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This paper presents a brief history of beam and plate models in elasticity, that take into account the rotary inertia and shear contribution. We show that Bresse (1859) already in the mid XIX th century rigorously

derived the set of equations for curved shear and axially extensible beams in dynamics, although without shear correction factor. When restricted to straight beams, Bresse (1859) obtained a two-field beam kinematics composed of independent deflection and rotation variables. These equations have been generalized by [START_REF] Timoshenko | Letter addressed to P. Ehrenfest[END_REF][START_REF] Timoshenko | A Course in theory of elasticity[END_REF][START_REF] Timoshenko | On the differential equation for the flexural vibrations of prismatical rods, Glasnik Hrvatskoga Prirodoslovnoga V ̌ ‰[END_REF][START_REF] Timoshenko | On the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF][START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF], without direct reference to the works of Bresse, by a slight modification of the shear stiffness, that incorporates a shear correction factor generally different from unity. The calibration of the shear correction factor with respect to threedimensional elasticity solutions has been elaborated jointly by Ehrenfest and Timoshenko in the second decade of the XX th century (the calibration of the shear correction factor for rectangular cross section has been finalized by [START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF], even if the basic results were available in his letter dated from 1913, in collaboration with Ehrenfest). Whereas Bresse-Timoshenko-Ehrenfest equations have been elaborated mainly during more than half a century between 1859 and 1922 (even if researches on shear beam theories were still active), the Uflyand-Mindlin plate theory has been built in a more compact period, mainly between [START_REF] Reissner | On the theory of bending of elastic plates[END_REF][START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic elastic plates[END_REF]. Whereas Reissner (1944[START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] developed a static (or stress-based) formulation, the kinematic theory of Uflyand-Mindlin plate model has been first elaborated by [START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF] and [START_REF] Hencky | Über die Berücksichtigung der Schubverzerrung in ebenen Platten[END_REF] for static setting, before the full generalization to dynamics by Uflyand a year later, in 1948, and its complete variational derivation by [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic elastic plates[END_REF]. A lot of efforts were spent since almost half of the century to calibrate the shear correction factor and to enrich the kinematics of Uflyand-Mindlin plate theory. It is quite surprising that the shear correction factors of both the Bresse-Timoshenko-Ehrenfest beam model and its Uflyand-Mindlin plate analogy were already implicitly available in the paper of [START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF], performed, in his own testimony with Ehrenfest.

Introduction

The effect of introducing shear contribution in the theory of elastic structures is of primary importance for engineering design, both in statics and in dynamics. A beam theory, which already included the bending and the shear effects through two independent kinematic fields for a straight beam, namely the displacement and the rotation variables, was developed in the mid XIX th century by Bresse (Bresse, 1859). Bresse (1859) also considered the rotary effect separately. Timoshenko, later, at the beginning of the XX th century extended Bresse's theory with the introduction of a shear correction factor, in a fully consistent beam framework [START_REF] Timoshenko | Letter addressed to P. Ehrenfest[END_REF][START_REF] Timoshenko | A Course in theory of elasticity[END_REF][START_REF] Timoshenko | On the differential equation for the flexural vibrations of prismatical rods, Glasnik Hrvatskoga Prirodoslovnoga V ̌ ‰[END_REF][START_REF] Timoshenko | On the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF][START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF]. Even if Timoshenko in his book and in his papers dated from the beginning of the XX th century did not mention Bresse's work for elaborating his shear beam theory, he only pointed out the contribution of Bresse in his book on history of structural mechanics (Timoshenko, 1953, page 151), where he recognized that Bresse "was the first to take rotatory inertia of the elements of the bar into consideration." In fact, Bresse (1859)'s contribution is greatly more than including the rotary effect: he developed the fully consistent bending-shear theory based on independent kinematic variables, namely the deflection, the axial displacement and the rotation for the in-plane behavior of curved beam elements. This major contribution of Bresse in establishing a fully consistent first-order shear beam theory was acknowledged in the literature (see for instance Mindlin and Deresiewicz, 1954;Bert, 1981;[START_REF] Abramovich | Application of the Krein's method for determination of natural frequencies of periodically supported beam based on simplified Bresse Timoshenko equations[END_REF][START_REF] Mindlin | An introduction to the mathematical theory of vibration of elastic plates[END_REF][START_REF] Elishakoff | An equation both more consistent and simpler than Bresse-Timoshenko equation[END_REF]or more recently Elishakoff, 2019a). The shear correction factor, introduced by Engesser (1891) and Föppl (1897) was implicitly equal to unity in Bresse's theory. The following quotation from Elishakoff's (2019-a) book appears to be instructive: "According to the monograph by Artobolevsky, Bobrovnitsky and Genkin (1979, pp. 142-143), in a free translation from the Russian, in 2 the works of scientists of the 18th and 19th centuries the taking into account of shear deformation was mainly focused on static bending. Thus, in 1856 B. St. Venant gave a rigorous solution to the static problem of the bending of a cantilever by a concentrated force applied at the tip. He showed that the distribution of the shear stresses across the height was a quadratic parabola. In dynamic setting the shear was accounted for, for the first time by Bresse (1859), Bresse's equations describe transversallongitudinal vibrations of the curved beams, the central line of which lies in one plane, and in addition to the shear takes into account the rotary inertia of the cross-section. For the straight beam, Bresse's equations are split into an equation for longitudinal waves and the equation for transverse vibrations coinciding with Timoshenko's equations, in which the shear coefficient equals unity. "

Starting from the inception of Bresse-Timoshenko-Ehrenfest's beam theory, this brief history devoted to the introduction of shear effects in structural mechanics presents a new reading of what is sometimes called the Timoshenko beam theory, and its plate generalization usually labelled as the Mindlin plate model. Only first-order shear beam or plate theories will be presented. Higher-order shear beam or plate models, where higher-order kinematic fields are considered are not treated in this historical synthesis. The reader can refer to the books of [START_REF] Elishakoff | Refined dynamical theories of beams, plates and shells and their applications[END_REF], [START_REF] Wang | Shear deformable beams and plates: Relationships with classical solutions[END_REF], [START_REF] Reddy | Mechanics of laminated composite plates and shells -Theory and analysis[END_REF] or Carerra et al (2011) for a presentation of higher-order shear structural members (see also the historical paper of [START_REF] Reissner | Reflections on the theory of elastic plates[END_REF] on the presentation of various plate theories including higher-order shear plate theories).

Beam theory

Bresse (1859) during the mid XIX th century was the first who developed a fully consistent shear beam theory for curved rods. Bresse's contribution is highlighted and commented in the first part of this historical analysis. In Figure 1 (taken from the book of Bresse, 1859), is the axial displacement, is the deflection in the orthogonal direction, is the curvilinear abscissa, is the differential curvilinear abscissa and is the curvature radius. Bresse (1859) also used the following notation: is the independent rotation, is the time, Ω is the cross sectional area, is the acceleration of gravity, and is the volumetric weight (equal to the product between the mass density and ). It is assumed that the beam is composed of an isotropic linear elastic material, with G as the shear modulus, and E the Young modulus.

⁄ is the ratio between the shear modulus and the Young modulus. Bresse (1859) first introduced the rotary inertia, proportional to the rotational acceleration.

⁄ (as highlighted in Figure 2), in a fully consistent beam theory where the rotation is considered as an independent degree of freedom. The balance of internal moment is defined from:

Figure 5 -Expression of the moment along the differential element ds (from page 126 of Bresse, 1859) The total balance of internal forces and moment including the inertia contributions, is formulated in Figure 6 (from the book of Bresse, 1859), which are the dynamic balance equations of the curved elastic beam (with bending, shear and axial rigidity) incorporating shear and rotary effects: with the new notations, is the axial displacement, is the deflection (counted in the opposite direction, as compared to Bresse's convention), 0

is the independent rotation. The curvature radius is equal to , the mass density is denoted by , -is the normal force, , is the shear force, is the bending moment, A is the cross section area and I is the moment of inertia.

Eq. ( 1) are the linearized equations of the curved Bresse element, whose expression in a geometrically exact framework is available for instance in the book of [START_REF] Luongo | Mathematical models of beams and cables[END_REF]. The equations of curved Bresse-Timoshenko elements may be also derived from asymptotic analysis, starting from threedimensional elasticity, as shown by [START_REF] Berdichevskii | On the theory of curvilinear Timoshenko-type rods[END_REF]. [START_REF] Berdichevskii | On the theory of curvilinear Timoshenko-type rods[END_REF] also gave some variational arguments for general curved Bresse-Timoshenko rods, including possible coupling between the elongation and flexure, flexure with torsion and shear contributions. Analytical frequency solutions for Bresse-Timoshenko circular rings are calculated by [START_REF] Rao | In-plane flexural vibrations of circular rings[END_REF] in presence of inextensibility, and by [START_REF] Issa | Extensional vibrations of continuous circular curved beams with rotary inertia and shear deformation, I: free Vibration[END_REF] with the inextensibility assumption relaxed. Coupled axial and rotational inertia may be considered as well, with the incorporation of additional inertia terms in the dynamic balance equation, as shown by [START_REF] Morley | Elastic waves in a naturally curved rod[END_REF], [START_REF] Irie | Natural frequencies of in-plane vibration of arcs[END_REF] or [START_REF] Kang | Vibration analysis of shear deformable circular arches by the differential quadratic method[END_REF]. The dynamics of curved shear beam elements is investigated in standard textbooks such as the books of [START_REF] Borg | Modern structural analysis[END_REF], [START_REF] Henrych | The Dynamics of arches and frames[END_REF] or [START_REF] Rao | Rayleigh Lord, On the free vibration of an infinite plate of homogeneous isotropic elastic matter[END_REF].

For straight beams, i.e. when tends towards an infinite value, the axial and shear-bending wave equations Eq. ( 1) are uncoupled, and may be presented in the following form: (2)

As we will mainly focus on the bending-shear coupling, Bresse's coupled equations can finally be presented for straight beams as:
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where the prime denotes spatial derivation with respect to the horizontal axis whereas the dot is associated to the time derivative.

These equations, as elaborated by Bresse (1859) do not contain shear stiffness corrections. In fact, Bresse (1859) did not mention the concept of shear correction factor, which has been first introduced much later, namely by [START_REF] Engesser | Die Knickfestigkeit gerader Stäbe[END_REF] and Föppl (1897). This coefficient implicitly takes into account the fact that the shear strain is not uniform in general, over the beam's cross section. [START_REF] Engesser | Die Knickfestigkeit gerader Stäbe[END_REF] and Föppl (1897) calculated in statics and from energy arguments, the shear correction factor for a rectangular cross section as:
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(4) [START_REF] Timoshenko | Letter addressed to P. Ehrenfest[END_REF][START_REF] Timoshenko | A Course in theory of elasticity[END_REF][START_REF] Timoshenko | On the differential equation for the flexural vibrations of prismatical rods, Glasnik Hrvatskoga Prirodoslovnoga V ̌ ‰[END_REF][START_REF] Timoshenko | On the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF][START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF] then generalized Bresse equations by introducing such a shear factor 7 in correction of the shear stiffness:
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(5) Timoshenko equations Eq. ( 5) thus include Bresse equations for a shear correction factor formally set equal to unity 7 1. This value 7 1 (implicitly contained in the theory of Bresse) may be also used for Cosserat beam theory (which merges with Bresse theory in its linearized form), as shown by [START_REF] Rubin | On the quest for the best Timoshenko shear coefficient[END_REF]. From Eq. ( 5), it is possible to present a single bending-shear wave equation valid for Bresse-Timoshenko-Ehrenfest beam:
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) .1 % Eq. ( 6) is a linear fourth-order partial differential equation both in space and in time. This partial differential equation was already available in the letter that Timoshenko sent to Ehrenfest in 1913 (see Figure 6 with different notations for each component). The first appearance of this partial differential equation in a public document is the edition of the book of Timoshenko in 1916 (in Russian) where Eq. ( 178) on page 207 of [START_REF] Timoshenko | A Course in theory of elasticity[END_REF] coincides with Eq. ( 6) of the present paper (see Figure 7): [START_REF] Timoshenko | On the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF][START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF]. The main results however were available in the paper already published in 1920, as also commented by Elishakoff (2019-a).

The reader is reported to the extensive bibliographical study of Elishakoff (2019-b) for a detailed analysis of Timoshenko's life, especially during this crucial period of the end of the second decade of the XX th century, where Timoshenko decided to emigrate from Ukraine and Russia (see also Elishakoff, 2019-c). (1916; 1921). In his paper dated from 1922 [START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF], Timoshenko calibrated the shear correction factor for an elastic beam composed of rectangular cross section, from the exact twodimensional wave length solution, also labelled as Rayleigh-Lamb equation (Rayleigh, 1889; Lamb, 1921 -see also [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic elastic plates[END_REF]. Starting from the solution of plane wave based on plane strain assumptions, Timoshenko and Ehrenfest [START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF] jointly obtained a transcendental frequency equation based on hyperbolic tangent tanh function (see also Rayleigh, 1889;Lamb, 1921) which is asymptotically expanded, with respect to the small relative depth ratio of the beam, for an explicit comparison with the Bresse-Timoshenko-Ehrenfest beam solution (see also Elishakoff, 2019-a). The comparison of the frequency equation of each model (the twodimensional elasticity solution and the beam solution) gives:
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where I is the Poisson's ratio valid for a plane stress analysis and I 3 can be used for a plane strain analysis. Eq. ( 7) can be equivalently reformulated as:
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As pointed out by Timoshenko in his paper dated from 1922 (and in his book dated from 1916), the frequency equation was elaborated by Ehrenfest and himself. Timoshenko addressed his letter in 1913 to Ehrenfest on the elaboration of the so-called Bresse-Timoshenko-Ehrenfest theory [START_REF] Timoshenko | Letter addressed to P. Ehrenfest[END_REF] see also the detailed historical analysis of Elishakoff, 2019-a on this point). 7, the shear correction factor is then identified from this asymptotic analysis valid for a rectangular cross section and based on the plane stress assumption for a valid comparison with the beam theory:
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Kaneko (1975) also commented this value, and mentioned that already [START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF] implicitly used this formulae. This value is found by [START_REF] Stephen | Considerations on second order beam theories[END_REF] by comparing the response of the simply supported Bresse-Timoshenko beam with the one issued of a two-dimensional elasticity solution also based on plane stress assumption. The same value was obtained by [START_REF] Elishakoff | Celebrating the centenary of Timoshenko's study of effects of shear deformation and rotary inertia[END_REF] from an asymptotic expansion of the three-dimensional displacement field with respect to the dimensionless depth ratio with plane stress assumptions. [START_REF] Elishakoff | Celebrating the centenary of Timoshenko's study of effects of shear deformation and rotary inertia[END_REF] also derived a truncated Bresse-Timoshenko model from this asymptotic expansion:
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This asymptotically-based model differs from the original Bresse-Timoshenko-Ehrenfest model from the fourth-order time derivative which has been removed in Eq. ( 6). Such a truncated Bresse-Timoshenko-Ehrenfest model was initially proposed by [START_REF] Elishakoff | Random vibration of a structure via classical and nonclassical theories[END_REF] (see also [START_REF] Elishakoff | Some closed form solutions in random vibrations of Timoshenko beams[END_REF]).

Bresse-Timoshenko-Ehrenfest equations can be formulated in statics in presence of distributed loading N as (see for instance Timoshenko, by differentiating two times Eq. ( 106) on page 171 of Timoshenko, 1940):
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Eq. ( 11) is obtained from the static governing equations applied to the Bresse-Timoshenko beam theory:
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The generalization of Bresse-Timoshenko-Ehrenfest beam equations for statics and dynamics is written by combining Eq. ( 5) and Eq. ( 12), thus leading to:
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which can be reformulated in a single partial differential equation:
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Plate theory

The generalization of Bresse-Timoshenko-Ehrenfest beam theory which incorporates shear effect to plate has been developed in the 40's (see the historical footnotes mentioned by [START_REF] Timoshenko | Theory of plates and shells[END_REF] or the more extensive historical presentation of [START_REF] Reissner | Reflections on the theory of elastic plates[END_REF]. [START_REF] Reissner | On the theory of bending of elastic plates[END_REF][START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] presented a stress-based theory, which accounts for shear effect in statics. [START_REF] Reissner | On the theory of bending of elastic plates[END_REF][START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] obtained a partial differential equation for the deflection of an isotropic plate, which is written (see Figure 9): 17) of [START_REF] Reissner | On the theory of bending of elastic plates[END_REF]; The second term at the right-hand side of Eq. ( 17) accounts for the shear effect [START_REF] Reissner | On the theory of bending of elastic plates[END_REF] also pointed out that the shear contribution in this partial differential equation may be neglected if the Laplacian of the applied pressure is sufficiently small (the same remark holds for the Bresse-Timoshenko-Ehrenfest beam theory).

As analyzed by [START_REF] Batista | An elementary derivation of basic equations of the Reissner and Mindlin plate theories[END_REF], in case of transversally inextensible plate (see also [START_REF] Kromm | Verallgemeinerte Theorie der Plattenstatik[END_REF] for the introduction of transversally inextensible condition), Reissner deflection equation could be rewritten as:
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where \ is a dimensionless factor which is equal to 0 for transversally inextensible plate, and \ is equal to unity for isotropic plates. [START_REF] Reissner | On the theory of bending of elastic plates[END_REF][START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] derived Eq. ( 15) which is Eq. ( 16) with \ 1. [START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF] obtained the deflection equation of a plate, equivalent in Eq. ( 16) with the transversal inextensibility \ 0 (see Figure 10): with a shear correction factor 7 5 6 ⁄ , as considered by [START_REF] Engesser | Die Knickfestigkeit gerader Stäbe[END_REF] and Föppl (1897) for statics of beams. Eq. ( 18) can be seen as the plate generalization of the governing equation Eq. ( 11) valid for the Bresse-Timoshenko-Ehrenfest beam. Furthermore, [START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF] also first introduced a three-field kinematic theory (one deflection and two independent rotations), which is the natural generalization of Bresse-Timoshenko-Ehrenfest beam model at the plate level. As mentioned by [START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF] -see also the extensive paper of [START_REF] Reissner | Reflections on the theory of elastic plates[END_REF], the plate theory developed by [START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF]published in 1947 (Bolle, 1947) was already presented in September 1946 in Paris, during the sixth International Congress on Applied Mechanics. From an historical point of view, this would mean that Bolle (1946) was the first to have introduce a fully consistent shear plate theory based on a threefield kinematic field, as the natural plate extension of Bresse-Timoshenko-Ehhrenfest beam theory.

The bending moments are expressed by [START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF] with respect to the rotations as (see Figure 11): The equilibrium equations (including static distributed forces and inertia effects) can be written:
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Coupling the equilibrium equations with the moment and shear force constitutive law leads in statics (neglecting inertia forces) to the partial differential equation for the deflection of [START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF] Eq. ( 17) reexpressed with Eq. ( 18). Eq. ( 21) is a coupled system of partial differential equations which can be equivalently expressed in term of kinematic variables (see [START_REF] Uflyand | The propagation of waves in the transverse vibrations of bars and plates[END_REF][START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic elastic plates[END_REF] for such a system with both static and dynamic contributions) 

Related works on shear plate theories are the works of [START_REF] Hencky | Über die Berücksichtigung der Schubverzerrung in ebenen Platten[END_REF] who developed the same year, the bending equations of a plate with shear effect, based on a three-field kinematic theory (one deflection and two independent rotations):
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which can be seen as a kind of generalization of Bresse theory based on 7 1, at the plate scale (see Figure 13). Eq. ( 24) is the generalization of Bresse-Timoshenko-Ehrenfest's theory to plate (both in statics and in dynamics). Eq. ( 24) (or equivalently Eq. (2.7) of [START_REF] Uflyand | The propagation of waves in the transverse vibrations of bars and plates[END_REF] can be obtained from Eq. ( 22), which can be presented in the form of a coupled system of partial differential equation: Eq. ( 24) (or equivalently Eq. (2.7) of [START_REF] Uflyand | The propagation of waves in the transverse vibrations of bars and plates[END_REF] is also the dynamics generalization of Eq. ( 18) derived in statics. [START_REF] Uflyand | The propagation of waves in the transverse vibrations of bars and plates[END_REF] chose 7 C , as considered earlier by [START_REF] Timoshenko | A Course in theory of elasticity[END_REF][START_REF] Timoshenko | On the correction for shear of the differential equation for transverse vibrations of prismatic bars[END_REF] for beam problems. Eq. ( 24) derived by [START_REF] Uflyand | The propagation of waves in the transverse vibrations of bars and plates[END_REF] has been also confirmed later by [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic elastic plates[END_REF], through variational arguments (see Figure 15). The strain energy density function s t given by Eq. ( 19) of [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic elastic plates[END_REF] can be rewritten with the notation of the paper:
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where the generalized strain (curvature and shear strain) are defined, according to [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic elastic plates[END_REF] from 

The generalized stresses (bending moments and shear forces) may be deduced from derivation of this strain energy density function:
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and V e z t { h} (28) This energy function Eq. ( 28) could be equivalently formulated in a stress-based framework, as used by [START_REF] Reissner | On the theory of bending of elastic plates[END_REF][START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] in the case of isotropic plates:
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The generalized strains can be deduced by derivation: The calibration of the shear correction factor of the so-called Uflyand-Mindlin plate model from threedimensional elasticity has been performed analytically by [START_REF] Hutchinson | Vibrations of thick free circular plates, exact versus approximate solutions[END_REF], [START_REF] Wittrick | Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin's plate theory[END_REF], [START_REF] Stephen | Mindlin plate theory: best shear coefficient and higher spectra validity[END_REF] by comparing the natural frequencies of the three-dimensional solution with the one of the Uflyand-Mindlin plate model. They obtained the shear correction factor valid for plates:
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This shear correction factor may be also obtained from the paper of [START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF] by considering the plane strain assumptions in Eq. ( 7)
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Such a correspondence between the shear correction factor of the beam model and the one of the plate model was also observed by [START_REF] Stephen | Mindlin plate theory: best shear coefficient and higher spectra validity[END_REF]. [START_REF] Hutchinson | Vibrations of thick free circular plates, exact versus approximate solutions[END_REF] obtained this shear correction factor from the vibration analysis of a circular plate, [START_REF] Wittrick | Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin's plate theory[END_REF] considered the free vibration of a simply supported rectangular plate and [START_REF] Stephen | Mindlin plate theory: best shear coefficient and higher spectra validity[END_REF] derived this value from plane strain exact Rayleigh-Lamb frequency equation for infinite plate.

This shear correction factor was also numerically obtained by comparison of the three-dimensional elasticity solution with Uflyand-Mindlin plate model by [START_REF] Rao | An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates[END_REF] or [START_REF] Dawe | Finite strip models for vibration of Mindlin plates[END_REF] who obtained a shear correction factor 7 ƒ 0.88 for I 0.3, which is exactly the value given by the formulae Eq. (32). [START_REF] Goldenveizer | Asymptotic analysis and refinement of Timoshenko-Reisner-type theories of plates and shells[END_REF][START_REF] Goldenveizer | On Timoshenko-Reissner type-theories of plates and shells[END_REF] used an asymptotic expansion of the mixed displacement and stress field with respect to some small parameters linked to the relative depth of the plates (or shells) with shear effects (see also [START_REF] Kaplunov | Dynamics of thin walled elastic bodies[END_REF]. They also obtained the shear correction factor given by Eq. (32). More recently, [START_REF] Elishakoff | Vibrations of asymptotically and variationally based Uflyand-Mindlin plate models[END_REF] showed from an asymptotic expansion of the displacement field (solely) that the asymptotically-based shear correction factor is the one given by Eq. ( 32). They also derived a truncated Uflyand-Mindlin plate model issued of the three-dimensional elasticity governing equations:
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This truncated Uflyand-Mindlin plate equation has been also obtained by [START_REF] Goldenveizer | Asymptotic analysis and refinement of Timoshenko-Reisner-type theories of plates and shells[END_REF][START_REF] Goldenveizer | On Timoshenko-Reissner type-theories of plates and shells[END_REF], [START_REF] Elishakoff | Generalization of the Bolotin's dynamic edge-effect method for vibration analysis of Mindlin plates[END_REF], [START_REF] Kaplunov | Dynamics of thin walled elastic bodies[END_REF] and [START_REF] Mindlin | An introduction to the mathematical theory of vibration of elastic plates[END_REF] (based on a monograph written by Midlin in 1955 - [START_REF] Mindlin | An introduction to the mathematical theory of vibrations of elastic plates, A monograph prepared for U. S[END_REF], also using asymptotic expansion considerations. Eq. ( 34) is the plate analogy of the truncated Bresse-Timoshenko-Ehrenfest equation derived from asymptotic arguments.

Finally, it is worth mentioning that the bending constitutive law Eq. ( 19) expressed with the curvature variables may be reexpressed using the displacement and the shear forces, as detailed in Figure 17 from the paper of [START_REF] Reissner | On the theory of bending of elastic plates[END_REF]: [START_REF] Reissner | On the theory of bending of elastic plates[END_REF] In fact, by coupling Eq. ( 19) and Eq. ( 20), the bending constitutive law can be reformulated as: where the differential equation has been used by [START_REF] Eringen | On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[END_REF] for introducing length scales in nonlocal elasticity. Bresse-Timoshenko-Ehrenfest theory is a nonlocal Euler-Bernoulli beam theory where the length scale is introduced from the ratio between the bending stiffness and the shear stiffness ) 7 ⁄ .

In the limit, for an infinite shear stiffness, i.e. for ) 7 ⁄ → 0, the local Bernoulli-Euler beam model (see [START_REF] Timoshenko | History of strength of materialswith a brief account of the history of theory of elasticity and theory of structures[END_REF] for an historical presentation of Euler and Bernoulli on thin beam theory during the XVIII th century) is asymptotically obtained:

) ′′ (41)

Conclusions

Whereas Bresse-Timoshenko-Ehrenfest equations have been elaborated mainly during more than half a century between 1859 and 1922 (Bresse defined the two-field beam kinematics and the calibration of the shear correction factor has been finalized by Timoshenko in 1922, even if the basics results were available in his letter dated from 1913, in collaboration with Ehrenfest), the Uflyand-Mindlin plate theory has been built in a more compact period, mainly between 1944 and 1951. [START_REF] Reissner | On the theory of bending of elastic plates[END_REF][START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] first developed a static (or stress-based) formulation, but the kinematic theory of Uflyand-Mindlin plate model (or Bolle-Uflyand-Mindlin plate model) has been first elaborated by [START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF] and [START_REF] Hencky | Über die Berücksichtigung der Schubverzerrung in ebenen Platten[END_REF] for static loading, before the full generalization to dynamics by Uflyand one year later, in 1948, and its complete variational derivation by [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic elastic plates[END_REF]. A lot of efforts were spent since almost half of the century to calibrate the shear correction factor and to enrich the kinematics of Uflyand-Mindlin plate theory. It is quite surprising that the shear correction factors of both the Bresse-Timoshenko-Ehrenfest beam model and its Uflyand-Mindlin plate analogy were already implicitly available in the paper of [START_REF] Timoshenko | On the transverse vibration of bars with uniform cross-section[END_REF].
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 1 Figure 1 -Definition of the curved element and the displacement field in the deformed configuration (from Fig. 32 page 123 of Bresse, 1859)
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 23 Figure 2 -Definition of the curved element and the displacement field in the deformed configuration (from page 124 of Bresse, 1859)
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 6 Figure 6 -Bresse's equations of the dynamics of a curved beam incorporating shear and rotary effects -Eq. (1) Page 126 of Bresse (1859)
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 6 Figure 6 -The first appearance of the full Bresse-Timoshenko-Ehrenfest theory in a private correspondence between Timoshenko and Ehrenfest -Timoshenko (1913) -see also Elishakoff (2019-a) for a complete analysis of this correspondence
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 7 Figure 7 -Eq. (178) on page 207 of[START_REF] Timoshenko | A Course in theory of elasticity[END_REF]; k' in this equation is the shear correction factor denoted by 7 in this paper
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 9 Figure 9 -Eq. (17) of[START_REF] Reissner | On the theory of bending of elastic plates[END_REF]; The second term at the right-hand side of Eq. (17) accounts for the shear effect

Figure 10 -

 10 Figure 10 -Eq. (2.1) of[START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF]; With the notation of[START_REF] Bolle | Contribution au problème linéaire de flexion d'une plaque élastique[END_REF], N is equal to the bending stiffness D used in this paper, and ] 10 ^ ⁄
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 111212 Figure 11 -Figure 2 of Bolle (1947) coupled with the bending constitutive law; Bolle's notation can be reexpressed with the notation of the paper b, 0, c d0 1 , 0 e , f
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 1314 Figure 13 -Eq. (III-c) of Hencky (1947); Hencky's notation can be reexpressed with the notation of the paper b, ′, n . , < HKJ , H J / -Generalization of Bresse's theory to plate
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 15 Figure 15 -Eq. (37) of Mindlin (1951); Mindlin's notation can be reexpressed with the notation of the paper c, p, ′ , N, 7 -Generalization of Bresse-Timoshenko-Ehrenfest's theory to plate (both in statics and in dynamics)

  also calibrated the shear correction factor from the exact antisymmetric vibration mode of thickness-shear vibration and found:

Figure 17 -

 17 Figure 17 -Reformulation of Reissner model in term of single displacement variable (from[START_REF] Reissner | On the theory of bending of elastic plates[END_REF] 

In the static range, according to Eq. ( 21), the shear forces may be simply expressed in term of bending moments:

, which means that the bending-curvature constitutive law in the static range may be expressed in an implicit differential form: (37)

One may recognize an implicit differential form of a nonlocal Germain-Lagrange plate model, where the length scale factor is controlled by the ratio between the bending stiffness and the shear stiffness. In the limit, for an infinite shear stiffness, i.e. for V 7 ⁄ → 0, the local Germain-Lagrange plate model (see [START_REF] Bucciarelli | Sophie Germain -An essay in the history of the theory of elasticity[END_REF] for a detailed presentation of the contribution of Sophie Germain in the derivation of thin plate theory during the XIXth century -see also [START_REF] Timoshenko | History of strength of materialswith a brief account of the history of theory of elasticity and theory of structures[END_REF][START_REF] Truesdell | Sophie Germain: Fame earned by stubborn error[END_REF][START_REF] Kawano | A uniqueness theorem for the determination of sources in the Germain-Lagrange plate equation[END_REF], also referred as Kirchhoff-Love plate model, is asymptotically obtained: The reformulation of Bresse-Timoshenko-Ehrenfest theory in a nonlocal Euler-Bernoulli beam theory was already recognized by [START_REF] Challamel | Higher-order shear beam theories and enriched continuum[END_REF] for buckling applications. In fact, the Bresse-Timoshenko-Ehrenfest beam equation analogous to Eq. ( 35) is expressed by <@ =>O ,′= ) ′′ (39)

In the static range according to Eq. ( 1), , ′ so that one recognizes a nonlocal differential Euler-Bernoulli beam theory: