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Abstract 16 
 17 

Under strong seismic excitation, the resonance frequencies of civil engineering structures 18 

rapidly decrease, followed by slow recovery back to their initial values if there is no damage. 19 

In this study, we show that as for laboratory trials with rock samples, the properties of the 20 

slow recovery characterize the level of heterogeneities, and in this case, the damage rate. 21 

First, we validate this concept with laboratory tests applied to continuous beam-like structures 22 

in damaged and undamaged states. One recent model is used to fit the observed recoveries, 23 

and we show that its parameters (i.e., frequency variation, recovery slope, characteristic 24 

times) change with the health of the equivalent structure. In a second step, this concept is 25 

applied to two civil engineering structures that experience earthquakes: the first (Factor 26 

Building, USA) without observed damage; and the second (Geophysics Institute building, 27 

Ecuador) that experienced a fore/ main/ after-shock sequence with apparent damage that was 28 

characterised by a permanent drop in resonance frequency. The efficiency of the proposed 29 

model is confirmed for monitoring and for the fit of the frequency recovery. We conclude that 30 

the recovery process is a clear proxy of the structural state, and that this could be helpful for 31 

seismic monitoring of structural health during earthquake sequences.  32 

 33 

 34 

Keywords: slow dynamics, recovery, structural health monitoring, earthquakes. 35 

  36 



 3 

1. Introduction 37 
 38 

Elastic waves cause local and reversible disturbances of the medium through which they 39 

propagate. This propagation and the time dynamics depend on the elastic properties of the 40 

medium. For low-amplitude waves in a homogeneous medium, the behaviour of the material 41 

during wave propagation is linear and depends on neither the wave intensity nor the wave 42 

shape. On the other hand, non-linear behaviour is classically observed for elastic waves in 43 

more complex materials (e.g., granular, heterogeneous), such as rock samples, where the 44 

material properties depend on the wave amplitudes. Two types of non-linearity have been 45 

described in the literature. ‘Classical’ non-linearity is generally explained by the consideration 46 

of the higher order terms in Hooke’s law. However, this theory does not explain some of the 47 

observed non-linear phenomena, which are generally known as ‘non-classical’ non-linearities. 48 

In this case, observations refer to both memory effects and hysteresis effects demonstrated by 49 

experiments on rock samples (Guyer et al., 1995; Johnson et al., 1996; Guyer and Johnson, 50 

1999). These characterise the dependency of the material response with respect to the stress to 51 

which it is subjected, and to its loading history.  52 

After strong dynamic stress, the elastic properties of systems initially deteriorate 53 

rapidly, which is followed by a period of slow recovery back to the initial values. Johnson and 54 

Sutin (2005) use the terms ‘anomalous non-linear fast dynamics’ (ANFD) and ‘slow 55 

dynamics’ for these two phases, respectively. There have been many slow dynamics 56 

observations on samples: (1) at the laboratory scale (TenCate et al., 2000; Johnson and Sutin, 57 

2005), with the testing of different materials, such as an acoustic probe wave device; (2) at the 58 

scale of the Earth crust when subjected to earthquakes (Peng and Ben-Zion, 2006; Brenguier 59 

et al., 2008; Wu et al., 2009), by measurements of the regional variations of the wave velocity 60 

in the crust next to the faults; and (3) on civil engineering structures (Kohler et al., 2005; 61 

Clinton et al., 2006; Guéguen et al., 2016; Astorga et al., 2018), by tracking the resonance 62 

frequency of buildings during earthquake sequences. In the acoustic and ultrasonic domains 63 

(kHz to MHz), slow dynamics in concrete have been investigated in several studies (e.g., 64 

Larose et al., 2013; Shokouhi et al., 2017; Scalerandi et al., 2018). All of these studies reflect 65 

the multi-scale invariance of this phenomenon. Both TenCate et al. (2000) and Johnson and 66 

Sutin (2005) reported on the non-linear behaviour due to the micro-structure of the materials. 67 

They represented this micro-structure as an assembly of grains bound together by contacts 68 

and joints. When the material is conditioned by dynamic stress, these contacts and joints can 69 

be broken by frictional sliding (i.e., during ANFD), and then they gradually form again at the 70 

end of the loading (i.e., during the slow dynamics). These two behavioural phases can be 71 
observed and analysed to provide information on the extent of material heterogeneities, and 72 

notably the number and size of any cracks present, which is essential information for 73 

(although not exclusive to) the definition of the state of health of the material. 74 

In civil engineering, the structure behaviour is characterised by the dynamic response, 75 

defined at first order by its modal frequency and damping. During earthquakes, deformation 76 

can be significant and can temporarily modify the structural dynamic response (Clinton et al., 77 

2006; Guéguen et al., 2016; Astorga et al., 2018, Zhang et al., 2018). The non-linear response 78 

of a structure under dynamic stress is reflected in a rapid variation of its elastic properties, 79 

which can be characterized by the variation of its resonance frequencies; this can result in the 80 

dynamic opening of cracks in the material. If no damage is observed, these variations are 81 

temporary. After a sudden disturbance of its modal parameters, the elastic properties of a 82 

structure characterized by its model frequencies slowly recover over time, which includes the 83 

closure of opened cracks. The two phases identified by Johnson and Sutin (2005) are thus 84 

observed (i.e., ANFD, slow dynamics), as in the laboratory experiments, and they can provide 85 

information on the type of heterogeneities present in a structure, and therefore on its structural 86 



 4 

health during earthquakes sequence.  87 

The innovative purpose of this study is to examine the ANFD and slow dynamics 88 

behaviours of civil engineering type structures at the laboratory scale, and of actual structures 89 

under earthquake loading. For the first time, a detailed analysis of the fast and slow dynamics 90 

for different state conditions is done, in relation with the structural health. After describing 91 

slow dynamics theory in section 2, an initial analysis is carried out in the laboratory on a 92 

continuous beam. This is first undamaged and then damaged following dynamic stress similar 93 

to that caused by an earthquake. This beam is associated with a structure that shows 94 

characteristics and behaviour equivalent to those of a tall civil engineering structure. The 95 

same approaches are then applied to two civil engineering structures with permanent 96 

instrumentation that suffered major earthquakes: the Factor Building of the University of 97 

California–Los Angeles (FB-UCLA; USA) and the Chino Hills earthquake of 29 July, 2008; 98 

and the Institute of Geophysics building of the National Polytechnic University in Quito (IG-99 

EPN; Ecuador) and the Pedernales earthquake on 16 April, 2016. In both cases, the ANFD 100 

and slow dynamics are analysed and their sensitivity to damage are examined.  101 

 102 

2. Theory of resonance frequency recovery  103 
 104 

We consider a material characterised by an initial Young’s modulus E0. It is subject to 105 

dynamic conditioning that ends at time t0, which we choose as the origin time t0=0. Recovery 106 

of the elastic modulus E(t>t0) after the loading is a function of time t starting after the end of 107 

the stress period. The evolution of the modulus over time during the slow dynamics phase is 108 

given by: 109 

 110 

 ���� = �� + ����� (1). 111 
 112 

The part of the elastic modulus not yet recovered, �����, is proportional to the number 113 

of contacts that are still broken at time t. The characteristic time 	 of the contact formation 114 
follows a kinetic law, the Arrhenius equation, which reflects the creation process of barriers 115 

of potential energy U at the origin of the grain contacts (Bocquet et al., 1998; Snieder et al., 116 

2016; Shokouhi et al., 2017); i.e.: 117 

 118 

 	�
� = 	���/��� (2). 119 

 120 

The speed of recovery r of the energy barriers is given by: 121 

 122 

 ��
� = �����/��� (3), 123 

 124 

where 	� is a characteristic time that depends on the material and the type of grains, �� is the 125 

corresponding pulsation, �� is the Boltzmann constant, and T is the temperature. If the initial 126 

density of the grain surface without contact is ���
� , immediately after the material 127 
conditioning the density at time t can be expressed in the form of an exponential decrease 128 

(Tencate et al., 2000); i.e.:  129 

 130 

 ���
� = ���
�������� (4). 131 
 132 

The quantity ����� of Equation (1), which is proportional to the number of contacts 133 

that remain broken, is then equal to: 134 

 135 
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 ����� = ��� ���
��
��
��  (5), 136 

 137 

where A is a scale constant and U1 and U2 are the lower and upper limits of the potential 138 

energy distribution of the barriers in the material. The difference in the elastic modulus at two 139 

times t1 and t2 can therefore be written as: 140 

 141 

 ����� � ��� � = �� ���
�!�������� � ��������"�
��
��  (6). 142 

 143 

As long as the contactless grain surface distribution ���
� evolves slowly and the 144 

times t1 and t2 are smaller than the characteristic time τ (Eq. (2)), the difference in elastic 145 
modulus between t1 and t2 can be approximated by (Tencate et al., 2000): 146 

 147 

 ����� � ��� � # ����
$���% � �����& � ����&� '&&
(
� # ����
���%	*+ ,����- (7). 148 

 149 

This development is based on the established laws of physics (Snieder et al., 2016), 150 

and it offers a good explanation for the time dynamics of the logarithmic recovery of the 151 

elastic properties of a material after a disturbance (Fig. 1). However, these kinematics are 152 

only valid for a limited time period, which excludes the exploration of infinitely short or long 153 

times.  154 

 155 

 156 
Figure 1. (a) Arrhenius kinetics law for the recovery rate of the energy barriers for the 157 

contact of the grains (Eq. (3)). (b) Density of the contact surfaces not yet restored (colour 158 

scale) as a function of time and activation energy. The initial density is defined as uniform 159 

(Eq. (4)). (c) Normalized recovery of the Young’s modulus calculated through integration of 160 

the surface density (Eq. (5)) defined discretely in the time–energy space. The dashed line 161 

represents the log(t) fit function of the recovery slope. 162 

 163 

Snieder et al. (2016) used the basic elements of the aforementioned development by 164 

TenCate et al. (2000) to establish a different kinematics law that respects both the logarithmic 165 

variation of the recovery for intermediary times and also the flattening at short and long times. 166 

Let the time evolution of E(t) of a disturbed system at time t=0 be:  167 
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 168 

 ���� = �� + ./��� (8), 169 
 170 

where S is a scale constant and R(t) is the function that describes the recovery process, or the 171 

slow dynamics. As before, if we assume a superimposition of the processes related to the 172 

creation of potential energy barriers U (Eq. (6)) and the corresponding characteristic times 	 173 
(Eq. (2)), function R(t) can then be written as: 174 

 175 

 /��� = � 0�	����/&�	&123
&145  (9), 176 

 177 

where 0�	� is the density of the state of the relaxation times, and with limits 	678 and 	69: 178 
calculated according to the Arrhenius equation (Eq. (2)): 179 

 180 

 	678 = 	���145/���  and  	69: = 	���123/��� (10), 181 

 182 

where Umin and Umax are the lower and upper limits of the distribution of contact activation 183 

energies in the material. If N(U) is the density of the state of the barriers at the origin of the 184 

grain contacts, the number of activation mechanisms where the energy is between U and 185 

U+dU is N(U)dU. The density of the state 0�	� can therefore be written as: 186 
 187 

 0�	� = ;�
� '�'&  (11). 188 

 189 

According to the Arrhenius equation (Eq. (2)), we have: 190 

 191 

 
'&���
'� = &<

��� �
�/��� = &

��� (12). 192 

 193 

The substitution of Equation (12) into Equation (11) then gives: 194 

 195 

 0�	� = ���
& ;�
� (13). 196 

 197 

If N(U) remains the same between Umin and Umax, N(U) is constant. If the temperature 198 

T is also constant, the density of the state 0�	� will be proportional to 
 
&. Integrating Equation 199 

(13) into Equation (8) gives the model that describes the recovery function by Snieder et al. 200 
(2016); i.e.: 201 

 202 

 /��� = �  
& ���/&�	

&123
&145  (14). 203 

 204 

This equation cannot be solved analytically. However, unlike the function proposed by 205 

Tencate et al. (2000) as a time logarithm, this function converges, regardless of the value of 206 

� ≥ 0, and in particular at short times (/�0� = ln ,&123
&145

- ; 	/�∞� = 0). In the present study, 207 

we replace the integration variable 	 with C = �/	, and the time derivative of function R(t) is 208 
expressed by: 209 

 210 

 
'D���
'� = EF3145�	EF3123

�  (15), 211 

 212 

where C678 = �/	678 and C69: = �/	69:. For 	678 ≪ � ≪ 	69:, which leads to ��:145 # 0 213 
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and ��:123 # 1. 
'D���
'�  is therefore close to 1/t, which means that R(t) is close to ln(t) up to an 214 

integration constant. The relaxation is thus expressed as a logarithmic time dependence.  215 

The recovery processes observed in experimental situations can therefore be 216 

characterised by different parameters according to Snieder et al. (2016). Snieder et al. (2016) 217 

considered the characteristic times 	678 and 	69:, which characterise the energy involved in 218 

the recovery process of contacts of different sizes. 	678  and 	69:  provide more precise 219 
information on the type of heterogeneities in the material, and notably on the crack size. They 220 

can be calculated from experimental data by measuring the variation of the elasticity modulus 221 

or a proxy of this value, such as the resonance frequency of a building in the present study. 222 

Here, this corresponds to a non-linear regression adjustment using Equation (14) when the 223 

resonance frequency is recovered after the stress. This adjustment and its interpretation 224 

according to Snieder et al. (2016) is limited at short times, unless the frequency variations can 225 

be measured precisely during and immediately after the stress, and at long times, if the 226 

duration of recording is not long enough to observe the full recovery.  227 

 228 

3. Data, experiments and data processing 229 
 230 

The link between slow dynamics and damage was first verified here at the laboratory scale. In 231 

this study, laboratory experiments were carried out on continuous beams. These were not 232 

designed to evaluate the invariant scale (i.e., laboratory beam to real-case buildings) of the 233 

non-linear behaviour and slow dynamics, but to valid the methods before operational 234 

application, as previously done by Brossault et al. (2018). Boutin et al. (2005), Perrault et al., 235 

(2013) and Michel and Guéguen (2017) confirmed the analogy to the first order between the 236 

response of a tall civil engineering structure and that of a continuous beam. The limestone, 237 

beam and experimental set-up used herein (Fig. 2) were described in detail in Brossault et al. 238 

(2018). The beam is inserted into the solid limestone base (30 × 30 × 24 cm3), clamped with 239 

epoxy glue, and left free at the top. Its properties are as follows: cross-sectional area, 2 × 5 240 

cm2; height, 100 cm; density, 2.955 g/cm3. To measure the horizontal vibrations, two 241 

accelerometric sensors are installed (type 4518-003; Brüel and Kjaer), one at the base of the 242 

beam, the other at the top. The sensor at the base of the beam is only used to provide an 243 

indication of the beam deformation, through calculation of the relative displacement between 244 

the top and bottom of the beam during the tests. The data are recorded by a conditioning 245 

amplifier (type 2694; Brüel and Kjaer) with an acquisition card (USB-6259; National 246 

Instruments).  247 

 248 
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 249 
Figure 2. Experimental laboratory device for the granite beam. (a) Device for measuring the 250 

ambient vibrations generated by the air jet and the automatic hammer. (b) Representation of 251 

the heating device for damaging the beam, given schematically on the right. 252 

 253 

In this study, the beam is subject to continuous stress by an air jet that is applied to the 254 

top of the beam. The air jet applies continuous and stationary loading at low amplitude for 255 

short times, similar to ambient vibrations recorded in actual structures. Its frequency content 256 

is broadband and excites the full range of frequencies considered (1-2,500 Hz). This system 257 

was validated by Roux et al. (2014), Guéguen et al. (2014) and Brossault et al. (2018) for 258 

continuous measurements of the beam modal parameters. In the laboratory, experimental 259 

conditions (i.e., air temperature, humidity, etc.) are constant. Figure 3a illustrates the modal 260 

response of the beam obtained herein by Fourier transform of the recording at the top, and is 261 

closely comparable to the theoretical frequencies of an analytic model that associates the 262 

beam with a free-clamped, Euler-Bernoulli type, bending beam (Brossault et al., 2018).  263 

The resonance frequency variation for the system is monitored over time by the 264 

random decrement technique (RDT) (Cole, 1968), which Cole used to construct the impulse 265 

response of a system from measured ambient vibrations. Cole (1968) justified this 266 

transformation by considering the response of a structure to random loading at time t+t0 as the 267 

superimposition of the free response at time t0 and the forced response to the random loading 268 

between t0 and t. By summing a large number of signal windows with the same initial 269 

conditions, the magnitude of the expected random part decreases compared to the magnitude 270 

of the impulse response. The result of the summation process is the random decrement 271 

signature (RDS) expressed thus as: 272 

 273 

 /I.��� =  
J∑ L��M + 	�|%�J7O  (16), 274 

 275 

where s(t) is the signal, N is the number of windows summed, 	  is the duration of the 276 
windows, and T0 is the initial trigger condition (Nasser et al., 2016). When filtered around a 277 

mode of the structure, RDS(t) is equivalent to the impulse response of the beam, which then 278 
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enables extraction of the modal frequency and damping by adjusting an exponential function. 279 

Many studies have provided information on the quality of such an estimate, the processing 280 

parameters (e.g., length of windows to be summed, initial conditions) and the restrictions due 281 

to the summation process, which has confirmed its effectiveness on actual civil engineering 282 

structures (Asmussen, 1997; Mikael et al., 2010; Roux et al., 2014; Nasser et al., 2016). An 283 

operational description of the method was provided in Brossault et al. (2018). Although RDT 284 

was initially proposed for estimation of damping, the quality, effectiveness and precision of 285 

the modal parameter estimation means that we can use it as a time monitoring tool for the 286 

frequencies of the granite beam. In the present study, after filtering around the central 287 

frequency of the mode (i.e., within ±10% of the modal frequency), we consider the recording 288 

lengths of 1000T (T, mode period) and the windows to be summed as 10T (i.e., N = 100 289 

windows), as these processes are considered to offer stable accuracy (Brossault et al., 2018). 290 

Figure 3b, c give examples of the frequency time monitoring (mode 3) over 20 h of 291 

acquisition and its variability over time, respectively.  292 

 293 

 294 
Figure 3. Modal responses of the granite beam. (a) Fourier transform from a vibration 295 

recording at the top, and comparison (dotted line) with the estimated theoretical modes for the 296 

Euler-Bernoulli type continuous beam. Measured values: L × W × H, 2 × 5 × 100 cm; density, 297 

2.69 kg/m3. Estimated values: Young’s modulus, 50 GPa. (b) Frequency variation of mode 3 298 

computed over 21 h by the normalized random decrement technique. (c) Distribution of the 299 

frequencies for mode 3. 300 

 301 

The experimental data recorded for the beam subjected to the loading by the air jet are 302 

dominated by low-amplitude acceleration (# 10� 	PL��). To load the beam and trigger the 303 
slow dynamics, as classically observed in an earthquake sequence, dynamic load is applied to 304 

the system in a controlled manner using a programmable automatic hammer that strikes the 305 

supporting granite block (Fig. 2a). This enables stable repetition (i.e., of amplitude, duration) 306 

of the system conditioning. The effect of the conditioning (or strain level) on the slow 307 

dynamic is not analysed in our study. The acceleration generated at the top is # 10�	PL�� 308 
and lasts for approximately 5 s. The associated deformation calculated between the top and 309 

the bottom of the beam is around 5 ×10-5; i.e., the system remains within the elastic domain. 310 

Figure 4 shows mode 3 of the granite beam, calculated as the average of 15 successive 311 

impacts. This shows the stable frequency before the impact; then there is a remarkable drop 312 

during the impact, as highlighted in red, with fitting of the data with a single logarithmic 313 

function of time, as follows: 314 

 315 
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 Q��� = � log ��t� + B (17), 316 
 317 

where F(t) is the resonance frequency. 318 

 319 

 320 
Figure 4. Variation of the frequency (mode 3) during a dynamic solicitation. The red line is 321 

the average of 15 repeated trials. The error bars (grey) are the uncertainty of the frequency 322 

measurements for the 15 tests. The thick black line is the average. The inset on the right is a 323 

zoom of the acceleration during a shock. 324 

 325 

It is interesting to note here that the standard deviation of the frequency is constant 326 

over time, which indicates the measurement stability for the repetitive hammer strikes at the 327 

laboratory scale. The drop in frequency (ΔF/F�) is around 3.58 ×10-3 for a standard deviation 328 
of 10-3.  329 

To evaluate the transitional variations of the resonance frequency and for estimation of 330 

the short relaxation times (	678 Eq. (9)), the RDT method was modified to improve the time 331 
accuracy, by partially removing the windowing effect for instantaneous frequency variation 332 

assessment. The signal stationarity condition justifies the summation of the time windows 333 

with the same initial conditions T0, which means that the estimation would be biased if this 334 

condition was not respected. To apply RDT to signal windows that include high amplitudes, 335 

use of a normalised RDT (NRDT) is proposed. This consists of normalising each segment 336 

before the calculation of the segment average. This normalisation can be considered as a 337 

stationarity condition that is imposed artificially on the data, without modifying the amplitude 338 

variations within each segment, as an essential condition for signature calculation, and 339 

particularly its exponential decrease. Two normalisations were tested: using the maximal 340 

amplitude (NRDT1) and the maximal energy (NRDT2) of the time segment.  341 

Figure 5 shows the fundamental frequency variations during an impact from Figure 4 342 

using these three methods, considering a 100T overlap between successive windows. 343 

Considering windows of 1,000T, the frequency fluctuations are smoothed, whereas for 400T, 344 

there is a significant improvement in the resolution of fluctuations that has a physical 345 

meaning, as discussed in Brossault et al. (2018). Monitoring of the transitional variation of 346 

frequency at the time of impact is improved, thereby improving the identification of the 347 

moment when the recovery begins (i.e., 	678 ) even if the shift is observed due to the 348 
windowing process used for NRDT. The estimation quality is around 4 ×10-2%, which is well 349 

below the frequency variation measured during impact. The two normalisation methods are 350 

very similar, and only NRDT1 will be used in the rest of the present study.  351 

 352 
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 353 
Figure 5. Comparisons of the estimations of the instantaneous frequency variations by the 354 

standard RDT method and the NRDT method (cases 1 and 2). (a) Window of length 1000T. 355 

(b) Window of length 400T. (c) Time history of the acceleration. 356 

 357 

Finally, to define the relevance of the slow dynamics signature to identify damage, the 358 

impacts are applied to the beam subjected to the air jet loading before and after application of 359 

the damage. Roux et al. (2014) and Guéguen et al. (2014) used moderate local heating of a 360 

Plexiglas beam to apply a temporary, localised disturbance. The disturbance proposed herein 361 

is also limited in space, but is definitive: a heating plate applied locally (Fig. 2b). This process 362 

creates thermal cracks in the granite beam, like in the laboratory tests carried out on granite 363 

samples by Chernis and Robertson (1993) and by Takarli and Prince-Agbodjan (2008). The 364 

experimental stress represented by the size of the beam and its clamping to the support, as 365 

well as the desire to limit the damage to a specific portion of the beam, prevent the use of an 366 

oven to heat the sample in a gradual and uniform manner, as was the case in the 367 

aforementioned articles. Chernis and Robertson (1993) indicated that the thermal cracking 368 

temperature threshold of granite is approximately 80 °C, and that the higher the temperature 369 

applied to the granite, the greater the thermal fracturing, and thus the greater the damage 370 

characterised by the Young’s modulus reduction. Figure 6a shows the effects of heating on 371 

the beam, which are characterised by an increase in the acoustic emissions recorded on the 372 

beam during the heating, a characteristic of thermal fractures. The consequences to the 373 

resonance frequency are shown in Figure 6b. A significant variation is observed after heating: 374 

0.63%, 4.43%, 2.33% and 1.87% for modes 1 to 4, respectively. As shown by Roux et al. 375 

(2014), the mode frequency variation is directly dependent on the position of the damage, and 376 

the variations between the modes will not be discussed further herein. Only the effectiveness 377 

of the damage is relevant to the rest of the present study. 378 

 379 
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 380 
Figure 6. Illustration of the damage by heating to the beam. (a) Variation in temperature 381 

(dashed line) and number of associated acoustic emissions. (b) Variation of the modal (1 to 4) 382 

frequencies due to the heating period. Vertical dashed lines indicate heating periods when the 383 

modal analysis is interrupted. 384 

 385 

4. Analysis of the slow dynamics 386 
 387 

The results analysed in this study were obtained from two experiments that comprised a series 388 

of 15 impacts that were applied before and after damaging the granite beam. Figure 7 shows 389 

the frequency recovery for the first four modes of the granite beam in these two states. 390 

Frequency monitoring was obtained by averaging the recovery over the period of the 15 391 

impacts. Figure 7 and Table 1 indicate major modifications of the frequency variation time 392 

dynamics after the damage, when all of the modes show a greater frequency drop (ΔF/F�) 393 
associated with an increase in recovery speed (gradient p) for impacts of similar amplitudes. 394 

The increase in ΔF/F� means that once it has been damaged, the system is less resistant, and 395 
reduces its transient stiffness more easily, an observation that was also reported for an actual 396 

building during an earthquake (Astorga et al., 2018). ΔF/F�  and p of the relaxation 397 

relationship of Equation (17) (Q��� = X log ��t� + �1 � ΔF/F��  show the same relative 398 

increases for the first three modes (and, to a lesser extent, for the fourth mode), which 399 

indicates the strong dependency between these two parameters, and ultimately, an identical 400 

recovery time specific to the beam, regardless of the mode considered. Nevertheless, Lott et 401 

al. (2017, 2018) showed that the strain field controls the non-linear behaviour. Of note, 402 

Tencate et al. (2000) normalised the relaxation coefficient p with the strain values of each 403 

mode, to consider the sensitivity of the mode to the damage according to its localisation. 404 

Indeed, Roux et al. (2014) used the sensitivity of the modal frequencies to the position of 405 

damage for localisation, and the strain value of each mode could be considered for normalised 406 

p values. In the present study, the strain value is not computed (as only one sensor at the top 407 

of the beam was used), although the relation between the strain and the p values of each mode 408 

could be used for localisation, following the concept proposed by Roux et al. (2014), but not 409 

considered in this study.   410 

 411 
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 412 
Figure 7. Recovery of the normalised frequencies for modes 1 to 4 of the granite beam before 413 

(grey) and after (black) the damage. The recovery is the average of 15 successive shocks. 414 

Bold lines: experimental smoothed normalized values of the fundamental frequency; 415 

continuous thin lines: linear model fit (Eq. (17)); dotted lines: extension of the model to short 416 

times. 417 

 418 

Table 1. Values of p and ΔF/F�  of the recovery relationships of the shape Q��� =419 

X log ��t� + �1 � ΔF/F�� for modes 1 to 4 for an undamaged and a damaged beam. diff, 420 
variation of the parameter characterising the slow dynamics.  421 

 422 
 Mode 1 Mode 2 Mode 3 Mode 4 

 p YZ/Z[ p YZ/Z[ p YZ/Z[ p YZ/Z[ 

Undamaged 2.23 ×10-4 8.25 ×10-4 2.43 ×10-4 9.21 ×10-4 1.26 ×10-3 5.52 ×10-3 1.21 ×10-4 5.48 ×10-4 

Damaged 4.67 ×10-4 1.73 ×10-3 4.24 ×10-4 1.60 ×10-3 1.64 ×10-3 7.16 ×10-3 3.53 ×10-4 1.40 ×10-3 

diff (%) 109 109 74 74 30 30 192 155 

 423 

Figure 8 shows the frequency monitoring for mode 3 of the granite beam, as 424 

determined by the relaxation model proposed by Snieder et al. (2016) and applied to the 425 

experiment results (Eq. (14)). In this example, the frequency monitoring was decimated at the 426 

long time logarithmic scale, to reduce the weight of this part in the error calculation used for 427 

convergence of the non-linear regression. The frequency drop ΔF/F� is initially 4.2 ×10-3 and 428 
5.8 ×10-3 before and after the damage, respectively, for the equivalent conditioning. These 429 

values therefore increased by 38.1%, which is the same as the increase observed for this mode 430 

when the linear relationship is adjusted according to the time logarithm (30%; Table 1). 431 

 432 
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 433 
Figure 8. Recovery of the values of the normalised frequencies for mode 3 of the granite 434 

beam before (grey) and after (black) the damage. The recovery is the average of 15 successive 435 

shocks. Bold lines: experimental smoothed normalised values of the fundamental frequency; 436 

continuous thin lines: model fit (Eq. (14)); dotted lines: extension of the model to long times. 437 

 438 

Determination of the time constant 	69:  appears less certain. Indeed, no long-term 439 

curvature characterises 	69:  in the frequency monitoring in either case, with the beam 440 
recovery being very slow with respect to the time periods between the repeated impacts. 441 

Parameter 	678 is determined by the curvature visible for short times; this is 22.1 s for the 442 
undamaged beam, and 10.8 s for the damaged beam (Fig. 8). According to Snieder et al. 443 

(2016) and the development described in section 1, 	678  depends on the smallest 444 

characteristic size cracks. Reduction of this constant therefore implies the creation of cracks 445 

that are smaller than the heterogeneities initially present in the beam, which is one of the 446 

processes that results from damage by heating. 447 

Adjustment of the experiment data of the relaxation relationship proposed by Snieder 448 

et al. (2016) provides additional information. The time constant 	678  defines the minimal 449 
activation energy required to close the cracks in the material, and therefore the smallest 450 

characteristic size crack. We can estimate this minimal energy barrier for both states of the 451 

beam using the Arrhenius equation, of Equation (2). The energy barrier U is therefore written 452 

as: 453 

 454 

 
 = ��%	*\]�		 	�^ � (18). 455 

 456 

For high temperatures, TenCate et al. (2000) indicated that 	� # _/��%, where _ is 457 

Planck’s constant. The numerical application of Equation (18) gives a minimal energy barrier 458 

of 0.829 eV and 0.837 eV for the undamaged and damaged beam, respectively. Thus, there is 459 

a moderate reduction in the minimal energy barrier associated with the damage; i.e., the 460 

smallest crack size results in a large variation in 	678. This observation is all the more critical 461 
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because determining 	678 is difficult and depends on the monitoring method used (NRDT in 462 
the present case) and the ability to correctly identify the start of the recovery. Longer recovery 463 

times are characterised by increasingly small variations, and are polluted by long-term 464 

oscillations; e.g., due to temperature fluctuations or successive conditioning.  465 

The fitting of the data with a logarithmic function of time is more robust than the non-466 

linear regression of a complex function, where the parameter determination depends on the 467 

first and last measured frequencies. However, the generalised relaxation law in Equation (14) 468 

(Snieder et al., 2016) results from the superimposition of characteristic times between 	678 469 

and 	69: directly proportional to the size (i.e., characteristic time) of cracks. For application 470 
to the civil engineering structures, only the Snieder et al. (2016) model will be considered 471 

herein.  472 

 473 

5. Application of slow dynamics to actual civil engineering structures  474 
 475 

The first building considered here is FB-UCLA on the campus of UCLA, which was built in 476 

the 1970s. A full description of the structure, the modelling, and the first experimental data 477 

were provided in Kohler et al. (2005), Nayeri et al. (2008) and Skolnik et al. (2006). This 478 

building has 17 stories, two of which are below ground level. It has a steel structure with 479 

brick facing and concrete foundations. Its ground footprint is rectangular, with the long side 480 

as the north-south direction. The initial network of 72 accelerometers that was installed in 481 

1994 was upgraded in 2003 by the US Geological Survey, to improve the sensor sensitivity 482 

and enable acquisition of ambient vibrations. The present study is focussed on the monitoring 483 

of its fundamental mode frequency in the north-south direction, as identified by Kohler et al. 484 

(2005) and already monitored using RDT by Guéguen et al. (2016). This mode corresponds to 485 

the peak shown on Figure 9 at ~0.6 Hz. The continuous records sampled at 100 Hz that are 486 

used in this study come from the station at the top in the south-east corner (station GE, 487 

component HNN). The data were downloaded from the IRIS datacentre website 488 

(http://www.iris.edu).  489 

 490 

 491 
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Figure 9. Buildings tested in the present study, and their responses computed as the Fourier 492 

transforms of the ambient vibration recording at the top. (a) Factor building (FB-UCLA). (b) 493 

Institute of Geophysics (IG-EPN). 494 

 495 

The second building used for this study is IG-EPN in Quito, Ecuador, in the National 496 

Polytechnic University campus. This was built in 1976 before the first earthquake engineering 497 

construction code was introduced in Ecuador. It has eight stories of the same height, each of 498 

which comprises a slab supported by reinforced concrete columns. Since 2011, the structure 499 

has been permanently equipped with a triaxial accelerometer (GURALP-5TD) positioned at 500 

the top. The acceleration is continuously recorded at 100 Hz; this structure shows a resonance 501 

frequency of ~ 1.5 Hz (Fig. 9). 502 

For FB-UCLA, the earthquake used is the Chino Hills earthquake of 29 July, 2008, of 503 

magnitude 5.5, the epicentre of which was 45 km from Los Angeles. The signal recorded at 504 

the top of the structure (Fig. 10) shows an acceleration peak at 1.2 m.s-2, and the deformation 505 

calculated on the basis of the acceleration indicates a maximal of ~5 ×10-4. For IG-EPN, the 506 

7.8 magnitude Pedernales earthquake on 16 April, 2016, was used, which had an epicentre 507 

170 km from Quito (Fig. 10). The acceleration recorded at the top of IG-EPN during the 508 

earthquake shows an acceleration peak of 0.72 m.s-2, with the maximal calculated 509 

deformation of 7 ×10-4. In both cases, the deformation is below the standard threshold of 510 

damage appearance, which is assumed to be ~3 ×10-3. 511 

 512 

 513 
Figure 10. Time history of the acceleration recorded at the top of the buildings for the 514 

earthquakes used for the frequency recovery analysis. 515 

 516 

The time resolution of NRDT depends on the specific period of the mode of the 517 

structure, which is around 1 s for each of these two structures. We used NRDT with the 100T 518 

signal duration, after checking the validity of this choice in preliminary tests. The recovery 519 

between two successive signal segments is 90%, to reduce the time interval of the monitoring 520 

and to enable optimal 	678 evaluation. We also chose to validate this by applying a more 521 
conventional time–frequency distribution, of the Cohen class. We therefore applied the 522 

Wiegner–Ville method that was tested by Michel and Guéguen (2010) on earthquake data 523 

recorded for these buildings. The principle is to distribute the signal energy in the time–524 
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frequency space. The energy at a point in the time–frequency space is not calculated in a time 525 

window, but between �∞	and +∞. As the signals are finite in time, the distribution actually 526 
calculated in practice is therefore the smoothed pseudo Wigner–Ville distribution. This 527 

corresponds to the Wigner–Ville distribution for which the energy values of time–frequency 528 

pairs are calculated in windows limited in time and in frequency. The frequency range of this 529 

distribution is large, which makes it difficult to measure small frequency variations. To 530 

counter this difficulty, the reassignment method was applied, as described in Michel and 531 

Guéguen (2010). The local energy of the distribution is reassigned to the centre of gravity of 532 

the domain around each time–frequency point. Michel and Guéguen (2010) indicated that this 533 

reassigned pseudo-distribution is particularly suitable for the measurement of sudden 534 

variations in frequency, as for the present case. The value used for the frequency at each time 535 

t is then determined by picking the maximum value of the reassigned pseudo Wigner–Ville 536 

distribution at that time. Hereafter, we use the term Wigner–Ville distribution (WV) to 537 

indicate the reassigned pseudo Wigner–Ville distribution.  538 

Figure 11 shows an example of the monitoring of the fundamental frequency of IG-539 

EPN during the 2016 earthquake, as calculated by NRDT and WV, which characterises the 540 

ANFD and slow dynamics. A Savitzky-Golay (Orfanidis, 1995) type of smoothing method is 541 

applied to the frequency variations on which the recovery analysis is carried out. The 542 

frequency drops by about 30% during the earthquake. The frequency then recovers partially, 543 

towards a value lower than the frequency measured before the earthquake. This suggests that 544 

the structure of IG-EPN was slightly damaged during the dynamic loading. The recovery 545 

immediately after the loading is similar with both of the monitoring methods, although 546 

differences remain for the short times, which affect the 	678 estimate. 547 

 548 
Figure 11. Monitoring of the resonance frequency at IG-EPN for the Pedernales earthquake. 549 

(a) WV and (b) NRDT. Thick lines, smoothed variations using a Savitzky-Golay fit function. 550 

(c) Smoothed function for NRDT and WV. (d) Time history of acceleration recorded at the 551 

top of IG-EPN.  552 

 553 

The Snieder et al. (2016) model for characterising relaxation is shown as a function of 554 

the time logarithm in Figure 12 and Figure 13 for FB-UCLA and IG-EPN, respectively. The 555 

frequencies are normalised by their values at long times, as a convergence value of 1 is 556 
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required.  557 

 558 
Figure 12. Recovery of the normalised frequency of the fundamental mode for FB-UCLA 559 

after the Chino Hills earthquake, using NRDT (upper panel) and WV (lower panel). Thick 560 

black line, Snieder et al. (2016) fit model; grey line, experimental smoothed normalised 561 

values of the fundamental frequency. 562 

 563 

 564 
Figure 13. As for Figure 12 for IG-EPN for the Pedernales earthquake. 565 

 566 

For FB-UCLA, the results obtained by NRDT and WV are comparable, with a co-567 

seismic drop in frequency of around 0.15. 	678 and 	69: are very similar, at 182 s and 165 s 568 

for NRDT and WV, respectively. The minimum (	678) and maximum (	69:) characteristic 569 
times are comparable, which according to the Snieder et al. (2016) model, suggests that the 570 

cracks or joints that are opened by the earthquake show a distribution of energy barriers, and 571 

therefore a distribution of characteristic sizes that is limited around a central value. 572 

For IG-EPN, a few variations are seen, depending on the time–frequency monitoring 573 
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methods. The co-seismic frequency drop is around 33% to 36%. 	678 and 	69: are different, 574 
as 45 s to 106 s and 279 s and 214 s using NRDT and WV, respectively. The difference 575 

between the two monitoring methods indicates that in this specific case (Pedernales 576 

earthquake recorded at IG-EPN), the short characteristic times are not as well identified near 577 

the main shock, introducing uncertainties on the real state assessment of the building that 578 

must be considered before operational application. It is also interesting to note that the 579 

Pedernales shock was greater than the earthquake suffered by FB-UCLA, and it resulted in a 580 

permanent frequency variation after the main shock, which indicates increased cracking.  581 

The conditioning sequence of IG-EPN also included a foreshock and an aftershock 582 

(Fig. 14a), with these two events generating transient frequency variations (Fig. 14b). Their 583 

amplitudes are smaller than that of the main shock, with the initial pre-loading recovered 584 

relatively quickly. The evolution of 	678 and 	69: with the damage is confirmed in Figure 15 585 
and Table 2, which show the Snieder et al. (2016) function and the associated parameters 586 

applied to WV for the three events. The non-linearity measured increases as the deformation 587 

measured in the structure increases. ΔF/F�  is 0.087, 0.190 and 0.366 for the foreshock 588 
(deformation 16980 5.3 ×10-6 ), aftershock (1.7 ×10-5) and main shock (7.6 ×10-4), 589 

respectively. Furthermore, for the foreshock and aftershock, the two characteristic dimensions 590 

	678 and 	69: are identical; i.e., 37 s and 66 s for the foreshock and aftershock, respectively. 591 

As mentioned previously for FB-UCL, this indicates that these moderate stresses only activate 592 

heterogeneities (i.e., cracks in the present case) the size distribution of which is limited 593 

around a main value. In such cases, the structure deformation is such that the existing cracks 594 

are stressed to their maximum, although no new cracks are formed. For the main shock, 	678 595 

and 	69: are very different (45 s, 279 s, respectively), indicating the mobilising of new cracks 596 

created by a major deformation, as observed in the laboratory on the granite beam. 	69: is so 597 
much larger for the main shock than for the fore and after shocks because of the size of the 598 

cracks activated by this loading. The characteristic times 	678  also increase with each 599 

earthquake. According to the interpretation that links these times directly to crack size, the 600 

minimum size of the cracks opened by the successive stresses might increase as the dynamic 601 

loading events are repeated. In other words, the damage estimated after the permanent drop in 602 

frequency observed for the main shock consists, at least in part, in the lengthening of the 603 

crack sizes. Further analysis must be carried out on the accuracy and the values of 	678 and 604 

	69: according to the amplitude of the loadings (or conditioning) and the weather condition. 605 
 606 

 607 
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Figure 14. Fore-shock, main shock and after-shock earthquakes recorded for the IG-EPN 608 

building for the Pedernales sequence. (a) Wiegner-ville function applied to the variation of 609 

the resonance frequency (black) and the Savitzky-Golay smoothing function. (b) Time-history 610 

of acceleration at the top of IG-EPN. 611 

 612 

Table 2. Parameters of the recovery relationships of the fundamental mode frequency of IG-613 

EPN after the three events, as foreshock, main shock and aftershock, using the Snieder et al. 614 

(2016) model. Dmax is the maximal drift measured during each event by the relative 615 

displacement between the top and bottom, divided by the height. 616 
Shock bYcc[d  

efgh�i� efjk�i� lfjk 

Fore 0.087 37.22 37.24 5.3 ×10-6 

Main 0.366 45.15 279.0 7.6 ×10-4 

After 0.190 65.81 65.83 1.7 ×10-5 

 617 

 618 
Figure 15. Recovery of the normalized frequency of the fundamental mode for IG-EPN for 619 

the fore-shock (black), the main shock (red) and the after-shock (grey) of the Pedernales 620 

sequence. Thick lines, experimental smoothed normalized values of fundamental frequency; 621 

continuous lines, univ fit models. 622 

 623 

6. Conclusions 624 
 625 

Analysis of the non-linear phenomena (i.e., ANFD, slow dynamics) observed in the granite 626 

beam before and after damage and in the actual civil engineering structures that suffered 627 

earthquakes confirm the direct relationship between the properties of elastic characteristic 628 

recovery (i.e., resonance frequency) and damage. This relationship between slow dynamics 629 

and the degree of system heterogeneity has already been confirmed at the laboratory scale and 630 

in seismology. For the first time, a detailed analysis of the slow dynamics applied to civil 631 

engineering structures is shown herein. It opens the route for monitoring the structural 632 
integrity of civil engineering structures. However, it is conditioned by the adjustment of the 633 

recovery model for system dynamics, and the possibility of precise monitoring of the various 634 
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elastic properties (or a proxy; i.e., resonance frequency, in the present case).  635 

In this study, the two methods used are a modified version of a conventional method 636 

(NRDT), and a conventional method (WV). These showed differences for the characterisation 637 

of the short and long recovery times. At long times, as the recovery processes can be long 638 

(Astorga et al., 2018), it is also preferable to have continuous data, as for IG-EPN.  639 

Using a laboratory analogue, i.e., the granite beam, recovery of the frequency fitted by 640 

a linear function of the time logarithm depends on the health state (i.e., damaged or 641 

undamaged) of the beam. In spite of the difficulties in adjusting the long and short 642 

characteristic times, the Snieder et al. (2016) model enabled the definition of a narrow 643 

correlation of characteristic times with damage. These data are fully confirmed in the civil 644 

engineering buildings, with the definition of the physical properties of the recovery according 645 

to the loading or damage, particularly for IG-EPN. Slow dynamics are observed after strong 646 

loadings, and for this level of strain (or structural drift), we assume little sensitivity to 647 

environmental conditions or conditioning, which suggests the absolute characterising of the 648 

damage.  649 

We note that the characteristic times offer direct insights into the types of cracks. The 650 

designs of the buildings tested in the present study were different: FB-UCLA has a steel 651 

structure and IG-EPN has a reinforced concrete structure. The characteristics of the slow 652 

dynamics depend on both the deformation caused by the loading and the heterogeneities 653 

present in the structure. A drop in frequency was also observed in a unique building in Japan 654 

during a long series of seismic loading (Astorga et al., 2018). In that particular case, the 655 

frequency drop was conditioned by the deformation and damage that accumulated over time. 656 

For IG-EPN, the damage is also characterised by a faster recovery rate in the event of stronger 657 

loading. Without knowing their exact dimensions, the difference between 	678  and 	69: 658 
provides information on both the distribution of the energy barriers, and therefore the cracks, 659 

and on their evolution according to the level of loading.  660 

We have shown that the characteristic times 	678 and 	69: were very close, both for 661 
FB-UCLA and its moderate earthquake (Chino Hills), and for IG-EPN for the foreshock and 662 

the aftershock. This indicates a limited distribution around a central value of the sizes of the 663 

cracks opened by the seismic event, without the creation of new cracks. In the case of FB-664 

UCLA, which mainly constituted a steel structure, the structural elements are not fractured, 665 

and the time constants correspond to the energy barriers associated with the joints between the 666 

structural elements. IG-EPN is made of reinforced concrete, which is known to fracture. The 667 

proximity of 	678 and 	69: suggests that only the smallest cracks were opened by the two 668 

low amplitude earthquakes. In the case of IG-EPN, the increase in 	678 with the deformation 669 
caused by the earthquakes also indicates increased cracking caused by the seismic damage. 670 

This increase is confirmed by the difference between 	678 and 	69: observed during the main 671 

shock, and similarly between the undamaged and damaged beams. This observation enables 672 

us to envisage a data-driven method for monitoring structure integrity in the event of seismic 673 

loadings in a sequence. This is all the more important as damage affects the response, and 674 

therefore the vulnerability, of structures (Iervolino et al., 2014; Trevlopoulos and Guéguen, 675 

2017), with probable consequences on the safety of the local inhabitants in the event of a 676 

seismic crisis.  677 

The sensitivity and accuracy of 	678  and 	69:  with damage, and according to the 678 
conditioning and the weather condition, must be investigated before concluding on a possible 679 

operational framework for structural monitoring. The sensitivity of the resonance frequency 680 

and of its recovery to weak loadings may control the efficiency of this model for monitoring 681 

and must also be considered before operational application. In addition, adjustment of the 682 

Snieder et al. (2016) relaxation model via a non-linear regression algorithm is difficult to 683 

implement. There are other models, and although these have only been applied in a laboratory 684 
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setting to date (Shokouhi et al., 2017), if applied to civil engineering structures (Astorga et al., 685 

2019), these could provide more precise information on the nature of the cracks (i.e., 686 

dimension, energy, distribution), including sensitivity to the conditioning and the external 687 

forcing such as temperature or humidity. 688 

 689 
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