biases (4) additional data from other satellite sources [START_REF] Balsamo | Satellite and in situ observations for advancing global earth surface modelling: A review[END_REF]. All of those suffer from limitations owing to the specificities of snowpack modelling and monitoring in a complex terrain, respectively : (1) snowpack reflectance modelling probably suffers from some biases [START_REF] Tuzet | A multilayer physically based snowpack model[END_REF] (2) absence of any operational network measuring in-situ snowpack reflectance (3) sparse in-situ snowpack measurements in general (4) lack of reliable reflectance retrieval from other satellite sources (as shown here for S2).

Therefore, computing reflectance ratios for assimilation could be an appropriate solution in the current state of the art, because it does not require any assumption on the bias attribution (observations and/or model) and nature. Results show that this method outstandingly allows to unbias the observations using r54 and r52 (Figs. 13 and 14).

Furthermore, band ratios are at the core of snowpack surface properties retrieval from satellites [START_REF] Lyapustin | Retrieval of snow grain size over greenland from modis[END_REF][START_REF] Negi | Retrieval of snow albedo and grain size using reflectance measurements in himalayan basin[END_REF][START_REF] Dumont | Contribution of light-absorbing impurities in snow to greenland's darkening since 2009[END_REF][START_REF] Kokhanovsky | On the reflectance spectroscopy of snow[END_REF]. It is not clear, however, whether all the precious information content of reflectance variables is preserved when computing band ratios. Firstly, the correlation of the two unbiased ratios is very high (≥ 0.9), as already noted by [START_REF] Lyapustin | Retrieval of snow grain size over greenland from modis[END_REF], and these variables have similar temporal variations than MODIS band 5

(only sensitive to SSA) (see Figs. 8e,f and 12), suggesting that some information on the LAP content might be lost. Since it has been stated that reflectance assimilation requires at least two degrees of freedom, given the dependence of reflectance on LAP and SSA [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF], further work is required to infer whether these band ratios are varying sufficiently between polluted and pristine snowpacks. Other band combinations, with a higher sensitivity to LAP could also be used (if unbiased), as implemented in Di [START_REF] Mauro | Mineral dust impact on snow radiative properties in the european alps combining ground, uav, and satellite observations[END_REF].

Nevertheless, rank diagrams are greatly improved compared to reflectance variables (Fig. 15). The obtained almost flat rank diagram for r54 shows that this variable is very likely to fall within the ensemble without any preferential position, for any topographical class and date. This is really encouraging towards spatialized assimilation of such variables.

Ensemble modelling

The remaining underdispersion of the ensemble evidenced by the over representation of the extremal positions in the rank diagrams, could be improved in the near future by a better characterization of the modelling chain uncertainties. (1) Increasing the amplitude of meteorological/impurities fluxes perturbations [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF] or using physi-cal NWP ensemble such as PEARP [START_REF] Descamps | Pearp, the météo-france short-range ensemble prediction system[END_REF]Vernay et al., 2015) could allow to better account for NWP modelling uncertainties and intra-massif variability of weather conditions. (2) Including recent developments in Crocus such as blowing snow within the semi-distributed geometry (SYTRON, (Vionnet et al., 2018)) (3) Including different impurities scavenging parameter and optical properties configurations within the multiphysical ensemble [START_REF] Tuzet | A multilayer physically based snowpack model[END_REF].

Furthermore, adaptations to the presented ensemble modelling chain could make it more suitable for assimilation. First, the ensemble population (N = 35) is small compared to recent local ensemble assimilation attempts in snowpack modelling (e.g. [START_REF] Piazzi | A particle filter scheme for multivariate data assimilation into a point-scale snowpack model in an alpine environment[END_REF], [START_REF] Larue | Simulation and assimilation of passive microwave data using a snowpack model coupled to a calibrated radiative transfer model over northeastern canada[END_REF], [START_REF] Charrois | On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model[END_REF]). However ensemble size must be kept to reasonable values for larger scale operational applications, and scores are not expected to highly depend on ensemble size for openloop simulations [START_REF] Leutbecher | Ensemble size: How suboptimal is less than infinity[END_REF]. In addition, though increasing the ensemble population would allow to run several combinations of the forcings with ESCROC members, note that combining each forcing member with only one physical configuration of the model, therefore limiting the combinations, is a current practice in NWP to sample uncertainties [START_REF] Descamps | Pearp, the météo-france short-range ensemble prediction system[END_REF]. Secondly, the choice of randomly drawing "N" ESCROC configurations versus carefully building a given subset of "N" members can be discussed. Indeed, [START_REF] Lafaysse | A multiphysical ensemble system of numerical snow modelling[END_REF] showed that the ensemble error representativeness could be improved by an appropriate optimized sample of members. However, this sample could not be tested here because it did not include T17 radiative transfer option [START_REF] Tuzet | A multilayer physically based snowpack model[END_REF], mandatory for reflectance modelling.

Moreover, site-specific calibrations are expected to be suboptimal when applied over a wide diversity of sites [START_REF] Krinner | Esm-snowmip: assessing snow models and quantifying snow-related climate feedbacks[END_REF].

Conclusions

This study investigated the potential for assimilation of MODIS reflectance observations in ensemble snowpack simulations within a semi-distributed framework.

First, it is shown that MODIS observations of reflectance aggregated by topographic classes can be compared with semi-distributed ensemble simulation outputs, and that they convey substantial information content. However, it also clearly appears that MODIS observations are noisy and biased, due to the difficulty of retrieving surface reflectances in a complex terrain. In addition, it seems that S2 reflectance retrieval was affected by even bigger errors.

Meanwhile, it seems that the semi-distributed framework is particularly adapted to reflectance assimilation. First, it enables to efficiently remove observational noise thanks to aggregation within topographical classes. It is clear though, that monitoring the substantial intraclass natural variability of reflectance is then out of reach. Furthermore, state-of-the-art distributed snowpack modelling is currently not able to represent this spatial variability either. Reaching this goal would require the use of high resolution meteorological forcings [START_REF] Quéno | Snowpack modelling in the pyrenees driven by kilometric-resolution meteo-rological forecasts[END_REF], and modelling of snow redistribution by wind and gravitation (Vionnet et al., 2014;[START_REF] Mott | Meteorological modeling of very high-resolution wind fields and snow deposition for mountains[END_REF][START_REF] Freudiger | Snow redistribution for the hydrological modeling of alpine catchments[END_REF] in distributed simulations. However, such simulations would require intensive computational resources compared to the semi distributed framework, added to the increase in computational cost due to ensemble forecasting already present here.

This study was also the first attempt of spatialized ensemble detailed snowpack modelling using a combination of meteorological and model ensembles. Results showed that the semi-distributed setup is able to represent the associated errors and uncertainties in the modelling of reflectance well, and identified paths to make it more suitable to data assimilation.

Therefore, we are confident on the potential for assimilation to take full advantage of reflectance observations and detailed snowpack modelling in such a geometry. However, the remaining strong bias in MODIS semi-distributed reflectance observations prevents from directly assimilating them. A workaround was proposed for MODIS bias by computing ratios of reflectances, a simple method that should preserve the observations information content. We are confident that assimilating such variables is possible and could be beneficial for snowpack modelling in the near future. Furthermore, efforts to improve the retrieval of reflectances in complex terrain must be conducted, in order to reduce retrieval errors and bias, and implement retrieval of other medium-resolution satellite sources such as VIIRS and Sentinel3. 
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 235 Figure 2: Computation of snow diffuse reflectances using TARTES for varying soot concentrations (SSA=40m 2 kg -1 ) (2a) and varying SSA (2b), for 1 m of 300kg m -3 density uniform snowpack, together with MODIS and S2 spectral bands. Source : http://snowtartes.pythonanywhere.com

Figure 7 :

 7 Figure 7: Map of aspect in the Grandes-Rousses (a), and comparison of the 3 reflectance products in the NIR (860nm) on 2017-02-18, 10:00 am: ensemble median (b), semi-distributed MODIS band 2 (c) and S2 Band 8A (2017-02-19, 11:00am) (e). Boxplots (quartiles and medians) for the ensemble (blue), distributed MODIS (green) and S2 (red) in the 2400m, flat and 20 o slope classes. On the maps (a-d), the contours denote the model's 300m elevation bands, orange arrows show the approximate sun direction and shadows are masked.

Figure 8 :

 8 Figure 8: 2013-2014 (a,c,e) and 2016-2017 (b,d,f) timeseries of reflectance in MODIS band 4 (a,b), 2 (c,d) and 5 (e,f) for the three different products (ensemble in blue, MODIS in green, S2 in red). The stars denote the median of the ensemble and the semi-distributed satellite products. The boxes shows the ensemble and distributed satellite products quartiles. See Tab.1 for the wavelengths and S2 corresponding bands. The blue line denotes the ensemble median Height of Snow (HS).

Figure 9 :

 9 Figure 9: Same as Fig. 8, in 2100 m.a.s.l flat class for 2016-2017 winter in MODIS band 4 (a) and 2 (b). In addition, Lautaret data from Autosolalb (orange diamonds), and observed HS (orange line) are displayed. Note that bars denote the ensemble 5-95 th percentiles.
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