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Abstract 11 

Galectin-3 (Gal3) is a multifaceted  protein which belongs to a family of lectins and binds β-12 

galactosides. Gal3 expression is altered in many types of cancer, with increased expression 13 

generally associated with poor prognosis. Although the mechanisms remain unknown, Gal3 14 

has been implicated in several biological processes involved in cancer progression, including 15 

suppression of T cell-mediated immune responses. Extracellular Gal3 binding to the plasma 16 

membrane of T cells alters membrane organization and the formation of an immunological 17 

synapse. Its multivalent capacity allows Gal3 to interact specifically with different membrane 18 

proteins and lipids, influencing endocytosis, trafficking and T cell receptor signalling. The 19 

ability of Gal3 to inhibit T cell responses may provide a mechanism by which Gal3 aids in 20 

cancer progression. In this review, we seek to give an overview of the mechanisms by which 21 

Gal3 alters the spatial organization of cell membranes and how these processes impact on T 22 

cell activation.   23 
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1 Introduction: Galection-3. 29 

There is an urgent need for new cancer therapies that alleviate the immunosuppressive nature 30 

of tumours. Among them, adoptive T cell transfer, genetically engineered chimeric antigen 31 

receptors (CAR) and immune checkpoint inhibitors have shown great promise in clinical 32 

trials. Due to their complexity, the mechanisms by which tumours create an 33 

immunosuppressive environment remain poorly understood. One emerging mechanism is 34 

thought to be the expression and function of galectin-3 (Gal3), a lectin that is often up- or 35 

down-regulated in many types of cancer[1–5]. Both tumour and non-cancerous cells secret 36 

Gal3 into the extracellular environment, from where it can bind to the extracellular matrix 37 

and the surface of circulating cells including T cells. Enhanced levels of Gal3 in tumours 38 

have been associated with apoptosis, inflammatory responses[6], reduced numbers of tumour 39 

infiltrating lymphocytes (TILs)[7], impaired T cell activation and their effector function 40 

(Fig.1) [1,8–11]. Removal of Gal3 or blocking of cell interactions with Gal3 has in some 41 

cases restored T cell effector function and their ability to control tumour burden[1,8–11], 42 

however, Gal3 levels are not typically predictive of the level of immunosuppression. 43 

Nevertheless, Gal3 holds great potential in immunotherapy applications[12,13] but the 44 

underlying mechanisms are often complex and require further investigations.  45 

1.1. Biological function of galectin-3. 46 

Gal3 is part of the galectin family, whose members are involved in a broad range of cellular 47 

functions including cell-cell interactions, cell-matrix adhesion, endocytosis, intracellular 48 

trafficking and signalling[12,14,15]. The concentration range at which Gal3 impacts on these 49 

cellular functions appears to be both context and function specific. Thus, the organisations 50 

and processes induced by Gal3 at high concentrations may be different than those at low 51 

concentration and functional impacts at the same concentration could depend on the cell type 52 

and tissue. In serum, Gal3 concentrations are typically in the upper picomolar range, while 53 

cell-based experiments have often been performed at much higher concentrations (see Ref. 54 

[15] for a review). 55 

In mammals, the galectin family consists of 15 members that bind to β-galactosides through 56 

their conserved carbohydrate recognition domain (CRD)[15,16]. There are three structural 57 

forms of galectin: a dimeric form with two identical CRDs (found in Gal-1, 2, 5, 7, 10, 11, 58 

13, 14, and 15), a tandem form with two unique CRDs connected via a polypeptide (found in 59 

Gal-4, 6, 8, 9, and 12), and a chimeric form with one CRD attached to a non-lectin 60 
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polypeptide domain (Gal3) [15–18]. Different galectins have different affinities towards 61 

glycans [17]. They interact with other proteins primarily via their lectin domains, while direct 62 

protein-protein interaction also occurs[15]. The bifunctionality of the galectin structures 63 

enable multivalent interactions with their ligands, and subsequently the formation of 64 

oligomers and clusters[19–23]. Gal3 contains a single CRD and a non-lectin N-terminal 65 

domain (NTD) enabling it to engage in both lectin-carbohydrate and protein-protein 66 

interactions (Fig. 2a). Instead of dimers, Gal3 can form diverse oligomeric structures. This 67 

oligomerisation and the ligand-induced clustering is influenced by a number of parameters 68 

(Fig. 2b). Moreover, Gal3 has contrasting functions when expressed cytosolically or 69 

extracellularly[24–26]. Here, our focus will be on the physiological roles of extracellular 70 

Gal3 and how it interacts with the plasma membrane to modify T cell activation.   71 

Gal3 is secreted into the extracellular space by a number of different cell types, including T 72 

cells and tumour cells[1–5,27–30]. Thus, Gal3 functions as an autocrine or paracrine 73 

signalling agent. In cancer, Gal3 mostly acts in a paracrine manner, where tumour-secreted 74 

Gal3 inhibits T cell function by binding to their cell surface[1,8,10,11,24,26,31]. In chronic 75 

infections, Gal3  acts in an autocrine manner where T cells themselves secrete Gal3[32]. In 76 

both cases, Gal3 is thought to inhibit T cell function via altering the spatial organization of 77 

immune synapses (Fig. 3)[2,24,31–33]. Under physiological conditions, immune suppression 78 

via Gal3 is necessary to prevent autoimmunity[24,31,32]. Extracellular Gal3 also binds to 79 

secreted cytokines to inhibit the recruitment of T cells to diseased tissues or tumours and to 80 

induce T cell apoptosis (Fig. 1)[7,21,26,34–36]. In this review, we will be focusing on how 81 

Gal3 enables altering the spatial organization of the plasma membrane and the 82 

immunological synapse to overall promote immune suppression.  83 

1.2. Gal3 structure and ligands. 84 

Human Gal3 is a small 26 kDa size lectin that has a single CRD attached to an unstructured 85 

NTD[15]. The CRD is composed of a β-sandwich made from a 5-stranded β-sheet, or F-face, 86 

and a 6-stranded β-sheet which composes a carbohydrate binding pocket[37]. β-galactosides, 87 

such as lactose and N-acetyl-D-lactosamine (LacNAc) bind within the CRD via non-covalent 88 

interactions[37]. This carbohydrate binding pocket forms a cassette or cleft which opens at 89 

both ends enabling Gal3 to bind to long oligosaccharides such as N-glycans and some 90 

glycolipid-type glycans[17,38,39]. The F-face, the reverse side of the CRD, has a conserved 91 

hydrophobic surface, which may aid oligomer formation[15].  92 
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Gal3 binds carbohydrates with variable affinities depending on their sugar sequence, bond 93 

type, linear or branched structure, and the size of the carbohydrate[17]. Gal3 has ~5 times 94 

higher affinity for LacNAc than lactose due to interaction of the NAc group primarily with 95 

Arg186 in Gal3; mutation of this abolishes preference for LacNAC and binding of 96 

glycoproteins[37,39]. The affinity of Gal3 can also be altered by adding additional 97 

saccharides. For example, the affinity of Gal3 to lactose can be increased by addition of a 98 

blood group determinants[37], another  LacNAc unit, or decreased by addition of sialic 99 

acid[38,39].  100 

1.3. Gal3 oligomers. 101 

The structure and morphology of Gal3 oligomers have attracted much attention (Fig. 2a) and 102 

several types of interactions between monomers have been proposed: (1) NTD-NTD, (2) 103 

NTD-CRD, and (3) CRD-CRD. It is generally thought that the NTD is required for the 104 

formation of large oligomers, as many galectin-3 activities, such as hemagglutionation and 105 

cell signalling are lost if the NTD is removed. While Gal3 mutants with NTD deletion retain 106 

their ability to bind to carbohydrates, they have a strongly reduced oligomerization 107 

capacity[15,23], as also demonstrated by chemical crosslinking and NMR studies in which 108 

the NTD of Gal3 was shortened, mutated or removed[20,22,40,41]. Indeed, NTD-NTD 109 

interactions occur in a lectin-independent manner. Electron micrographs have revealed long 110 

fibril structures of NTD[23] indicating that oligomeric Gal3 may not adopt a defined 111 

structure. However, it should be noted that different studies often use very different 112 

concentrations of Gal3, and it is difficult to relate Gal3 structures in the high micromolar 113 

range to Gal3 structures in the nanomolar or high picomolar range.  114 

The interaction between two NTDs of different Gal3s can lead to oligomerization. NTD-NTD 115 

interactions have been directly measured by chemical crosslinking and NMR spectroscopic 116 

analysis[20,22,41]. NTD-CRD interactions involve parts of the CRD that are not involved in 117 

carbohydrate recognition[20]. For both NTD interactions with itself and NTD-CRD 118 

interactions, fuzzy interactions may enable variable degrees of oligomerization and may 119 

allow Gal3 to undergo liquid-liquid phase separation[20].  120 

The third type of Gal3 oligomers is formed through CRD-CRD interactions. However, these 121 

oligomers are small and may be partially blocked when the CRD is bound to a 122 

carbohydrate[23,42–44]. Electron micrographs show that CRDs can form monomers, dimers, 123 

and trimers in the absence of the ligand[23]. Due to the many types of Gal3 oligomers and 124 
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their multivalent structure, it is unlikely that Gal3 has a single oligomeric form and may 125 

adopt different oligomeric states at different concentrations.  126 

1.4. Ligand-induced Gal3 lattices. 127 

In addition to Gal3 self-association, Gal3 can also form ligand-induced networks or lattices 128 

on the surface of cells or in solution, depending on the spatial organization of its ligands (Fig. 129 

2b)[44]. The size and structure of Gal3 networks are dependent on (1) the concentration of 130 

Gal3, (2) concentration of ligand, (3) valency of the ligand (i.e. number of repeat units of 131 

Gal3 binding moieties), (4) structure of the ligand (i.e. linear or branching), and (5) the 132 

spatial arrangement of ligands (either two-dimensional or 3-dimensional). Due to the large 133 

number of parameters, a systematic study of Gal3 arrangements is yet to be performed. 134 

However, a few guiding principles have been proposed and validated across multiple 135 

laboratories. According to the current consensus, Gal3 without ligand exists as a monomer in 136 

solution up to ~100 μM, and only forms large oligomers when the corresponding ligands (e.g. 137 

lactose or LacNAc) are in multivalent states[44–47]. Thus, there are two different processes 138 

of Gal3 interacting with ligands: repetitive lactose or LacNAc units enhance  Gal3 binding 139 

affinity to these ligands because of the higher occupation of the tetra-saccharide-binding site, 140 

and lateral clustering of more than one Gal3 molecule to another antenna of the same glycan 141 

or another glycan on the same glycoprotein,  leading to higher order organization into lattices 142 

or endocytic pits. The latter may not be necessarily be caused by enhanced affinity but 143 

appreas to be a cooperativity[15,44,48]. 144 

Gal3 has a higher avidity for some branched oligosaccharides as opposed to linear 145 

oligosaccharides[17]. However, directly visualising Gal3 lattices and clusters[47,49], either 146 

in solution or on the cell surface has been challenging given the diversity and complexity of 147 

Gal3 arrangements.  148 

 149 

 150 

 151 

 152 
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2. Gal3 influences the organization of the plasma membrane. 153 

The cell membrane contains many glycoproteins (e.g. CD44, CD45, and the T cell receptor 154 

(TCR)) and glycolipids (GSLs and GPI-anchored proteins) that possess carbohydrate ligands 155 

for Gal3. When Gal3 binds to its corresponding multivalent ligand on the cell surface and 156 

oligomerizes, it rearranges the spatial organization of these glycoproteins and glycolipids, 157 

which results in changes to the membrane organisation and endocytosis[49]. Consequently, 158 

this will alter cell migration and cell signalling[14–16,50,51]. Super-resolution microscopy 159 

and single molecule detection techniques have been utilised to visualise nanoscale 160 

organization of Gal3 lattices on the cell surface (by incubating cells with 4 µg/mL of 161 

fluorescently labelled Gal3 for 20 min), revealing forms of Gal3 clusters with a size of 162 

~0.018 μm2 and molecular density of ~200 molecules per μm2[49]. When cells were depleted 163 

of GSLs, the size of Gal3 clusters was only ~0.016 μm2 and their molecular density increased 164 

to up to 260 molecules per μm2, suggesting GSLs make Gal3 clusters larger but less dense 165 

than Gal3-glycoprotein clusters which are formed when Gal3 binds to glycoproteins, like 166 

CD44[49]. Gal3-glycoprotein clusters are reportedly smaller than Gal3-GSL clusters. These 167 

clusters further decrease in size and in molecular density when the carbohydrate 168 

modifications of CD44 were removed, implying that they are no longer able to incorporate 169 

into the Gal3 lattices[49].  170 

Another fluorescence technique used to study the Gal3 network is Förster resonance energy 171 

transfer (FRET)[40]. In this study, Gal3 was labelled with either AF488 or AF555 and the 172 

two conjugates were added to neutrophils. Gal3-AF88 and Gal3-AF55 both bound to the 173 

plasma membrane and formed a tight network close enough to produce a FRET signal (within 174 

the proximity of ~10 nm), suggesting oligomerization of the two sub-populations of Gal3. 175 

However, when the same experiment was done with CRD instead of Gal3, CRD appeared to 176 

be colocalized but were not close enough to produce a FRET signal, implying that CRD alone 177 

was unable to form oligomers. Hence, the authors concluded that NTD is required for Gal3 178 

oligomerization. Further, fluorescence recovery after photobleaching (FRAP) of the Gal3 179 

lattice showed that the Gal3 network is rigid and restricts lateral movement of membrane 180 

proteins[40].   181 

 182 

 183 

 184 
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2.1. Gal3 interaction with membrane proteins. 185 

Gal3 interacts with a wide-range of proteins implicating it in diverse cellular functions. It 186 

binds to these proteins in a lectin-dependent manner. Gal3 has a dissociation constant range 187 

of 0.8–5.6 μM for N-linked glycans, similar to those found for the corresponding intact 188 

glycoproteins[52]. Proteomic analysis reveals that Gal3 interacts with transmembrane 189 

proteins, particularly adhesion proteins such as integrins, CD44 and N-cadherin[49,53,54]. 190 

Blocking lectin activity or glycosylated sites of proteins impairs Gal3 binding to these 191 

proteins[49]. Gal3 can change the spatial organization of its ligand through self-192 

oligomerization. This induces nanometre to micron-scaled clustering of glycosylated 193 

proteins[24,31,49]. However, due to the complexity in both Gal3 oligomerization and Gal3 194 

binding to glycoproteins and glycolipids, there is no generalised effect exerted by Gal3 on the 195 

spatial organization of the plasma membrane. For example, Gal3 induces clustering and 196 

endocytosis of β1 integrins and CD44 which then increases the lateral mobility of N-197 

cadherin[49,51,53,54]. Mathew and Donaldson described a nuanced role of glycans for Gal3 198 

interactions and clathrin-independent endocytosis[55].  While excessive quantities of Gal3 199 

can erroneously alter cellular function, a baseline level of Gal3 is required for physiological 200 

processes.  201 

2.2. Gal3 interaction with membrane lipids.  202 

Although direct measurements of Gal3 binding to GSLs has not been done, glycans typical of 203 

GSLs have been analysed by methods such as inhibition assays[56], frontal affinity 204 

chromatography[17], fluorescence polarization combined with mutagenesis[39], and x-ray 205 

diffraction[17,38]. Some GSL-derived glycans bind Gal3 with Kd in the low µM range, 206 

similar to N-glycans; these include the lacto- and lactoneoseries. However, other GSL-207 

derived glycans bind the Gal3 CRD poorly or not at all, including ganglioseries and 208 

globoseries[15]. N-glycans tend to have higher numbers of Gal3 binding motifs per 209 

oligosaccharide and the branched geometry may aid Gal3 oligomerization. Additionally, Gal3 210 

may also be able to directly cross the lipid bilayer without the use of lectin activity[57]. On a 211 

cell membrane, Gal3 colocalizes with GSL-rich regions and can affect the mobility of 212 

GSLs[24,49,53]. We previously reported that GSLs were not required for Gal3 binding to 213 

cells but needed for clustering, membrane bending and the formation of endocytic structures 214 

termed clathrin-independent carriers (CLICs)[49]. The mechanism to generate these 215 

endocytic pits has been termed the GlycoLipid-Lectin (GL-Lect) hypothesis[58]. Of note, 216 
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Gal3 drives CD44 endocytosis at concentrations as low as 0.3 nM, which is in the range of 217 

Gal3 concentrations found in human serum[15,49].  218 

2.3. Gal3 interactions with lipid rafts and lipid raft-associated proteins. 219 

As described above, Gal3 interacts with GSLs for the generation of narrow membrane 220 

curvature and the biogenesis of CLICs[49]. GSLs have molecular characteristics such as 221 

lateral hydrogen bonding capacity and long acyl chains that favour their lateral interactions 222 

for the formation of membrane domains, so-called lipid rafts[59]. Initially the lipid raft 223 

hypothesis proposed that lipids domains form spontaneously, and specific membrane proteins 224 

partition into lipid rafts[60]. Subsequent studies on the dynamic nature of biological 225 

membranes suggest that pure lipid-based rafts that grow to significant sizes under biological 226 

conditions are rather unlikely[61]. Current evidence suggests that raft assemblies are induced, 227 

for example by receptor-ligand interactions, thereby generating conditions under which the 228 

connectivity between raft constituents is enabled[59,62,63].  Oligomeric GSL-binding 229 

proteins such as the bacterial Shiga and cholera toxins, capsid proteins from polyoma and 230 

noroviruses, or Gal3 have molecular characteristics to induce the assembly of lipid rafts or 231 

raft-like domains. In the context of endocytic uptake, the induced lipid domains have a 232 

distinct function by creating an entry portal into cells[64].  233 

At the plasma membrane, both exogenous and endogenous Gal3 is found in lipid rafts via 234 

binding to both glycoproteins and glycolipids[41–43,47–50]. Gal3 association with lipid rafts 235 

appears to be cholesterol dependent as shown by studies using methyl-β-cyclodextrin 236 

(MβCD) to deplete membranes of cholesterol[51,65,67]. Many of the older studies on raft 237 

association have been performed using detergent extraction, which is problematic (discussed 238 

in Ref.[59]). Based on this tool, it was concluded that some Gal3 binding partners such as β1 239 

integrins are raft associated[43,44], and others such as p75 neurotrophin receptor (p75NTR) 240 

and lactase phlorizin hydrolase (LPH) are not[68]. It has also been argued that Gal3 241 

dynamically induces translocation of proteins such as CD45 into such detergent resistant 242 

membrane fractions, while excluding others like the T cell receptor (TCR) and co-receptor 243 

CD4[24]. More recent methodologies for raft studies will need to be used to confirm these 244 

earlier findings, and to determine the biological consequences of raft assembly and 245 

association. 246 

 247 

 248 
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 249 

 250 

3. Gal3 and the immunological synapse.  251 

Gal3 can alter cell signalling through modifying the spatial organization of the plasma 252 

membrane. This is particularly important in T cell activation[69–71]. Gal3 has been shown to 253 

suppress T cell activation in autoimmune diseases and in cancer by blocking proximal T cell 254 

signalling or inducing apoptosis[1–3,11,26,31–35]. Below, we will discuss some of the 255 

proposed mechanisms by which Gal3 alters plasma membrane organization to negatively 256 

regulate T cell activation.  257 

3.1.  T cell signalling at the immunological synapse.  258 

The activation of a T-cell is initiated by the specific binding of the T-cell antigen receptor 259 

(TCR) to a cognate peptide bound to the Major Histocompatibility Complex (pMHC) on the 260 

surface of an antigen-presenting cell (APC). This leads to the spatial reorganization of the 261 

TCR and many accessory receptors to form a specialized area of intimate contact between T 262 

cell and APC, the immunological synapse (Fig. 3), where signals are coordinated and 263 

integrated, to promote or inhibit further T cell activation. The formation of an immunological 264 

synapse results in polarised intracellular trafficking in the T cell[72]. 265 

The immunological synapse is a highly dynamic organisation, canonically resembling a 266 

bull’s-eye structure that is separated into the central, peripheral, and distal concentric zones. 267 

These are collectively referred to as supramolecular activation cluster (SMAC)[73]. The 268 

central zone, cSMAC, contains the TCR-CD3 complex, co-stimulatory and co-inhibitory 269 

molecules, and co-receptors. The co-receptors, either CD4 or CD8, are glycoproteins that aid 270 

T cell activation through stabilizing the interactions of the TCR with pMHC molecules. The 271 

peripheral zone (pSMAC) enhances and further stabilises the physical interaction between T 272 

cell and APC through adhesion receptors such as LFA-1 (receptor for ICAM-1) and CD2 273 

(receptor for LFA-3)[74,75]. The distal zone (dSMAC) consists of CD45, which is a 274 

transmembrane tyrosine phosphatase, and F-actin. There is considerable turnover of TCR 275 

signalling proteins at the immunological synapse with ongoing endocytosis mainly from the 276 

cSMAC and exocytosis mainly to the pSMAC. The precise spatiotemporal arrangement of 277 

signalling receptors within the immunological synapse is vital for the activation and 278 

subsequent responses of T cells[76]. Upon TCR-pMHC ligation, TCRs rearrange themselves 279 
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into microclusters to initiate signalling. These microclusters have been proposed to originate 280 

at the dSMAC and are transported towards the cSMAC in an F-actin-dependent manner[77–281 

82]. This process concludes with the internalisation of the TCR in the cSMAC that may also 282 

terminate TCR signals[82,83].   283 

After TCR-pMHC ligation, a cascade of intracellular signalling events occurs involving many 284 

kinases and adaptor proteins. In the first step, Lck phosphorylates the TCR-CD3 complex on 285 

immunoreceptor tyrosine-based activation motifs (ITAMs). Phosphorylated ITAMS recruit 286 

and activate the tyrosine-kinase, ZAP-70 which then subsequently activates adapter proteins 287 

like linker for activation of T cells (LAT) and SH2 domain containing leukocyte protein of 76 288 

kDa (SLP-76). This then follows a series of downstream signalling events and results in 289 

upregulation of several genes which ultimately leads to T cell activation and clonal 290 

expansion. Overall, the formation of immunological synapse is crucial for sustained TCR 291 

signalling and T cell activation. 292 

3.2. Does Gal3 impact on T cell signalling via lipid rafts? 293 

The immunological synapse not only has a distinct spatial arrangement, it also has 294 

characteristic membrane and lipid properties. A number of studies have described the 295 

condensation of plasma membrane at the immunological synapse as well as an enrichment of 296 

raft lipids, cholesterol and sphingolipids[84–90]. Further, CD4+ and CD8+ T cells have 297 

different ganglioside compositions that are necessary for effective T cell signalling[91]. In 298 

resting T cells, TCR exists in nanoclusters that concatenate upon antigen engagement[92,93]. 299 

A number of studies have shown that these TCR clusters are dependent on the membrane 300 

cholesterol levels, as the removal of cholesterol results in a disassembly of TCR clusters in 301 

both resting and activated T cells[94–97]. Moreover, an increase in plasma membrane 302 

cholesterol level was shown to further increase TCR clustering[98–100]. TCRs colocalizes 303 

with GM1[97,101,102] when labelled with cholera toxin B-subunit which most likely induces 304 

GM1 clustering[103–105]. How the lipid composition of T cells impacts on different 305 

inducers and raft assemblies is currently unknown. 306 

It is likely that Gal3 induces lipid rafts through binding to glycosylated proteins and 307 

GSLs[58].  This will undoubtably alter the membrane organisation of the many TCR 308 

signalling proteins associated with raft-like domains as well as the dynamic cycling within 309 

and to or from the immunological synapse. This may be best illustrated at the example of the 310 

co-receptors that reside in GM1-rich areas in T cells[24]. Co-receptors primarily enhance the 311 
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stability of TCR-pMHC complex. In the absence of co-receptors, the proximal signalling 312 

efficiency is reduced mainly due to the decreased level of Lck recruitment to phosphorylate 313 

ITAMs [32,106]. It has been shown that Gal3 reduces colocalization of TCR with either CD4 314 

or CD8 in T cells[28,32,107]. FRET studies were able to show that the presence of Gal3 315 

reduced co-receptor-TCR interaction and signalling efficiency in T cells while removal of 316 

membrane bound Gal3 restored the colocalization of TCR with co-receptors[28,32,107–109]. 317 

3.3. Gal3 alters TCR signalling at the immunological synapses 318 

The first study that investigated the effect of Gal3 on the immunological synapse and 319 

subsequent suppression of T cell activation was done by Demetriou et al [31]. In this study, 320 

Gal3 was able to inhibit TCR recruitment to the immunological synapses by binding to the α-321 

subunit of the TCR (Fig. 3). Mice in which the N-acetylglucosaminyltransferase V (MGAT5) 322 

gene is knocked out and lack a third antenna on N-glycans[110] exhibited reduced cancer 323 

growth and automimmunity[31]. It was proposed that Gal3 was an important binding partner 324 

for the tri-antennary glycan, and that lack of Gal3 binding was explaining the observed 325 

phenotypes, which was not shown directly, however. Since those early experiments, 326 

MGAT5-/- cells have been frequently used in other studies [24,31,53,111,112] but the 327 

molecular details of Gal3 interactions with these cells are still unknown. The immune-328 

supressing effects of Gal3 seen with wild-type T cells such as the impaired T cell signalling 329 

activities were not observed with MGAT5-/- T cells[31], encouraging future studies to 330 

investigate how Gal3 regulates T cell activation. Given the frequent endocytosis and 331 

recycling of T cell signalling proteins[113], Gal3 may impact on retrograde trafficking and 332 

polarized secretion to the immunological synapse of T cell signalling proteins such as 333 

LAT[114].  334 

Gal3 can bind to several different glycoproteins that play a role in T cell proximal signalling. 335 

For example, Gal3 binds to CD45, a heavily glycosylated phosphatase, with a dual role in T 336 

cell signalling (Fig. 3)[24,26]. CD45 acts as an inhibitor of T cell activation through 337 

dephosphorylation of CD3-ITAMs and Lck catalytic domain pY394, promoting Lck into a 338 

“closed” or inactive configuration. CD45 also promotes T cell activation through 339 

dephosphorylation of Lck-pY505, inducing its “open” or active configuration[106,115–117]. 340 

In MGAT5+/+ T cells, Gal3 erroneously retains CD45 at the immunological synapse where it 341 

dephosphorylates Lck-pY394 with no change in the Lck-pY505 phosphorylation state[24]. 342 

The downstream effects of this was the loss of activation of pZAP70 and pLAT[24]. 343 
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Downstream signalling was restored by either using MGAT5-/- cells or lactose treated 344 

MGAT5+/+ T cells. Alternatively, Gal3 binding to CD45 may also suppress T cell activation 345 

through induction of apoptosis (Fig. 1)[26]. 346 

Alterations in the spatial distribution of TCR or phosphatases can clearly affect T cell 347 

signalling. However, less intuitively Gal3 can also induce changes in cytoskeletal and 348 

adhesion protein organization that affect T cell function[33]. For example, in CD8+ cytotoxic 349 

T cells (CTLs), Gal3 creates two physical barriers that prevent CTLs from delivering 350 

cytotoxic load to target cells[33]. First, Gal3 inhibits the docking of the microtubule-351 

organizing centre (MTOC) at the immunological synapse, which prevents the delivery of 352 

lytic granules to target cells. Second, Gal3 destabilises the formation of the synapse by 353 

preventing the recruitment of adhesion protein LFA-1, because incorporation into the Gal3 354 

lattice reduces the lateral mobility of LFA-1[33]. The inability to recruit LFA-1 to the 355 

immunological synapse also prevents actin clearing, a necessary process to provide physical 356 

space to release lytic granules from the T cell to the target cell[33].  357 

 358 

4. Gal3 influence on co-inhibitory receptors in T cells.  359 

4.1. Biological function of co-inhibitory receptors. 360 

T cell mediated immune responses are tightly regulated to maintain tolerance for self-361 

antigens and prevent autoimmunity. The balance between co-stimulatory and co-inhibitory 362 

receptors primarily sets this immunological tolerance at the molecular level[118]. Their 363 

expression levels and function can dictate cell proliferation to cytokine expression capacity in 364 

T cells[118–120]. Here, our focus will be on co-inhibitory receptors and their function in T 365 

cell suppression. 366 

Most co-inhibitory receptors are transmembrane glycoproteins which belong to the 367 

immunoglobulin superfamily and have elevated expression levels in both effector and 368 

memory CD4+ and CD8+ T cells[121]. Co-inhibitory receptor-based suppression of TCR 369 

signalling can occur through the extrinsic APC ligand binding and intrinsic TCR signalling 370 

inhibition mechanisms[119,121]. In the intrinsic mechanisms of T cell suppression, co-371 

inhibitory receptors can outcompete co-stimulatory receptors in binding to common ligands 372 

by displaying a higher affinity, resulting in TCR suppression. Cytotoxic T-lymphocyte-373 

associated protein 4 (CTLA-4) is a classic example for this mechanism. Here, CTLA-4 374 
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competes with CD28 co-stimulatory receptor to bind to their common ligands CD80 and 375 

CD86 expressed on APCs[122–124]. CTLA-4 also deploys an extrinsic mechanism of T cell 376 

suppression known as trans-endocytosis, a process which captures and removes common 377 

ligands for both co-inhibitory and co-stimulatory receptors from the surface of the antigen-378 

presenting or cancer cells and make them unavailable for binding[125]. Other co-inhibitory 379 

receptors like TIGIT can inhibit dimerization of co-stimulatory receptor CD226 and 380 

subsequently impairs its function[126]. Further, it can downregulate TCR components at 381 

transcriptional level[127]. 382 

In general, most co-inhibitory receptors possess immunoreceptor tyrosine-based inhibitory 383 

motifs (ITIM) or immunoreceptor tyrosine-based switch motifs (ITSM) which aid the 384 

negative regulation of TCR signalling, intrinsically[119,121]. Concurrently, the molecular 385 

mechanism behind suppression of TCR and downstream signalling follows the 386 

phosphorylation of ITIM domains, via the recruitment of Src homology region 2 domain-387 

containing phosphatases (SHP-1 and SHP-2) to ITSM regions. In some cases, TCR signalling 388 

inhibition can occur in an ITIM-independent manner. LAIR-1, for example can utilise C-389 

terminal Src kinase (Csk) to inhibit TCR signalling[128]. Inhibitory receptor CTLA-4 is 390 

constitutively expressed by regulatory T cells (Treg) upon activation [129,130]. In mouse 391 

models it has been shown that the absence or blockade of CTLA-4 can cause spontaneous 392 

autoimmunity. The likelihood of this spontaneous autoimmunity progressing into a systemic 393 

disease has been prevented by other compensatory mechanisms within T cells[131,132]. On 394 

the contrary, during chronic infections and cancer, inhibitory receptor expression levels are 395 

being elevated in T cells as an immune evasion mechanism used by the pathogen or 396 

malignant cells to spread throughout the host environment[133,134]. Overexpression of 397 

inhibitory receptors can induce CD8+ T cells to become non-responsive, exhausted T cells 398 

and can promote expansion of Treg cells[135–138]. Hence, these inhibitory receptors have 399 

become attractive drug targets for a number of tumour and cancer immunotherapy treatments, 400 

collectively known as checkpoint blockade which can effectively restore some effector 401 

functions of CD8+ T cells[134,139].  402 

4.2. Gal3 and T cell co-inhibitory receptors. 403 

The influence of Gal3 on co-inhibitory signalling has not been fully explored. However, 404 

recent work suggests that Gal3 could inhibit T cell activation through binding to lymphocyte-405 

activation gene 3 (LAG-3). In pancreatic ductal adenocarcinoma, Gal3 was shown to bind to 406 
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CD8+ T cells in the tumour microenvironment that express programmed cell death protein 1 407 

(PD-1) and LAG-3[2]. Co-immunoprecipitation showed binding of Gal3 to LAG-3, but not to 408 

PD-1, even though both LAG-3 and PD-1 can contain Gal3 ligands[32,140]. Depletion of 409 

Gal3 recovered the ability of T cells to control the tumour burden[2]. However, this 410 

mechanism of Gal3-mediated T cell suppression may be disease specific. In a murine viral 411 

chronic infection, the mechanism of Gal3-induced T cell suppression did not involve 412 

inhibitory receptors PD-1 and LAG-3[32]. A recent study has shown that utilization of 413 

immune check-point blockades also reduces the effect of Gal3 on T cell suppression[9]. In 414 

melanoma, the blockade treatment for anti-CTLA-4 and anti-Vascular endothelial growth 415 

factor A (VEGF-A) elicited a humoral response to Gal3[9]. In addition, antibodies produced 416 

against Gal3 correlated to an improved patient outcome[9]. Overall, Gal3 plays a pleiotropic 417 

function in T cell suppression by influencing inhibitory receptors which negatively regulate T 418 

cell activation and responses[141].  419 

 420 

5. Conclusion. 421 

Understanding the mechanisms how tumours create immunosuppressive environments has 422 

become imperative in developing novel strategies to combat cancer. Certain proteins 423 

expressed on cancer cells that can potentially disrupt T cell activation and promote immune 424 

evasion have become attractive targets for immunotherapy-based treatments. Gal3 has been 425 

shown to be one such target with great potential. Primarily, Gal3 supresses T cell activation 426 

by altering the spatial organization of the immune synapses. At physiological levels, this 427 

suppression is necessary to prevent autoreactivity of T cells. However, in a disease state, such 428 

as cancer or chronic infection, Gal3-mediated T cell suppression restricts the ability of the 429 

immune system to adequately respond and mitigate the disease state. Recent studies have 430 

proposed several mechanisms for this suppression, some of which are conflicting. The 431 

diversity of these mechanisms can be due to the number of variables that influence Gal3 432 

binding, oligomerization, lattice formation, endocytosis, and disease specific physiology. 433 

Moreover, a study of Gal3 in isolation may be misleading, as other members of the galectin 434 

family may have different, but overlapping carbohydrate-binding specificities and 435 

affinities[15,17]. Additionally, it is also important to consider the multifaceted nature of Gal3 436 

which has been implicated in a number of cellular and biological functions[142]. 437 

Nevertheless, our current understanding of how Gal3 alter T cell signalling and functions will 438 
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be useful in developing novel immunotherapeutic strategies in combating cancer and chronic 439 

infections in the future.  440 

 441 
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 913 

Figure 1. Gal3 influence and regulate T cell responses. Galectin 3 is known to regulate and 914 

influence a range of biological processes in T cells, including signalling, activation, 915 

proliferation, apoptosis and cytokine secretion.  916 

 917 

 918 

Figure 2. Gal3 structure and variables that influence oligomerization and cluster  919 

formation. A. The Gal-3 monomer consists of a CRD and an unstructured NTD. The  920 

structure of gal3’s three different oligomeric configurations. B. Variables that influence gal3  921 

binding to carbohydrates and subsequent cluster formation. Gal3 binding is higher when there  922 

are: more ligands present, higher glycoprotein density, higher lipid density and when 923 

glycosylated proteins are contained within lipid rafts.   924 

 925 

 926 

Figure 3. Gal3 influence in the formation of immunological synapses. The immunological 927 

synapse is a highly dynamic organisation which resembles a bull’s-eye structure that is 928 

separated into the central (cSMAC), peripheral (pSMAC), and distal concentric (dSMAC) 929 

zones. Each zone contains different signalling proteins which helps to propagate T cell 930 

signalling and in turn promote or inhibit T cell activation. Gal3 is shown to interact with 931 

several key receptors involved in T cell signalling and restricts their recruitment during the 932 

formation of immunological synapses. These signalling proteins include TCR (α-subunit), 933 

phosphatase CD45 and co-inhibitory receptors like LAG-3 and CTLA-4. 934 

 935 
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