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Abstract  16 

Aquatic biological communities have directly undergone human-induced changes. 17 

Altered hydrological and morphological processes in running waters have caused the 18 

degradation of main habitats for biotas and have disturbed ecosystem functionality. 19 

The latest advances in river restoration concerned the rise in far-reaching 20 

hydromorphological restoration actions that have been implemented below dams to 21 

reverse well-known negative impacts of anthropogenic pressures. Some authors 22 

emphasized the enhancement of sediment supply and habitat diversity using gravel 23 

augmentation or bank erosion to restore morphodynamics, and thus improve 24 

biodiversity. We explored the Web of Science database for empirical research papers 25 

that specifically addressed such hydromorphological river restoration actions. Articles 26 
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were examined using a text-content analysis tool to determine the major concepts or 27 

ideas they deal with. It has also been proved as useful in defining interrelationships 28 

and degree of interdisciplinary. Results showed that a low number of published 29 

scientific articles exist about such projects, mainly condensed in the North 30 

hemisphere. Divergent ecological issues were highlighted by the word co-occurrence 31 

networks: (i) gravel augmentation was used to improve spawning habitats for fish of 32 

economic interest whereas (ii) erodible corridor was designed to safeguard natural 33 

riparian systems, approaching morphological goals of channel widening. Overall, 34 

ecological responses were consistent with those expected, leading however rather to 35 

functional shifts than richness increase. Gravel augmentation or bank erosion were 36 

not usually combined with in-channel structure management. However, this might be 37 

an option to consider since the biological communities seem to be sensitive during 38 

first restorations with such combination. This review demonstrates the value of word 39 

co-occurrence networks in exploring a high number of previous publications, keys for 40 

formulating guidance to manage gravel augmentation or bank erosion along 41 

ecological purposes. 42 

Key words: biological communities, erodible corridor, river restoration, sediment 43 

deficit, word co-occurrence networks. 44 
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1. Introduction 51 

River restoration encompasses a wide range of activities, with increasing recognition 52 

that the most sustainable approach to restoration is to recover dynamic 53 

geomorphological processes and riverine connectivity, as these can provide habitats 54 

and links needed to support native species that are the target for the restoration 55 

efforts (Beechie et al., 2010; Kondolf et al., 2006).  Where possible, the most 56 

efficient approach is to give rivers a corridor in which they can flood, erode and 57 

deposit sediment, and establish riparian vegetation (e.g. Biron et al., 2018; Piégay 58 

et al., 2005).  On rivers highly constrained by development and structural works it 59 

may be prohibitively expensive to create a corridor wide enough to support fluvial 60 

dynamics, and in many cases the flow and sediment regimes have been profoundly 61 

altered by upstream dams, such that even with lateral space, the needed energy and 62 

sediment to build fluvial forms are lacking. In addition to modifying flow regimes, 63 

dams trap gravel, sand, and some portion of the finer-grained sediment load, 64 

commonly producing sediment-starved flows downstream (Kondolf, 1997). Only 37 65 

per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire 66 

length and 23 per cent flow uninterrupted to the ocean (Grill et al., 2019). This is why 67 

dam-altered hydrographs and sediment loads must be now accounted for in planning 68 

restoration of most river reaches. These dam-induced changes result in loss (i) of 69 

longitudinal connectivity (as the free passage of sediment, nutrients, organic matter, 70 

and fish, Ligon et al., 1995), (ii) of lateral connectivity (as reduced high flows cannot 71 

overflow onto floodplains as frequently, reducing vigor of riparian forests, eliminating 72 

important habitats and niche refugia for aquatic organisms as macrophytes, 73 

macroinvertebrates or juvenile fishes, and disconnecting former channels such as 74 

oxbow lakes (e.g., Liu and Wang, 2018), and of (iii) vertical connectivity (as reduced 75 
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high flows reduce hydraulic gradients driving surface-subsurface exchanges and fine 76 

sediment that accumulates without being flushed plugs gravel beds and reduces 77 

exchange with the hyporheic zone) (Kondolf et al., 2006).   78 

These disruptions have prompted environmental flow requirements in many rivers 79 

(Arthington and Pusey, 2003; Arthington et al., 2006; Kondolf et al., 2019; Poff 80 

et al., 1997; Poff et al., 2009; Poff and Zimmerman, 2010; Richter et al., 2006). 81 

Flow requirements increasingly include deliberate high flows to induce scour and 82 

sediment transport (Kondolf et al. 2019; Renschler et al., 2007), inundate 83 

floodplains by flood pulses (Junk et al., 1989), and maintain aquatic (Bunn and 84 

Arthington, 2002) and riparian communities (Nilsson and Svedmark, 2002). 85 

Release of environmental flows is increasingly combined with other restoration 86 

actions, such as abandoned side channel restoration on the Rhône (Henry et al., 87 

2002; Riquier et al., 2015), Rhine (Eschbach et al., 2017, 2018; Meyer et al., 2013; 88 

Schmitt et al., 2009; Simons et al., 2001) and Danube Rivers (Tockner et al., 89 

1998) to restore lateral connectivity with off-channel water bodies and floodplain 90 

forests. Restoration of more natural flow regimes and physical habitat restoration can 91 

result in creation of ecological niches important for aquatic biodiversity (Ecke et al., 92 

2016; Roni et al., 2008). To date there has been more interest in restoring flow 93 

regimes than sediment regimes, but this is starting to change with the observation 94 

that restoring flow only without restoring habitat structure is unlikely to succeed 95 

(Alber and Piégay, 2017; Kondolf et al. 2019; Wohl et al., 2015).  96 

A number of ambitious hydromorphological river restoration projects have been 97 

undertaken in recent decades (Wohl et al., 2015), promoting interventions to ‘feed 98 

the hungry river’ for natural resilience of the river itself and the recovery of natural 99 

biodiversity (Heckmann et al., 2017; Hobbs and Harris, 2001), working with fluvial 100 
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dynamics and its main components, water and sediment (Heiler et al., 1995; Friberg 101 

et al., 2017; Wohl et al., 2015). Multiple dams have fragmented the river and created 102 

artificial channels, in some cases alongside abandoned reaches of the original 103 

channel. Many, well-documented efforts have been undertaken to restore these 104 

remnant river reaches, now mostly cut off from seasonally-appropriate flows and 105 

supplies of coarse sediment essential to reduce biotic homogenization (Olden et al., 106 

2016). Restoration actions for these reaches have emphasized (i) mechanical 107 

addition of gravel for transport by the occasional competent flows, and (ii) controlled 108 

bank erosion combined with structures designed to create more complex flow 109 

patterns, including diverting flows into banks, in part to recruit gravels from the banks 110 

into the flux of sediment transported through the reach (Pinte et al., 2015; Staentzel 111 

et al., 2018a).  112 

To inform these restoration efforts, we posed the following questions: (i) how 113 

common are programs to restore sediment supply and habitat diversity below dams 114 

through mechanical gravel augmentation and induced bank erosion? (ii) How do 115 

these projects differ in design and in performance on an ecological point of view?  116 

2. Methods 117 

We began by conducting an overview of papers devoted to seven types of restoration 118 

actions below dams (Supplementary file S1) to quantify the importance of the two 119 

actions on which we focused, gravel augmentation and induced bank erosion below 120 

dams. We conducted a quantitative review on abstracts, titles and keywords, from 121 

research articles, review papers, technical reports, and conference proceedings in 122 

the Web of Science database, published up from January 1976 to December 2018. 123 

We searched on the term [restor* OR rehabilit* OR renatur*], AND the terms [river* 124 
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OR channel* OR river basin* OR floodplain* OR hydrosystem*]. We first limit the 125 

search to “restor*” because the wider use in target papers of this term by authors 126 

from many countries (Morandi and Piégay, 2017). In a second step, we also 127 

included renatur* or rehabilit* terms in analyzes to take into account a maximum of 128 

feedbacks. The result provided 25,959 papers. We removed all papers containing 129 

specific terms relative to biochemistry or medicine science, [e.g. cell*, protein*, 130 

patient*, collapse*, electron*, proton*, neutron*, nanochannel*, pharmaco*, medec*, 131 

endocr*, cortic*, antibiot*], resulting in 18,570 papers. We analyzed results by four 132 

time periods from 1976 to 2018: [1976 – 1986], [1987 – 1997], [1998-2008], and 133 

[2009-2018]. We retained within the 18,570 papers only those considering in their 134 

title, abstract or keywords, specific terms designing the main types of river restoration 135 

possible below dams (Supplementary file S1). We adjusted specific terms following 136 

an iterative process, i.e. repeating rounds of analysis, to focus on the terms most 137 

commonly used in the literature. Seven main types of river restoration were identified 138 

(Supplementary file S1): lateral connection, erasure of hydraulic structures, in-139 

channel management, instream flow management, revegetation, bank erosion and 140 

gravel augmentation. In the group of words for bank erosion, we added the terms 141 

groyne* and groine* to identify projects that combined bank erosion and groyne 142 

implementation for river restoration.  143 

Of these seven main river restoration types appearing in literature, we focused on 144 

two that concern sediment deficits below dams: gravel augmentation downstream of 145 

dams, and induced bank erosion to supply sediment and create more diversified and 146 

functional habitats. We scanned these papers with text content analyses for a global 147 

overview of the main issues and their interrelations using the KH Coder software 148 

3.0.0.0, which calculated word distances by Jaccard coefficient and the strength of 149 
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attachment. Two graphical visualizations of the word co-occurrence networks were 150 

proposed for easier interpretation: (i) with an ascending degree to centrality, from 151 

yellow to blue, inquired the term frequency by circle size, and (ii) with modularity 152 

detecting the strength of division of a network into modules as groups, clusters or 153 

communities (Higuchi, 2016). We limited the word co-occurrence networks to better 154 

show the minimum spanning tree, consisting of only stronger lines. We extracted 155 

words with “Snowball”, a process that cuts ends of words and removes all plural, 156 

conjugated or granted forms. For example, the word restor* could be associated with 157 

the following terms: restoration, restore, restored. Stop words, i.e. words excluded 158 

from analyses, were defined including all usual pronouns, articles, linking words, 159 

adverbs, some adjectives, and verbs (as “be” or “have”). Numbers, special symbols, 160 

and punctuation were also removed. 161 

3. Results  162 

3.1. Exploration of the published scientific literature 163 

Papers related to river restoration generally increased over time, from only 29 in 11-164 

year period 1976-1986 (0.15% of the total) to 959 from 1987-1997 (5.16%). Then 165 

from 1998-2008, the number of papers increased six fold to 5,701 (30%) and doubled 166 

again during the next time period [2009-2018] (n=11,911, 64%; Figure 1A). A total of 167 

2,665 papers concerned at least one term belonging to the groups of words defined 168 

for each of the seven types of river restoration (Figure 1B). From essentially few 169 

papers 1976 to 1986, the period 1987-1997 saw multiple papers on in-channel 170 

structures, revegetation, and lateral connection. From 1998-2008, in-channel 171 

structure management (n=166) and erasure (removal) of hydraulic structures (ERAS, 172 

n=143) had the highest number of published papers (Figure 1B). The last period 173 



 

 

8 

 

(2009-2018) showed the highest number of publications, all types of restoration being 174 

concerned, especially the removal of hydraulic structures (n=381; Figure 1B). 175 

Instream flow management has also been the subject of a large number of papers 176 

(n=303) as well as the in-channel structure management (n=289). Although many 177 

papers featured bank erosion or gravel augmentation, very few addressed the need 178 

to add directly sediment in rivers or provoke bank erosion as a restoration action 179 

(19.02% for gravel augmentation, n=43/226; 15.36% for bank erosion, n=49/319) 180 

(Figure 1C). Some projects to restore channel complexity below dams via adding 181 

coarse sediment or inducing bank erosion to give the river an impetus for self-182 

restoration have been documented in the scientific literature. Field studies were 183 

reported in 28 papers about gravel augmentation and 24 papers about induced bank 184 

erosion (detailed in Supplementary files S2, S3). Recent papers have documented 185 

projects in more upstream reaches than sediment-starved estuaries and deltas, 186 

including projects undertaken within the framework of larger restoration programs 187 

such as the Trinity River Restoration Program (USA) or the redynamization of the Old 188 

Rhine River (France-Germany), involving significant research components. However, 189 

feedbacks in published papers from WOS were still rare and were concentrated on 190 

specific geographical areas in Europe and North America (Figure 2).  191 

3.2. Scanning word co-occurrence networks to identify main ecological issues 192 

Looking more closely at papers considering gravel augmentation (n = 43 papers) and 193 

bank erosion (n = 49 papers) to restore natural fluvial forms and thus improve 194 

biodiversity (Figure 1C), the word co-occurrence networks showed diverging 195 

ecological issues. Concerning gravel augmentation, the word co-occurrence network 196 

was centered around the term river* and the highest frequency was obtained for the 197 

term gravel* (Figure 3A & 3B). The term river* was strongly connected to gravel* 198 
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(0.66) and habitat (0.69). The word habitat* shared a strong edge with a term of high 199 

occurrence as spawn* (e.g. spawning, 0.62), related to salmonid* or salmon* (Figure 200 

3A & 3B). The term spawn* was one of the four other terms among restor*, 201 

sediment*, and gravel*, that had a strong interconnection with other less recurrent 202 

words (Figure 3A). Such centrality on specific words suggested a division of the 203 

network in groups and the graphical visualization based on modularity allowed to 204 

reveal six groups (Figure 3B). The term river* was associated in a first group (group 205 

01, Figure 3B) with the terms gravel*, augment*, increas*. This main group 01 was 206 

linked to the group 02, headed by the term restor* and related to the effect 207 

assessment, e.g. effect*, studi*, result*, compar* (Figure 3B). Also linked to the main 208 

group 01, the group 03 highlighted fluvial processes such as sediment transport 209 

below dams (sediment*, flood*, downstream*, dam*, transport*, chang*, bed*). The 210 

group 04 was focused on ecological purposes, headed by the term spawn*. Papers 211 

with the terms model* and predict* were dissociated from the main body of studies, 212 

whether due to notions of geomorphology or ecology (no edges, Figure 3B).  213 

The center core of the word co-occurrence network concerning the notion of bank 214 

erosion was occupied by the term river*, strongly connected to restor* with a 215 

coefficient of 0.71, to habitat* with a coefficient of 0.62, and to channel* with a 216 

coefficient of 0.58 (Figure 3C & 3D). The term restor* was connected to the term 217 

effect*, a term whose degree of centrality is strong (Figure 3C). Other terms showed 218 

an important degree of centrality but in a lesser extent (bank*, reach*, indic*, Figure 219 

3C). Edges from the term result* lead towards the term bank*, which in turn was 220 

linked to the term eros* (0.77) and to the term model* (0.43). The group 02 headed 221 

by the term restor* was highly linked (i) to the group 01, headed by the term effect*, 222 

and (ii) to the group 02, headed by the term river* (Figure 3D). The group 01 223 
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reflected the general desire to determine the effects of restoration projects whereas 224 

the group 02 highlighted processes and elements that are specifically targeted by 225 

promoting bank erosion (channel*, habitat*, morphology*, Figure 3D). Two other 226 

pairs of terms dealing with geomorphology occurred with no edges linking them to 227 

others: one was composed of rate* and sediment*, the other cross-sect* and 228 

unmanag* terms. Sediment transport was thus discussed but evidently not directly 229 

related to hydrological processes such as flood*, flow* (no edges, Figure 3C & 3D). 230 

The relatively few biological terms that emerged (e.g. plant*, divers*, speci* in group 231 

06, Figure 3D) were not connected to the main three groups of words (group 01, 02 232 

and 03). No group related to physical modelling occurred. We included artificial 233 

structures (groyn*, groin*) in the analyses to test for some combined restoration 234 

actions, but no strong edges emerged between these terms and others in the word 235 

co-occurrence network (group 08, Figure 3D).  236 

4. Discussion 237 

4.1. What do we learn about sediment supply and habitat diversification using gravel 238 

augmentation for ecological purposes? 239 

Gravel augmentation has been widely discussed in the US scientific literature issued 240 

from WOS (60% of papers focusing on gravel augmentation), implemented mostly in 241 

the western US (Figure 2), with projects in California back to the 1970s on more than 242 

13 dammed rivers of the Sierra Nevada and Coast Ranges (Kondolf and Matthews, 243 

1993). US projects reported in the literature included many on tributaries of the 244 

Sacramento-San Joaquin Rivers (Kondolf and Matthews, 1993; Kondolf et al., 245 

2008) but none to induce bank erosion (Figure 2). The frequent occurrence of the 246 

terms “spawn” or “salmon” reflects the dominant importance of restoring favourable 247 
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spawning grounds, their loss having led to the reduction or disappearance of fish 248 

species of economic importance. The major activity of the last twenty years in 249 

Northern California and downstream of the Central Valley dams was focused on 250 

improving aquatic habitats for salmonids (Barlaup et al., 2008; Harvey et al., 2005; 251 

Kondolf et al., 2007; Merz et al., 2004; Merz and Setka, 2004; Sellheim et al., 252 

2016; Zeug et al., 2014). Gessner et al. (2014) concluded that gravel augmentation 253 

could increase longitudinal connectivity downstream of dams and allow fish 254 

migration, thereby restoring 30% of the potential habitats for fish on the Spree-Havel 255 

River (Germany). Other studies employed detailed hydraulic models to design the 256 

placement of gravel to maximize areas with depths, velocities and the preferred 257 

substrate for spawning salmonids (Humphries et al., 2012; Miwa and Parker, 2012; 258 

Pasternack et al., 2004, 2006; Singer and Dunne, 2006; Sklar et al., 2009; 259 

Sawyer et al., 2009; Venditti et al., 2010). Creation of gravel bars can also produce 260 

a thermal heterogeneity (Eschbach et al., 2017) and greater trophic potential (Ock 261 

et al., 2015). Indirect effects of these gravel augmentation can include higher water 262 

levels, inundating a greater extent of the alluvial zone (Elkins et al., 2007). 263 

Colonization of macroinvertebrate species occurred rapidly and standing crop 264 

increased in such projects, thus benefiting other species than those initially targeted 265 

(Merz and Ochikubo Chan, 2005).  266 

A great heterogeneity of words has been used to describe such restoration actions or 267 

even the terms related to restor*, renatur*, rehabitlit* were not clarified, and this can 268 

hinder the search for feedbacks, such as Rollet et al. (2008) on the Ain River, 269 

France, Stähly et al., (2019) on the Sarine River, Swiss, and Schälchli et al. (2010) 270 

on the Aare River, Swiss. According to the word co-occurrence network, the most 271 

common combination is “gravel augmentation”. Some other combinations as “artificial 272 
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gravel dumping” (Hauer et al., 2015) were too specific to be revealed in the analysis. 273 

Integrating the terms renatur* and rehabilit” in addition to restor* in the analysis has 274 

allowed for the inclusion of a Japanese article in the database (Matsushima et al., 275 

2018). The term of renatur* is not used at all to treat these actions, the major term 276 

remains that of restor*. Some other river restoration projects in Japan are lacking 277 

(Okano et al., 2004; Kantoush et al., 2010). For example, Miyagawa et al., (2017) 278 

studied effects of gravel augmentation on riverbed material size distribution and 279 

attached algal biomass in the downstream reaches of the Futase Dam, and Ock et 280 

al., (2013) compared gravel augmentation in the Nunome River (Japan), and the 281 

Trinity River (US).  282 

4.2. What do we learn about sediment supply and habitat diversification using bank 283 

erosion for ecological purposes? 284 

We quickly observed on the word co-occurrence network that the terms related to 285 

ecological purposes were in a group dissociated from the first stakes of this type of 286 

restoration action, which is mainly the diversification of fluvial forms and habitats in 287 

the main channel by lateral erosion. Indeed, where possible below dams, adopting a 288 

‘freedom space’ for rivers approach should result in improved habitats, as it permits 289 

natural processes related to mobility, flooding, and riparian connectivity, enhancing 290 

the diversity of aquatic organisms (Biron et al., 2018; González et al., 2017). 291 

Although the few ecological terms revealed by the word co-occurrence network were 292 

related to the improvement of riparian compartments, a greater heterogeneity in 293 

fluvial forms, and consequently, aquatic habitats could increase macroinvertebrate 294 

richness. Channel widening enhanced heterogeneity or diversity of habitat (Poppe et 295 

al., 2016), fish (Kail et al., 2015, Schmutz et al., 2016), benthic invertebrates 296 

(Wyżga et al., 2014; Kail et al., 2015), macrophytes (Ecke et al., 2016; Kail et al., 297 
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2015), ground beetles (Januschke and Verdonschot, 2016) and floodplain 298 

vegetation (Göthe et al., 2016). The word co-occurrence network also showed that 299 

channel widening could be considered as a part of controlled bank erosion effects. 300 

Overall, results concluded for generally more pronounced effects of habitat 301 

restoration on community structure, traits and functional indicators than on species 302 

diversity sensu stricto.  303 

 304 

Multiple terms have been used for restoration actions to generate bank erosion safely 305 

(not only below dams), such as (i) “creating hotspots of erosion” (Beagle et al., 2016; 306 

Choné and Biron, 2016), (ii) “applying a protected erodible corridor for mobility” 307 

(Hajdukiewicz et al., 2017), (iii) “induce controlled bank erosion” (Garnier and 308 

Barillier, 2015; Staentzel et al., 2018b, 2018c, 2019), or (iv) “room to move” (Reid 309 

and Brierley, 2015). Champoux et al. (2003) and Vietz et al. (2018) used bank-310 

cover deflectors to induce slow bank erosion to improve physical fish habitat and 311 

channel morphology but warned against fast, excessive bank erosion or degradation 312 

of historical embankments, leading to an ad-hoc solution in which bank erosion must 313 

be controlled (Choné and Biron, 2016). No group related to physical modelling 314 

occurred, suggesting that the bank erosion process was not yet well enough 315 

understood to be sufficiently controlled. However, modeling to identify specific 316 

erodible corridors across which rivers are free to migrate increased the last decade in 317 

laboratory flume experiments or by GIS planimetric analyses (Alber and Piegay, 318 

2017; Battisacco et al., 2015; Choné and Biron, 2016; Clutier et al., 2012; Dépret 319 

et al., 2017; Pinte et al., 2015; Reid and Brierley, 2015; Requena et al., 2006; 320 

Ribeiro et al., 2016). Díaz‐Redondo et al. (2018) modeled the effects of removing 321 

embankments, lowering banks, and widening side channels on lateral hydrological 322 
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connectivity and morphodynamics to renew floodplain side-channel habitats. Model 323 

results indicated that the measures would reconnect side channels and increase 324 

areas subject to erosion, while maintaining flood protection and navigation use.  325 

Artificial or semi-natural in-channel structures have been recently implemented in 326 

many large, dammed rivers to induce erosion and deposition, i.e., “working with 327 

nature” (Harvey et al., 2018), but usually were not part of a program to replenish 328 

coarse sediment to induce bank erosion, as reflected in the word co-occurrence 329 

network (Figure 3B). The only project we encountered below dams that combined 330 

(controlled) bank erosion and artificial transverse groynes to divert flows into banks 331 

and thereby create more complex channel forms was on the Old Rhine River, France 332 

(Garnier and Barillier, 2015; Pinte et al., 2015). The groyne design was modelled to 333 

activate the erosion of the banks during floods (Chardon et al., 2018; Die Moran et 334 

al., 2013; El Kadi Abderrezzak et al., 2012). While the volumes of sediment 335 

recruited by erosion of the bank were less than anticipated (Chardon et al., 2016; 336 

2017; 2018; Pinte et al., 2015), morphological changes, habitat heterogeneity, 337 

vegetation dynamics and ecological niches were clearly enhanced (Staentzel et al., 338 

2018b, 2018c, 2019). Pioneer plant species quickly established in the eroded reach 339 

and on groynes, including aquatic and terrestrial invasive species (Staentzel et al., 340 

2018c). Most significantly, there was a strong increase in species number and cover 341 

of macrophytes, which were mostly absent before the restoration (Staentzel et al., 342 

2018c). Overall, a high diversity in habitats was observed, associated with enhanced 343 

macroinvertebrate diversity over the site, creating habitat for burrowing species as 344 

Odonata (Staentzel et al., 2019). Few other studies exist but in-channel and riparian 345 

biological compartments seem to be favoured by groynes in large rivers. A rise in 346 

habitat heterogeneity including in the area of spawning habitat for fish, and an 347 
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increase in Odonata species richness have often been stated (Buczyńska et al., 348 

2018; Buczyński et al., 2017; Eick and Thiel, 2013). 349 

4.3. Guidance to replenish gravel supply or perform controlled bank erosion for 350 

ecological purposes 351 

In some cases, gravel augmentation have not produced a measurable biological 352 

response, which may be due to inadequate volumes, or to a grain size distribution 353 

deficient in sand and fine gravels (McManamay et al., 2013). The volumes of coarse 354 

sediment needed for effective replenishment can be estimated from the river’s 355 

sediment transport capacity (El Kadi Abderrezzak, 2009; Rosenfeld et al., 2011). 356 

Moreover, other factors to consider include the effect of sand in the gravel mixture in 357 

enhancing bed mobility and gravel movement (Miwa and Parker, 2017). Gravel-358 

sized substrates are essential for lithophilic species and their development cycle, 359 

including substrate spawners (some cyprinids) and interstitial spawners (salmonids) 360 

(Pulg et al., 2013), but also for functional composition in macroinvertebrates, 361 

(Staentzel et al., 2019). In many cases, particular functional groups were favoured 362 

by specific substrates such as rheophilic or burrower taxa (Albertson et al., 2011, 363 

McManamay et al., 2013; Staentzel et al., 2018b, 2018c, 2019).The origin of 364 

injected gravels is most often local, avoiding the introduction of exotic organisms 365 

(Friberg, 2014).  366 

The ecological effects of gravel augmentation may be transitory as the added gravel 367 

is transported downstream, so that long-term benefits cannot to assumed (except if 368 

further gravel augmentations are regularly undertaken). Feedbacks on induced bank 369 

erosion showed that effects are mostly concentrated in the eroding reach and directly 370 

downstream. The distribution of benefits downstream depends on whether the gravel 371 
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moves by dispersion or translation: dispersion resulting in fewer benefits downstream 372 

because the gravel concentrations are so low in any given reach, while with 373 

translation of a wave downstream will result in short‐lived local benefits that migrate 374 

downstream with the gravel (Sklar et al., 2009). This has implications for monitoring, 375 

as ecological responses obtained in monitoring studies will also depend on the 376 

location of monitoring points (Staentzel et al., 2018a).  377 

A high number of small groups was observed in the word co-occurrence network on 378 

papers promoting bank erosion, unlike those enhancing gravel augmentation. We 379 

perceived that we are at the beginning of feedback studies promoting bank erosion, 380 

and that several issues are invested without being for the moment connected (Figure 381 

3D).  First results on ecological purposes showed that bank erosion has been 382 

beneficial to the diversification of aquatic and riparian habitats. The effects of this 383 

type of restoration turned out to be very close to what we could get by channel 384 

widening. The addition of artificial or natural structures to promote lateral erosion by 385 

floods has shown an interesting potential for reclaiming biodiversity. However, these 386 

settlements can become fixed points in the restored landscape due to a large 387 

revegetation or a bare rocky armor. It’s therefore necessary to adopt an adaptive 388 

management process (Allen et al., 2011) if the long-term effects of such restoration 389 

action does not tend to those expected.  390 

In most cases, restoration projects reported in the literature had monitoring periods of 391 

3 years or more, and stressed the need to pursue monitoring over time to give the 392 

biology time to respond to the morphology. Morandi et al. (2014) recommended 393 

embedding spatial and temporal references into the design of the monitoring 394 

program, but many studies observed that their experiments did not fit easily within the 395 

BACI protocol (Smith et al., 1993), but instead implemented a simpler Control-396 
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Impact approach. Few projects have been reported in interdisciplinary papers 397 

(Supplementary files S2, S3), as ecological and geomorphological monitoring are in 398 

many cases conducted in parallel without being integrated. The question of the study 399 

scale is key, as for example, macroinvertebrates respond strongly to fine-scale 400 

hydromorphological gradients (Beisel et al., 2000). Geomorphological monitoring is 401 

often realized at larger scales with spatial units suitable to detect physical changes 402 

occurring after restoration but too coarse to detect habitat modification to benefit 403 

aquatic species. This argues for geomorphological and ecological monitoring at 404 

sufficiently fine scales to detect changes in habitat composition (e.g., detailed facies 405 

mapping and related measures). Piégay et al. (2005) recommended a nested 406 

approach across a range of scales (network scale, reach scale, local scale), including 407 

in-channel structures such as artificial groynes (used as deflectors) or woody debris, 408 

for a greater ecological response. Although it would be an appropriate solution to 409 

restore, ecological responses were too often mixed and did not always show an 410 

increase in classical taxonomic metrics (McManamay et al., 2013). So, a functional 411 

approach could be a good alternative to assess the effects of river restoration on 412 

bio/ecological profiles of species. Similarly, Clavel et al. (2011) proposed a 413 

community‐level specialization as an indicator of the impact of global changes on 414 

biodiversity. 415 

5. Conclusion 416 

In developed countries, dam removal is increasingly implemented to restore 417 

ecological functions (Gilet et al., 2018; Oliver and Grant, 2017; Poff and Hart, 418 

2002), but most dams are here to stay, and many new ones are in construction or 419 

planning in developing countries (Poff and Hart, 2002; Zarfl et al., 2015). Thus, it is 420 

imperative that we find ways to restore geomorphological and ecological processes 421 
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downstream of existing dams. Opinions were divided between the need to add 422 

sediment in rivers (e.g., Florsheim et al., 2008; Rollet et al., 2014) and the need to 423 

reduce it especially in urban areas, where channel aggradation can increase flood 424 

risk. However, results on biological communities were generally positive in most of 425 

the studied papers. The coupling between many restoration actions is also more and 426 

more considered as on the Sarine River in western Switzerland downstream of 427 

Rossens hydropower dam where combining gravel augmentation and an artificial 428 

flood improves river habitats (Stähly et al., 2019). Our literature review reflects an 429 

evolving perspective towards adaptive or coupling management approaches to 430 

promote the recovery of natural processes in rivers below many dams and thus to 431 

improve ecological response. 432 

The applied methodology of review based on word co-occurrence networks turned 433 

out to be a rapid way (i) to obtain an overview of a high number of papers, (ii) to 434 

identify the main topics addressed, and (iii) to highlight the interrelations or 435 

associations between the selected words used by authors. These analyzes proved to 436 

be useful in understanding the interconnections between disciplines and the 437 

evaluation of the degree of interdisciplinary of each type of restoration. Here, 438 

scientific approaches related to gravel augmentation appeared highly integrated in a 439 

multidisciplinary context, what constitutes a recommended initiative (Downs et al., 440 

2011). 441 

Fluvial processes such as bank erosion are increasingly recognized in land use 442 

planning and river management with designations of river corridors (Choné and 443 

Biron, 2016). Future empirical research to quantify ecosystem services and other 444 

socioeconomic outcomes is needed to understand the full benefits and costs of 445 
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restoring process below dams in comparison with dam removal (Langhans et al., 446 

2014; Wortley et al., 2013) and/or the continuation of dam exploitation. Transforming 447 

traditional use of rivers into modern management options raises many questions 448 

about river culture that integrate both the recovery of ecosystem functionalities and 449 

support human livelihoods (Wantzen et al., 2016). 450 
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