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Abstract 

 In this article, we describe a large dataset comprising of 81 energy, financial and other 

commodity markets collected over the period from August 1999 to January 2018, with which 

we offer new insights into the dynamics of market risks using a conditional regime-

switching GARCH CAPM with time-varying betas explaining both bull and bear markets. The 

static version of CAPM predicts that the relationship between expected returns across assets 

and their betas is linear. Despite the wide applicability of this model, it has been severally 

criticised especially following its failure to capture the effects of time-varying investment 

opportunities that may affect the calculation of an asset’s risk. In parallel to this, several 

modifications have been offered in which an asset’s risk has been set to vary conditionally 
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over the business cycle. However, empirical results remain relatively divergent regarding 

the identification procedure of determinant factors behind the evolution of conditional asset 

betas. We contribute to the literature on conditional CAPM by addressing the above issue. 

We explore the ability of the conditional regime-switching GARCH-CAPM to capture time 

varying betas and conditional variance processes using a GARCH and Markov-switching 

framework.  

Specifications Table  

Subject area Economics 

More specific subject 

area 

Energy Economics. 

Type of data Times series (Table, excel file, graphs) 

How data was acquired Data are acquired from Datastream international, IMF’s International 

Financial Statistics (IFS) and the U.S. Federal Reserve databases. 

Data format Raw and processed 

Experimental factors Dataset include monthly MSCI and stock returns for 56 countries and 

22 commodity indices, one-month Treasury bill rates for all the 

countries and Eurodollar interest rate, which are considered as a risk-

free rate. Industrial production index for all the countries.   

Experimental features Very brief experimental description 

Data source location City, country, and/or latitude and longitude (and GPS coordinates) for 

collected samples/data, if applicable 

Data accessibility Data are available within this article 

Related research article Urom and Chevallier, 2019. A dynamic conditional regime-switching 

GARCH CAPM for energy and financial markets “in press.” 

 

Value of the Data 

• There is a general agreement in the literature that asset prices vary over the business cycle 

(Maheu and McCurdy, 2000). This dataset may be useful in predicting time-varying investment 

opportunities that may affect the estimation of assets’ risk.  

• Given the increasing concern about risk management, this dataset and our permits the 

forecasting of important Risk Metrics such as the Value-at-Risk (VaR) and Expected Shortfall 

(ES). According to Engle and Manganelli (2004), VaR offers a quantitative technique through 

which a single number could quickly and easily convey significant information about the risk 

of a portfolio.  

• This dataset will also guide further research in this area as it would permit the replication and 

advancement of empirical studies on dynamic conditional beta.  

 

 

 

 



 

 

 

Data 

In this paper, we use an extensive dataset containing 81 monthly Stock Market Indices for 56 countries 

drawn from North/Latin America, Western Europe, Emerging Europe, the Middle East/Africa, 

Developed Asia, Emerging Asia, and Africa. The dataset also contains 22 Energy and Other Commodity 

indices drawn from the main classes of commodities including Metals, Energy, and Agriculture. The 

data was collected over the period from August 1999 to January 2018.  All the data are extracted from 

Thomson Datastream International. Moreover, we include three aggregated stock market indices for 

the World, Europe, and Emerging markets. We employ the 30-day Treasury bills rate as the risk-free 

rate for each country while we use the 30-day Euro-Dollar interest rate for the selected commodities. 

Regarding the state of the economy in each country, we consider industrial production as an 

instrumental variable to reflect changes in the level of economic activity in each regime. For 

commodities and the World aggregate market, we use industrial production in the United States as a 

reflection of the level of global economic activity. Lastly, we use industrial production in China and 

Europe industrial production to measure the state of economic activities in emerging markets and 

Europe respectively.  

Table 1 and Figure 1 present the descriptive statistics and return series plots for few countries and 

commodity return series. Our discussion is based on the entire 81 sampled returns series which can 

be found in the main article.  It can be deduced that all the return series both for countries and 

commodities have positive mean except Italy, Latvia, and Portugal that have negative mean returns. 

Also, all the series are negatively skewed except Turkey, Columbia, United Arab Emirates, Chile, Malte, 

Gold, Ruthenium, Wool, Wheat, Cocoa, Coffee and Cotton which have positive values for the skewness 

while all the values for the kurtosis are above 3 as shown by positive excess kurtosis for all the series. 

Lastly, the $p-values$ for the Jarque Bera and the Lagrange Multiplier (LM) test for all the series are 

zero. These results imply asymmetric and fat tail characteristics and that all the return series do not 

follow the normal distribution under 5% significance level.  

Table 1: Descriptive statistics 

Countries Mean Std. Dev. Skewness Ex. Kurtosis JB 

LM ARCH 

(5) 

USA 0.0032 0.0518 -1.5932 6.0584 429.52 54.985 

          [0.000] [0.000] 

CANADA 0.0038 0.0404 -1.0552 3.1994 134.65 21.292 

          [0.000] [0.000] 

GERMANY 0.0041 0.0623 -0.8671 3.0538 113.06 13.819 

          [0.000] [0.016] 

AUSTRALIA 0.0033 0.0413 -0.4041 1.1743 18.621 47.666 

          [0.000] [0.000] 

DENMARK 0.0071 0.0544 -0.5504 1.8793 43.485 36.067 

          [0.000] [0.000] 

FINLAND 0.0011 0.0797 -0.2628 2.0447 40.857 45.586 

          [0.000] [0.000] 

SPAIN 0.0005 0.0633 -0.4596 0.5081 10.115 22.611 



          [0.000] [0.000] 

FRANCE 0.001 0.0595 -0.7812 2.1792 65.912 21.227 

          [0.000] [0.000] 

UK 0.0008 0.0413 -0.6388 1.0478 25.027 15.128 

          [0.000] [0.009] 

ITALY -0.0022 0.0609 -0.3265 0.8052 9.851 5.855 

          [0.007] [0.032] 

SWEDEN 0.0031 0.0587 -0.2977 0.681 7.5028 26.114 

          [0.023] [0.000] 

SWITZERLAND 0.0013 0.0392 -0.7277 0.8563 28.139 21.115 

          [0.000] [0.000] 

NEW ZEALAND 0.0044 0.0354 -0.5696 2.104 52.476 36.106 

          [0.000] [0.000] 

NORWAY 0.0081 0.0592 -0.7901 1.5799 45.768 39.405 

          [0.000] [0.000] 

NETHERLAND 0.0003 0.0574 -10723 2.2708 89.431 44.214 

          [0.000] [0.000] 

JAPAN 0.0011 0.059 -0.4712 1.0824 18.882 17.889 

          [0.000] [0.003] 

IRELAND 0.0041 0.0629 -0.8876 2.5519 88.586 62.801 

          [0.000] [0.000] 

THAILAND 0.0062 0.0668 -1.1079 4.6719 24.508 59.109 

          [0.000] [0.000] 

MYLASIA 0.0038 0.0432 -0.4117 1.6887 32.357 10.199 

          [0.000] [0.069] 

INDONESIA 0.0109 0.0643 -1.0897 3.5015 35.059 16.67 

          [0.000] [0.002] 

PHILIPPINES 0.0056 0.0591 -0.4426 1.6858 33.233 19.624 

COMMODITIES             

CRUDE OIL 0.0052 0.1144 -0.6037 1.0278 23.051 33.972 

          [0.000] [0.000] 

GOLD 0.0072 0.049 0.0799 1.6769 26.012 13.122 

          [0.000] [0.022] 

SILVER 0.0051 0.0842 -0.3747 2.0796 44.791 19.753 

          [0.000] [0.001] 

NATURAL GAS 0.0003 0.1388 -0.32151 1.7985 33.439 46.064 

          [0.000] [0.004] 

COPPER 0.0066 0.0778 -0.8704 4.3231 199.1 25.678 

          [0.000] [0.000] 

PLATINUM 0.0042 0.0697 -0.5932 3.1535 104.06 27.119 

          [0.000] [0.000] 

PALLEDIUM 0.0049 0.1067 -0.6819 2.7276 85.251 7.044 

          [0.000] [0.054] 

NICKEL 0.0027 0.1053 -0.6051 2.4071 66.541 6.311 

          [0.000] [0.037] 



TIN 0.0059 0.0731 -0.3861 1.494 25.928 186.272 

          [0.000] [0.000] 

ZINC 0.0046 0.0775 -0.9029 4.1319 186.39 8.1738 

          [0.000] [0.005] 

RHODIUM 0.0024 0.1441 -1.6576 14.075 149.34 179.45 

          [0.000] [0.000] 

RUTHERNIUM 0.0071 0.1417 0.8763 5.0058 257.85 187.68 

          [0.000] [0.000] 

CORN 0.0026 0.0864 -0.3647 1.9197 38.66 181.18 

          [0.000] [0.000] 

RUBBER 0.0045 0.0884 -1.2396 6.3796 429.42 178.78 

          [0.000] [0.000] 

SOYABEAN 0.0032 0.0712 -0.184 0.8392 7.697 10.566 

          [0.021] [0.060] 

WOOL 0.005 0.0495 0.0212 2.6458 64.186 194.85 

          [0.000] [0.000] 

ALLUMINIUM 0.0017 0.0538 -1.0768 5.457 315.48 49.08 

          [0.000] [0.000] 

LEAD 0.0072 0.0955 -0.3254 2.2701 51.122 37.475 

          [0.000] [0.000] 

WHEAT 0.003 0.0959 0.0282 1.376 17.384 13.852 

          [0.000] [0.016] 

COCOA 0.0027 0.0739 0.2582 1.1666 14.921 7.183 

          [0.000] [0.0207] 

COFFEE 0.0013 0.0887 0.0474 1.9878 36.302 6.322 

          [0.000] [0.041] 

COTTON 0.0016 0.0806 0.1724 0.9626 9.584 18.783 

          [0.008] [0.002] 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1:  Return series plots 
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for energy and financial markets

Revised September 2019

Abstract

This paper develops a methodology for estimating a time-varying conditional version of
the CAPM with regime changes in conditional variance dynamics. Our research goal is related
to documenting the power of the beta when it is estimated dynamically. The empirical per-
formance is tested across a sample of 81 financial, energy, and other commodity markets for
the period August 1999 - January 2018. The conditional regime-switching GARCH CAPM,
with time-varying betas explaining both bull and bear markets, outperforms the unconditional
(static) CAPM. Among stocks, there are significant time variations in betas across our models
and regimes. This empirical feature is even more pronounced in the USA, the UK, Germany,
France, China, and Malaysia. Among energy and other commodities, we find similar variations
in the market price of risk. The direction of the relation with market returns for Crude Oil,
Gold, Copper, Tin, Rubber, Aluminum, and Platinum is the same across our nested models.
This result also holds for aggregate markets indices. Secondly, we provide a ranking by mean
filtered volatility series where Natural Gas stands out at a high level. Average pricing errors
are inferior in the case of the conditional model, and for Crude Oil. Lastly, we demonstrate
that the regime-switching model delivers better estimates of one-day-ahead Value-at-Risk than
its non-switching counterpart. Our results shed light on the supremacy of the market factor
alone associated with time variation in risk premia across the energy and financial markets.

Keywords: Dynamic Beta; Conditional CAPM; Regime-Switching; MS-GARCH; Risk
Management; Crude Oil; Natural Gas

JEL Classification: C32; F36; G12; Q48; Q54
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1 Introduction
For over a half-century, the Capital Asset Pricing Model (CAPM) first proposed by Sharpe (1964)
and Lintner (1965) and extended by Mossin (1966), Fama (1968a; 1968b) and Long (1972) has
offered a theoretical background for the estimation of asset prices with volatile returns. As early as
the 1960s, from the work of Markowitz developed some years ago, Sharpe, Lintner, and Mossin pro-
posed the equilibrium model of financial assets (CAPM) that has served as a foundation for modern
financial theory. According to this model, the expected profitability of a security is explained by
a factor (the market risk premium) with a sensitivity specific to each company (the beta). The
risk of a project is measured by the beta of the cash flow concerning the return on the market
portfolio of all assets in the economy. This model predicts that the relationship between expected
returns across assets and their betas concerning the market portfolio is linear (Morana, 2009; Tsai,
Chen and Yang 2014). The crucial second prediction of the CAPM is that all investors are the
Arrow-Pratt relative risk-averse utility of terminal wealth maximizers, whose choice of stocks is
mainly guided by mean-variance efficiency (Frazzini and Pedersen, 2014), and that investors’ risk
aversion are constant over time.

Early stream of studies offered significant empirical evidence in favor of the theoretical paradigm
of the CAPM, especially regarding its crucial prediction that the market portfolio must be mean-
variance efficient. This pillar of academic finance laid a strong background for research for several
years (see, e.g., Black, Jensen, and Scholes 1972; Blume and Friend 1973). However, Lettau and
Ludvigson (2001) note that recent empirical implementations have revealed some downsides of the
CAPM. We adopt a pragmatic view regarding the usefulness of the unconditional CAPM. Despite
its observed drawbacks, Jagannathan and Wang (1996) note that the CAPM is still the preferred
model for MBA and other managerial finance courses. Even more, Vendrame, Guermat, and Tucker
(2018) note that the CAPM remains a simple, intuitive, and an economically sound theory and
that the search for its replacement has led the researcher to either discard its central doctrines,
or adopt some statistical approaches that prove too complicated to be replicated by researchers
and practitioners. Since then, the CAPM has had many applications, has been subjected to many
empirical tests on all the financial markets but remains to this day an unavoidable model despite
continual attacks, both theoretical and empirical.

Two critical possibilities have been offered to explain the observed deficiencies of the CAPM.
First, Lettau and Ludvigson (2001) argue that a significant explanation for the failure of CAPM
is its assumption of the static specification, which has failed in accounting for the effects of time-
varying investment opportunities that may affect the calculation of an asset’s risk. The uncon-
ditional CAPM was derived from a hypothetical model in which investors are assumed to live
for only one period. In the real world, investors live for many periods (Jagannathan and Wang,
1996), and their expectations as economic agents for future returns are conditioned on many fac-
tors (Klemkosky and Martin, 1975; Fabozzi and Francis 1978; Bos and Newbold, 1984, Collins and
Ledolter, 1987; Bollerslev, Engle, Wooldridge, 1988; Bodurtha and Mark, 1991), implying that risk
and risk premium are time-varying. To provide some economic intuition, the time variation in risk
premia may be attributable to time variation in risk aversion, or in risk itself (Constantinides and
Duffie, 1996). The second possibility is that systematic risk itself has more than one component,
and that beta is not the only measure of risk. Additional factors such as the ratio of earnings to
price, level of market capitalization, leverage effects and the increasing synchronizations of global
finance have been found to significantly influence systematic risk (Banz, 1981; Bhandari, 1988;
Arouri et al. 2011).

Perhaps, the most obstructing of empirical applications of the unconditional CAPM was its
failure to capture the cross-sectional variation of average return on a portfolio containing assets
with varying sizes and book-to-market equity ratios. In response to these anomalies, additional
sensitivity components have been added to the CAPM such as in the famous three-factor model
of Fama and French (1993), the consumption CAPM by Breeden (1979) and the four-factor model
of Carhart (1997). Despite the success of these models, especially the three-factor model, they
have, however not been enough to account for the central anomalies. For instance, the three-factor
model has been criticized due to the controversies surrounding the interpretation of its proxies
for unobserved common risk in portfolios. Harvey, Liu, and Zhu (2016) have added critics to the
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inflation of such factors: the market factor alone is the main (if not the only) factor explaining
the returns of securities. The consumption-based CAPM has failed in its formulation of the rep-
resentative agent with time-separable power utility using U.S. data and has not done better in
capturing cross-section of average returns on portfolios with assets of different sizes (Lettau and
Ludvigson, 2001).

According to Vendrame et al. (2018), the most reoccurring explanation for the failure of CAPM
has been that CAPM may hold conditionally rather than unconditionally. There is a general agree-
ment in the literature that asset prices vary over the business cycle (Maheu and McCurdy, 2000).
Hence, the risk premium should also change over the business cycle (Cochrane, 2001). Besides,
the covariance between asset returns and the market portfolio is of central interest (Adrian and
Franzoni, 2009; Avramov and Chordia, 2005; Lewellen and Nagel, 2006). Conditional beta pricing
models – which offer a convenient approach to modelling the time-varying conditional variances
and covariances in financial time series – have been applied several times to introduce time vari-
ations in several dimensions of the CAPM (see e.g. Campbell and Shiller, 1988; Bollerslev et al.
1988; Campbell 1991; Bodurtha and Nelson, 1991; Ferson and Harvey, 1991; Lamont 1998; Lettau
and Ludvigson 2001; Cochrane 2001; Andersen et al. 2005; Ang and Chen, 2007; Morana 2009;
Korkmaz et al. 2010; Billio et al., 2012; Cenesizoglu and Reevesm 2018; Tansuchat et al. 2018,
Vendrame et al. 2018). For instance, Bodurtha and Mark (1991) estimated a conditional CAPM
with time-varying expected risk premium, variance, and covariances using a GMM approach. They
found sufficient evidence against the constant beta CAPM. Also, Ang and Chen (2007) examined a
conditional CAPM with a conditional beta and time-varying risk premium using an autoregressive
AR(1) latent process. They found that conditional betas were time-varying and positively corre-
lated with the market risk premium.

Recently, new approaches have been developed which offer flexibility in capturing the dynamic
aspects of conditional asset betas. In a dynamic world, investors care about hedging against a
variety of risks that do not arise in a static economy. Dynamic conditional beta models allow for
time-variation in betas based on predicted conditional covariances using estimates from both the
univariate and multivariate DCC model of Engle (2002) applied to asset pricing and systematic
risk assessment (see, e.g., Bali, Engle & Tang, 2016; Engle, 2016). Also, Ferreira et al. (2011)
derived dynamic conditional betas using a non-parametric approach and Monte Carlo simulations
on the conditional version of Fama and French three-factor model. Further, Darolles, Francq, and
Laurent (2018) extended the use of conditional covariance matrix by applying the Cholesky de-
composition under the Cholesky-GARCH framework and applied this approach to the estimation
of extensive portfolio and risk management metrics. They show that the Cholesky-GARCH model
performs better than the dynamic conditional beta of Engle (2016) which has been criticized due to
the imposition of constancy on conditional betas, and the impossibility of identifying the deriving
factors behind their evolution.

To our knowledge, the method we develop in this paper can be seen as an extension of the
dynamic conditional beta of Engle (2016) and Darolles et al. (2018). We explore the ability of
the conditional regime-switching CAPM with time-varying betas to capture regime changes in
the conditional variance dynamics. With this approach, the time variation is captured using two
dynamic processes: GARCH and Markov-switching. Our work is closely related to the novel esti-
mation approach proposed by Ardia, Bluteau, Boudt, Catania, and Trottier (2018) to implement
the Markov switching GARCH specification of Haas, Mittnik, and Paolella (2004). A critical theo-
retical advantage of the Markov switching model is that it offers the opportunity to assess different
GARCH behaviors in each regime. It reveals the difference in the conditional variance dynamics
of low and high volatility regimes, and therefore the possibility of large swings in returns. We
consider two types of markets: bull and bear, across which market risk premia are expected to
vary (Pettengill, Sundaram and Mathur, 1995). We investigate the performance of this model
across an international sample of 81 financial, energy and other commodity markets from August
1999 to January 2018.

In contrast to traditional derivations of the static CAPM, the first contribution of this paper
is to examine temporal variation in beta and risk premium by estimating regime changes accord-
ing to Markov-switching processes. As a framework of analysis, the conditional CAPM provides
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indeed a convenient way to incorporate the time-varying conditional variances and covariances
specific to energy and financial time series. Our modeling strategy offers the advantage to compare
the time-varying risks and price of risk across three models, namely: the unconditional CAPM,
the regime-switching CAPM, and the conditional regime-switching GARCH-CAPM. The regime-
switching CAPM model permits us to estimate the variations in betas across regimes, as well as the
market regime probabilities. The regime-switching GARCH-CAPM allows us to derive addition-
ally, the conditional variance dynamics while using residuals from the static CAPM as demeaned
time series.

Secondly, the regime-switching GARCH model permits us to derive the volatility forecasts
which adapts to variations in the unconditional volatility levels for all our series using the mean
fitted posterior volatility. Here, it is argued that if the evolution of volatility is heterogeneous
across two regimes, the regimes may exhibit different unconditional volatility levels. Further, Ar-
dia et al. (2018) note that one of the critical empirical applications of the MS-GARCH model is
within the domain of wealth allocation among risky investment opportunities. Here, investors may
wish to assess the quantile of their future distribution at given risk levels as well as the expected
values below this level. It has been noted that regime-switching models have proven to offer better
out-of-sample back-testing results than single-regime models.

The third contribution of this paper to the empirical asset pricing literature is to apply the
MS-GARCH in the forecasting of essential Risk Metrics such as the Value-at-Risk (VaR) and Ex-
pected Shortfall (ES). According to Engle and Manganelli (2004), VaR constitutes a quantitative
technique through which a single number could quickly and easily convey significant information
about the risk of a portfolio. It has recently become a necessary tool for risk managers, enabling
them to appraise and allocate risk more efficiently. In simple terms, the VaR represents a quan-
tile of the log-returns distribution at a prior determined horizon and confidence level whereas ES
reflects the loss expected when the loss is above the VaR level.

Estimation results from conditional beta pricing models in 81 financial, energy, and other com-
modity markets are remarkable. First, among stocks, there are significant variations in size and
the nature of relations between systematic risks and the markets from one model to another. This
finding is even more pronounced across bull/bear regimes for prominent countries such as the USA,
the UK, Germany, France, China, and Malaysia. Secondly, we find variations mostly in the size
of the beta parameters. The direction of the relationship between energy and other commodities
(such as Crude Oil, Gold, Copper, Tin, Rubber, Aluminum, and Platinum) and the market is the
same across two of our models. Variations in the relation between these commodities and the mar-
ket are only witnessed in the MS-GARCH model. These results also hold for aggregate markets,
where most differences are found in the conditional regime-switching GARCH model. Thirdly,
we document that the mean filtered volatilities rank, in the realm of energy markets, at a high
level for Natural Gas. Average pricing errors are inferior for the conditional model, especially for
Crude Oil. Lastly, our risk management tests show that the regime-switching model delivers the
best estimates of one-day-ahead VaR. By investigating the strength of the market factor across
financial, energy and other commodity markets, we identify economically important risk-return
relationships that market professionals can exploit.

The rest of this paper proceeds as follows. Section 2 presents the methodology from where we
show a detailed build-up to the model for this paper. Section 3 offers a description of the data.
Section 4 compares results from the competing models and contains volatility dynamics and risk
management statistics from the regime-switching models. We present the conclusions in Section 5.

2 Methodology
We attempt to determine the importance of changing risk premia and returns variability over time.
To that end, we employ an empirical test of the conditional regime-switching GARCH CAPM that
unfolds in three steps as follows. Notice the assumption that the model has a conditional mean
zero usually requires the model to be applied on a demeaned time series. When the series exhibits
dynamics in the conditional mean, the demeaned time series becomes the residuals of the time
series model (Ardia et al. 2018).
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2.1 Unconditional CAPM
In our view, the Capital Asset Pricing Model may serve as a useful benchmark model of relative
asset returns. Its economic appeal is that any risk-averse investor would demand higher expected
returns to compensate for taking higher risks. In its static (or unconditional) version, all investors
are single-period risk-averse utility of terminal wealth maximizers.

Therefore, our analysis begins with the static CAPM, whose primary output is the expected
return of an asset i at time t with the assumption that investors are risk averse and that the
market is complete (see, e.g. Cortazar et al. 2013; Blitz, 2014). Return on asset i and the market
portfolios for indices may be expressed as Ri,t = ln

〈
Pi,t
Pi,t−1

〉
where Ri,t is the log return on asset

i in period t, for instance a given value-weighted stock index. Pi,t is the price of asset i at time t.
In its typical form, the CAPM implies that the beta premium is positive, and equals the expected
market return minus the risk-free rate expressed as follows:

(Ri,t −Rf,t) = α+ β(RM,t −Rf,t) + εt (1)

where Ri,t denotes the log return on asset i at time t and t = 1, 2, ..., T is the time horizon.
Similarly, Rm,t is the log return on the market portfolio at time t while Rf,t is the risk free rate at
time t. Therefore, excess return on asset i is denoted by (Ri,t−Rf,t) whereas the excess return on
the market portfolio is represented by (RM,t−Rf,t). α is the intercept term. β is the market beta,
measured by the slope coefficient β̂i, and defined as the covariance between the excess returns on
the asset and the market, divided by the variance of the excess market returns. As a measure
of the systematic risk associated with asset i, the theoretical purity of the beta is unmatched by
other asset pricing models (Harvey, 1989). Jagannathan and Wang (1996) further decompose the
unconditional beta between the market beta itself (e.g., the average market risk), and the premium
on the beta (e.g., the beta instability). εt is the error term at time t which is assumed to be an
independently and identically distributed random variable that follows the normal distribution
such that ε ∼ N(0, σ2).

One of the classical assumptions of the CAPM according to Sharpe (1964) and Lintner (1965)
is that performing the expectations operator Et(·) of equation (1) conditionally on information set
up to time t, the condition below must hold:

Et(ri) = βEt(rm) (2)

where ri and rm represent return on asset i and the return on the market portfolio, respectively,
as defined earlier. The above condition implies that if the CAPM holds, the intercept α must not
be statistically different from zero (Cortazar et al. 2013).

2.2 Conditional regime-switching CAPM
The static CAPM is built on the assumption that investors care only about the mean and variance
of single-period asset returns. However, in practice, investors revise their decisions over time based
on their expectations of future investment opportunities. Although investors prefer high expected
return and low return variance, they are also concerned with the covariances of asset returns with
state variables (such as the business cycle) that affect future investment opportunities.

Next, we assume that the CAPM holds in a conditional sense, i.e., betas and expected returns
are allowed to vary over the business cycle. Much like many economic times series, financial data
exhibits abrupt changes due to sudden movements in fundamentals which show up in asset prices
(Ang and Bakaert, 2002). Assets with betas that are prone to vary with the risk premium are
less stable over the business cycle, and also have higher unconditional expected returns. In its
classical form, the Markov-Switching models proposed in Hamilton (1989) for the non-stationary
time series analysis of the business cycle, estimate regime-switching endogenously.

In this section, we use the Markov-switching model to test whether there are regime shifts in the
beta of different assets within the CAPM framework. Indeed, we seek to find out if two different
states exist between returns on asset i and the returns on diversified equity portfolios. The greatest
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challenge for the econometrician lies in recovering the state of the economy, which is unobservable.
This practical obstacle can be overcome thanks to Hamilton’s Expectation-Maximization (EM)
algorithm.

To do this, we follow He et al. (2018) to assume that there are two different regimes: bull
and bear. The intuition is that when economic growth is expanding (contracting), the market is
deemed to be bullish (bearish). Conversely, during recessionary/expansionary) periods, correlations
of assets with the market may increase/decrease) depending on the industry. st represents the state
variable which reflects the current regime in the market. A specific risk premium characterizes each
market phase, for instance, a substantial risk premium can be associated with an extremely bearish
market. The Markov-switching CAPM equation may, therefore, be expressed as follows:

(Ri,t −Rf,t) = αst + βst(RM,t −Rf,t) + εst, (3)

where st denotes the two states of the model, εst is the error term which is assumed to be
independently and identically distributed and follows the normal distribution such that N(0, σ2

st).
Unlike conditional correlations, conditional betas need not be constrained (except for the stationar-
ity condition), which makes this approach very appealing. s1 reflects one regime with the following
parameters ∝s1, βs1, σ2

s1 while s2 denotes the second regime with the following corresponding pa-
rameters ∝s2, βs2, σ2

s2. We allow for regime switching in the variances of the error term following
Nelson et al. (2001) which notes that regime changes in economic and financial times series might
be better modeled through a probabilistic process.

Following the 2-state regime-switching model of Hamilton (1989), the state variable st takes
only binary values of 0 and 1. Therefore, the transition probabilities of the first-order Markov
chain may be modeled as follows:

Pr[St = 1/St−1 = 1] = p

Pr[St = 2/St−1 = 1] = 1− p

Pr[St = 2/St−1 = 2] = q

Pr[St = 1/St−1 = 2] = 1− q

∀p, q ∈ [0, 1]

where p and q are the fixed transition probabilities of being in low and high volatility regimes
respectively. In equation (3), αst is assumed to vary depending on the regimes.

The estimation of equation (3) following Maximum Likelihood approach is through the Expectation-
Maximization (EM) algorithm explained in Hamilton (1994), Krolzig (1997) and Korkmaz et al.
(2010).

2.3 Conditional regime-switching GARCH CAPM
Bollerslev, Engle, and Wooldridge (1988) have established the empirical fit of the (multivariate)
GARCH to model time-varying covariances across T-bills, bonds, and stocks. Beta is computed
as the ratio of the conditional covariance to the conditional variance. Engle (2002) and Bali and
Engle (2010) have further documented that GARCH models (with DCC) capture satisfactorily
time-varying betas, that covary significantly with the market risk premium. In contrast, this
article models conditional covariances and variances by resorting to the family of Markov-Switching
GARCH processes (Haas et al., 2004; Ardia et al., 2018).

2.3.1 Conditional variance dynamics

Regarding conditional variance modeling, the method proposed in this paper relies on the GARCH
equation from Ardia et al. (2018) where given t = 1, . . . , T with T the sample size, and rt denotes
the log return at time t. εt is an MS-GARCH process if

rt|(St = k, It−1) ∼ D(0, hk,t, ξk), (4)
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where D(0, hk,t, ξk) represents an identically and independently distributed (i.i.d) random vari-
able with zero mean and a unit variance while hk,t is a time-varying variance and ξk is a vector of
additional shape parameters (e.g., asymmetry). It−1 is an information variable that specifies the
condition of the world in up to time t − 1, that is, It−1 ≡ (rt−1, i > 0). Furthermore, the latent
variable St evolves according to an unobserved first order ergodic homogeneous Markov Chain with
fixed state space S = 1, ..., k, and a transition matrix P . Therefore, the probability of switching
from one regime to another depends on the transition matrix P , expressed as follows:

P =

 p11 . . . p1k
... . . .

...
pk1 . . . pkk


where given the probability to be in state i at time t − 1, pij = p(t= j|t−1 = i) is the prob-

ability to be in state j at time t. The following conditions apply: 0 < pi,j < 1∀i, jε{1, ...,K},
and

∑K
j=1 pi,j = 1,∀iε{1, ...,K}. Given the parameterization of D(.) and the probability of tran-

sition from state j at time t (st = j) and to be in state i at time t − 1 (st−1 = i), we have
E[y2t |st = k,∆t−1, ] = hk,t,. Therefore, hk,t is the variance of yt conditional on the realization of
st = k. However, given the difficulty in calculating the likelihood function for a sample of T obser-
vations as it requires the integration of kT possible regime paths where k is the number of regimes,
the MS-GARCH model was proposed by Gray (1996) under the assumption that the conditional
variance at any state depends on the expectation of previous conditional variances.

Following Haas et al. (2004), the conditional variance of rt−1 is assumed to follow a GARCH-
type model. Specifically, conditional on regimes st = k, hk,t is specified as a function of past returns
and the additional regime-dependent vector of parameters θk. This is expressed as follows:

hk,t ≡ h(rt−1, hk,t−1, θk),

where h(·) is a It−1-measurable function that specifies the filter for the conditional variance as
well as ensures that the function is positive. It is further assumed that hk,1 ≡ h̃k(k = 1, ...,K),
where h̃k denotes the initial value of the variance recursions which is set equal to the unconditional
variance for regime k. Given this, the heteroscedastic specification following Bollerslev (1986)
GARCH model with which each conditional variance depends only on its own lag is given as
follows:

hk,t = wk + α1kε
2
t−1 + βkhk,t−1 (5)

where wk denotes the intercept and βk is the time-varying beta realized from regime k. With
wk > 0, βk 6= 0 and αk+βk < 1(k = 1, ...,K), we obtain the conditional regime switching GARCH,
in which case θk ≡ (wk, αk, βk)′. This model can be written in matrix form as follows:

ht = w0 + α1ε
2
t−1 + βt−1,

where w0 = [w01, w02, ..., w0k]′, α1 = [α11, α12, ..., α1k]′, β = diag(β1, β2, ..., βk) while ht is a vector
of k × 1 components.

2.3.2 Conditional distribution

The conditional distribution of the standardized innovations for the above-specified models follows
the Skewed Student-t distribution in each regime of the Markov Chain. Given that the distribution
of financial returns exhibit fat tails and is mostly skewed, the most common distribution to model
the process of financial log-returns is the standardized skewed student-t which has a zero mean and
unit variance. Following Bauwens and Laurent (2005) which generalized the multivariate method
proposed by Fernández and Steel (1998), the standardized skewed Student-t distribution in which
ν ≤ 2 may be defined as follows:

f(Z|ξ, ν) =
(

2√
π

)k ( ∏k
i=1

ξiSi
1+ξi2

)
× Γ((ν + k)/2)

Γ(ν/2)(ν − 2)k/2

(
1 + Z∗

′
Z∗

ν−2

)−(k+ν)/2
, (6)

where
Z∗ = (z∗1 , · · · , z∗k)′,
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Z∗ = (Sizi +mi)ξ
li
i ,

mi =
Γ((ν − 1)/2)

√
ν − 2√

πΓ(ν/2)

(
ξi − 1

ξi

)
,

S2
i =

(
ξ2i + 1

ξ2i
− 1

)
−m2

i ,

and

li =


−1 if zi ≥ −misi

1 if zi < −misi
where Γ(·) is the Gamma function. The constants mi and s2i are vectors of means and standard

deviations and are functions of ξ and ν. The density is denoted by SKST (0, lk, ξ, ν), and ν is the
vector of asymmetry parameters, whereas ξ2 can be interpreted as the skewness measure. Lastly,
zi is an independently and identically distributed process with zero mean and a unitary variance,
and ν > 2 is imposed to ensure that the second-order moment applies. The kurtosis of the skewed
Student-t distribution increases as the value of ν diminishes. The predictive densities further
motivate the choice of the skewed Student-t distribution for each regime of the MS-GARCH-CAPM
(see Figure 6 in the Appendix in the case of USA for illustrative purposes).

2.3.3 Model estimation

Given the difficulty in computing the likelihood function of the MSGARCH models specified earlier,
it cannot be estimated by the Quasi-Maximum Likelihood (QML) approach but either through the
Maximum Likelihood or the Markov Chain Monte Carlo (MCMC) / Bayesian techniques. State-
space models offer the advantage of modeling parsimoniously the beta by considering it as an
unobservable latent variable (Durbin and Koopman, 2012). In this study, we estimate our models
by the MCMC/Bayesian techniques that require the evaluation of the likelihood function.

Given Ψ ≡ (θ1, ξ1, ..., θk, ξK , P ) is the vector of model parameters, the likelihood function may
be stated as follows:

L(Ψ|IT ) ≡
T∏
t=1

f(rt|Ψ, It−1), (7)

where f(rt|Ψ, It−1), represents the density of rt conditioned by information set up to It−1), and
the model parameters Ψ. The conditional density of rt for the MS-GARCH process is stated as
follows:

f(rt|Ψ, It−1) ≡
K∑
i=1

K∑
j=1

pi,jzi,t−1fD(rt|st = j,Ψ, It−1), (8)

where zi,t−1 ≡ P [st−1 = i|Ψ, It−1] denotes the filtered probability of state i at time t − 1 gotten
through Hamilton’s filter (see Hamilton (1989), and Hamilton (1994)).

The Maximum Likelihood estimator Ψ̂ is evaluated by maximizing the logarithm of the like-
lihood function in equation (11). However, for the MCMC/Bayesian estimation, the likelihood
function is pooled with an erstwhile determined value for f(Ψ) to form the kernel of the subse-
quent distribution f(Ψ|∆T ). Following Ardia et al. (2018), we form the prior for this study using
unrelated diffuse priors as shown below:

f(Ψ) = f(θ1, ξ1) · · · f(θK , ξK)f(P )

f(θk, ξk) ∝ f(θk)f(ξk)‖{(θk, ξk) ∈ CSCk}(k = 1, ...,K)

f(θk) ∝ fN (θk;µθk, diag(σ2
θk

))‖{θk ∈ PCK}(K = 1, ...,K)

f(ξk) ∝ fN (ξk;µξk , diag(σ2
ξk

))‖{ξk,1 > 0, ξk,2 > 2}(k = 1, ...,K) (9)

f(P ) ∝
K∏
i=1

〈
K∏
j=1

pi,j

〉
‖{0 < pi,i < 1},
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where PCK denotes the positivity condition in state k, CSCK represents the covariance-stationarity
condition while ξk,1 and ξk,2 are the asymmetry and tail parameters of the skewed Student-t dis-
tribution in state k respectively. Also, µ and σ2 represent vectors of predetermined means and
variances, while fN (•;µ,

∑
) represents the multivariate normal density with mean vector µ and

covariance matrix
∑

. To evaluate the Bayesian measure of fit, we compute the Deviance Infor-
mation Criterion (DIC) by Spiegelhalter, Best, Carlin, and Van der Linde (2012) for all models.1
Parameters estimated record the lowest posterior means of the deviance (which suggests the best
fit to the data). According to the DIC, the performance of the conditional model suggested here is
also robust to the change of prior distributions, and the number of iterations of the burn-in period.

3 Data description and test for varying betas
In this section, we present the description of the dataset used for this study as well as the prelim-
inary analysis. We also conduct as part of our preliminary analysis, an analysis to reveal varying
betas across all the markets considered in this study.

3.1 Data
In this paper, we use an extensive dataset containing 81 monthly Stock Market Indices for 56 coun-
tries drawn from North/Latin America, Western Europe, Emerging Europe, the Middle East/Africa,
Developed Asia, Emerging Asia, and Africa. The dataset also contains 22 Energy and Other Com-
modity indices drawn from the main classes of commodities including Metals, Energy, and Agricul-
ture. The data was collected over the period from August 1999 to January 2018. All the data are
extracted from Thomson Datastream International. Moreover, we include three aggregated stock
market indices for the World, Europe, and Emerging markets.

We employ the 30-day Treasury bills rate as the risk-free rate for each country while we use the
30-day Euro-Dollar interest rate for the selected commodities. Regarding the state of the economy
in each country, we consider industrial production as an instrumental variable to reflect changes
in the level of economic activity in each regime. We note that gross domestic product (GDP) is
the traditional measure of the level of economic activity published on a quarterly basis. However,
industrial production is an advanced indicator of GDP, which measures the extent to which fac-
tories are idle or running at full steam and is published monthly. Since industrial production is
published at a higher frequency, we use it instead of GDP. We use the industrial production for
each country, but for commodities and the World aggregate market, we use industrial production
in the United States as a reflection of the level of global economic activity. Lastly, we use industrial
production in China and Europe industrial production to measure the state of economic activities
in emerging markets and Europe, respectively.

For the unconditional CAPM model, we construct the excess return for each series by subtract-
ing the risk-free rate from the market portfolio return. Similarly, we subtract the risk-free rate
from the returns on the respective stock market to get the excess return for the market. For the
market portfolio, we use the capitalization-weighted index that best represents a particular stock
market such as the SP 500, FTSE 100, DAX, CAC, TSX for the U.S.A, United Kingdom, Germany,
France, and Canada respectively. We use the Morgan Stanley Capital International (MSCI) index
for each country as the benchmark to measure stock market performance for each country. Re-
garding the commodities, we use the MSCI World index as a benchmark for commodities returns.
For the regime-switching models, we retrieve the demeaned series from the unconditional CAPM
models together with the proxy for existing economic condition namely, industrial production.

Table 7 in the Appendix presents the descriptive statistics for all the 81 return series. It can be
deduced that all the return series both for countries and commodities have positive mean except
Italy, Latvia, and Portugal that have negative mean returns. Also, all the series are negatively
skewed except Turkey, Columbia, United Arab Emirates, Chile, Malte, Gold, Ruthenium, Wool,
Wheat, Cocoa, Coffee and Cotton which have positive values for the skewness while all the values
for the kurtosis are above 3 as shown by positive excess kurtosis for all the series. Lastly, the

1Not reproduced here to save space, but available upon request.
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p− values for the Jarque Bera and the ARCH LM test for all the series are reported. The Jarque-
Bera statistic is a test for normality in the distribution of the return series, whereas the ARCH
LM test of Engle (1982) tests for first-order conditional heteroscedasticity. We reject the null
hypothesis of normality and no ARCH effect in all return series considered. These results imply
asymmetric and fat tail characteristics and that all the return series do not follow the normal
distribution under 5% significance level. These results further motivate our choice of a GARCH
modeling approach for conditional variance processes. Table 8 in the Appendix presents the exact
names of the series and their designations as they appear in the three models.

3.2 Rolling-window betas
Following previous papers in the literature on beta instability (see e.g., Tsai, Chen and Yang 2014;
Engle 2014; Marrero, Puch, and Ramos-Real, 2015), we use return series for both crude oil and
natural gas to compute time-varying CAPM betas using a 10-month rolling window regression.
In Figures 1 below, we present the two plots of time-varying betas for crude oil and natural gas,
respectively. From the plots for both markets, we can infer clear evidence of time variation in
CAPM betas over the entire sample period. Specifically, results from the plots show that for crude
oil, the average CAPM beta was -0.028. The CAPM beta reached its highest point of about 1.1
around 2008 – 2009 coinciding the past financial crisis. Contrarily, the lowest beta value of about
-0.9 may be found around 2013 – 2014 coinciding with the period of low crude oil prices.

(a) Crude oil

(b) Natural gas

Figure 1: Rolling window betas for Crude Oil and Natural Gas.
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Regarding the second plot, we can also see a similar pattern in the time variation of CAPM
beta in the market for natural gas. Over the sample period, the average beta is about 0.025.
Similar to the crude oil market, the highest CAPM beta for natural gas of approximately 1 may be
found around the financial crisis period of 2008-2009 whereas the lowest value of about -0.7 may
be found around 2013 -2014. Lastly, we also found evidence of volatility clustering beginning from
the financial crisis until the end of our study period in both energy markets. The time-varying
perspective to the modeling of betas adopted in this study is further motivated by the time-varying
patterns as well as volatility clustering present in these markets.

4 Empirical results
We apply the methods outlined in the previous section to our database of 81 financial, energy, and
other commodity markets. We use the β representation of the market factor as the basis of our
empirical work. The fact that the implied unconditional model nests the static CAPM facilitates
direct comparison of three asset pricing models under consideration: (i) the unconditional CAPM,
(ii) the conditional regime-switching CAPM, and (iii) the conditional regime-switching GARCH
CAPM. In the conditional CAPM, an asset’s beta is the ratio of the conditional covariance between
the asset and market returns, and in the conditional variance of the market return (Bodurtha and
Mark, 1991). We compare the βs across these models and summarize the goodness-of-fit of each
empirical specification based on sensitivity tests.

4.1 Results of the unconditional measures of market beta
To form a basis for comparison, we first examine the static CAPM with the traditional measure of
market beta based on equation (1) by employing the linear regression technique with the assump-
tion that the intercept in the CAPM is zero against the alternative that it is not equal to zero.
Tests of the CAPM imply that (i) the static CAPM holds, and (ii) the market return is a linear
function of the asset return.

To do this, we construct the excess return for each series by subtracting the risk-free rate from
the index return. Similarly, we subtract the risk-free rate from the returns on the respective market
portfolios to get the excess return for the portfolio index. We evaluate the validity of our model
specifications using the Durbin-Watson test for residual autocorrelation and the Q-statistics for
residual normality and serial correlation. Lastly, the efficiency of the respective market portfolio
index in the test of CAPM is assessed using the R-squared coefficients.

Table 1 reports the intercept and beta coefficients of estimating the empirical specification of
the unconditional CAPM. First, it can be observed that the assumption of no intercept holds for
all the markets as shown by the estimates which are statistically insignificantly different from zero.
This implies that the simple CAPM correctly predicts the risk premium in our sampled stocks.
Regarding the unconditional measure of market beta, the beta coefficient is statistically significant
across all countries and portfolios but with positive and negative values except in Canada, Croatia,
Hungary, Egypt, Switzerland, Bulgaria, Iceland, Russia, Mexico, Sweden, and Argentina. How-
ever, the beta coefficient is positive and statistically significant across all the commodities except in
Gas, Platinum, and Rhodium and all aggregate markets and portfolios, namely Europe, Emerging
Markets, and World. Arshanapalli et al. (1998) note that positive beta coefficients imply that
up-market movements drive a stock, while negative beta coefficients suggest that stock appears to
be less sensitive to market fluctuations.

Regarding the size of the beta coefficient across these markets and portfolio proxies, the beta
estimate is about 0.2 for 23 countries, but this coefficient is negative for the UK, Italy, and China.
It is around 0.3 for 14 countries but negative for only the UAE. It is approximately 0.4 for four
countries and 0.5 for two countries while it is highest for Chile and Germany with about 0.6.
However, the beta estimate is lowest with about 0.1 for Latvia and Qatar. Concerning the com-
modities indices, the beta estimate is around 0.1 for 11 commodities, approximately 0.2 for two
commodities and highest with around 0.3 for six commodities. The beta coefficients for all the
commodities indices have a positive sign. Also, the beta estimates for our aggregated markets are
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positive and around 0.2 except the emerging market index which is about 0.3. This model per-
formed well based on the value of the Durbin-Watson test, which falls within the acceptable range
of 2 for all the stock markets. Similarly, the null hypothesis of serial correlation is rejected for
all the markets. However, the R squared for all the markets are tiny ranging between 0.01 and 0.35.

Given that the beta coefficient for the world aggregated index is about 0.2, the following styl-
ized facts emanate from the simple CAPM result. First, the systematic risk in 23 countries is
about the same as the world average. Put differently, the systematic risks and expected excess
returns in these markets are equivalent to the world average risk and return. Similarly, the beta
coefficient for the markets which are higher than the world average implies that the systematic
risk and expected excess returns are higher in these markets than in the world average. However,
for the countries whose beta coefficients are higher than the world average, the implication is that
investments in these stock markets have higher systematic risk and excess return than the world
average (especially in Chile and Germany). In countries with lower beta coefficient than the world
average such as Latvia and Qatar, systematic risks and return are smaller than the world average.

Secondly, given that the beta coefficient for most commodities is less than the aggregate world
average, this suggests that investment in most commodities carry lower systematic risks and re-
turns. The implication is that most commodity stocks carry lower systematic risk and returns.
They can be viewed as an alternative asset class, whose inclusion in an investment portfolio reduces
risk, especially during periods of turbulence in stock prices. However, the remaining commodities
whose beta coefficient is either the same as the world aggregate stock (or higher) suggest that they
carry similar risk and return as the world average stock (or higher). This provides further empirical
evidence in support of increasing financialization of commodities. Regarding the aggregate market
indices, the higher beta coefficient in the emerging market than the coefficient for Europe and the
world average suggests that investment in emerging stock markets carry higher expected returns
but with higher systematic risks than investments in Europe and the world average stock. This
means that returns on investments in emerging market stocks appear to be more volatile than in
the European and world average stocks.
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Table 1: Unconditional CAPM Results

STOCKS US S&P500 CAN TSX GER DAX AUS ASX DEN OMX FIN OMXHEX SPNIBEX SLOVSBITOP UKFTSE100 ITAFTSEMIB
intercept 0.0077 0.0106 0.0116 0.0081 0.0111 0.0171 0.0064 0.0068 0.0162 0.0101

[0.3482] [0.2870] [0.1162] [0.3226] [0.1828] [0.1335] [0.4697] [0.4571] [0.2496] [0.4312]
Beta (β) 0.2471 0.0381 0.6123 0.232 0.2016 0.4876 0.1978 0.3627 -0.1797 -0.1745

[0.0002]*** [0.5797] [0.000]*** [0.0006]*** [0.0029]*** [0.000]*** [0.0029]*** [0.000]*** [0.0074]*** [0.0097]***
R-squared 0.0637 0.0014 0.3539 0.0533 0.0401 0.1613 0.0402 0.1015 0.0326 0.0304
Durbin-Watson 1.9727 2.0502 2.0201 1.9666 1.9064 1.7608 1.8499 1.9124 2.0654 2.0654
Q-stat 0.0282 0.1603 0.7928 0.0467 0.4311 0.2076 1.1872 0.3463 0.268 0.3132

[0.867] [0.689] [0.373] [0.829] [0.511] [0.647] [0.276] [0.556] [0.605] [0.576]

THAI-SET50 MYL-FTSEKLCI INDO-JCI PHI-PSEI SING-STI CHIN-SSE INDI-SENSEX TAI-TWSE KOR-KOSPI HNGKNG-HIS
intercept 0.0086 0.0054 0.0101 0.009 0.0056 -0.0103 0.0086 0.0043 0.0101 0.0069

[0.2182] [0.2481] [0.1947] [0.3151] [0.5111] [0.7773] [0.3896] [0.4812] [0.3213] [0.4272]
Beta (β) 0.2017 0.1896 0.2436 0.2158 0.3095 -0.1663 0.3331 0.5155 0.2419 0.3572

[0.0035]*** [0.0081]*** [0.0005]*** [0.0035]*** [0.000]*** [0.0160]** [0.000]*** [0.000]*** [0.0017]** [0.000]***
R-squared 0.0387 0.0319 0.0536 0.0387 0.096 0.0264 0.0967 0.2287 0.0445 0.1248
Durbin-Watson 2.1738 2.0695 2.1227 1.8994 2.0436 1.9824 2.0814 2.1367 1.8535 2.0097
Q-stat 1.7527 0.4358 0.8736 0.5167 0.1241 0.0023 0.3721 1.0419 1.0222 0.0144

[0.186] [0.509] [0.350] [0.472] [0.725] [0.962] [0.542] [0.307] [0.312] [0.905]

LAT-OMXRIGA EST-OMXTALLIN TUR-XU100 CRO-CROBEX LIT-OMXVILNIUS HUN-BUX EGY-EGX30 POR-PS-I20 CZECH-SEPX BRA-BOVESPA
intercept 0.0062 0.0109 0.0155 0.0225 0.0063 0.0092 0.0093 0.0017 0.0094 0.0053

[0.4210] [0.2790] [0.4079] [0.2746] [0.5563] [0.7094] [0.6995] [0.7916] [0.3302] [0.5432]
Beta (β) 0.1296 0.2855 0.2242 -0.012 0.2874 0.0955 0.1056 0.2801 0.3359 0.3757

[0.0446]** [0.000]*** [0.0018]*** [0.8653] [0.0003]*** [0.1950] [0.1234] [0.000]*** [0.000]*** [0.000]***
R-squared 0.0185 0.0655 0.044 0.0001 0.0598 0.0077 0.0109 0.0689 0.094 0.0965
Durbin-Watson 1.8544 1.8302 1.8115 2.0498 1.8138 2.0543 2.0378 2.1769 1.9824 2.1489
Q-stat 0.71 1.3428 1.4529 0.142 1.8428 0.1662 0.0814 1.7431 0.0093 1.267

[0.399] [0.247] [0.228] [0.706] [0.175] [0.684] [0.775] [0.187] [0.923] [0.260]

SWTSMI NZLNZX50 FRA-CAC NOR-OSEAX NETH-AEX JAP-NIKKEI225 IRE-ISEQ TUN-TUNINDEX UKR-PFTS BUL-SOFIX
intercept 0.03249 0.0023 0.0067 0.0078 0.0072 0.0064 0.0095 0.0025 -0.0058 0.0061

[0.1512] [0.5147] [0.4315] [0.3783] [0.4005] [0.4428] [0.2810] [0.5240] [0.6126] [0.8041]
Beta (β) -0.086 0.3711 0.2072 0.1973 0.1738 0.1653 0.4367 0.1718 0.2589 0.0932

[0.2416] [0.000]*** [0.0013]*** [0.0045]*** [0.0108]** [0.0121]** [0.000]*** [0.0527]* [0.0071]*** [0.1718]
R-squared 0.0077 0.1331 0.0463 0.0366 0.0296 0.0286 0.1614 0.0172 0.0328 0.0085
Durbin-Watson 2.0626 1.9617 1.9349 1.8167 1.8752 1.8354 1.8502 1.8821 1.9489 1.9616
Q-stat 0.1879 0.0377 0.195 1.6913 0.7412 1.4414 0.1905 0.7436 0.1316 0.0802

[0.665] [0.846] [0.659] [0.193] [0.389] [0.230] [0.662] [0.389] [0.717] [0.777]

POL-WIG ICE-SEICEX RUS-MICEX MALT-MALTEX ISR-TA100 COL-COLCAP BELG-BEL20 UAE-ADXGEN CHIL-IGPA MEX-S&PBMVIPC
intercept 0.0057 0.0096 0.0123 0.0081 0.0052 0.0128 0.0057 0.0085 0.0017 0.0127

[0.5868] [0.6729] [0.5163] [0.3786] [0.5638] [0.2163] [0.5402] [0.6687] [0.8238] [0.1266]
Beta (β) 0.2898 0.1019 -0.0746 0.3177 0.3196 0.2718 0.2566 -0.2922 0.5691 -0.1118

[0.0002]*** [0.1346] [0.3002] [0.000]*** [0.000]*** [0.000]*** [0.0008]*** [0.000]*** [0.0000]*** [0.1544]
R-squared 0.0623 0.0103 0.0049 0.0776 0.0926 0.0534 0.0505 0.0827 0.2848 0.0093
Durbin-Watson 1.9547 1.9107 2.0189 1.9756 2.0066 1.7914 1.8557 2.0044 1.8974 1.8764
Q-stat 0.0797 0.4361 0.0244 0.0207 0.0144 2.3431 1.0553 0.002 0.4974 0.8276

[0.778] [0.509] [0.876] [0.886] [0.905] [0.126] [0.304] [0.964] [0.481] [0.363]

Note: Series names are given in Table 8. ***,** and * denote significance of CAPM betas at 1%, 5% and 10% levels respectively whereas Q-stat is the statistics for residual normality.
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SWEOMX30 SERB-BELEX15 ARG-MERVAL25 ROM-BET QAT-QE LUX-LUXX
intercept 0.0233 0.0142 -0.0005 0.0031 0.01152 0.0099

[0.3630] [0.4688] [0.9838] [0.7515] [0.2708] [0.3264]
Beta (β) 0.0524 0.2704 -0.0805 0.2003 -0.1269 0.2432

[0.4891] [0.000]*** [0.2366] [0.0067]*** 0[0.063]* [0.0020]***
R-squared 0.0026 0.0731 0.0064 0.0334 0.0158 0.043
Durbin-Watson 1.9897 1.9432 2.0194 1.8754 2.1518 1.9197
Q-stat 0.0048 0.1777 0.0249 0.7531 1.2897 0.321

[0.945] [0.673] [0.875] [0.386] [0.256] [0.571]

COMMODITIES CRUDEOIL GOLD SILVER GAS COPPER PLATINUM PALLADIUM NICKEL TIN ZINC
intercept 0.0053 0.0021 0.0089 0.0094 0.0077 0.011 0.0106 0.0083 0.0096 0.0061

[0.6061] [0.8374] [0.7096] [0.6820] [0.3987] [0.6390] [0.2205] [0.7157] [0.2899] [0.7949]
Beta (β) 0.1069 0.32011 0.1246 0.0922 0.3706 0.1077 0.2398 0.1257 0.3067 0.1282

[0.0880]* [0.000]*** [0.0660]* [0.1342] [0.000]*** [0.1092] [0.000]*** [0.0509]* [0.000]*** [0.0542]*
R-squared 0.0134 0.0732 0.0155 0.0103 0.1407 0.0118 0.0983 0.0172 0.1046 0.0169
Durbin-Watson 1.9056 2.1019 2.0125 1.9739 2.1943 1.999 1.8989 1.9564 2.1686 1.9902
Q-stat 0.4511 0.6095 0.0104 0.0328 2.2226 0 0.5387 0.0999 1.6321 0.0046

[0.502] [0.435] [0.919] [0.856] [0.136] [0.997] [0.463] [0.752] [0.201] [0.946]

COCOA COFFEE COTTON RHODIUM RUTHENIUM CORN RUBBER SOYABEAN WOOL ALUMINIUM
intercept 0.0059 -0.0037 0.0008 0.01165 0.0105 -0.0016 0.0045 0.0032 0.0026 0.0057

[0.7981] [0.8760] [0.9809] [0.6261] [0.6568] [0.9432] [0.6329] [0.7332] [0.7740] [0.8042]
Beta (β) 0.1372 0.1636 0.1191 0.05642 0.1367 0.1581 0.1728 0.3539 0.3223 0.1121

[0.0377]** [0.0157]** [0.0727]* [0.3968] [0.0392]** [0.0195]** [0.0050]*** [0.000]*** [0.000]*** [0.0998]*
R-squared 0.0197 0.0266 0.0147 0.0033 0.0194 0.0245 0.0358 0.1163 0.0819 0.0124
Durbin-Watson 1.9897 2.0091 1.9569 1.8697 1.9815 2.0378 1.8445 2.2123 2.0051 1.9352
Q-stat 0.0046 0.0051 0.1027 0.9213 0.0153 0.082 1.2238 2.6107 0.0054 0.2305

[0.946] [0.943] [0.749] [0.337] [0.902] [0.775] [0.269] [0.106] [0.941] [0.631]

LEAD WHEAT
intercept 0.0114 -0.0052

[0.6214] [0.6056]
Beta (β) 0.1266 0.3417

[0.0584]* [0.000]***
R-squared 0.0164 0.114
Durbin-Watson 1.9342 2.1575
Q-stat 0.234 1.5416

[0.629] [0.214]

AGGREGATES WORLD EUROPE EMERGING MARKETS
intercept 0.0056 0.0053 0.0039

[0.5141] [0.5607] [0.6561]
Beta (β) 0.2352 0.2347 0.3008

[0.0006]*** [0.0006]*** [0.000]***
R-squared 0.0531 0.0523 0.0915
Durbin-Watson 1.9604 1.9584 1.9702
Q-stat 0.0554 0.0616 0.0314

[0.814] [0.804] [0.859]

Note: Series names are given in Table 8. ***,** and * denote significance of CAPM betas at 1%, 5% and 10% levels respectively whereas Q-stat is the statistics for residual normality.
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4.2 Results of regime-switching market beta
Next, we evaluate the performance of the conditional CAPM with a time-varying beta. We expect
to uncover a positive and significant link between the dynamic conditional beta and asset returns.

Since up and down market movements are random variables observed with a given probability,
we now proceed to estimate our next model for the MS-CAPM as stated in equation (3). Here,
the intuition is to employ the Markov Switching regression technique in the estimation of inter-
cepts and CAPM beta under a regime-switching framework. The underlining theory of CAPM
maintains that a stable and linear relationship exists between asset returns and risk. Investors
will expect to be compensated by a higher level of wealth through the positive correlation of the
returns. However, Huang (2003) argues that evidence abounds suggesting significant variations in
market beta. For instance, Jagannathan and Wang (1996) note that relative risks associated with
changes in a firm’s cash flow over the business cycle may induce some switching behavior in market
risk. During bad economic times, when the expected market risk premium is high, leveraged firms
are more likely to face financial difficulties, and thus could have higher conditional betas. Also,
technology or taste shocks induce fluctuations in the betas of firms.

Given this, our MS-CAPM follows Huang (2000) by allowing the systematic risk of β to come
from two different regimes to show whether it is unstable over the regimes. The two-regime spec-
ification is selected as the classic "boom-bust" representation of the business cycle by Hamilton
(1989). For a survey of this representation, see the paper by Maheu and McCurdy (2000). Notice
that increasing the number of regimes would need to be explained on economic grounds, and would
induce a greater computational burden on the regime-switching models. This model would enable
us to determine if the estimates of alpha and beta coefficients are significantly different between
low and high volatility regimes, and if they are consistent with the unconditional CAPM. Finally,
the transition probabilities matrix is constructed with values that indicate how difficult it is to
switch from one volatility regime to the other.

From Table 2 and Figure 2, some interesting results stand out. First, following Korkmaz et
al. (2010), the low and high volatility regimes are distinguished based on the size of the estimated
standard errors of the regression. In the low volatility regime, the estimates of the beta coefficient
of the securities of Slovenia, France, the UK, Sweden, Switzerland, Norway, Japan, Ireland, China,
Singapore, and Bulgaria are statistically significant and less than one showing that the securities
in these countries are less risky than the respective markets. However, estimates of the beta coef-
ficients in this same period for Finland, Malaysia, Philippines, Taiwan, Hong Kong, Serbia, New
Zealand, Portugal, and Chile are less than zero and statistically significant indicating that returns
in these countries move in an opposite direction with movements in market returns. The returns
on securities in Sweden is the riskiest as indicated by the highest beta coefficient of 0.59 while that
of France is the least risky, as shown by a beta parameter of approximately 0.003. Lastly, the beta
coefficients of the remaining markets are not statistically significant, indicating that they do not
have a relation with the market during the low volatile regime.

Concerning the high volatility regime, estimates of the beta parameter for securities in Ger-
many, Finland, France, the UK, New Zealand, Ireland, Malaysia, Philippines, and Taiwan are less
than one and statistically significant. Returns on these securities are therefore less risky than the
respective market returns in this regime. Whereas estimates of the beta parameter for securities
from Norway and Thailand are less than zero and statistically significant, indicating that they
move in the opposite direction with movements in the market returns during this period. Also in
this period, returns on securities in Finland is the riskiest with a beta coefficient of 0.84 while that
of France is the least risky with a beta coefficient of 0.02. The beta parameters of the remaining
countries are found to be statistically insignificant suggesting that they do not have a relation with
the market return or an inefficient market.

Regarding the commodity indices, in the low volatility regime, the estimates of the beta coef-
ficient for Silver, Platinum, Rhodium, Ruthenium, Corn, Rubber, Aluminum and Cocoa are less
than one and statistically significant. This suggests that returns on these commodity securities
are less risky than the market return. In the same period, only the beta coefficients for Copper
is less than zero but statistically insignificant, indicating that its performance moves in the oppo-
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site direction with the market return. More so, Rubber is the most dangerous commodity in this
regime with a beta coefficient of about 0.43, while Silver is the least risky with about 0.17 beta
coefficient. The estimates of beta coefficients for the remaining commodity indices are statistically
insignificant showing that they are not related to the market return in the low volatility regime.

In the high volatility regime, among the commodity indices, only the estimates of beta coeffi-
cients of Wheat and Cotton are less than one and statistically significant. This shows that in this
period, only these two securities are less risky than the market returns. Similarly, only the beta
coefficients for Palladium and Tin are less than zero and statistically significant, indicating that
they move in the opposite direction to the movement of market returns. Whereas, the remaining
commodity indices have no relation with the market return as suggested by their statistically in-
significant beta coefficients. In the high volatility regime, Wheat is the riskiest commodity but
with a beta coefficient of only 0.28 while Cotton is the least risky with a beta coefficient of about
0.17. The implication is that commodity indices are less risky in both low and high volatility
regimes compared to country securities. This is as suggested by the estimates of beta coefficients
for the least as well as the riskiest securities in both regimes.

Regarding the aggregate markets, only the World aggregate security is statistically significant
and less than one with a beta coefficient of about 0.30. The remaining aggregate securities, in-
cluding Europe and Emerging Markets, are statistically insignificant, suggesting that they do not
have a relation with the market in the low volatility regime. More so, in the high volatility regime,
all the estimates of beta coefficients for all the aggregate markets are statistically insignificant.
This implies that they do not have a relation with the market during the high volatility period.
Concerning the probabilities of transition from one volatility regime to the other, the probability of
switching from the low volatility regime to the high volatility regime is higher than the probability
of switching from the high volatility to low volatility regime for the World market security. The
transition probability for the low volatility regime is 0.26, whereas it is 0.21 for the high volatility
regime.

Concerning the probabilities of transition from one regime to the other for the countries, it
is generally less likely to switch from low volatility regime to high volatility regime, as indicated
by low values of P12. The highest value of P12 is 0.61 for Bulgaria. However, the probability of
transition from high to low volatility regime is relatively higher, as shown by higher P21 values.
For instance, the P21 value for Germany is 0.99. Similarly, among commodity indices, it is also
less likely to switch from low to high volatility regime as suggested by P12 values. The P12 value
is highest for Copper with about 0.21, whereas it is relatively more likely to switch from high to
low volatility regime. The P21 value is highest for Tin with 0.24. This result generally suggests
that the probability of transition from any regime to the other is relatively higher in conventional
financial assets class than in the commodity market.

Figure 2 reports the filtered probabilities of the bull and bear regimes for 12 selected markets,
including Argentina, Bulgaria, China, Denmark, Natural Gas, Italy, Platinum, Rhodium, Silver,
Turkey, the USA, and Zinc. The two regimes are quite distinct. The pattern displayed by the
filtered probabilities in regime 1 suggests that, in the earlier part of the sample, high volatility
levels dominate in Argentina, Bulgaria, Platinum, Silver, Turkey, and the USA. However, volatility
decreases substantially towards the middle of the sample. Towards the middle of the sample, high
volatility levels are incidental and transitory, whereas, towards the end of the sample, high volatil-
ity levels seem to gather more again. However, in the same regime, periods of low volatility level
predominate especially among commodities such as Natural Gas, Rhodium, Zinc before periods of
high volatility levels clustered towards the middle and the end of the sample. Lastly, the entire
sample period was dominated by a constellation of high volatility levels throughout regime 1 for
Denmark. The opposite held for Italy, where low volatility levels dominated the whole sample
period, except at the beginning of the second half of the sample. Then, volatility decreased sub-
stantially until the end of the sample.

The pattern of filtered probabilities for regime 2 suggests that high volatility levels dominated
the entire sample period in China, Italy, Turkey, and the USA. On the contrary, for Gas, Rhodium,
and Zinc, volatility was incidental and transitory but clustered towards the end of the sample. In
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Bulgaria, Platinum, and Silver, the pattern shows that low volatility levels dominated but was
mixed with periods of high volatility levels in the USA until the middle of the sample. The second
half of the sample is characterized by periods of high volatility levels with the persistence of low
volatility levels before high volatility levels clustered towards the end of the sample. However,
low volatility levels evolved throughout the first half of the sample before the appearance of high
volatility levels in the second half in Bulgaria. On the contrary, in Argentina, the pattern shows
that low volatility levels persisted in most of the sample. In Denmark, the pattern indicates that
volatility rose slowly throughout the entire regime, except around the middle of the sample.

Generally, the filtered probabilities for both regimes show significant consistency with the em-
pirical pattern displayed by the results of MS-CAPM. Towards the middle of our sample coincides
with the period of the past financial crisis. The implication is that the years of the financial turmoil,
U.S quantitative easing and the European sovereign debt crisis which influenced financial market
investors’ risk appetite and therefore, asset prices and returns may have increased volatility levels
especially among commodities such as Natural Gas, Rhodium, and Zinc in regime 1.
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Table 2: MS-CAPM Results: Conditional Betas with Time-Varying Risks and Returns

STOCKS MSCI USA MSCI CAN MSCI GER MSCI AUS MSCI DEN MSCI FIN MSCI SPN
Regime 1 SD
intercept -0.0228 [0.0080]*** 0.0078 [0.0332] -1.0609 [0.0001]*** 0.0132 [0.0137] 0.0212 [0.0182] 0.1719 [0.000]*** 0.0105 [0.0136]
Beta (β) -0.1606 [0.1518] -0.1739 [0.1285] 0.3705 [0.0303]*** 0.0097 [0.0972] 0.0442 [0.1123] 0.8412 [0.000]*** 0.0537 [0.0853]

Regime 2
intercept 0.0258 [0.0185] -0.0055 [0.0050] -0.0517 [0.0001]*** -0.0165 [0.0065]** -0.0158 [0.0074]*** -0.1719 [0.000]*** -0.0194 [0.0069]***
Beta (β) 0.0225 [0.1139] 0.1101 [0.0845] -0.0047 [0.0058] -0.1148 [0.1792] 0.0494 [0.1077] -0.0391 [0.000]*** 0.1398 [0.1220]

p12 0.1629 0.0249 0.01 0.1034 0.1667 0.08 0.0723
p21 0.1582 0.0871 0.99 0.0753 0.1884 0.91 0.038

MSCI SLOV MSCI FRA MSCI UK MSCI ITA MSCI SWE MSCI SWT MSCI NZL
Regime 1
intercept -0.0079 [0.0078] -0.9592 [0.4355]** 0.6456 [0.5236] 0.0511 [0.0820] 0.0088 [0.0068] 0.1278 [0.1004] 0.0038 [0.0097]
Beta (β) 0.3082 [0.0017]*** 0.0027 [0.0010]*** 0.0031 [0.0004]*** -0.1316 [0.2033] 0.5927 [0.0598]*** -0.1604 [0.1721] 0.5578 [0.2270]**

Regime 2
intercept 0.0076 [0.0165] 0.0326 [0.0002]*** -0.0043 [0.1137] -0.0133 [0.0050]** 0.0775 [0.1269] -0.022 [0.0056] -0.0013 [0.0048]
Beta (β) -0.0291 [0.0976] 0.0229 [0.0034]*** 0.1667 [0.0349]*** 0.0099 [0.0494] -0.0096 [0.1771] 0.2605 0.084]*** -0.3166 [0.1008]***

p12 0.1171 0.06 0.12 0.0656 0.0869 0.0805 0.3592
p21 0.1606 0.94 0.88 0.3598 0.0171 0.3224 0.6839

MSCI NOR MSCI NLD MSCI JAP MSCI IRE MSCI THAI MSCI MYL MSCI INDO
Regime 1
intercept 0.0095 [0.0187] -0.0185 [0.0075]** 0.0039 [0.0077] 0.0037 [0.999] -0.0017 [0.0181] 0.0083 [0.0043] 0.0088 [0.0072]
Beta (β) 0.459 [0.1039]*** -0.0757 [0.1393] 0.2311 [0.0886]*** 0.4096 [0.0017]*** -0.6918 [0.2172]*** -0.177 [0.0554]*** -0.1044 [0.0789]

Regime 2
intercept -0.012 [0.0097] 0.011 [0.0133] -0.0062 [0.0186] -0.0037 [0.0976] 0.0063 [0.0072] -0.0268 [0.0155] -0.0443 [0.0332]
Beta (β) -0.2939 [0.1131]** 0.0553 [0.0868] -0.0471 [0.1106] 0.0808 [0.0137]*** 0.1103 [0.0589] 0.7869 [0.2831]*** -0.0397 [0.1739]

p12 0.4391 0.0955 0.06411 0.61 0.4545 0 0.0721
p21 0.5341 0.1552 0.0407 0.39 0.9203 0.4119 0.1402

MSCI PHI MSCI SING MSCI CHIN MSCI INDI MSCI TAI MSCI KOR MSCI HNGKNG

Regime 1 -0.0213 [0.0158] 0.0284 [0.0272]*** 0.0263 [0.0149] -0.0109 [0.0100] 0.0504 [0.0875] -0.0163 [0.0082]** 0.0298 [0.0190]
intercept -0.3613 [0.1123]*** 0.0338 [0.1375] 0.2119 [0.0710]*** -0.2112 [0.1090] 0.3817 [0.1792]** -0.1195 [0.0981] 0.0673 [0.1197]
Beta (β)

Regime 2 0.0251 [0.0216] -0.0128 [0.0063]** -0.059 [0.0897] 0.0153 [0.0254] -0.0095 [0.0057] 0.0202 [0.0223] -0.03 [0.0077]***
intercept 0.5312 [0.1663]*** -0.1747 [0.0816]** -0.0491 [0.1208] 0.0321 [0.1288] -0.2688 [0.0638]*** 0.1625 [0.1172] -0.2955 [0.0926]***
Beta (β)

0.6646 0.0866 0.2534 0.2816 0.0469 0.2981 0.2877
p12 0.6579 0.2053 0.1634 0.1741 0.808 0.2661 0.3107
p21

MSCI SERB MSCI UKR MSCI BUL MSCI ROM MSCI POL MSCI ICE MSCI RUS
Regime 1
intercept 0.0087 [0.049] -0.0239 [0.0308] 0.0255 [0.0680] -0.0081 [0.0056] -0.0056 [0.0296] -0.0054 [0.0095] -0.0187 [0.0744]
Beta (β) 0.3258 [0.2477] 0.0329 [0.1205] -0.0468 [0.1242] 0.1244 [0.0821] 0.1316 [0.1296] 0.2566 [0.0525] -0.0732 [0.1534]

Regime 2
intercept -0.0094 [0.0057] 0.0138 [0.0081] -0.0008 [0.0092] 0.0437 [0.0552] 0.0038 [0.0097] 0.0139 [0.0745] 0.0036 [0.0123]
Beta (β) -0.2633 [0.0226]*** -0.0234 [0.0992] 0.269 [0.0495]*** -0.0062 [0.1618] -0.1151 [0.0909] -0.0034 [0.1808] 0.1015 [0.0892]

p12 0.1237 0.0211 0.0401 0.3481 0.0211 0.0606 0.0355
p21 0.2019 0.0456 0.076 0.0617 0.054 0.0333 0.1178

Note: Series names are given are given in Table 8. *** and ** denote significance of regime switching CAPM betas at 1% and 5% whereas p12 and p21 refer to the probability of moving from one volatility regime to the other
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MSCI MALT MSCI ISR MSCI LAT MSCI EST MSCI TUR MSCI CRO MSCI LIT
Regime 1
intercept -0.0143 [0.0071] -0.0192 [0.0093]** 0.0029 [0.0436] 0.0374 [0.0365] 0.1821 [0.1072] 0.0059 [0.0093] 0.0097 [0.0418]
Beta (β) -0.092 [0.0997] 0.0914 [0.1181] 0.0734 [0.1628] 0.1196 [0.1463] 0.0252 [0.1866] 0.1112 [0.0680] 0.2079 [0.1321]

Regime 2
intercept 0.0114 [0.0165] 0.0285 [0.0191] 0.0013 [0.0043] -0.0172 [0.0093] -0.035 [0.011]*** -0.009 [0.0536] -0.0084 [0.0075]
Beta (β) 0.0226 [0.0960] -0.0687 [0.1123] -0.0286 [0.0803] -0.0111 [0.0875] -0.0754 [0.0733] -0.0472 [0.1186] 0.0081 [0.0531]

p12 0.1095 0.2678 0.0169 0.068 0.0467 0.1267 0.1107
p21 0.1284 0.2533 0.0553 0.1719 0.21 0.0819 0.3952

MSCI HUN MSCI EGY MSCI POR MSCI CZECH MSCI BRA MSCI ARG MSCI COL
Regime 1
intercept 0.0025 [0.0819] 0.0064 [0.0094] 0.0075 [0.0114] -0.0036 [0.0091] -0.0082 [0.0160] -0.0225 [0.0939] 0.0136 [0.0267]
Beta (β) -0.0352 [0.1219] 0.2024 [0.0508] -0.3737 [0.0544]*** -0.0371 [0.0877] 0.042 [0.1578] 0.024 [0.1489] 0.1584 [0.1425]

Regime 2
intercept -0.0001 [0.0105] -0.0081 [0.0624] -0.0096 [0.0128] 0.0087 [0.0289] 0.0039 [0.0126] 0.005 [0.0117] -0.0079 [0.0123]
Beta (β) 0.0211 [0.1075] -0.0659 [0.1223] 0.3844 [0.2819] 0.033 [0.1342] -0.1621 [0.1006] 0.0102 [0.0931] 0.0269 [0.0965]

p12 0.0258 0.07652 0.719 0.2346 0.2609 0.0284 0.2583
p21 0.0529 0.0454 0.4484 0.1125 0.5859 0.1062 0.4076

MSCI BEL MSCI UAE MSCI CHIL MSCI MEX MSCI QAT MSCI TUN MSCI LUX
Regime 1
intercept -0.0057 [0.0078] 0.0387 [0.0483] 0.0036 [0.0056] 0.0072 [0.0218] -0.0115 [0.0499] -0.001 [0.0085] -0.0125 [0.007]
Beta (β) 0.0678 [0.0944] 0.0535 [0.1145] -0.162 [0.0686]** 0.0734 [0.1207] -0.4087 [0.2358] 0.0732 [0.1819] -0.0429 [0.0930]

Regime 2
intercept 0.0277 [0.0447] -0.0193 [0.0149] 0.0049 [0.0848] -0.0049 [0.0064] 0.0036 [0.0073] 0.001 [0.0049] 0.0147 [0.0161]
Beta (β) 0.0637 [0.1728] 0.1173 [0.0931] 0.4321 [0.4117] 0.0073 [0.0809] 0.1029 [0.0615] 0.0513 [0.1237] 0.0613 [0.0891]

p12 0.2068 0.0479 0.3024 0.0245 0.0549 0.4656 0.1061
p21 0.0506 0.0757 0.0276 0.9754 0.2131 0.5198 0.1705

AGGREGATES MSCI WORLD MSCI Europe MSCI EM
Regime 1
intercept
Beta (β) 0.0255 [0.0151] 0.0128 [0.0149] -0.0142 [0.0074]

-0.1677 [0.1131] 0.001 [0.3035] 0.0426 [0.1204]
Regime 2
intercept
Beta (β) -0.0246 [0.0071]*** -0.018 [0.0068]** 0.0123 [0.0149]

0.307 [0.0938]*** -0.0319 [0.0409] -0.0055 [0.1001]

p12 0.2689 0.0698 0.0311
p21 0.2142 0.0538 0.0429

Note: Series names are given are given in Table 8. *** and ** denote significance of regime switching CAPM betas at 1% and 5% whereas p12 and p21 refer to the probability of moving from one volatility regime to the other
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COMMODITIES MSCI OIL MSCI GOLD MSCI SILVER MSCI GAS MSCI Copper MSCI Platinum
Regime 1
intercept 0.0206 [0.0159] 0.014 [0.0126] 0.0029 [0.0640] 0.0053 [0.0639] 0.0312 [0.0204] 0.0016 [0.0097]
Beta (β) 0.1201 [0.0970] -0.1263 [0.0907] -0.041 [0.1247] 0.016 [0.1181] -0.0467 [0.1336] 0.2433 [0.0530]***

Regime 2
intercept -0.0347 [0.0214] -0.0397 [0.0628] 0.0058 [0.0102] 0.001 [0.0121] -0.0235 [0.0144] 0.0121 [0.0610]
Beta (β) -0.1318 [0.1022] -0.0286 [0.1711] 0.1795 [0.0594]*** 0.0122 [0.0931] -0.2927 [0.0984]*** -0.036 [0.1204]

p12 0.1966 0.08143 0.06012 0.0267 0.2128 0.0516
p21 0.8033 0.02208 0.1093 0.0529 0.2951 0.0305

MSCI Palladium MSCI Nickel MSCI Tin MSCI Zinc MSCI Rhodium MSCI Ruthernium
Regime 1
intercept -0.0267 [0.0092]*** 0.008 [0.0123] -0.0425 [0.0143]*** -0.0006 [0.0089] 0.0199 [0.0643] -0.0037 [0.0094]
Beta (β) -0.2215 [0.1085]** 0.0189 [0.0822] -0.2589 [0.1035]** 0.0301 [0.0806] 0.026 [0.1236] 0.209 [0.0485]

Regime 2
intercept 0.0134 [0.0145] 0.0003 [0.0263] 0.0348 [0.017]** 0.0117 [0.0674] -0.0014 [0.0092] 0.0229 [0.0635]
Beta (β) 0.0761 [0.1024] 0.031 [0.1208] -0.089 [0.1074] 0.0094 [0.1184] 0.2742 [0.0472]*** -0.0303 [0.1227]

p12 0.0814 0.0557 0.2145 0.0628 0.0383 0.0587
p21 0.1217 0.0268 0.2427 0.0313 0.0683 0.0331

MSCI Corn MSCI Rubber MSCI Soyabean MSCI Wool MSCI Aluminium MSCI Lead
Regime 1
intercept 0.0216 [0.0562] 0.0044 [0.0201] 0.0027 [0.0070] 0.0038 [0.0191] -0.0004 [0.0080] 0.0092 [0.0096]
Beta (β) -0.0561 [0.1157] -0.0076 [0.1040] -0.0091 [0.1002] -0.0648 [0.1043] 0.218 [0.0481]*** 0.2115 [0.0530]

Regime 2
intercept -0.0028 [0.0091] -0.0012 [0.0062] -0.0007 [0.0255] -0.0014 [0.0067] 0.0151 [0.0565] -0.0028 [0.0655]
Beta (β) 0.2342 [0.0485]*** 0.4376 [0.0895]*** -0.1324 [0.1019] 0.261 [0.1363] 0.0103 [0.1154] -0.0037 [0.1086]

p12 0.038 0.0359 0.0705 0.0349 0.0449 0.0903
p21 0.0561 0.0539 0.0563 0.0502 0.0295 0.0477

MSCI Wheat MSCI Cocoa MSCI Coffee MSCI Cotton
Regime 1
intercept 0.0086 [0.0227] -0.0077 [0.0108] 0.0216 [0.0658] 0.0293 [0.0565]
Beta (β) -0.2631 [0.1124] 0.1882 [0.0578]*** 0.015 [0.1168] -0.0003 [0.0322]

Regime 2
intercept -0.0032 [0.0081] 0.0303 [0.0623] -0.0094 [0.0100] -0.0105 [0.0099]
Beta (β) 0.2886 [0.1156]** -0.0284 [0.1213] -0.077 [0.0819] 0.1726 [0.0566]***

p12 0.0462 0.0431 0.0285 0.0206
p21 0.0828 0.0244 0.0536 0.0321

Note: Series names are given are given in Table 8. *** and ** denote significance of regime switching CAPM betas at 1% and 5% whereas p12 and p21 refer to the probability of moving from one volatility regime to the other
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(a) Argentina (b) Bulgaria

(c) China (d) Denmark

(e) Natural Gas (f) Italy

Figure 2: MS-CAPM state probabilities for twelve selected high-volatility markets
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(g) Platinum (h) Rhodium

(i) Silver (j) Turkey

(k) USA (l) Zinc

Figure 2: MS-CAPM state probabilities for twelve selected high-volatility markets (continued)

22



4.3 Results of the dynamic conditional regime-switching GARCH CAPM
Given the observed advantage of the MS-CAPM over the unconditional CAPM in accounting for
instability of systematic risk especially by allowing beta coefficients to evolve through two volatility
regimes, we proceed to estimate the MS-GARCH-CAPM as stated in equations (4) to (6) expecting
that more realistic results could be acquired. The Markov Switching GARCH model is reputed
in the analysis of systematic risks for several reasons. For instance, in addition to allowing the
measure of systematic risks to be estimated from two regimes and the respective periods of du-
ration in both volatility regimes to varying over time, under the Haas et al. (2004) specification,
the conditional variance is set to change depending on the past data as well as the current regime.
Also, it returns estimates of the posterior mean stable probabilities and the Bayesian predictive
conditional volatility forecasts which have significant implications for risk management.

An acceptable way of comparing the two regimes from a regime-switching GARCH model is
through the means of the regimes variables, obtained by averaging the regimes, which are the
posterior mean stable probabilities of the states. Bauwens et al. (2010) note that a mean state
close to 1 corresponds to a high probability to be in the second regime. To see this, we present
in Table 3 and Figure 4 results of parameter estimates and the mean filtered volatility from the
MS-GARCH-CAPM. This model performs substantially better than the previous two models in
providing a more comprehensive range of insights into most of the stock markets in our sample, as
shown by the higher number of statistically significant estimates of time-varying conditional betas
in both the low and high volatility regimes.

Specifically, in the low volatility period, all the country stocks have estimates of beta coefficients
that are statistically significant, positive, and less than one except in Finland, the United Kingdom,
and Italy. This suggests that in all these markets, the stocks are less risky than the respective
markets. The beta coefficients for Finland, the UK, and Italy are not found to be statistically
significant. The beta coefficient for Ireland is statistically significant but negative, suggesting that
the securities move in the opposite direction with the market. Generally, in this period, the values
of beta coefficients varied widely across these markets. To cite few, Taiwan and Mexico exhibit the
least beta of about 0.002 and 0.004, respectively. Belgium and the UAE record the highest beta
with 0.97 and 0.93, respectively.

Regarding the high volatility regime, the model also offers broad insight into most of the mar-
kets in our sample as the estimates of beta coefficients are statistically significant, positive and less
than 1 in all the country stocks except in Finland, the UK, and Ireland (suggesting that the stocks
of these countries are less risky than the respective markets). The beta coefficients for Finland, the
UK, and Ireland are statistically insignificant, suggesting that they do not follow movements in the
market. The beta coefficients for Germany and France are statistically significant, but less than 0,
indicating that the securities move in the opposite direction to movements in the market. Similarly,
the beta coefficients vary widely throughout the markets with Tunisia and Hong-Kong having the
least beta of about 0.08 each while Poland has the highest beta coefficient of about 0.94. The esti-
mates of the predictive conditional volatility forecasts for both volatility periods reveal that regime
2 is generally more volatile than the first regime. The conditional volatility forecast for regime
2 is highest in Russia with about 187.1, whereas, in regime 1, it is highest in Turkey with about 11.8.

Concerning the low volatility regime in the commodity market, the estimates of beta coeffi-
cients are statistically significant, positive, and less than 1 in all the markets indicating that they
are less risky than the respective markets. However, the beta coefficient for Ruthenium is about 1,
suggesting that its securities risk is equivalent to that of the market. Similarly, Results from the
high volatility regime in the commodity market corroborates that of the low volatility period as all
estimates of beta coefficients are all statistically coefficient, positive and less than 1. However, the
beta coefficients for Lead and Coffee are about one, implying that there are as risky as the market
in this period. In both volatility regimes, the conditional volatility forecasts remained predomi-
nantly higher in regime 2 with the highest being about 163.8 for Rhodium, whereas it is 0.5 for Zinc.

Lastly, the beta coefficients in both the low and high volatility periods for the aggregate markets
are statistically significant, positive, and less than 1. The world aggregate securities have the least
beta coefficients of about 0.12 and 0.32 in low and high volatility periods, respectively. Emerg-
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ing Markets’ stocks have the highest beta of 0.42 in the low volatility period. Securities for the
European market has the highest beta coefficient of 0.77 in the high volatility period. Similarly,
regime 1 is characterized by low conditional volatility forecast levels, with the World aggregate
stocks being the highest (at about 4.43). Regime 2 is characterized by high conditional volatility
forecasts with securities in Europe being the most volatile (at about 131).

Let us contrast for now our comments on dynamic conditional betas relative to the uncon-
ditional measures of beta. We document the existence of higher dynamic conditional betas that
must be compensated by higher expected returns. The unconditional measure of market beta
does not capture this empirical finding. Therefore, the difference between the conditional and
unconditional beta premia constitute economically significant features of market data in energy
and financial markets that we bring up to the practitioners’ attention.

Concerning the probabilities of transition from one beta regime to the other as represented by
P12 and P21, among the countries in our sample, it is generally more likely to move from high
volatility regime to low volatility regime in most of the markets. It is only more likely to move
from low volatility regime to high volatility regime in Finland, Slovenia, France, the UK, Sweden,
Ireland, Thailand, Malaysia, Philippines, Hong-Kong, Bulgaria, Poland, Latvia, Turkey, Croatia,
Czech, Argentina, Qatar, and Tunisia. It may be observed that Belgium that exhibited the highest
distribution of systematic risks in both beta regimes, the transition probabilities of both regimes
are large. This result suggests that the beta process has a little chance of staying for an extended
period in any of the beta regimes. Conversely, Taiwan exhibits the least beta across both regimes.
Its transition probabilities show that there is a very high chance of moving to the low beta regime
and a relatively small chance of moving to the high beta regime. This result implies that there is
a very high chance of staying relatively longer in the low beta regime.

Further, among the commodity stocks, the transition probabilities suggest that it is also more
likely to switch from the high-volatility regime to the low-volatility regime in all the markets except
in Platinum, Palladium, Ruthenium, Rubber, and Wool. These results imply that most commod-
ity stocks have a higher chance of staying longer in the low beta regime than in the high beta
better regime. For instance, both Lead and Coffee demonstrate unusually high beta coefficients.
Their transition probabilities show that there is relatively a very high chance of moving to the low
beta regime, while it may take a longer time in the low beta regime before switching to a high
beta regime. Similarly, for the aggregate stocks representing the World and Europe, the transition
probabilities suggest that both markets demonstrate very high chances of switching to the low beta
regime, whereas the likelihood of moving to the high beta regime is relatively small. This implies
that these markets have higher chances of staying for a longer period in the low beta regime process
than the high beta regime. In contrast, the transition probabilities for emerging market suggest
that the chance of switching to the high beta regime is higher than that of moving to the low beta
regime.

Empirically, it is well documented that the estimation of betas and risk premia appears volatile.
By way of comparison, it is evident that the CAPM beta is unstable over the three models, namely
unconditional CAPM, MS-CAPM, and MS-GARCH-CAPM. Even more, the instability of beta
can also be seen across different regimes in the regime-switching models. This violates the pre-
diction of the traditional model of CAPM that the beta of risky assets is constant over time.
For instance, notable structural changes may be found in frontline markets such as the USA,
the UK, Germany, France, Finland, Ireland, China, Malaysia, Philippines, Taiwan, Oil, Copper,
Palladium, and Tin. In the USA and Oil markets, results from the unconditional CAPM and
MS-GARCH-CAPM suggest that stock returns are risky and move in the same direction with the
market. The MS-GARCH model indicates that these stocks do not have a relation with the market.

Further, in the UK and China, results from the CAPM suggest that these stocks move in an
opposite relation with the market. Both the MS-GARCH and the MS-GARCH-CAPM models
suggest these securities move in the same direction with the markets. Also, in Germany, France,
and Ireland, the CAPM and MS-CAPM imply that these securities move in the same direction
with the markets. The MS-GARCH-CAPM suggest that these stocks move in an opposite relation
with the market. In the rest of the markets, the CAPM and MS-GARCH-CAPM results show that
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these securities move in the same direction with the market whereas the MS-CAPM suggest that
these stocks move in the opposite direction with the market.

The instability of beta can also be noticed across regimes in the regime-switching models. For
instance, the MS-CAPM reports that stocks in Germany and China move in the direction with the
market in regime 1, but do not have a relation with the market in regime 2. Palladium and Tin
securities move in the opposite direction with the market in regime 1, but also have no connection
to the market in regime 2. Also, in this model, stocks in Finland and Taiwan move in the same
direction with the market in regime 1, but move in the opposite direction in regime 2. Stocks in
Malaysia and the Philippines move in the opposite direction with the market in regime 1, while
they move in the same direction with the market in regime 2. Copper does not have relations
with the market in regime 1, but moves in the opposite direction in regime 2. Results from the
MS-GARCH-CAPM suggest in most of the markets, the size of the beta coefficient changes, but
the relationship between the stocks and the market remains stable across both regimes. However,
this is not always the case (Germany, France, and Ireland can be seen as exceptions).
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Table 3: MS-GARCH-CAPM Results: Conditional Betas with Time-Varying Risks and Returns

MSCI USA_MS_GARCH MSCI CAN_MS_GARCH MSCI GER_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0005 [0.000]*** intercept 0.0065 [0.0007]*** intercept -0.0272 [0.0024]***
Beta (β) 0.4361 [0.0141]*** Beta (β) 0.4845 [0.0543]*** Beta (β) -1.6969 [0.1697]***
nu_1 82.39 [3.2578]*** nu_1 24.47 [7.6849]*** nu_1 0.324 [0.0985]***
xi_1 8.3793 [0.5317]*** xi_1 1.1288 [0.0639]*** xi_1 0.6759 [0.0919]***
posterior mean stable probability_1 0.4735 posterior mean stable probability_1 0.7163 posterior mean stable probability_1 0.6851
Volatility 0.5158 Volatility 0.7335 Volatility 0.02
Regime 2 Regime 2 Regime 2
intercept 0.0108 [0.0016]*** intercept 0.0085 [0.0011]*** intercept 6.6109 [0.2252]***
Beta (β) 0.4269 [0.0538]*** Beta (β) 0.766 [0.0364]*** Beta (β) 0.0588 [0.1113]
nu_2 24.32 [2.4409]*** nu_2 45.12 [3.1213]*** nu_2 1.267 [5.8906]
xi_2 0.9363 [0.0101]*** xi_2 11.48 [1.2579]*** xi_2 0.7516 [0.2795]***
p12 0.3707 p12 0.9365 p12 0.0708
p21 0.566 p21 0.1603 p21 0.0298

posterior mean stable probability_2 0.5265 posterior mean stable probability_2 0.2837 posterior mean stable probability_2 0.3104
Volatility 6.4406 Volatility 3.1636 Volatility 0.19

cc.p-value 0.5987 cc.p-value 0.0152 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.0074 dq.p-value 0.9998

MSCI AUS_MS_GARCH MSCI DEN_MS_GARCH MSCI FIN_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0009 [0.0001]*** intercept 0.0095 [0.0014]*** intercept 0.0034 [0.0000]***
Beta (β) 0.7568 [0.0257]*** Beta (β) 0.4464 [0.0371]*** Beta (β) 0.003 [0.1750]
nu_1 11.42 [2.9584]*** nu_1 9.6682 [1.1795]*** nu_1 0.2505 [0.0646]***
xi_1 1.76 [0.0486]*** xi_1 1.6655 [0.0940]*** xi_1 0.7494 [0.0683]***
posterior mean stable probability_1 0.6917 posterior mean stable probability_1 0.8746 posterior mean stable probability_1 0.6344
Volatility 1.2957 Volatility 2.4321 Volatility 0.2102
Regime 2 Regime 2 Regime 2
intercept 0.0205 [0.0056]*** intercept 0.3331 [0.0622]*** intercept -0.3186 [0.0130]***
Beta (β) 0.3188 [0.0494]*** Beta (β) 0.3581 [0.0198]*** Beta (β) -0.0028 [0.0034]
nu_2 55.65 [3.2174]*** nu_2 6.4586 [1.6323]*** nu_2 0.6257 [0.4084]
xi_2 1.152 [0.1219]*** xi_2 9.7138 [1.5358]*** xi_2 0.7701 [0.0543]***
p12 0.9137 p12 0.9724 p12 0.0173
p21 0.1937 p21 0.1929 p21 0.0282

posterior mean stable probability_2 0.3083 posterior mean stable probability_2 0.1254 posterior mean stable probability_2 0.3611
Volatility 3.6197 Volatility 10.111 Volatility 0.7953

cc.p-value 0.5987 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998

MSCI HUN_MS_GARCH MSCI EGY_MS_GARCH MSCI POR_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0071 [0.0001]*** intercept 0.0099 [0.0001]*** intercept 0.0037 [0.0001]***
Beta (β) 0.5664 [0.0028]*** Beta (β) 0.0258 [0.0001]*** Beta (β) 0.2729 [0.0027]***
nu_1 5.4554 [0.0746]*** nu_1 99.24 [0.0180]*** nu_1 73.57 [0.4166]***
xi_1 1.0787 [0.0020]*** xi_1 1.5153 [0.0057]*** xi_1 4.1175 [0.1044]***
posterior mean stable probability_1 0.8469 posterior mean stable probability_1 0.6753 posterior mean stable probability_1 0.508
Volatility 3.2939 Volatility 1.7575 Volatility 1.4935
Regime 2 Regime 2 Regime 2
intercept 0.5485 [0.0051]*** intercept 0.0982 [0.0007]*** intercept 0.0068 [0.0001]***
Beta (β) 0.1815 [0.0039]*** Beta (β) 0.2196 [0.0022]*** Beta (β) 0.2837 [0.0032]***
nu_2 45.74 [0.6060]*** nu_2 99.36 [0.0273]*** nu_2 67.76 [0.4824]***
xi_2 9.1403 [0.1606]*** xi_2 0.9369 [0.0027]*** xi_2 2.8034 [0.0801]***
p12 0.9659 p12 0.9628 p12 0.7679
p21 0.1889 p21 0.0773 p21 0.2397

posterior mean stable probability_2 0.1531 posterior mean stable probability_2 0.3247 posterior mean stable probability_2 0.492
Volatility 147.4 Volatility 11.61 Volatility 2.2976

cc.p-value 0.5987 cc.p-value 0.5987 cc.p-value 0.7175
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.4824

Note: Series names are given in Table 8. ***,** and * represent significance of regime switching GARCH CAPM betas at 1%, 5% and 10% respectively whereas p12 and p21 refer to the probability of moving from one volatility regime
to the other. nu and xi are values of logistic functions used in determining the values of the transition probabilities. CC and DQ p-values are probability values for Conditional Coverage (CC) and Dynamic Quantile (DQ) which are
tests for parameter restrictions on the transition probability matrix.
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MSCI SPN_MS_GARCH MSCI SLOV_MS_GARCH MSCI FRA_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.1253 [0.05077]*** intercept 0.041 [0.0024]*** intercept 0.061 [0.0000]***
Beta (β) 0.8696 [0.0083]*** Beta (β) 0.5578 [0.0191]*** Beta (β) -0.7325 [0.9516]
nu_1 7.8557 [0.4288]*** nu_1 99.983 [0.0016]*** nu_1 0.1273 [0.0397]***
xi_1 1.0939 [0.0144]*** xi_1 10.449 [0.5087]*** xi_1 0.8508 [0.0419]***
posterior mean stable probability_1 0.7853 posterior mean stable probability_1 0.3247 posterior mean stable probability_1 0.3801
Volatility 0.6135 Volatility 0.6797 Volatility 0.032
Regime 2 Regime 2 Regime 2
intercept 0.1965 [0.0062]*** intercept 0.0055 [0.0012]*** intercept -0.8216 [0.4016]**
Beta (β) 0.7134 [0.0051]*** Beta (β) 0.693 [0.0299]*** Beta (β) -0.6169 [0.1181]***
nu_2 99.339 [0.0601]*** nu_2 65.638 [2.5985]*** nu_2 0.1678 [0.0673]**
xi_2 10.197 [1.3141]*** xi_2 1.0604 [0.0064]*** xi_2 0.8431 [0.0492]***
p12 0.9342 p12 0.5165 p12 0.6178
p21 0.2406 p21 0.2324 p21 0.3822

posterior mean stable probability_2 0.2147 posterior mean stable probability_2 0.6753 posterior mean stable probability_2 0.6155
Volatility 3.5814 Volatility 3.655 Volatility 0.075

cc.p-value 0.7175 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.0074 dq.p-value 0.9998 dq.p-value 0.9998

MSCI UK_MS_GARCH MSCI ITA_MS_GARCH MSCI SWE_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.1208 [0.0000]*** intercept 0.0773 [0.0008]*** intercept 0.0112 [0.0002]***
Beta (β) 0.0531 [0.2670] Beta (β) 0.1786 [0.0034]*** Beta (β) 0.1807 [0.0037]***
nu_1 0.3818 [0.0770]*** nu_1 7.6729 [0.4463]*** nu_1 10.142 [0.3218]***
xi_1 0.6181 [0.0988]*** xi_1 1.9299 [0.0671]*** xi_1 0.5606 [0.0107]***
posterior mean stable probability_1 0.897 posterior mean stable probability_1 0.6538 posterior mean stable probability_1 0.4475
Volatility 0.3743 Volatility 3.7448 Volatility 2.4272
Regime 2 Regime 2 Regime 2
intercept -0.6208 [0.0488]*** intercept 0.0435 [0.0005]*** intercept 0.0257 [0.0005]***
Beta (β) -0.1585 [0.1085] Beta (β) 0.0491 [0.0016]*** Beta (β) 0.2213 [0.0041]***
nu_2 1.2173 [0.7969] nu_2 83.905 [0.5037]*** nu_2 3.2532 [0.0210]***
xi_2 0.3587 [0.1553]** xi_2 12.508 [0.1440]*** xi_2 0.7026 [0.0108]***
p12 0.0345 p12 0.5163 p12 0.9876
p21 0.4133 p21 0.9134 p21 0.0101

posterior mean stable probability_2 0.0982 posterior mean stable probability_2 0.3462 posterior mean stable probability_2 0.5525
Volatility 1.0832 Volatility 9.5149 Volatility 3.6173

cc.p-value 0.5987 cc.p-value 0.0034 cc.p-value 0.1384
dq.p-value 0.9998 dq.p-value 0.000003 dq.p-value 0.0074

MSCI TUR_MS_GARCH MSCI CRO_MS_GARCH MSCI LIT_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 height SE
intercept 0.1571 [0.0023]*** intercept 0.1004 [0.0029]*** intercept 0.0043 [0.0002]***
Beta (β) 0.2977 [0.0040]*** Beta (β) 0.653 [0.0051]*** Beta (β) 0.0178 [0.0014]***
nu_1 2.1208 [0.0012]*** nu_1 41.87 [0.6060]*** nu_1 95.87 [0.1613]***
xi_1 6.0725 [0.1400]*** xi_1 0.8551 [0.0164]*** xi_1 3.3727 [0.0827]***
posterior mean stable probability_1 0.5304 posterior mean stable probability_1 0.1388 posterior mean stable probability_1 0.4216
Volatility 11.87 Volatility 7.9041 Volatility 1.3141
Regime 2 Regime 2 Regime 2
intercept 0.2666 [0.0041]*** intercept 0.0231 [0.0015]*** intercept 0.0045 [0.0001]***
Beta (β) 0.2638 [0.0040]*** Beta (β) 0.8981 [0.0033]*** Beta (β) 0.7461 [0.0024]***
nu_2 2.1073 [0.0004]*** nu_2 12.15 [0.4227]*** nu_2 66.19 [0.4270]***
xi_2 5.4584 [0.1117]*** xi_2 1.0856 [0.0066]*** xi_2 0.8918 [0.0072]***
p12 0.3222 p12 0.8667 p12 0.3428
p21 0.7656 p21 0.0215 p21 0.4791

posterior mean stable probability_2 0.4696 posterior mean stable probability_2 0.8612 posterior mean stable probability_2 0.5784
Volatility 16.89 Volatility 5.6969 Volatility 4.3352

cc.p-value 0.1889 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.3074 dq.p-value 0.9998 dq.p-value 0.9998
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MSCI SWT_MS_GARCH MSCI NZL_MS_GARCH MSCI NOR_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0493 [0.0019]*** intercept 0.1475 [0.0016]*** intercept 0.0194 [0.0005]***
Beta (β) 0.8407 [0.0060]*** Beta (β) 0.3673 [0.0034]*** Beta (β) 0.4044 [0.0042]***
nu_1 2.1959 [0.0042]*** nu_1 80.942 [0.3445]*** nu_1 50.995 [0.3874]***
xi_1 12.949 [0.1437]*** xi_1 0.9679 [0.0246]*** xi_1 0.9544 [0.0023]***
posterior mean stable probability_1 0.5643 posterior mean stable probability_1 0.9902 posterior mean stable probability_1 0.6509
Volatility 6.0847 Volatility 0.9873 Volatility 1.3817
Regime 2 Regime 2 Regime 2
intercept 0.1898 [0.0022]*** intercept 0.2244 [0.0031]*** intercept 0.0381 [0.0002]***
Beta (β) 0.492 [0.0054]*** Beta (β) 0.118 [0.0024]*** Beta (β) 0.0875 [0.0015]***
nu_2 2.3414 [0.0033]*** nu_2 93.863 [0.2165]*** nu_2 64.548 [0.2122]***
xi_2 3.9149 [0.0925]*** xi_2 6.1689 [0.0465]*** xi_2 0.957 [0.0035]***
p12 0.8579 p12 0.9923 p12 0.9755
p21 0.184 p21 0.7844 p21 0.0457

posterior mean stable probability_2 0.4357 posterior mean stable probability_2 0.0098 posterior mean stable probability_2 0.3491
Volatility 11.721 Volatility 22.098 Volatility 3.2359

cc.p-value 0.7176 cc.p-value 0.7176 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.3673 dq.p-value 0.9998

MSCI NLD_MS_GARCH MSCI JAP_MS_GARCH MSCI IRE_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.13 [0.0014]*** intercept 0.0056 [0.00001]*** intercept −0.0113 [0.0064]***
Beta (β) 0.8022 [0.0018]*** Beta (β) 0.2042 [0.0026]*** Beta (β) 0.0778 [0.4686]
nu_1 11.851 [0.1752]*** nu_1 7.5191 [0.0564]*** nu_1 0.2163 [0.0559]***
xi_1 1.1142 [0.0025]*** xi_1 1.1636 [0.0031]*** xi_1 0.7836 [0.0563]***
posterior mean stable probability_1 0.8235 posterior mean stable probability_1 0.6556 posterior mean stable probability_1 0.8561
Volatility 1.0917 Volatility 1.3148 Volatility 0.046
Regime 2 Regime 2 Regime 2
intercept 0.0353 [0.0010]*** intercept 0.0088 [0.0002]*** intercept -0.0319 [0.0079]***
Beta (β) 0.2286 [0.0032]*** Beta (β) 0.626 [0.0033]*** Beta (β) -0.5687 [0.0462]***
nu_2 57.257 [0.4198]*** nu_2 4.8333 [0.0256]*** nu_2 34.847 [10.14]***
xi_2 1.1571 [0.0157]*** xi_2 1.0234 [0.0026]*** xi_2 0.7878 [0.0679]***
p12 0.8705 p12 0.9822 p12 0.1625
p21 0.6043 p21 0.0338 p21 0.8374

posterior mean stable probability_2 0.1765 posterior mean stable probability_2 0.3444 posterior mean stable probability_2 0.1393
Volatility 5.4342 Volatility 4.9535 Volatility 0.146

cc.p-value 0.5987 cc.p-value 0.7175 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.7074 dq.p-value 0.9998

MSCI ISR_MS_GARCH MSCI LAT_MS_GARCH MSCI EST_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0026 [0.0001]*** intercept 0.0023 [0.0002]*** intercept 0.1429 [0.0081]***
Beta (β) 0.2327 [0.0032]*** Beta (β) 0.3932 [0.0050]*** Beta (β) 0.3643 [0.0047]***
nu_1 21.63 [0.4126]*** nu_1 80.3 [0.4103]*** nu_1 8.9251 [0.4945]***
xi_1 2.6745 [0.0721]*** xi_1 0.9093 [0.0042]*** xi_1 1.4412 [0.0220]***
posterior mean stable probability_1 0.3523 posterior mean stable probability_1 0.4185 posterior mean stable probability_1 0.85
Volatility 1.0664 Volatility 0.99 Volatility 5.6219
Regime 2 Regime 2 Regime 2
intercept 0.0166 [0.0003]*** intercept 0.2287 [0.0051]*** intercept 0.2679 [0.0046]***
Beta (β) 0.1169 [0.0029]*** Beta (β) 0.0052 [0.0005]*** Beta (β) 0.1038 [0.0031]***
nu_2 34.18 [0.5750]*** nu_2 2.2538 [0.0047]*** nu_2 90.43 [0.5035]***
xi_2 1.8378 [0.0564]*** xi_2 1.1137 [0.0038]*** xi_2 9.3742 [0.1311]***
p12 0.0847 p12 0.9246 p12 0.9807
p21 0.4979 p21 0.0543 p21 0.1092

posterior mean stable probability_2 0.6477 posterior mean stable probability_2 0.5815 posterior mean stable probability_2 0.15
Volatility 2.9427 Volatility 7.314 Volatility 153.4

cc.p-value 0.7175 cc.p-value 0.7175 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998
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MSCI THAI_MS_GARCH MSCI MYL_MS_GARCH MSCI INDO_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0027 [0.0001]*** intercept 0.001 [0.0001]*** intercept 0.2714 [0.0020]***
Beta (β) 0.4302 [0.0054]*** Beta (β) 0.3374 [0.0037]*** Beta (β) 0.5257 [0.0025]***
nu_1 89.162 [0.3384]*** nu_1 53.687 [0.6078]*** nu_1 55.835 [0.5014]***
xi_1 0.6854 [0.0144]*** xi_1 0.4453 [0.0262]*** xi_1 0.6199 [0.0019]***
posterior mean stable probability_1 0.3723 posterior mean stable probability_1 0.2839 posterior mean stable probability_1 0.9859
Volatility 1.4547 Volatility 0.6575 Volatility 2.0485
Regime 2 Regime 2 Regime 2
intercept 0.0112 [0.0005]*** intercept 0.0058 [0.0001]*** intercept 0.0524 [0.0024]***
Beta (β) 0.5316 [0.0064]*** Beta (β) 0.1756 [0.0035]*** Beta (β) 0.5780 [0.0055]***
nu_2 79.331 [0.4330]*** nu_2 12.598 [0.4456]*** nu_2 33.957 [0.5144]***
xi_2 0.9716 [0.0129]*** xi_2 0.8671 [0.0064]*** xi_2 1.6748 [0.0610]***
p12 0.6097 p12 0.6701 p12 0.9958
p21 0.2315 p21 0.1308 p21 0.2905

posterior mean stable probability_2 0.6277 posterior mean stable probability_2 0.7161 posterior mean stable probability_2 0.0141
Volatility 2.9873 Volatility 1.4281 Volatility 0.1426

cc.p-value 0.1483 cc.p-value 0.7176 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998

MSCI PHI_MS_GARCH MSCI SING_MS_GARCH MSCI CHIN_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.017 [0.0003]*** intercept 0.0029 [0.0002]*** intercept 0.4134 [0.0031]***
Beta (β) 0.2117 [0.0039]*** Beta (β) 0.7178 [0.0022]*** Beta (β) 0.4442 [0.0023]***
nu_1 60.109 [0.6903]*** nu_1 30.188 [0.5131]*** nu_1 99.816 [0.0121]***
xi_1 1.042 [0.0149]*** xi_1 0.8138 [0.0048]*** xi_1 0.7488 [0.0026]***
posterior mean stable probability_1 0.4273 posterior mean stable probability_1 0.54 posterior mean stable probability_1 0.8014
Volatility 3.4551 Volatility 2.0606 Volatility 1.612
Regime 2 Regime 2 Regime 2
intercept 0.0547 [0.0008]*** intercept 0.1437 [0.0012]*** intercept 0.5769 [0.0052]***
Beta (β) 0.4349 [0.0041]*** Beta (β) 0.2333 [0.0034]*** Beta (β) 0.0972 [0.0021]***
nu_2 12.006 [0.5131]*** nu_2 2.919 [0.1394]*** nu_2 81.29 [0.4540]***
xi_2 1.0945 [0.0052]*** xi_2 5.0358 [0.0956]*** xi_2 0.1915 [0.0084]***
p12 0.6849 p12 0.6418 p12 0.8188
p21 0.2351 p21 0.4204 p21 0.7312

posterior mean stable probability_2 0.5727 posterior mean stable probability_2 0.46 posterior mean stable probability_2 0.1986
Volatility 4.2098 Volatility 4.3937 Volatility 48.5137

cc.p-value 0.5987 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998

MSCI ICE_MS_GARCH MSCI RUS_MS_GARCH MSCI MALT_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0038 [0.0001]*** intercept 0.0118 [0.0007]*** intercept 0.0098 [0.0002]***
Beta (β) 0.7108 [0.0031]*** Beta (β) 0.5834 [0.0026]*** Beta (β) 0.421 [0.0091]***
nu_1 3.7096 [0.0326]*** nu_1 4.9777 [0.1661]*** nu_1 6.0382 [0.1633]***
xi_1 1.0941 [0.0025]*** xi_1 0.979 [0.0258]*** xi_1 1.0793 [0.0033]***
posterior mean stable probability_1 0.7629 posterior mean stable probability_1 0.9532 posterior mean stable probability_1 0.6076
Volatility 2.1245 Volatility 5.706 Volatility 1.9578
Regime 2 Regime 2 Regime 2
intercept 0.1428 [0.0034]*** intercept 0.3273 [0.0036]*** intercept 0.0351 [0.0013]***
Beta (β) 0.2537 [0.0026]*** Beta (β) 0.2683 [0.0031]*** Beta (β) 0.4459 [0.0083]***
nu_2 7.6092 [0.0450]*** nu_2 45.82 [0.4945]*** nu_2 7.774 [0.1654]***
xi_2 1.0697 [0.0087]*** xi_2 10.53 [0.1230]*** xi_2 1.3302 [0.0222]***
p12 0.9772 p12 0.9768 p12 0.9323
p21 0.0733 p21 0.473 p21 0.1049

posterior mean stable probability_2 0.2371 posterior mean stable probability_2 0.0468 posterior mean stable probability_2 0.3924
Volatility 19.02 Volatility 187.1 Volatility 4.2847

cc.p-value 0.5987 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998
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MSCI INDI_MS_GARCH MSCI TAI_MS_GARCH MSCI KOR_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0021 [0.0001]*** intercept 0.0127 [0.0001]*** intercept 0.0001 [0.0000]***
Beta (β) 0.1004 [0.0023]*** Beta (β) 0.1111 [0.0013]*** Beta (β) 0.767 [0.0033]***
nu_1 69.23 [0.4938]*** nu_1 68.32 [0.4141]*** nu_1 73.13 [0.4521]***
xi_1 0.9579 [0.0040]*** xi_1 1.2648 [0.0117]*** xi_1 0.1405 [0.0054]***
posterior mean stable probability_1 0.575 posterior mean stable probability_1 0.9663 posterior mean stable probability_1 0.1475
Volatility 1.1222 Volatility 3.2053 Volatility 0.2329
Regime 2 Regime 2 Regime 2
intercept 0.0142 [0.0003]*** intercept 2.6288 [0.1156]*** intercept 0.2625 [0.0023]***
Beta (β) 0.5887 [0.0056]*** Beta (β) 0.0019 [0.0005]*** Beta (β) 0.5083 [0.0035]***
nu_2 60.511 [0.5294]*** nu_2 44.77 [0.6137]*** nu_2 5.899 [0.0941]***
xi_2 0.936 [0.0046]*** xi_2 7.3515 [0.1154]*** xi_2 0.9898 [0.0018]***
p12 0.5457 p12 0.98 p12 0.1782
p21 0.6147 p21 0.5732 p21 0.1422

posterior mean stable probability_2 0.425 posterior mean stable probability_2 0.0337 posterior mean stable probability_2 0.8525
Volatility 4.2805 Volatility 32.489 Volatility 3.3963

cc.p-value 0.5987 cc.p-value 0.00816 cc.p-value 0.7175
dq.p-value 0.9998 dq.p-value 0.00003 dq.p-value 0.9998

MSCI HNGKNG_MS_GARCH MSCI SERB_MS_GARCH MSCI UKR_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 height SE
intercept 0.0023 [0.0001]*** intercept 0.0023 [0.0001]*** intercept 0.0155 [0.0003]***
Beta (β) 0.6739 [0.0053]*** Beta (β) 0.5023 [0.0020]*** Beta (β) 0.5357 [0.0043]***
nu_1 65.9 [0.5758]*** nu_1 57.39 [0.3387]*** nu_1 14.29 [0.4357]***
xi_1 4.0321 [0.0957]*** xi_1 0.9078 [0.0029]*** xi_1 0.8198 [0.0026]***
posterior mean stable probability_1 0.4715 posterior mean stable probability_1 0.7872 posterior mean stable probability_1 0.5365
Volatility 1.6692 Volatility 1.35508 Volatility 2.8122
Regime 2 Regime 2 Regime 2
intercept 0.016 [0.0001]*** intercept 0.0142 [0.0001]*** intercept 0.0181 [0.0003]***
Beta (β) 0.0828 [0.0046]*** Beta (β) 0.9006 [0.0007]*** Beta (β) 0.6671 [0.0035]***
nu_2 33.1 [0.5766]*** nu_2 99.22 [0.0102]*** nu_2 50.93 [0.7081]***
xi_2 2.4808 [0.0561]*** xi_2 0.1545 [0.0023]*** xi_2 0.8415 [0.0029]***
p12 0.487 p12 0.8586 p12 0.947
p21 0.4577 p21 0.5231 p21 0.0614

posterior mean stable probability_2 0.5285 posterior mean stable probability_2 0.2128 posterior mean stable probability_2 0.4635
Volatility 4.4913 Volatility 39.17 Volatility 4.2827

cc.p-value 0.8133 cc.p-value 0.0392 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.0074 dq.p-value 0.9998

MSCI BUL_MS_GARCH MSCI ROM_MS_GARCH MSCI POL_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0086 [0.0001]*** intercept 0.0096 [0.0003]*** intercept 0.0534 [0.0010]***
Beta (β) 0.3175 [0.0050]*** Beta (β) 0.3463 [0.0044]*** Beta (β) 0.9365 [0.0013]***
nu_1 99.98 [0.0010]*** nu_1 13.32 [0.3193]*** nu_1 99.8 [0.0270]***
xi_1 0.1049 [0.0041]*** xi_1 0.6105 [0.0065]*** xi_1 3.9519 [0.0822]***
posterior mean stable probability_1 0.273 posterior mean stable probability_1 0.5196 posterior mean stable probability_1 0.6481
Volatility 1.7923 Volatility 2.0349 Volatility 1.2698
Regime 2 Regime 2 Regime 2
intercept 0.1308 [0.0017]*** intercept 0.0849 [0.0013]*** intercept 0.0242 [0.0002]***
Beta (β) 0.1388 [0.0017]*** Beta (β) 0.3072 [0.0041]*** Beta (β) 0.0483 [0.0015]***
nu_2 3.9007 [0.0298]*** nu_2 13.61 [0.4512]*** nu_2 44.24 [0.5055]***
xi_2 0.9822 [0.0020]*** xi_2 3.4099 [0.1038]*** xi_2 0.5177 [0.0103]***
p12 0.8913 p12 0.697 p12 0.5766
p21 0.0408 p21 0.3276 p21 0.7798

posterior mean stable probability_2 0.727 posterior mean stable probability_2 0.4804 posterior mean stable probability_2 0.3519
Volatility 14.4 Volatility 4.8426 Volatility 4.7326

cc.p-value 0.5987 cc.p-value 0.7175 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998
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MSCI CZECH_MS_GARCH MSCI BRA_MS_GARCH MSCI ARG_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0103 [0.0001]*** intercept 0.0081 [0.0002]*** intercept 0.0746 [0.0013]***
Beta (β) 0.1651 [0.0029]*** Beta (β) 0.4827 [0.0052]*** Beta (β) 0.1407 [0.0060]***
nu_1 35.22 [0.4474]*** nu_1 47.56 [0.8788]*** nu_1 42.59 [0.5671]***
xi_1 11.9435 [0.1350]*** xi_1 2.1339 [0.0563]*** xi_1 2.3377 [0.0579]***
posterior mean stable probability_1 0.3429 posterior mean stable probability_1 0.6086 posterior mean stable probability_1 0.3641
Volatility 1.7706 Volatility 2.0993 Volatility 9.3749
Regime 2 Regime 2 Regime 2
intercept 0.0038 [0.0001]*** intercept 0.4163 [0.0508]*** intercept 0.1043 [0.0043]***
Beta (β) 0.4317 [0.0027]*** Beta (β) 0.3411 [0.0059]*** Beta (β) 0.7609 [0.0072]***
nu_2 46.39 [0.5918]*** nu_2 61.63 [0.9352]*** nu_2 12.59 [0.5062]***
xi_2 1.1538 [0.0524]*** xi_2 5.723 [0.1180]*** xi_2 1.7831 [0.0672]***
p12 0.0196 p12 0.7439 p12 0.8508
p21 0.5117 p21 0.3981 p21 0.0854

posterior mean stable probability_2 0.6571 posterior mean stable probability_2 0.3914 posterior mean stable probability_2 0.6359
Volatility 3.4982 Volatility 13.86 Volatility 15.15

cc.p-value 0.5987 cc.p-value 0.8133 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998

MSCI COL_MS_GARCH MSCI BEL_MS_GARCH MSCI UAE_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0037 [0.0002]*** intercept 0.0845 [0.0011]*** intercept 0.0002 [0.0004]
Beta (β) 0.6897 [0.0028]*** Beta (β) 0.8811 [0.0017]*** Beta (β) 0.7246 [0.0012]***
nu_1 98.94 [0.0770]*** nu_1 45.53 [0.3822]*** nu_1 3.3434 [0.0103]***
xi_1 1.0225 [0.0019]*** xi_1 0.9218 [0.0028]*** xi_1 1.1475 [0.0211]***
posterior mean stable probability_1 0.9459 posterior mean stable probability_1 0.907 posterior mean stable probability_1 0.6309
Volatility 2.4364 Volatility 1.1693 Volatility 1.1366
Regime 2 Regime 2 Regime 2
intercept 0.1144 [0.0034]*** intercept 0.0183 [0.0005]*** intercept 0.0121 [0.0002]***
Beta (β) 0.0414 [0.0013]*** Beta (β) 0.9741 [0.0005]*** Beta (β) 0.9311 [0.0009]***
nu_2 17.98 [0.2987]*** nu_2 62.55 [0.4158]*** nu_2 3.5332 [0.0169]***
xi_2 6.1804 [0.1127]*** xi_2 0.8138 [0.0411]*** xi_2 12.09 [0.1288***
p12 0.9963 p12 0.9107 p12 0.6406
p21 0.0647 p21 0.8701 p21 0.6143

posterior mean stable probability_2 0.0541 posterior mean stable probability_2 0.093 posterior mean stable probability_2 0.3691
Volatility 116.3 Volatility 10.09 Volatility 7.5209

cc.p-value 0.5987 cc.p-value 0.5987 cc.p-value 0.0392
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.0074

MSCI CHIL_MS_GARCH MSCI MEX_MS_GARCH MSCI QAT_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0027 [0.0008]*** intercept 0.0031 [0.0001]*** intercept 0.0119 [0.0003]***
Beta (β) 0.3701 [0.0020]*** Beta (β) 0.5501 [0.0042]*** Beta (β) 0.2368 [0.0039]***
nu_1 46.18 [0.4538]*** nu_1 6.6427 [0.1169]*** nu_1 3.436 [0.0630]***
xi_1 1.0775 [0.0025]*** xi_1 0.893 [0.0019]*** xi_1 7.4993 [0.1268]***
posterior mean stable probability_1 0.9615 posterior mean stable probability_1 0.6944 posterior mean stable probability_1 0.3286
Volatility 1.4642 Volatility 1.329 Volatility 2.086
Regime 2 Regime 2 Regime 2
intercept 0.5105 [0.0040]*** intercept 0.0293 [0.0002]*** intercept 0.0567 [0.0020]***
Beta (β) 0.22 [0.0033]*** Beta (β) 0.0036 [0.0002]*** Beta (β) 0.0892 [0.0037]***
nu_2 2.117 [0.0005]*** nu_2 69.91 [0.2821]*** nu_2 11.4 [0.1739]***
xi_2 6.8683 [0.1028]*** xi_2 0.9799 [0.0050]*** xi_2 3.2811 [0.1195]***
p12 0.9858 p12 0.9674 p12 0.4555
p21 0.355 p21 0.0741 p21 0.2664

posterior mean stable probability_2 0.0385 posterior mean stable probability_2 0.3056 posterior mean stable probability_2 0.6714
Volatility 27.98 Volatility 3.1159 Volatility 5.1521

cc.p-value 0.1483 cc.p-value 0.7175 cc.p-value 0.8133
dq.p-value 0.0003 dq.p-value 0.3262 dq.p-value 0.9998
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MSCI LUX_MS_GARCH MSCI TUN_MS_GARCH
Regime 1 SE Regime 1 SE
intercept 0,0217 [0.0002]*** intercept 0,1358 [0.0014]***
Beta () 0,3598 [0.0039]*** Beta () 0,085 [0.0023]***
nu_1 3,7802 [0.0251]*** nu_1 99,42 [0.0120]***
xi_1 0,9839 [0.0032]*** xi_1 1,0099 [0.0036]***
posterior mean stable probability_1 0,5141 posterior mean stable probability_1 0,6778
Volatility 3,4573 Volatility 0,5758
Regime 2 Regime 2
intercept 0,0213 [0.0002]*** intercept 0,665 [0.0039]***
Beta () 0,527 [0.0033]*** Beta () 0,1296 [0.0017]***
nu_2 2,9543 [0.0312]*** nu_2 100 [0.0000]***
xi_2 1,0749 [0.0035]*** xi_2 1,9622 [0.0482]***
p12 0,9772 p12 0,5527
p21 0,0241 p21 0,9408

posterior mean stable probability_2 0,4859 posterior mean stable probability_2 0,3222
Volatility 3,2952 Volatility 3,576

cc.p-value 0,7175 cc.p-value 0,7175
dq.p-value 0,1752 dq.p-value 0,9998

MSCI OIL_MS_GARCH MSCI GOLD_MS_GARCH MSCI SILVER_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0063 [0.0001]*** intercept 0.006 [0.0001]*** intercept 0.0206 [0.0005]***
Beta (β) 0.6329 [0.0030]*** Beta (β) 0.3877 [0.0042]*** Beta (β) 0.3979 [0.0035]***
nu_1 51.029 [0.4939]*** nu_1 37.08 [0.3483]*** nu_1 8.4641 [0.2525]***
xi_1 0.2589 [0.0070]*** xi_1 1.135 [0.0031]*** xi_1 1.5206 [0.0536]***
posterior mean stable probability_1 0.4616 posterior mean stable probability_1 0.7935 posterior mean stable probability_1 0.813
Volatility 2.1285 Volatility 1.8572 Volatility 4.838
Regime 2 Regime 2 Regime 2
intercept 0.0048 [0.0001]*** intercept 0.0014 [0.0001]*** intercept 0.4271 [0.0044]***
Beta (β) 0.5625 [0.0026]*** Beta (β) 0.9845 [0.0001]*** Beta (β) 0.2538 [0.0038]***
nu_2 23.93 [0.3775]*** nu_2 23.64 [0.3234]*** nu_2 54.15 [0.5598]***
xi_2 1.123 [0.0053]*** xi_2 14.61 [0.1257]*** xi_2 6.7181 [0.1193]***
p12 0.3737 p12 0.9653 p12 0.9151
p21 0.5369 p21 0.1331 p21 0.3693

posterior mean stable probability_2 0.5384 posterior mean stable probability_2 0.2065 posterior mean stable probability_2 0.187
Volatility 4.13 Volatility 12.63 Volatility 52.28

cc.p-value 0.5987 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998

MSCI GAS_MS_GARCH MSCI COPPER_MS_GARCH MSCI Platinum_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0192 [0.0006]*** intercept 0.0045 [0.0001]*** intercept 0.1873 [0.0026]***
Beta (β) 0.4427 [0.0029]*** Beta (β) 0.4617 [0.0035]*** Beta (β) 0.7791 [0.0028]***
nu_1 11.18 [0.4455]*** nu_1 65.96 [0.4915]*** nu_1 95.34 [0.2335]***
xi_1 2.204 [0.0823]*** xi_1 1.689 [0.0111]*** xi_1 0.5643 [0.0071]***
posterior mean stable probability_1 0.8972 posterior mean stable probability_1 0.4809 posterior mean stable probability_1 0.4195
Volatility 5.4432 Volatility 1.7101 Volatility 1.2108
Regime 2 Regime 2 Regime 2
intercept 0.2298 [0.0044]*** intercept 0.0049 [0.0003]*** intercept 0.1168 [0.0098]***
Beta (β) 0.1798 [0.0040]*** Beta (β) 0.6655 [0.0024]*** Beta (β) 0.0307 [0.0010]***
nu_2 80.53 [0.5688]*** nu_2 22.01 [0.4340]*** nu_2 3.116 [0.0423]***
xi_2 10.06 [0.1394]*** xi_2 0.9937 [0.0036]*** xi_2 1.1319 [0.0031]***
p12 0.9239 p12 0.9909 p12 0.5747
p21 0.6639 p21 0.0084 p21 0.3074

posterior mean stable probability_2 0.1028 posterior mean stable probability_2 0.5191 posterior mean stable probability_2 0.5805
Volatility 57.6 Volatility 4.1555 Volatility 8.3061

cc.p-value 0.5987 cc.p-value 0.0392 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 2.76E-06 dq.p-value 0.9998
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MSCI Palladium_MS_GARCH MSCI Nickel_MS_GARCH MSCI Tin_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0024 [0.0001]*** intercept 0.0108 [0.0001]*** intercept 0.0133 [0.0003]***
Beta (β) 0.1859 [0.0062]*** Beta (β) 0.268 [0.0029]*** Beta (β) 0.2832 [0.0044]***
nu_1 66.19 [0.4744]*** nu_1 16.11 [0.1207]*** nu_1 15.78 [0.4855]***
xi_1 12.65 [0.1826*** xi_1 0.9052 [0.0028]*** xi_1 1.625 [0.0556]***
posterior mean stable probability_1 0.3122 posterior mean stable probability_1 0.591 posterior mean stable probability_1 0.6445
Volatility 1.7234 Volatility 2.1687 Volatility 2.7413
Regime 2 Regime 2 Regime 2
intercept 0.0032 [0.0001]*** intercept 0.067 [0.0009]*** intercept 0.0875 [0.0030]***
Beta (β) 0.499 [0.0065]*** Beta (β) 0.3505 [0.0017]*** Beta (β) 0.1975 [0.0038]***
nu_2 89.27 [0.3836]*** nu_2 14.17 [0.2335]*** nu_2 24.996 [0.6272]***
xi_2 1.5083 [0.0528]*** xi_2 1.0373 [0.0028]*** xi_2 3.9992 [0.1232]***
p12 0.549 p12 0.9846 p12 0.7296
p21 0.2047 p21 0.0222 p21 0.4902

posterior mean stable probability_2 0.6878 posterior mean stable probability_2 0.409 posterior mean stable probability_2 0.3555
Volatility 2.9641 Volatility 10.83 Volatility 6.8819

cc.p-value 0.5987 cc.p-value 0.7175 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.0074 dq.p-value 0.9998

MSCI Zinc_MS_GARCH MSCI Rhodium_MS_GARCH MSCI Ruthernium_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.284 [0.0023]*** intercept 0.0094 [0.0001]*** intercept 0.0005 [0.0003]*
Beta (β) 0.7035 [0.0024]*** Beta (β) 0.4687 [0.0038]*** Beta (β) 0.9988 [0.0005]***
nu_1 41.32 [0.4921]*** nu_1 10.29 [0.3267]*** nu_1 12.51 [0.2408]***
xi_1 1.0102 [0.0028]*** xi_1 1.105 [0.0015]*** xi_1 0.9902 [0.0022]***
posterior mean stable probability_1 0.6039 posterior mean stable probability_1 0.9935 posterior mean stable probability_1 0.3827
Volatility 0.5341 Volatility 5.1636 Volatility 1.4593
Regime 2 Regime 2 Regime 2
intercept 0.1347 [0.0014]*** intercept 0.4255 [0.0056]*** intercept 0.0809 [0.0005]***
Beta (β) 0.0982 [0.0019]*** Beta (β) 0.0296 [0.0012]*** Beta (β) 0.1887 [0.0011]***
nu_2 2.3088 [0.0082]*** nu_2 14.06 [0.2737] nu_2 19.59 [0.2585]***
xi_2 3.7363 [0.1147]*** xi_2 1.806 [0.0616]*** xi_2 0.9673 [0.0027]***
p12 0.7701 p12 0.9948 p12 0.9817
p21 0.3505 p21 0.8012 p21 0.0113

posterior mean stable probability_2 0.3961 posterior mean stable probability_2 0.0065 posterior mean stable probability_2 0.6173
Volatility 5.8197 Volatility 163.8 Volatility 12.12

cc.p-value 0.7175 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.0074 dq.p-value 0.9998 dq.p-value 0.9998

MSCI Corn_MS_GARCH MSCI Rubber_MS_GARCH MSCI Soyabean_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0595 [0.0019]*** intercept 0.0034 [0.0009]*** intercept 0.001 [0.0008]***
Beta (β) 0.8379 [0.0026]*** Beta (β) 0.0075 [0.0004]*** Beta (β) 0.6632 [0.0031]***
nu_1 99.91 [0.0014]*** nu_1 31.06 [0.5437]*** nu_1 78.65 [0.3432]***
xi_1 1.1383 [0.0029]*** xi_1 1.2316 [0.0033]*** xi_1 1.3275 [0.0046]***
posterior mean stable probability_1 0.7818 posterior mean stable probability_1 0.4688 posterior mean stable probability_1 0.8704
Volatility 1.8948 Volatility 1.2635 Volatility 1.2471
Regime 2 Regime 2 Regime 2
intercept 0.1605 [0.0016]*** intercept 0.0131 [0.0131]*** intercept 0.0484 [0.0003]***
Beta (β) 0.2738 [0.0021]*** Beta (β) 0.5178 [0.0027]*** Beta (β) 0.2944 [0.0035]***
nu_2 62.36 [0.4566]*** nu_2 6.1099 [0.0596]*** nu_2 100 [0.0000]***
xi_2 0.7306 [0.0046]*** xi_2 1.1837 [0.0041]*** xi_2 11.56 [0.1251]***
p12 0.9441 p12 0.9921 p12 0.8811
p21 0.2004 p21 0.007 p21 0.799

posterior mean stable probability_2 0.2182 posterior mean stable probability_2 0.5312 posterior mean stable probability_2 0.1296
Volatility 20.33 Volatility 3.2247 Volatility 9.7134

cc.p-value 0.5987 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998
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MSCI Wool_MS_GARCH MSCI Aluminium_MS_GARCH MSCI Lead_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0014 [0.0007]*** intercept 0.0024 [0.0001]*** intercept 0.0017 [0.0008]***
Beta (β) 0.7547 [0.0032]*** Beta (β) 0.9218 [0.0008]*** Beta (β) 0.9981 [0.0008]***
nu_1 9.7623 [0.1505]*** nu_1 5.6443 [0.0594]*** nu_1 4.5562 [0.0139]***
xi_1 7.6973 [0.0924]*** xi_1 0.9892 [0.0027]*** xi_1 1.1497 [0.0025]***
posterior mean stable probability_1 0.3844 posterior mean stable probability_1 0.6055 posterior mean stable probability_1 0.6912
Volatility 1.3135 Volatility 1.3771 Volatility 1.6446
Regime 2 Regime 2 Regime 2
intercept 0.0034 [0.0001]*** intercept 0.1012 [0.0010]*** intercept 0.1118 [0.0011]***
Beta (β) 0.7465 [0.0039]*** Beta (β) 0.2242 [0.0022]*** Beta (β) 0.2794 [0.0029]***
nu_2 10.78 [0.1541]*** nu_2 27.95 [0.4730]*** nu_2 46.35 [0.4735]***
xi_2 2.7203 [0.0846]*** xi_2 0.9156 [0.0026]*** xi_2 0.898 [0.0027]***
p12 0.6536 p12 0.9867 p12 0.9543
p21 0.2163 p21 0.0204 p21 0.1023

posterior mean stable probability_2 0.6156 posterior mean stable probability_2 0.3945 posterior mean stable probability_2 0.3088
Volatility 2.3017 Volatility 10.41 Volatility 12.1

cc.p-value 0.5987 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.9998 dq.p-value 0.9998 dq.p-value 0.9998

MSCI Wheat_MS_GARCH MSCI Cocoa_MS_GARCH MSCI Coffee_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.1673 [0.0012]*** intercept 0.0034 [0.0003]*** intercept 0.0015 [0.0008]***
Beta (β) 0.7936 [0.0016]*** Beta (β) 0.7322 [0.0042]*** Beta (β) 0.9979 [0.0010]***
nu_1 64.79 [0.5892]*** nu_1 4.8824 [0.0498]*** nu_1 7.3977 [0.0341]***
xi_1 4.2024 [0.0793]*** xi_1 0.9808 [0.0024]*** xi_1 1.4034 [0.0031]***
posterior mean stable probability_1 0.6325 posterior mean stable probability_1 0.599 posterior mean stable probability_1 0.726
Volatility 1.1785 Volatility 1.9547 Volatility 2.1782
Regime 2 Regime 2 Regime 2
intercept 0.0255 [0.0003]*** intercept 0.0977 [0.0007]*** intercept 0.0566 [0.0005]***
Beta (β) 0.0356 [0.0016]*** Beta (β) 0.0687 [0.0013]*** Beta (β) 0.3275 [0.0012]***
nu_2 88.13 [0.2769]*** nu_2 87.11 [0.2403]*** nu_2 99.83 [0.0018]***
xi_2 0.7131 [0.0057]*** xi_2 0.9323 [0.0030]*** xi_2 0.8316 [0.0025]***
p12 0.7975 p12 0.9668 p12 0.9819
p21 0.3485 p21 0.0496 p21 0.048

posterior mean stable probability_2 0.3675 posterior mean stable probability_2 0.401 posterior mean stable probability_2 0.274
Volatility 3.3071 Volatility 11.47 Volatility 14.57

cc.p-value 0.1889 cc.p-value 0.5987 cc.p-value 0.5987
dq.p-value 0.0074 dq.p-value 0.9998 dq.p-value 0.9998

MSCI Cotton_MS_GARCH
Regime 1 SE
intercept 0.0058 [0.0002]***
Beta (β) 0.7806 [0.0019]***
nu_1 5.5234 [0.1112]***
xi_1 1.4926 [0.0050]***
posterior mean stable probability_1 0.7457
Volatility 2.8921
Regime 2
intercept 0.0808 [0.0009]***
Beta (β) 0.1672 [0.0017]***
nu_2 44.99 [0.5238]***
xi_2 0.8435 [0.0029]***
p12 0.9812
p21 0.0552

posterior mean stable probability_2 0.2543
Volatility 12.69

cc.p-value 0.5987
dq.p-value 0.9998
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MSCI WORLD_MS_GARCH MSCI Europe_MS_GARCH MSCI EM_MS_GARCH
Regime 1 SE Regime 1 SE Regime 1 SE
intercept 0.0489 [0.0020]*** intercept 0.1842 [0.0009]*** intercept 0.3156 [0.0044]***
Beta (β) 0.3249 [0.0044]*** Beta (β) 0.7789 [0.0023]*** Beta (β) 0.4285 [0.0066]***
nu_1 4.1263 [0.0587]*** nu_1 84.82 [0.2312]*** nu_1 20.38 [0.4032]***
xi_1 1.1845 [0.0075]*** xi_1 1.0696 [0.0042]*** xi_1 1.8196 [0.0562]***
posterior mean stable probability_1 0.8022 posterior mean stable probability_1 0.9922 posterior mean stable probability_1 0.4897
Volatility 4.4324 Volatility 1.9692 Volatility 1.0731
Regime 2 Regime 2 Regime 2
intercept 0.7318 [0.0028]*** intercept 0.3363 [0.0043]*** intercept 0.189 [0.0027]***
Beta (β) 0.121 [0.0023]*** Beta (β) 0.1875 [0.0023]*** Beta (β) 0.6559 [0.0049]***
nu_2 2.1591 [0.0077]*** nu_2 90.74 [0.2601]*** nu_2 20.93 [0.3663]***
xi_2 2.5491 [0.0606]*** xi_2 3.0898 [0.0660]*** xi_2 2.0555 [0.0567]***
p12 0.9598 p12 0.9967 p12 0.6298
p21 0.1632 p21 0.4185 p21 0.3553

posterior mean stable probability_2 0.1978 posterior mean stable probability_2 0.0078 posterior mean stable probability_2 0.5103
Volatility 12.99 Volatility 131.04 Volatility 3.0296

cc.p-value 0.5987 cc.p-value 0.7175 cc.p-value 0.7175
dq.p-value 0.9998 dq.p-value 0.0074 dq.p-value 0.0074

Note: Series names are given in Table 8. ***,** and * represent significance of regime switching GARCH CAPM betas at 1%, 5% and 10% respectively whereas p12 and p21 refer to the probability of moving from one volatility regime
to the other. nu and xi are values of logistic functions used in determining the values of the transition probabilities. CC and DQ p-values are probability values for Conditional Coverage (CC) and Dynamic Quantile (DQ) which are
tests for parameter restrictions on the transition probability matrix.
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4.4 Average pricing errors
The statistical evidence of average risk price for (un)conditional betas across 81 markets lends
support to the view that the conditional regime-switching GARCH CAPM is our preferred speci-
fication. In this section, we compare the fit between the unconditional and conditional versions of
the CAPM using the average pricing errors from the competing models.

As an illustration for energy price series, Figure 3 presents a visual impression of the empirical
performance of the models for Crude Oil and Natural Gas. Blue diamonds and orange squares rep-
resent the average pricing errors from, respectively, the unconditional and the conditional CAPM
models. Each scatter point in the graph represents an asset price, with the realized average return
as the horizontal axis, and the fitted expected return as the vertical axis. If the fitted expected re-
turns and the realized average returns are the same, then all the points should lie on the 45-degree
line through the origin. The straight line is the regression across the conditional CAPM estimates.

Figure 3: Pricing errors: static CAPM versus conditional CAPM for Crude Oil and Natural Gas.

Neither the static nor the conditional CAPM models offer a perfect fit for crude oil and natural
gas price returns, especially in predicting outliers. Although both plots exhibit clusters around the
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bottom of the fitted line, it may be observed that the static CAPM underestimates most of the
realized returns in terms of level (especially for Crude Oil).

On the one hand, in the case of the static CAPM, the relationship between fitted and observed
returns is almost entirely flat, due to the presence of small and insignificant risk premium. On
the other hand, the performance substantially improves when considering the conditional CAPM
specification we suggest in this paper. Indeed, the conditional fit is closer to that of realized aver-
age returns. Apart from outliers, the slope of the regression is steeper for the conditional CAPM
relative to the static CAPM. We may, therefore, infer that the conditional CAPM with high and
significant risk premia, as well as time-varying betas, correctly predicts returns in several periods.

We corroborate this finding in Table 4 which displays the mean pricing errors for both the
static and conditional CAPM, as well as specification tests. The first part of the table presents
the average squared pricing errors from both models. In the case of Crude Oil and Natural Gas,
it is evident that the mean pricing errors from the static CAPM model are higher than those from
the conditional CAPM. This lends credence to the claim that the conditional fit improves on the
static fit.

Generally, mean pricing errors from both models are more significant for Natural Gas than
Crude Oil. For instance, the mean pricing errors for Natural Gas from the static model is about
8.6%, whereas, from the conditional model, it is equal to 6.4%. For Crude Oil, the mean pricing
errors from the static model are about 5.9%, whereas, from the conditional model, it is much less
at approximately 1.6%. Therefore, average pricing errors indicate that the conditional model ranks
better than the static model in predicting returns, especially for Crude Oil.

Table 4: Mean pricing errors and specification tests for Crude oil and Natural gas

Series Mean Pricing Error % Pricing Error
Crude Oil
Static CAPM 0.059 5.90%
Conditional CAPM 0.016 1.60%

Natural Gas
Static CAPM 0.086 8.60%
Conditional CAPM 0.064 6.40%

χ2 p-value
Specification tests for Crude Oil
Are pricing errors from Static CAPM null? - Ho : λi = 0 26.035*** [0.0000]
Are pricing errors from Static CAPM constant? - Ho : λi = 1 528.01*** [0.0000]

Are pricing errors from Conditional CAPM null? - Ho : λi = 0 4.245** [0.0405]
Are pricing errors from Conditional CAPM constant? - Ho : λi = 1 322.05*** [0.0000]

Are pricing errors from both models jointly zero? - Ho : λs = λc = 0 4.375** [0.0137]

Specification tests for Natural Gas
Are pricing errors from Static CAPM null? - Ho : λi = 0 12.686*** [0.0000]
Are pricing errors from Static CAPM constant? - Ho : λi = 1 44.11*** [0.0000]

Are pricing errors from Conditional CAPM null? - Ho : λi = 0 12.626*** [0.0004]
Are pricing errors from Conditional CAPM constant? - Ho : λi = 1 43.01*** [0.0000]

Are pricing errors from both models jointly zero? - Ho : λs = λc = 0 6.325*** [0.0021]

Note: The first panel reports the mean pricing errors while the second panel reports estimates
from Wald test. ***, ** correspond to significance at 1% and 5% respectively .

In the second part of Table 4 (below the mean pricing errors), we present estimates of the
Wald tests using the asymptotic χ2 under the null hypothesis that all pricing errors are jointly
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zero. Results show that we may reject the null hypotheses for both Crude Oil and Natural Gas.
Consequently, we conclude that the pricing errors from both models are relevant, that they change
over time, and there are jointly not equal to zero on average.

4.5 Volatility dynamics
On volatility dynamics, Table 5 presents the mean filtered volatility from the MS-GARCH-CAPM
for all the series. As can be seen, among the countries, the mean filtered volatility is highest in
Turkey followed by Denmark and Argentina with a volatility of about 16.5, 14.9 and 13.4, respec-
tively. In contrast, Tunisia, Portugal, and New Zealand exhibit the least mean filtered volatility of
about 0.98, 1.67 and 1.85, respectively. Among the commodities, Rhodium and Natural Gas pos-
sess the highest mean filtered volatility of 7.03 and 6.08 respectively, whereas Wool and Palladium
have the least mean filtered volatility of 2.07 and 2.14 respectively. Lastly, among the aggregate
indices, the World aggregate stock has the highest mean filtered volatility, whereas Emerging mar-
kets have the least with about 4.8 and 1.89, respectively. On average, conventional asset classes
exhibit higher volatility than the commodity securities as can be seen by the relatively larger values
of the mean filtered volatility for countries compared to those of commodities.

Figure 4 contains graphs of mean filtered volatility for twelve selected countries and commodities
including Argentina, Bulgaria, China, Denmark, Natural Gas, Crude Oil, Platinum, Rhodium,
Silver, the USA, World, Zinc.

Table 5: Mean filtered MS-GARCH-CAPM volatility for all series

US S&P500 1.962619 CRO-CROBEX 5.015678
CAN TSX 2.554394 LIT-OMXVILNIUS 2.648331
GER DAX 4.802231 HUN-BUX 5.337474
AUS ASX 2.651945 EGY-EGX30 4.802231
DEN OMX 14.96079 POR-PS-I20 1.677671
FIN OMXHEX 4.802231 CZECH-SEPX 2.10555
SPNIBEX 1.967885 BRA-BOVESPA 2.794947
SLOVSBITOP 2.135627 ARG-MERVAL25 13.37952
UKFTSE100 4.828254 COL-COLCAP 4.809118
ITAFTSEMIB 7.406845 BELG-BEL20 2.17729
SWEOMX30 3.742947 UAE-ADXGEN 5.40287
SWTSMI 2.613581 CHIL-IGPA 5.298427
NZLNZX50 1.849826 MEX-S&PBMVIPC 1.901675
FRA-CAC 1.981416 QAT-QE 3.054392
NOR-OSEAX 1.932275 LUX-LUXX 3.481971
NETH-AEX 1.942495 CRUDEOIL 2.450924
JAP-NIKKEI225 1.928034 GOLD 2.962834
IRE-ISEQ 1.928034 SILVER 5.660347
TUN-TUNINDEX 0.981831 GAS 6.088891
THAI-SET50 1.851169 COPPER 2.332829
MYL-FTSEKLCI 1.851169 PLATINUM 5.019397
INDO-JCI 1.91567 PALLADIUM 2.135101
PHI-PSEI 1.91567 NICKEL 4.555906
SING-STI 2.236415 TIN 3.075775
CHIN-SSE 8.930896 ZINC 5.54257
INDI-SENSEX 2.572912 RHODIUM 7.026534
TAI-TWSE 2.003599 RUTHENIUM 4.528716
KOR-KOSPI 2.368377 CORN 4.902439
HNGKNG-HIS 2.381495 RUBBER 2.200272
SERB-BELEX15 6.445615 SOYABEAN 2.279543
UKR-PFTS 2.381495 WOOL 2.074668
BUL-SOFIX 7.443544 ALUMINIUM 4.334008
ROM-BET 5.62009 LEAD 4.407331
POL-WIG 2.616998 WHEAT 2.34754
ICE-SEICEX 4.447006 COCOA 4.532433
RUS-MICEX 3.948479 COFFEE 4.551753
MALT-MALTEX 2.52231 COTTON 4.800368
ISR-TA100 2.10099 WORLD 4.800368
LAT-OMXRIGA 1.896108 EUROPE 3.494552
EST-OMXTALLIN 5.67773 EMERGING MARKETS 1.890573
TUR-XU100 16.5353

Note: Series names are given in Table 8.
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(a) Argentina (b) Bulgaria

(c) China (d) Denmark

(e) Natural Gas (f) Crude Oil

Figure 4: MS-GARCH-CAPM selected plots of filtered volatilities
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(g) Platinum (h) Rhodium

(i) Silver (j) USA

(k) World (l) Zinc

Figure 4: MS-GARCH-CAPM selected plots of filtered volatilities (continued)
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Looking at the graphs, some patterns can be discerned in most of the markets. For instance,
periods of low volatility persisted throughout the beginning parts of the sample until the middle
when periods of transitory high volatility clustered till the later part of the sample in Argentina,
Bulgaria, China, Crude oil, Platinum, Rhodium, Silver, the USA, World, and Zinc. In contrast, the
pattern changes for both Denmark and Natural Gas. Their beginning part of the sample exhibits
high volatility levels which decline continuously. Until the end of the sample, high volatility levels
appear short-lived. The last few months in the sample exhibit low volatility levels except in Natural
Gas, Crude oil, and Denmark in which volatility levels seems to build up. These findings, especially
in the case of the energy market, are consistent with the results of previous studies (see, e.g., Ma et
al., 2018; Ma et al., 2019). As observed earlier, the middle of our sample coincides with the period
of the 2008 financial crisis, which triggered significant turbulence in assets prices and returns. The
immediate period after the sub-prime crisis witnessed a series of unconventional macroeconomic
policies such as the US Quantitative Easing which altered investors’ risk appetite.

4.6 Quantitative risk-management
This section aims to illustrate the usefulness of the conditional regime-switching GARCH CAPM
in a practical risk management exercise (Jorion, 2006). Beta pricing models are used extensively
for risk-management purposes, with the central interest to compute the beta risk or market prices
of risk. These estimates are indeed useful as the risk of any financial, energy or other commod-
ity markets will change as the βs change. In equilibrium, investors are compensated in terms of
expected returns for bearing market risk. Risk-averse utility maximizers will attempt to hedge
against the risk of unfavorable shifts in their investment opportunity set. Ceteris paribus, they will
demand more of an asset if the ex post opportunity set is less favorable than anticipated.

The importance of modeling financial risk in stock markets for useful risk measurement has
never been more significant given the recent global financial disasters. Ardia et al. (2018) ar-
gue that regime-switching GARCH models have proven to be increasingly useful in the field of
quantitative finance, where investors are interested in the allocation of wealth among a wide array
of risky investment opportunities. Regarding returns of financial assets, investors are interested
in understanding the quantile of their future distribution of returns at a specific risk level. Two
quantities of interest when measuring this distribution include the Value at Risk (VaR) and the
expected shortfall (ES). VaR remains the standard method of measuring financial risks as it yields
forecasts for the likely losses which may arise following changes in price over a pre-defined time
horizon and a given confidence level (Sajjad et al. 2008). In this section, we present and compare
the performance of risk metrics such as the Expected Shortfall and Out-of-Sample forecasts from
the GARCH and MS-GARCH models. Besides, we show which model brings about considerable
improvements in correctly forecasting one-day-ahead VaR using an innovative back-testing pro-
cedure for 12 selected stock markets including Bulgaria, Columbia, China, Japan, Latvia, Korea,
Portugal, Qatar, Turkey, Wool, Cocoa, and World. Although the expected shortfall is not a con-
ventional tool for validating the VaR forecasts or evaluating models’ performance, it remains an
acceptable tool for risk managers as it is a suitable candidate for quantifying how much is likely
to be lost in case of a failed model.

We use the innovative Generalized Autoregressive Score (GAS) models proposed by Ardia et al.
(2019) for VaR evaluation, prediction and back-testing under a rolling window on a 95% confidence
interval with the assumption that the distribution of returns is left-skewed and fat-tailed, and its
variance is time-varying. The GAS models have found broad application in financial econometrics
given their ability to link many volatility modeling frameworks, especially the GARCH models.
The Conditional Coverage (CC) first proposed by Christoffersen (1998) evaluates the correct cov-
erage of the conditional left-tail distribution of log-returns. The Dynamic Quantile (DQ) of Engle
and Manganelli (2004) tests some restrictions in a linear model that links the violations to a set
of explanatory variables. Ardia et al. (2016) note that the DQ has more power and provides a
holistic testing procedure for identifying when VaR back-testing model is misspecified.

The p-values for the CC and DQ tests of parameter restrictions on the transition probabilities
matrix for the regime-switching process in our MS-GARCH-CAPM is presented in Table 3. The
null hypothesis for the CC test is that the hits variable is uncorrelated with its own lagged values
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and with the lag of any other variable including past log returns. Past VaR and its expected
value must be equal to zero. The DQ test is that of the correct model specification at our chosen
confidence level α = 5% for the VaR model. As can be seen the table, the p-value for the CC
test is more significant than the conventional significance level for most of the markets. These
results suggest that the assumptions of the CC test hold for most of the markets in our sample.
However, this is not the case for Canada, Italy, Taiwan, Serbia, Argentina, UAE and Copper where
the p-value is less than 5% suggesting that this assumption is violated, and we can reject the null
hypothesis for these markets. Similarly, the large p-values of DQ for most of the markets is an
indication that the null hypothesis of the correct model specification for the 5% significant level.
In contrast, the p-values for DQ test in Canada, Spain, Italy, Sweden, Taiwan, Serbia, UEA, Chile,
Nickel, Zinc, Wheat, Europe, and Emerging markets are smaller than 5% and in this case, against
the assumption of the correct model specification for the 5% VaR level.

Figure 5 is composed of two panels for each series. The upper panel contains the Out-of-
Sample returns. The lower panel contrasts the VaR computed at 5% level for the GARCH and
MS-GARCH models, respectively. Table 6 provides the remaining expected shortfall (ES) esti-
mates. Ma et al. (2019) note that the Out-of-Sample predictability of a model proves very useful
for both researchers and market participants who are concerned with the model’s ability to predict
future rather than past outcomes. Looking at the upper panel, it can be seen that among our
twelve selected markets, the out-of-sample returns forecasts is highest in Bulgaria with about 0.43
while it is least in Turkey with about -0.76. The highest mean out-of-sample returns forecast is 0.09
for Korea and Japan, followed by 0.08 for China, whereas the least is -0.69 and -0.04 for Turkey
and Latvia respectively. Out-of-sample returns forecasts are less than zero for Turkey, as well as
for most of the periods in Portugal and Latvia. Out-of-sample returns forecasts are almost positive
in all the periods for Korea, Columbia, Japan, and Wool. It is unclear how much weight to place
on the ability of out-of-sample forecasts on predicting stock returns. Campbell and Thompson
(2007) note, however, that out-of-sample forecasts do have some ability to predict stock returns
and are economically important, especially to mean-variance investors, because they can generate
significant improvements in portfolio performance.

Regarding the lower panel, the VaR at 5% level for the GARCH model is represented by the
blue color while the orange color represents that of the MS-GARCH. From the VaR plots in this
panel, it can be seen that back-testing test discriminated between the VaR for the GARCH and
MS-GARCH especially in Bulgaria where the plots never met at the point throughout the sample
period. Here, the critical finding is that in all the markets considered, the mean VaR at 5% for
the MS- GARCH model is either higher or equal to VaR at 5% from the GARCH model except
in Turkey. Specifically, the mean VaR from the GARCH model is greatest in Columbia while it is
least in China. Similarly, the mean from the MS-GARCH model is most significant in Columbia
and Wool but least in China.

There were some sections of the sample where the plot of VaR at 5% forecasts from the GARCH
model was identical with those from MS-GARCH model. For instance, the back-testing test failed
to discriminate between the plots from both models until after the first half of the sample in the
following markets: China, Columbia, Cocoa, Japan, Latvia, Portugal, Qatar, and World. In most
of the markets (especially in China and Latvia), the plot for the MS-GARCH was over that of the
GARCH model. Conversely, the plot for the GARCH model was over that of the MS-GARCH
model throughout the sample period in Bulgaria and at some point in Columbia, Turkey, and
World.

Concerning the back-testing estimates for Expected Shortfalls (ES) as presented in Table 6,
the last line of the table reports the average expected shortfall estimates. ES, as a financial risk
measurement tool, estimates the average of 100p% worst losses where p is a chosen confidence
level (Acerbi and Tasche, 2002a). ES is widely applicable in stocks returns evaluation despite the
underlying sources of risks. It offers a unique global approach to portfolio selection when assets
are exposed to different sources of uncertainty. The ES can be viewed as an alternative to the
VaR approach to stocks returns evaluation, given that it can provide more reliable estimates even
when the VaR estimators fail (Acerbi and Tasche, 2002b). Further, Taylor (2008) notes that there
is no significant difference between the two approaches but that ES is an appropriate approach for
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GARCH models estimated through the skewed-t distribution. In our results, it can be seen that
the average ES is highest in China, followed by Bulgaria with about -1.61, whereas the least is
Latvia is -0.17. These results suggest that stocks from the Chinese market seem riskier, whereas
securities from the Latvian market appear as the least risky among the selected markets.

In summary, the performance of the MS-GARCH model compared to the GARCH in the above
Risk Metrics lends credence to the claim that regime-switching models bring about more significant
improvement in forecasting stock returns, especially in back-testing the one-day-ahead VaR at 5%
level for the selected markets as shown earlier. For instance, our results suggest that the single
regime GARCH specification mostly underestimates the returns (risk) as demonstrated by the plots
of VaR at 5% from both models. These results are complemented by the findings of Kuester et al.
(2006), Sajjad et al. (2008) and Taylor (2008) who favor the use of switching models especially in
back-testing VaR and Expected Shortfall. These authors argued that systematic risks might vary
depending on the volatility regime.
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Table 6: Back-tests: Expected Shortfall (ES) estimates

BULGARIA CHINA COCOA COLUMBIA JAPAN KOREA LATVIA PORTUGAL QATAR TURKEY WOOL WORLD
-0.3696935 -1.59896481 -0.34339205 -0.28504994 -0.22241096 -0.2939785 -0.1342876 -0.23577201 -0.40365985 -0.23577201 -0.20240418 -0.20894887

-0.43337183 -1.67769711 -0.35420113 -0.2933303 -0.22812045 -0.30578616 -0.15315286 -0.23428059 -0.45654336 -0.23428059 -0.21547615 -0.22150739
-0.53007848 -1.60642624 -0.3701448 -0.30702414 -0.23707951 -0.3067333 -0.16160187 -0.2390468 -0.47023146 -0.2390468 -0.22253285 -0.2306819
-0.61036632 -1.44400855 -0.35833353 -0.30345896 -0.25069577 -0.31563426 -0.16564428 -0.23918478 -0.48149671 -0.23918478 -0.23316302 -0.2380991
-0.6900595 -1.5166263 -0.37778933 -0.30160493 -0.25903908 -0.31825599 -0.18481907 -0.24140153 -0.5168024 -0.24140153 -0.24519744 -0.26974967

-0.65571115 -1.58169698 -0.38602474 -0.29859613 -0.26478727 -0.32096735 -0.17300207 -0.23705698 -0.508046 -0.23705698 -0.23973005 -0.26329892
-0.73043507 -1.76632596 -0.40561767 -0.3097635 -0.270502 -0.3329765 -0.18535075 -0.24114021 -0.53040442 -0.24114021 -0.25219612 -0.2678908
-0.7859926 -1.75388221 -0.44246984 -0.31257195 -0.2800636 -0.33564166 -0.19322463 -0.23907795 -0.53696968 -0.23907795 -0.25639462 -0.26651705

-0.85848732 -1.5137559 -0.45070069 -0.318138 -0.28029283 -0.33197371 -0.20509865 -0.23770699 -0.58598317 -0.23770699 -0.26242186 -0.30719896
-0.85124058 -1.67578901 -0.47499313 -0.31710507 -0.28898245 -0.32554309 -0.20926281 -0.23596116 -0.54152891 -0.23596116 -0.25136108 -0.29112545
-0.65154364 -1.61351731 -0.39636669 -0.30466429 -0.25819739 -0.31874905 -0.17654446 -0.2380629 -0.5031666 -0.2380629 -0.23808774 -0.25650181

Note: The last line of the Table reports the average Expected Shortfall estimates.
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(a) Bulgaria (b) China

(c) Cocoa (d) Columbia

Figure 5: Back-tests: Out-of-Sample returns (top), GARCH vs. MS-GARCH VaR 5% Forecasts
(bottom) for selected markets
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(e) Japan (f) Korea

(g) Latvia (h) Portugal

Figure 5: Back-tests: Out-of-Sample returns (top), GARCH vs. MS-GARCH VaR 5% Forecasts
(bottom) for selected markets (continued)
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(i) Qatar (j) Turkey

(k) Wool (l) World

Figure 5: Back-tests: Out-of-Sample returns (top), GARCH vs. MS-GARCH VaR 5% Forecasts
(bottom) for selected markets (continued)
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5 Conclusion
The conditional regime-switching GARCH CAPM accommodates the essential characteristics of
time-varying conditional variances and covariances in the energy and financial time series. This
theoretically-based asset pricing model captures predictable time-variation in both the conditional
mean and the conditional volatility of the market excess return. A critical aspect of this framework
lies in decomposing the series into two distinct economic regimes: bull and bear. Since the market
regime is unobservable, the Markov-Switching process allows estimating regime probabilities and
inferring time-varying betas and risk premia. This technique has been applied to study substantial
time variations (both in size and potentially different sign) in the conditional betas and market
returns. The time-varying risk premium can be inferred as well from the market regimes.

To capture the true dynamics of risk premia, this paper formulates a conditional regime-
switching GARCH CAPM with time-varying risk and expected returns, from where we assess
the stability of the βs. To assess the asset pricing performance of different versions of the CAPM,
we estimate three models, including the pure form of CAPM, the conditional regime-switching
CAPM, and the MS-GARCH-CAPM. Within this framework, we estimate the time-varying vector
of market prices of risk for a large dataset comprising a total of 81 financial, energy, and other
commodity markets during the period August 1999 - January 2018. Our approach has two poten-
tial advantages: (i) we adopt a Bayesian volatility estimation through the MCMC method, and
(ii) we fit a skewed Student-t conditional distribution. Also, because volatility may be hetero-
geneous and vary across different regimes, we studied the evolution of volatility using the mean
filtered volatility from the regime-switching GARCH-CAPM model. Risk-averse rational investors
living in a dynamic economy will typically anticipate and hedge against the possibility that in-
vestment opportunities in the future may change adversely. That is why, as robustness checks, we
also compute Risk Metrics from the regime-switching GARCH, and compare the risk forecasting
performance with that of the single regime GARCH using the back-testing technique.

Our chief concern in this paper lies in providing a successful implementation of the conditional
CAPM version of pricing the systematic risk (e.g., the beta) that is positively rewarded by the
market. Throughout our empirical testing procedure of three nested models, we achieve our final
specification under the form of the conditional regime-switching CAPM augmented by GARCH
volatility dynamics. The data strongly reject the CAPM specification with constant betas for two
main reasons. First, it fails to take into account the effects of time-varying investment opportu-
nities in the calculation of an asset’s risk. Second, the bull and bear regimes capture statistically
different market conditions (e.g., market contraction and expansion periods with distinct switch-
ing dynamics). We also provide a further empirical basis to the assessment of the validity of the
CAPM, especially its assumption about the stability of the betas. The proposed model can indeed
be added to the set of econometric tools employed by practitioners for the modeling of beta vari-
ability.

The results gathered from the conditional regime-switching GARCH CAPM offer convincing
evidence against the prediction of the traditional model. The CAPM beta varies across the three
models and bull-bear regimes. This feature is even more pronounced in frontline stocks and com-
modities. Specifically, among the stocks such as the USA, the UK, Germany, France, China, and
Malaysia, we find significant variations not only in the size of beta from one model to another
and across regimes but also changes in the direction of the relationship between risks and market
returns. For instance, beta parameter estimates from the unconditional CAPM model suggest that
stocks in the US, Germany, France, and Malaysia move together with the market. Beta estimates
from the MS-CAPM model only confirm these results for stocks in France in both regimes, in
regime 1 for Germany and regime 2 for Malaysia. They, however, suggest that in regime 1, stocks
in Malaysia move in the opposite direction with the market. Stocks in Germany, the USA have no
relation with the market in regime two, and both regimes respectively.

In sum, across the various models, it is striking that conditional betas exhibit significant time-
variation and correlations with market risk premia. Further, beta estimates from the regime-
switching GARCH-CAPM agree with the result of the unconditional CAPM in both regimes for
the USA and Malaysia. They yield contradictory results for Germany and France in both regimes.
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In the UK and China, beta estimates from the CAPM model suggests these stocks move in the
opposite direction. This result is validated by the MS-GARCH model in both regimes for the UK
and only in regime 1 in China. The estimates of beta from the regime-switching GARCH-CAPM
only agrees with that of MS-CAPM for China but suggests no relation exists between returns on
UK stocks and the market.

Regarding energy and other commodities indices, we also find that these variations exist but
not in equal magnitude with stocks. We are considering prominent commodities such as Crude Oil,
Gold, Copper, Tin, Rubber, Aluminum, Natural Gas, and Platinum. Beta parameter estimates
from the regime-switching GARCH-CAPM model suggest that all the commodity indices move in
the same direction with the market during both volatility regimes. This is similar to the results
from the simple CAPM model except for Natural Gas and Platinum, where this model suggest
that these commodities have no relation with the market. Beta estimates from the MS-GARCH
model suggest that Crude oil, Gold and Natural Gas do not have ties with the market in both
regimes. Aluminum and Platinum move in the same direction with the market in regime 1, but
have no relation in regime 2. Also, Tin and Copper move in the opposite direction with the market
respectively in regime 1 and 2 whereas Rubber moves in the same direction with the market. These
commodities are, however, not related to the market in other regimes. Concerning the aggregate
markets, both the simple CAPM and the regime-switching GARCH-CAPM models suggest that
these markets move together with the market in all regimes. In the MS-GARCH model, the World
aggregate stock moves along with the market only in regime 2, while Europe and Emerging markets
aggregate stocks do not have a relation with the market in both regimes.

Results regarding the volatility dynamics (using the mean filtered volatility from the regime-
switching GARCH-CAPM) suggest that among stocks, Turkey is the most volatile with about
16.53. Among commodities, Rhodium is the most volatile with about 7.02 (followed by Natural
Gas at 6.08). The World is the most volatile with about 4.8 among aggregates. This implies that
stocks are the most volatile asset class with the most volatile stock being more than twice and
thrice as volatile as the most volatile commodity and aggregate, respectively. Lastly, results from
the quantitative risk management tests suggest that the regime-switching model delivers better
estimates of one-day-ahead VaR at 5% forecasts than the single regime GARCH model. We have
reached these conclusions by using a methodology that is significantly more robust than the un-
conditional CAPM.

At this stage, policy implications and some extensions to this paper can be considered. First,
given the success of Markov switching models in capturing the switching behavior of risks and
returns volatility across regimes as well as its superior forecast of RiskMetrics, this paper rec-
ommends that risk managers can improve on their risk management strategy by extending their
single-regime-type models with a regime-switching mechanism to better manage portfolio risks.
Although this paper employs a large dataset, it only considers the risks dynamics and monitoring
process for individually traded stocks. This paper could, therefore, be extended by considering
exceptions and regulatory-based tests such as the Basel traffic light regulation to compute cap-
ital requirements for banks and other financial institutions. Lastly, given that it has become a
widespread practice to separately assess the VaR for the left and right tails of the returns distri-
butions, our paper could also be extended by using our nested model to evaluate and compare
the VaR for the long and short positions to equip risk managers and traders depending on their
position.
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Appendix

Table 7: Return Series Descriptive Statistics

Countries Mean Std. Dev Skewness Ex. Kurtosis JB ARCH LM (5)
ESTONIA 0.0064 0.0679 -0.7785 3.447 131.14 42.509

[0.000] [0.000]
TURKEY 0.0132 0.1138 0.0614 1.2233 95.765 22.931

[0.000] [0.000]
CROTIA 0.0046 0.0759 -0.5607 5.8042 32.346 42.334

[0.000] [0.000]
LITUANIA 0.0086 0.0681 -0.8171 7.0969 49.754 21.493

[0.000] [0.001]
HUNGARY 0.0075 0.0661 -0.4716 1.5901 31.336 9.616

[0.000] [0.008]
EGYPT 0.0122 0.0947 -0.1093 0.825 6.677 10.572

[0.035] [0.061]
PORTUGAL -0.0027 0.0556 -0.5994 1.4686 32.945 61.897

[0.000] [0.022]
CZECH REPUBLIC 0.0034 0.0634 -0.9317 3.735 59.713 43.224

[0.000] [0.000]
BRAZIL 0.0089 0.073 -0.3023 0.7116 7.993 6.209

[0.018] [0.028]
ARGENTINA 0.0184 0.1054 -0.0611 1.0401 10.053 11.383

[0.006] [0.044]
COLUMBIA 0.0108 0.0633 0.1285 1.3558 17.457 10.411

[0.001] [0.064]
BELGIUM 0.0012 0.0519 -0.346 3.3225 67.622 57.899

[0.000] [0.000]
UAE 0.0077 0.0625 0.3206 3.8689 140.98 40.78

[0.000] [0.000]
CHILE 0.0076 0.0397 0.0967 1.0918 11.269 20.848

[0.003] [0.072]
MEXICO 0.0021 0.0881 -0.476 2.0912 61.237 35.408

[0.000] [0.000]
QATAR 0.0101 0.0581 -0.396 1.0943 16.729 40.807

[0.000] [0.000]
LUXEMBOURG 0.0018 0.063 -0.8922 2.7717 99.612 15.929

[0.000] [0.007]
ISRAEL 0.0056 0.0569 -1.2835 3.3747 164.79 20.783

[0.000] [0.000]
MALTEX 0.0039 0.0497 1.0272 4.5366 227.34 22.746

[0.000] [0.000]
TUNISIA 0.0077 0.0355 -0.0506 2.2332 45.809 16.522

[0.000] [0.005]

Note: Std. Dev. stands for standard deviation, Ex. Kurtosis for excess kurtosis, JB for Jarque-Bera statistics, and
LM ARCH for Lagrange Multiplier ARCH test.
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Countries Mean Std. Dev Skewness Ex. Kurtosis JB ARCH LM (5)
USA 0.0032 0.0518 -1.5932 6.0584 429.52 54.985

[0.000] [0.000]
CANADA 0.0038 0.0404 -1.0552 3.1994 134.65 21.292

[0.000] [0.000]
GERMANY 0.0041 0.0623 -0.8671 3.0538 113.06 13.819

[0.000] [0.016]
AUSTRALIA 0.0033 0.0413 -0.4041 1.1743 18.621 47.666

[0.000] [0.000]
DENMARK 0.0071 0.0544 -0.5504 1.8793 43.485 36.067

[0.000] [0.000]
FINLAND 0.0011 0.0797 -0.2628 2.0447 40.857 45.586

[0.000] [0.000]
SPAIN 0.0005 0.0633 -0.4596 0.5081 10.115 22.611

[0.000] [0.000]
FRANCE 0.001 0.0595 -0.7812 2.1792 65.912 21.227

[0.000] [0.000]
UK 0.0008 0.0413 -0.6388 1.0478 25.027 15.128

[0.000] [0.009]
ITALY -0.0022 0.0609 -0.3265 0.8052 9.851 5.855

[0.007] [0.032]
SWEDEN 0.0031 0.0587 -0.2977 0.681 7.5028 26.114

[0.023] [0.000]
SWITZERLAND 0.0013 0.0392 -0.7277 0.8563 28.139 21.115

[0.000] [0.000]
NEW ZEALAND 0.0044 0.0354 -0.5696 2.104 52.476 36.106

[0.000] [0.000]
NORWAY 0.0081 0.0592 -0.7901 1.5799 45.768 39.405

[0.000] [0.000]
NETHERLAND 0.0003 0.0574 -10723 2.2708 89.431 44.214

[0.000] [0.000]
JAPAN 0.0011 0.059 -0.4712 1.0824 18.882 17.889

[0.000] [0.003]
IRELAND 0.0041 0.0629 -0.8876 2.5519 88.586 62.801

[0.000] [0.000]
THAILAND 0.0062 0.0668 -1.1079 4.6719 24.508 59.109

[0.000] [0.000]
MYLASIA 0.0038 0.0432 -0.4117 1.6887 32.357 10.199

[0.000] [0.069]
INDONESIA 0.0109 0.0643 -1.0897 3.5015 35.059 16.67

[0.000] [0.002]
PHILIPPINES 0.0056 0.0591 -0.4426 1.6858 33.233 19.624

[0.000] [0.008]
SINGAPORE 0.002 0.0544 -0.9535 2.0021 80.16 61.908

[0.000] [0.000]
CHINA 0.0032 0.0824 -0.667 1.8309 47.043 32.67

[0.000] [0.000]
INDIA 0.0098 0.0738 -0.6006 2.0889 53.227 12.843

[0.000] 0.0248
TAIWAN 0.0012 0.0647 -0.1855 1.6735 26.932 31.461

[0.000] [0.000]
KOREA 0.0046 0.0642 -0.0967 0.752 5.527 33.064

[0.063] [0.000]
HONG KONG 0.0036 0.0618 -0.555 1.2433 25.463 16.839

[0.000] [0.004]
SERBIA 0.0002 0.0815 -2.0224 15.449 111.21 30.031

[0.000] [0.000]
UKRAINE 0.0024 0.0508 -0.5851 2.6786 76.321 70.932

[0.000] [0.000]
BULGARIA 0.0084 0.0905 -1.9048 15.15 122.51 25.71

[0.000] [0.000]
ROMANIA 0.012 0.0804 -0.4141 2.2836 54.09 22.652

[0.000] [0.000]
SLOVANIA 0.0006 0.056 -0.3511 0.961 12.986 11.508

[0.001] [0.042]
POLAND 0.0059 0.0638 -0.546 1.2584 25.449 12.324

[0.000] [0.030]
ICELAND 0.0001 0.1044 -8.3349 2.644 84.658 7.05

[0.000] [0.005]
RUSSIA 0.0134 0.1017 -0.8937 4.6675 228.99 16.973

[0.000] [0.004]
LATVIA -0.0001 0.0789 -0.3563 3.9627 148.59 75.24

[0.000] [0.000]
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COMMODITIES Mean Std. Dev Skewness Ex. Kurtosis JB ARCH LM (5)
CRUDE OIL 0.0052 0.1144 -0.6037 1.0278 23.051 33.972

[0.000] [0.000]
GOLD 0.0072 0.049 0.0799 1.6769 26.012 13.122

[0.000] [0.022]
SILVER 0.0051 0.0842 -0.3747 2.0796 44.791 19.753

[0.000] [0.001]
NATURAL GAS 0.0003 0.1388 -0.32151 1.7985 33.439 46.064

[0.000] [0.004]
COPPER 0.0066 0.0778 -0.8704 4.3231 199.1 25.678

[0.000] [0.000]
PLATINUM 0.0042 0.0697 -0.5932 3.1535 104.06 27.119

[0.000] [0.000]
PALLEDIUM 0.0049 0.1067 -0.6819 2.7276 85.251 7.044

[0.000] [0.054]
NICKEL 0.0027 0.1053 -0.6051 2.4071 66.541 6.311

[0.000] [0.037]
TIN 0.0059 0.0731 -0.3861 1.494 25.928 186.272

[0.000] [0.000]
ZINC 0.0046 0.0775 -0.9029 4.1319 186.39 8.1738

[0.000] [0.005]
RHODIUM 0.0024 0.1441 -1.6576 14.075 149.34 179.45

[0.000] [0.000]
RUTHERNIUM 0.0071 0.1417 0.8763 5.0058 257.85 187.68

[0.000] [0.000]
CORN 0.0026 0.0864 -0.3647 1.9197 38.66 181.18

[0.000] [0.000]
RUBBER 0.0045 0.0884 -1.2396 6.3796 429.42 178.78

[0.000] [0.000]
SOYABEAN 0.0032 0.0712 -0.184 0.8392 7.697 10.566

[0.021] [0.060]
WOOL 0.005 0.0495 0.0212 2.6458 64.186 194.85

[0.000] [0.000]
ALLUMINIUM 0.0017 0.0538 -1.0768 5.457 315.48 49.08

[0.000] [0.000]
LEAD 0.0072 0.0955 -0.3254 2.2701 51.122 37.475

[0.000] [0.000]
WHEAT 0.003 0.0959 0.0282 1.376 17.384 13.852

[0.000] [0.016]
COCOA 0.0027 0.0739 0.2582 1.1666 14.921 7.183

[0.000] [0.0207]
COFFEE 0.0013 0.0887 0.0474 1.9878 36.302 6.322

[0.000] [0.041]
COTTON 0.0016 0.0806 0.1724 0.9626 9.584 18.783

[0.008] [0.002]
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Table 8: Series names

Countries CAPM MS-CAPM MS-GARCH-CAPM
1 USA US S&P500 MSCI USA_ MSCI USA_MS_GARCH
2 CANADA CAN TSX MSCI CAN_ MSCI CAN_MS_GARCH
3 GERMANY GER DAX MSCI GER_ MSCI GER_MS_GARCH
4 AUSTRALIA AUS ASX MSCI AUS_ MSCI AUS_MS_GARCH
5 DENMARK DEN OMX MSCI DEN_ MSCI DEN_MS_GARCH
6 FINLAND FIN OMXHEX MSCI FIN_ MSCI FIN_MS_GARCH
7 SPAIN SPNIBEX MSCI SPN_ MSCI SPN_MS_GARCH
8 FRANCE FRA-CAC MSCI FRA_ MSCI FRA_MS_GARCH
9 UK UKFTSE100 MSCI UK_ MSCI UK_MS_GARCH

10 ITALY ITAFTSEMIB MSCI ITA_ MSCI ITA_MS_GARCH
11 SWEDEN SWEOMX30 MSCI SWE_ MSCI SWE_MS_GARCH
12 SWITZERLAND SWTSMI MSCI SWT_ MSCI SWT_MS_GARCH
13 NEW ZEALAND NZLNZX50 MSCI NZL_ MSCI NZL_MS_GARCH
14 NORWAY NOR-OSEAX MSCI NOR_ MSCI NOR_MS_GARCH
15 NETHERLAND NETH-AEX MSCI NLD_ MSCI NLD_MS_GARCH
16 JAPAN JAP-NIKKEI225 MSCI JAP_ MSCI JAP_MS_GARCH
17 IRELAND IRE-ISEQ MSCI IRE_ MSCI IRE_MS_GARCH
18 THAILAND THAI-SET50 MSCI THAI_ MSCI THAI_MS_GARCH
19 MYLASIA MYL-FTSEKLCI MSCI MYL_ MSCI ,MYL_MS_GARCH
20 INDONESIA INDO-JCI MSCI INDO_ MSCI INDO_MS_GARCH
21 PHILIPPINES PHI-PSEI MSCI PHI_ MSCI PHI_MS_GARCH
22 SINGAPORE SING-STI MSCI SING_ MSCI SING_MS_GARCH
23 CHINA CHIN-SSE MSCI CHIN_ MSCI CHIN_MS_GARCH
24 INDIA INDI-SENSEX MSCI INDI_ MSCI INDI_MS_GARCH
25 TAIWAN TAI-TWSE MSCI TAI_ MSCI TAI_MS_GARCH
26 KOREA KOR-KOSPI MSCI KOR_ MSCI KOR_MS_GARCH
27 HONG KONG HNGKNG-HIS MSCI HNGKNG_ MSCIHNGKNG_MS_GARCH
28 SERBIA SERB-BELEX15 MSCI SERB_ MSCI SERB_MS_GARCH
29 UKRAINE UKR-PFTS MSCI UKR_ MSCI UKR_MS_GARCH
30 BULGARIA BUL-SOFIX MSCI BUL_ MSCI BUL_MS_GARCH
31 ROMANIA ROM-BET MSCI ROM_ MSCI ROM_MS_GARCH
32 SLOVANIA SLOVSBITOP MSCISLOV_ MSCI SLOV_MS_GARCH
33 POLAND POL-WIG MSCI POL_ MSCI POL_MS_GARCH
34 ICELAND ICE-SEICEX MSCI ICE_ MSCI ICE_MS_GARCH
35 RUSSIA RUS-MICEX MSCI RUS_ MSCI RUS_MS_GARCH
36 LATVIA LAT-OMXRIGA MSCI LAT_ MSCI LAT_MS_GARCH
37 ESTONIA EST-OMXTALLIN MSCI EST_ MSCI EST_MS_GARCH
38 TURKEY TUR-XU100 MSCI TUR_ MSCI TUR_MS_GARCH
39 CROTIA CRO-CROBEX MSCI CRO_ MSCI CRO_MS_GARCH
40 LITUANIA LIT-OMXVILNIUS MSCI LIT_ MSCI LIT_MS_GARCH
41 HUNGARY HUN-BUX MSCI HUN_ MSCI HUN_MS_GARCH
42 EGYPT EGY-EGX30 MSCI EGY_ MSCI EGY_MS_GARCH
43 PORTUGAL POR-PS-I20 MSCI POR_ MSCI POR_MS_GARCH
44 CZECH REPUBLIC CZECH-SEPX MSCI CZECH_ MSCI CZECH_MS_GARCH
45 BRAZIL BRA-BOVESPA MSCI BRA_ MSCI BRA_MS_GARCH
46 ARGENTINA ARG-MERVAL25 MSCI ARG_ MSCI ARG_MS_GARCH
47 COLUMBIA COL-COLCAP MSCI COL_ MSCI COL_MS_GARCH
48 BELGIUM BELG-BEL20 MSCI BEL_ MSCI BEL_MS_GARCH
49 UAE UAE-ADXGEN MSCI UAE_ MSCI UAE_MS_GARCH
50 CHILE CHIL-IGPA MSCI CHIL_ MSCI CHIL_MS_GARCH
51 MEXICO MEX-S&PBMVIPC MSCI MEX_ MSCI MEX_MS_GARCH
52 QATAR QAT-QE MSCI QAT_ MSCI QAT_MS_GARCH
53 LUXEMBOURG LUX-LUXX MSCI LUX_ MSCI LUX_MS_GARCH
54 ISRAEL ISR-TA100 MSCI ISR_ MSCI ISR_MS_GARCH
55 MALTEX MALT-MALTEX MSCI MALT_ MSCI MALT_MS_GARCH
56 TUNISIA TUN-TUNINDEX MSCI TUN_ MSCI TUN_MS_GARCH
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Commodities
57 CRUDEOIL CRUDEOIL MSCI OIL_ MSCI OIL_MS_GARCH
58 GOLD GOLD MSCI GOLD_ MSCI GOLD_MS_GARCH
59 SILVER SILVER MSCI SILVER_ MSCI SILVER_MS_GARCH
60 GAS GAS MSCI GAS_ MSCI GAS_MS_GARCH
61 COPPER COPPER MSCI Copper_ MSCI COPPER_MS_GARCH
62 PLATINUM PLATINUM MSCI Platinum_ MSCI Platinum_MS_GARCH
63 PALLADIUM PALLADIUM MSCI Palledium_ MSCI Palledium_MS_GARCH
64 NICKEL NICKEL MSCI Nickel_ MSCI Nickel_MS_GARCH
65 TIN TIN MSCI Tin_ MSCI Tin_MS_GARCH
66 ZINC ZINC MSCI Zinc_ MSCI Zinc_MS_GARCH
67 RHODIUM RHODIUM MSCI Rhodium_ MSCI Rhodium_MS_GARCH
68 RUTHENIUM RUTHENIUM MSCI Ruthernium_ MSCI Ruthernium_MS_GARCH
69 CORN CORN MSCI Corn_ MSCI Corn_MS_GARCH
70 RUBBER RUBBER MSCI Rubber_ MSCI Rubber_MS_GARCH
71 SOYABEAN SOYABEAN MSCI Soyabean_ MSCI Soyabean_MS_GARCH
72 WOOL WOOL MSCI Wool_ MSCI Wool_MS_GARCH
73 ALUMINIUM ALUMINIUM MSCI Aluminium_ MSCI Aluminium_MS_GARCH
74 LEAD LEAD MSCI Lead_ MSCI Lead_MS_GARCH
75 WHEAT WHEAT MSCI Wheat_ MSCI Wheat_MS_GARCH
76 COCOA COCOA MSCI Cocoa_ MSCI Cocoa_MS_GARCH
77 COFFEE COFFEE MSCI Coffee_ MSCI Coffee_MS_GARCH
78 COTTON COTTON MSCICotton_ MSCI Cotton_MS_GARCH

Aggregates
79 WORLD WORLD MSCI WORLD_ MSCI WORLD_MS_GARCH
80 EUROPE EUROPE MSCI Europe_ MSCI Europe_MS_GARCH
81 EMERGING MARKETS EMERGING MARKETS MSCI EM_ MSCI EM_MS_GARCH
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Figure 6: Histogram of the predictive distribution in each regime of the MS-GARCH-CAPM for
MSCI USA
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