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, the authors have explicitly computed the integral

where M x is a symmetric matrix of order n with fixed non-positive off-diagonal coefficients and with diagonal (2x 1 , . . . , 2x n ). The domain of integration is the part of R n for which M x is positive definite. We calculate more generally for b

we show that it leads to a natural family of distributions in R n , called the MRIG n probability laws. This family is stable by marginalization and by conditioning, and it has number of properties which are multivariate versions of familiar properties of univariate reciprocal inverse Gaussian distribution. In general, if the power of det M x under the integral in S T Z n is distinct from -1/2 it is not known how to compute the integral. However, introducing the graph G having V = {1, . . . , n} for set of vertices and the set E of {i, j} s of non-zero entries of M x as set of edges, we show also that in the particular case where G is a tree, the integral exp(x, y )(det M x ) q-1 dx where q > 0, is computable in terms of the MacDonald function K q .

1. Introduction: the Sabot -Tarrès -Zeng integral.

Let us describe the integral appearing in Sabot and Tarrès [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric sigma model[END_REF]. Let W = (w i j ) 1≤i, j≤n be a symmetric matrix such that w ii = 0 for all i = 1, . . . , n and such that w i j ≥ 0 for i j. For x = (x 1 , . . . , x n ) ∈ R n define the matrix M x = 2 diag(x 1 , . . . , x n ) -W. For instance if n = 3 we have

M x =           2x 1 -w 12 -w 13 -w 12 2x 2 -w 23 -w 13 -w 23 2x 3           .
Denote by C W the set of x ∈ R n such that M x is positive definite. It is easy to see that C W is an open non-empty unbounded convex set. This is not a cone in general. Frequently we consider the undirected graph G with set of vertices {1, . . . , n} and with set of edges E = {{i, j} ; w i j > 0} and we speak of the graph G associated to W. The Sabot-Tarrès-Zeng integral is, for y 1 , . . . , y n > 0

S T Z n = C W e -(x 1 y 1 +•••+x n y n ) dx 1 × • • • × dx n √ det M x = π 2 n 1 √ y 1 × • • • × y n e -1 2 i j w i j √ y i y j . (1) 
Sabot and Tarrès [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric sigma model[END_REF] give a probabilistic proof of this remarkable result. Another proof is in Sabot, Tarrès and Zeng [START_REF] Sabot | The vertex reinforced jump process and a random Schrodinger operator on finite graphs[END_REF], based on the Cholesky decomposition. This integral leads naturally to consideration of probability laws on R n that we call S T Z n distributions with densities proportional to e -x,y (det M x ) -1/2 1 C W (x).

In the present paper we derive, using a different approach than the two methods mentioned above, a more general MRIG n integral in Theorem 2.2. In particular, we give a new proof of [START_REF] Bapat | Graphs and Matrices[END_REF]. The symbol MRIG for multivariate reciprocal inverse Gaussian, is explained below. This MRIG n integral enables us to create a new set (called the MRIG n family) of distributions on R n which is stable by marginalization and, up to a translation, stable by conditioning. The bibliography concerning the appearance of the S T Z n and MRIG n laws in probability theory is already very rich and we suggest to look at Sabot and Zeng [START_REF] Sabot | Hitting times of interacting drifted Brownian motions and the vertex reinforced jump process[END_REF] and Disertori, Merkl and Rolles [START_REF] Disertori | A supersymmetric approach to martingales related to the vertex-reinforced jump process[END_REF] for many references. An unpublished observation of 2015 of the first author has been used and reproved in these two publications and some facts of the present paper can be found in them. However, we use here only elementary methods to get our results.

Let us recall that in literature, the generalized inverse Gaussian distributions GIG(a, b, q) are one dimensional laws with density proportional to e -a 2 x-b 2 4x x q-1 1 (0,∞) (x), for a, b > 0 and q real (see Seshadri [START_REF] Seshadri | The Inverse Gaussian distribution[END_REF] for instance). Parameterizations differ according to the needs of authors and we have chosen an appropriate one in the present paper. The most famous particular case is for q = -1/2 with the inverse Gaussian distribution. A random variable Y with the inverse Gaussian distribution IG(a, b) = GIG(a/2, 2b, -1/2) has Laplace transform

E(e -sY ) = e b(a- √ a 2 +s) (2) 
for s > -a 2 . Its density is proportional to e -a 2 y 4 -b 2 y y -3/2 1 (0,∞) (y). A less known case, but the important one for the present paper, is for q = 1/2 with the reciprocal inverse Gaussian distribution. Actually, it is a distribution of the inverse of a random variable with an IG distribution. A random variable X with a reciprocal inverse Gaussian distribution RIG(a, b) = GIG(a, b, 1/2) has Laplace transform for s > -a 2 E(e -sX ) = a √ a 2 + s e b(a-

√ a 2 +s) (3) 
and is such that

E(X) = m = ab + 1 2a 2 , E(X 2 ) = 1 4a 4 (a 2 b 2 + 3ab + 3), Var(X) = ab + 2 4a 4 . ( 4 
)
Its density is proportional to e -a 2 x-b 2 4x x -1/2 1 (0,∞) (x). This law is considered for instance in Barndorff-Nielsen and Koudou [START_REF] Barndorff-Nielsen | Trees with random conductance and the (reciprocal) inverse Gaussian distribution[END_REF]. Our MRIG n distributions have some properties which are multivariate versions of properties known for the univariate RIG law. These are good reasons for attaching the name multivariate (n-dimensional) RIG to the members of this family. A particular case of the family MRIG 2 appears in Barndorff-Nielsen, Blaesild and Seshadri [START_REF] Barndorff-Nielsen | Multivariate distributions with generalized inverse Gaussian marginals and associated Poisson mixtures[END_REF]. The family S T Z 2 appears in Barndorff-Nielsen and Rysberg [START_REF] Barndorff-Nielsen | Exact distributional results for random resistance trees[END_REF].

Section 2 proves and comments on the MRIG n integral, including a presentation of the Disertori-Spencer-Zinbauer [START_REF] Disertori | Quasi Diffusion in a 3D Supersymmetry Hyperbolic Sigma Model[END_REF] and Disertori-Merkles-Rolles [START_REF] Disertori | A supersymmetric approach to martingales related to the vertex-reinforced jump process[END_REF] integrals in the studies of supersymmetry. Section 3 gives some examples. Section 4 details the properties of the MRIG n laws (we carefully distinguish along the paper the MRIG n integral and the MRIG n laws). Section 5 considers the particular case of the S T Z n integral when the graph G associated to W is a tree. Then we generalize the S T Z n integral by computing in this case C W exp(x, y )(det M x ) q-1 dx and thus, in particular, obtaining the norming constant for the density considered in Massam and Wesołowski [START_REF] Massam | The Matsumoto-Yor property on trees[END_REF]. Interestingly enough, this generalization allows us to not restrict to the case where the w i j 's are non-negative. The reason is the not so well known fact: if the associated graph of a positive definite matrix M = (m i j ) is a tree then the symmetric matrix M = (±m i j ) is still positive definite whatever the ± are outside of the diagonal; therefore C W is unchanged. Section 6 mentions a striking consequence (Corollary 6.2) of the

MRIG n integral: if (B 1 , . . . , B n ) is multivariate normal, i.e. (B 1 , . . . , B n ) ∼ N(0, M x ), then Pr(B 1 > 0, . . . , B n > 0) = 1 (2π) n/2 C W ∩{t≤x} dt √ (x 1 -t 1 ) • • • (x n -t n ) √ det M t .
Section 7 proves a marginal but delicate fact that the densities of the MRIG n distributions are continuous on the whole R n . A first version of this paper is on arXiv 1709.04843.

The MRIG n integral

2.1. The integral and its various forms It is useful to recall a classical formula, which is in fact the particular case n = 1 of Theorem 2.2 below and the starting point of an induction proof.

Lemma 2.1. If a > 0 and b ≥ 0 then ∞ 0 e -a 2 t 2 2 -b 2 2t 2 dt = π 2 1 a e -ab . (5) 
Various proofs of Lemma 2.1 exist in the literature. An elegant one considers the equivalent formulation

a √ 2π ∞ -∞ exp - 1 2 (at - b t ) 2 dt = 1 (6)
and proves ( 6) by the change of variable x = ϕ(t) = t -b at which preserves the Lebesgue measure on R. This idea seems to be due to George Boole [START_REF] Boole | Théorème général concernant l'intégration définie[END_REF]. In the sequel, if a is a column vector, or more generally a matrix, then a denotes the transposed matrix of a. 

MRIG n = C W e -1 2 (a M x a+b M -1 x b) dx √ det M x = π 2 n/2 e -(a 1 b 1 +•••+a n b n ) a 1 × • • • × a n (7) 
Comments.

• Inserting t = √ 2x in [START_REF] Bobecka | The Matsumoto-Yor property on trees for matrix variates of different dimensions[END_REF] we see that ( 5) is the particular case n = 1 of (7).

• Remarkably, the right hand side of [START_REF] Disertori | Quasi Diffusion in a 3D Supersymmetry Hyperbolic Sigma Model[END_REF] does not depend on W.

• Another presentation of ( 7) is

C W exp(- 1 2 M 1/2 x a -M -1/2 x b 2 ) dx √ det M x = π 2 n/2 1 a 1 × • • • × a n .
For n = 1 this is nothing but (6) after the change of variable x = t 2 /2.

• Another variation: from (23) below, writing for short

√ s = ( √ s 1 , . . . , √ s n ) we have 2 π n/2 C W e -x,s -1 2 b M -1 x b dx √ det M x = 1 √ s 1 × • • • × s n e -2 b, √ s -1 2 √ s W √ s .
• One more variation of ( 7) and ( 23) is obtained by considering a positive definite matrix A = (a i j ) 1≤i, j≤n in the formula

2 π n/2 C W e -1 2 tr (M x A)-1 2 b M -1 x b dx √ det M x = 1 √ a 11 × • • • × a nn e -(b 1 √ a 11 +•••+b n √ a nn )-1 2 n i, j=1 w i j (
√ a ii a j j -a i j ) .

If A = Σ -1 , consider the Gaussian random variable X = (X 1 , . . . , X n ) ∼ N(0, Σ). Recall that ρ i j = -a i j / √ a ii a j j is the correlation between X i and X j conditioned by all (X k ; k i, j). Therefore n i, j=1

w i j ( √ a ii a j j -a i j ) = n i, j=1
w i j √ a ii a j j (1 + ρ i j ).

• In (23) the condition a 1 , . . . a n > 0 is easily relaxed to a 1 , . . . , a n 0: in the right hand side of a 1 , . . . a n > 0 replace a i by |a i |, Things are quite different for the condition b 1 , . . . b n ≥ 0: see the comments of the example n = 2 in Section 3.

Proof of Theorem 2.2

Proof. We prove it by induction on n. As mentioned above, Lemma 2.1 is the case n = 1. Assume that the result is true for n. Consider

W 1 = W c c 0 , M 1 = M x -c -c 2x n+1 , (8) 
where c = (c 1 , . . . , c n ) with c i ≥ 0 for all i. We now assume that (x, x n+1 ) ∈ C W 1 . From the positive definiteness of M 1 we see that the Schur complement

t 2 = 2x n+1 -c M -1
x c is positive. We write

M 1 = I n 0 -c M -1 x 1 M x 0 0 t 2 I n -M -1 x c 0 1 . (9) 
Equality ( 9) leads to the computation of (M 1 ) -1 as follows:

(M 1 ) -1 = I n M -1 x c 0 1 M -1 x 0 0 t -2 I n 0 c M -1 x 1 = M -1 x + t -2 M -1 x cc M -1 x t -2 M -1 x c t -2 c M -1 x t -2 .
Before writing down the integral MRIG n+1 we observe that

(a , a n+1 )M 1 a a n+1 = a M x a -2a ca n+1 + 2x n+1 a 2 n+1 = -2a ca n+1 + a M x a + c M -1 x ca 2 n+1 + t 2 a 2 n+1 (b , b n+1 )(M 1 ) -1 b b n+1 = b M -1 x b + t -2 b M -1 x cc M -1 x b + 2t -2 b M -1 x cb n+1 + t -2 b 2 n+1 = b M -1 x b + t -2 (b n+1 + b M -1 x c) 2 . ( 10 
)
Also observe that the convex set C W 1 is parameterized by (x, t) in C W × (0, ∞) and that, from [START_REF] Karlin | M-matrices as covariance matrices of multinomial distributions[END_REF] we have det

M 1 = t 2 det M x .
With this parameterization we have

dxdx n+1 √ det M 1 = dx √ det M x dt.
We now write MRIG n+1 as follows

MRIG n+1 = e a ca n+1 C W exp - 1 2 a M x a + c M -1 x ca 2 n+1 + b M -1 x b × ∞ 0 exp - 1 2 t 2 a 2 n+1 + t -2 (b n+1 + b M -1 x c) 2 dt dx √ det M x = π 2 1 a n+1 e a ca n+1 -a n+1 b n+1 C W exp - 1 2 a M x a + (c a n+1 + b )M -1 x (ca n+1 + b) dx √ det M x (11) = π 2 (n+1)/2 1 a 1 × • • • × a n+1 e -a b-a n+1 b n+1 . (12) 
In this chain of equalities ( 11) is a consequence of Lemma 2.1 applied to the pair

a n+1 , b n+1 + b M -1 x c.
Here a comment is in order: a famous lemma of Stieltjes implies that M -1 x has non-negative coefficients when x ∈ C W . Let us detail the proof in this particular case: if

D = 2 diag(x 1 , . . . , x n ) then M x = D 1/2 (I n - A)D 1/2 where A = D -1/2 WD -1/2 . Since M x is positive definite, I n -A is also positive definite. Now write (I n -A) -1 = I n + A + • • • + A 2N-1 + A N (I n -A) -1 A N . Since A N (I n -A) -1 A N is positive semidefinite, its trace is ≥ 0 and therefore for all N 2N-1 k=0 tr (A k ) ≤ tr (I n -A) -1 .
Since A has non-negative coefficients this implies that ∞ k=0 tr (A k ) converges. In particular lim N→∞ tr (A 2N ) = 0. This implies that all the eigenvalues of A are in (-1, 1) and therefore the series of matrices S = ∞ k=0 A k converges to (I n -A) -1 . Since A has non-negative coefficients the same is true for S and for M -1 x = D -1/2 S D -1/2 . Furthermore, if the graph G has vertices {1, . . . , n} and has edges {i, j} present according to the fact that a i j > 0 or not, then (I n -A) -1 is positive definite if G is connected (this remark will be used in the proof of Lemma 2.4 below).

As a consequence b n+1 + b M -1 x c ≥ 0 and therefore (5) is applicable. Equality ( 12) is a consequence of the induction hypothesis where the pair (a, b) is replaced by (a, a n+1 c + b). The induction hypothesis is extended.

Laplacian of W and parameterizations of C W by (0, ∞) n and R n

In order to show in Section 2.4 that two other remarkable integrals can be deduced from the MRIG n integral [START_REF] Disertori | Quasi Diffusion in a 3D Supersymmetry Hyperbolic Sigma Model[END_REF], it is necessary to recall some definitions about Laplacian on graphs or weighted graphs (see for instance Bapat [START_REF] Bapat | Graphs and Matrices[END_REF]). We define the Laplacian of W as the quadratic form on R n defined by

v L W v = i< j w i j (v i -v j ) 2 = 1 2 n i=1 n j=1 w i j (v i -v j ) 2 . ( 13 
)
If s i = n j=1 w i j and if D = diag(s 1 , . . . , s n ) the representative matrix of this quadratic form is L W = D -W. From the definition it is semi positive definite, and since (1, . . . , 1) is a eigenvector of L W associated to the the eigenvalue zero, L W cannot be positive definite. However, by adding a proper diagonal matrix

D b = diag(b 1 , . . . , b n ) with b i ≥ 0 the matrix D b + L W can be positive definite. One can also remark that W 1 = W b b 0 implies that L W 1 = D b + L W -b -b n j=1 b j . Lemma 2.3. D b + L W is positive definite if and only if for each connected component C of the graph associated to W there exists k ∈ C such that b k > 0.
Proof. ⇐ Enough is to assume that the associated graph is connected and that there exists a k such that b

k > 0. If v is such that v (D b + L W )v = 0 then v k = 0. Furthermore v i -v j = 0 if w i j > 0.
Since the associated graph is connected all the v i 's are equal, and they are zero like v k : this shows the positive definiteness of D b + L W . ⇒ Here again we can assume that G is connected. We have seen that if b i = 0 for all i then D b + L W = L W cannot be positive definite.

The next lemma describes an important parameterization of C W by (0, ∞) n . Note that it depends on a non-zero parameter

b = (b 1 , . . . , b n ) ∈ [0, ∞) n . The case b = (1, . . . , 1) is most useful. Lemma 2.4. Assume that the graph G associated to W is connected. Let y ∈ (0, ∞) n , fix b ∈ [0, ∞) n such that b 0 and define x ∈ R n by 2x i = 1 y i         b i + n j=1 w i j y j         (14) 
Then x belongs to C W , we have

M x = D b D -1 y + L W and y = M -1 x b, the map y → x is a diffeomorphism from (0, ∞) n onto C W and dx = det M x 2 n dy y 1 × • • • × y n . ( 15 
)
Proof. We rewrite [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric sigma model[END_REF] as 2x i y i -n j=1 w i j y j = b i and thus it is equivalent to b = M x y. Denote

W (y) = D y WD y (16) 
and

s (y) i = n j=1 w i j y i y j = 2x i y 2 i -b i y i . Therefore D s (y) = 2D y D x D y -D b D y , L W (y) = D s (y) -W (y) = 2D y D x D y -D b D y -D y WD y .
From the definition (13) of the Laplacian we have L W (y) = D y L W D y and we get

D b D y + L W (y) = 2D y D x D y -D y WD y , D b D -1 y + L W = M x . From Lemma 2.3 M x = D b D -1 y +L W is positive definite and furthermore y = M -1 x b. Equality b = M x y shows that the map y → x from (0, ∞) n to C W is injective since 0 = M x (y -y ) implies y = y from the definite positiveness of M x . If x ∈ C W , define y = M -1 x b. The fact that M -1 x has only non-negative coefficients implies that y ∈ [0, ∞) n . The fact that G is connected implies that y ∈ (0, ∞) n . We get M x = D b D -1
y + L W and this shows the surjectivity since any y ∈ (0, ∞) provides a positive definite matrix

D b D -1 y + L W . The fact that y → x is a diffeomorphism from (0, ∞) n onto C W is clear. The differential of the map y → x from C W onto (0, ∞) n is h → -2M -1 x D h M -1 x b = -2M -1 x D h y. (17) 
For showing [START_REF] Sabot | The vertex reinforced jump process and a random Schrodinger operator on finite graphs[END_REF] we observe that the differential of

M → M -1 is H → -M -1 HM -1 and that the differential of the map x → M x is h → 2 D h . The Jacobian of y → x is therefore 2 n det M x y 1 × • • • × y n
and this proves [START_REF] Sabot | Hitting times of interacting drifted Brownian motions and the vertex reinforced jump process[END_REF].

Replacing y i by e t i we will use Lemma 2.4 in the next section under the following form:

Corollary 2.5. Under the hypothesis of Lemma 2.4, for t ∈ R n define 2x i (t) = b i e -t i + n j=1 w i j e t j -t i .
Then the map t

→ x = x(t) is a diffeomorphism from R n onto C W and dx = det M x 2 n dt.
2.4. The Disertori-Spencer-Zirnbauer and Disertori-Merkl-Rolles integrals In application of Theorem 2.2 and Corollary 2.5, we prove two surprizing formulas DS Z n and DMR n due to Disertori, Spencer and Zirnbauer [START_REF] Disertori | Quasi Diffusion in a 3D Supersymmetry Hyperbolic Sigma Model[END_REF] and Disertori, Merkl and Rolles [START_REF] Disertori | A supersymmetric approach to martingales related to the vertex-reinforced jump process[END_REF]. For describing them we need the following notations. We consider the quadratic form in (1.1) of the first paper:

v D(t)v = 1≤i< j≤n w i j e t i +t j (v i -v j ) 2 + n k=1 b k e t k v 2 k .
The element (i, i) of the corresponding n × n matrix D(t) is b i e t i + n j=1 w i j e t i +t j and the off diagonal element (i, j) is -w i j e t i +t j . This is nothing but the quadratic form with matrix D(t) = D b D y + L W (y) as in ( 16) when y i = e t i for all i.

We introduce a function G(t) which is only marginally different from the F defined by (1.2) in [START_REF] Disertori | Quasi Diffusion in a 3D Supersymmetry Hyperbolic Sigma Model[END_REF].

G(t) = i< j w i j (cosh(t i -t j ) -1) + n k=1 ((cosh t k -1)b k + t k ) . (18) 
With these notations, the surprising formula (1.4) of [START_REF] Disertori | Quasi Diffusion in a 3D Supersymmetry Hyperbolic Sigma Model[END_REF], see [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF] below, is the subject of the following proposition.

Proposition 2.6. Assume that W is such that the associated graph is connected and fix b ∈ [0, ∞) n with b 0. Then

DS Z n = 1 ( √ 2π) n R n e -G(t) det D(t)dt = 1. ( 19 
)
Proof. In [START_REF] Disertori | Quasi Diffusion in a 3D Supersymmetry Hyperbolic Sigma Model[END_REF] we insert a 1 = . . . = a n = 1 and we make the change of variable x → t from C W onto R n described in Corollary 2.5. We get

- 1 2 (a M x(t) a + b M -1 x(t) b) = - 1 2 n i=1 2x i (t) + 1 2 n i=1 n j=1 w i j - 1 2 n i=1 b i e t i = - 1 2 n i=1 b i (e t i + e -t i ) - 1 2 i< j w i j (e t j -t i + e t i -t j -2) = - n i=1 b i cosh t i - i< j w i j (cosh(t j -t i ) -1).
Since D(t) = D y(t) M x(t) D y(t) we have det D(t) = e n i=1 2t i det M x(t) . Using Corollary 2.5 we obtain [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF].

Similarly, formula (2.4) of Disertori, Merkl and Rolles [START_REF] Disertori | A supersymmetric approach to martingales related to the vertex-reinforced jump process[END_REF] introduces a probability µ(ds, dt) on R n × R n defined by

µ(ds, dt) = e -1 2 s D(t)s-G 1 (t) det D(t) dtds (2π) n (20) 
where the function G 1 is quite close to the function G defined by [START_REF] Seshadri | The Inverse Gaussian distribution[END_REF] and is defined by

G 1 (t) = i< j w i j (cosh(t i -t j ) -1) + n k=1 (e -t k b k + t k ) = G(t) + n k=1 (1 -sinh t k )b k .
If (S , T ) ∼ µ it is clear that S is Gaussian when conditioned by T . However, the fact that the total mass of µ is one is not that obvious. The result is stated in Proposition 2.8 below. We skip its proof which uses again Corollary 2.5. It is a consequence of the S T Z n integral (1), by the change of variable of Corollary 2.5. The hypotheses on W and b are the same as in Proposition 2.6.

Proposition 2.7 Let f (t) = 1 ( √ 2π) n e -G 1 (t) √ det D(t). Then f is a probability density on R n . Furthermore if T ∼ f (t)dt and S |T ∼ N(0, D(T ) -1
) then (S , T ) ∼ µ defined by (20).

Examples

The following examples consider various graphs associated to W where some calculations about M x are explicit.

The case n = 2.

We take

W = 0 1 1 0 , M x = 2x 1 -1 -1 2x 2 , M -1 x = 1 4x 1 x 2 -1 2x 2 1 1 2x 1
and C W is the convex set of R 2 limited by one branch of a hyperbola

C W = {(x 1 , x 2 ) ; x 1 , x 2 > 0, 4x 1 x 2 -1 > 0}. Theorem 2.2 says that C W exp -[a 2 1 x 1 + a 2 2 x 2 -a 1 a 2 + 1 4x 1 x 2 -1 (b 2 1 x 2 + b 2 2 x 1 + b 1 b 2 )] dx 1 dx 2 √ 4x 1 x 2 -1 = π 2 e -a 1 b 1 -a 2 b 2 a 1 a 2 .
A warning: the extension of MRIG n to the case where some b i ' s are negative leads to a non elementary elementary integral. The case n = 2 is appropriate for explaining this fact: following the steps of the proof of Theorem 2.2 we arrive up to a multiplicative constant to the integral

e a 1 a 2 ∞ 0 e -a 2 1 x 1 - a 2 2 +b 2 1 4x 1 -a 2 b 2 + b 1 2x 1 dx 1 √ 2x 1
that we cannot evaluate when b 1 b 2 < 0.

The complete graph for n ≥ 3

We consider the case where w i j = c for all i j. Denote by J n the n × n matrix with all entries equal to 1. Therefore W = c(J n -I n ).

Proposition 3.1. If W = c(J n -I n ) then det M x = (c + 2x 1 ) • • • (c + 2x n )(1 - n i=1 c c + 2x i ), (21) 
C W = {(x 1 , . . . , x n ); x 1 , . . . , x n ≥ 0, n i=1 c c + 2x i < 1}. ( 22 
)
Proof. Write D = 2diag(x 1 , . . . , x n ) + cI n . Therefore M x = D -cJ n = D 1/2 (I n -A)D 1/2 where A = cD -1/2 J n D -1/2 = vv and v = ( √ c √ c + 2x 1 , . . . , √ c √ c + 2x n ) .
The eigenvalues of A are 0 with multiplicity n-1 and v v = n i=1 c c+2x i . This implies that the eigenvalues of I n -A are 1 with multiplicity n -1 and 1 -n i=1 c c+2x i . This leads to (21). To prove (22), clearly the right-hand side contains C W . Conversely if x i > 0 for all i writing

M x = D 1/2 (I -A)D 1/2 shows x ∈ C W if and only if I -A is positive definite, i.e. 1 -n i=1 c c+2x i > 0.

The daisy

We consider the case where

W =                       0 c 1 c 2 . . . c n c 1 0 0 . . . 0 c 2 0 0 . . . 0 . . . . . . . . . . . . . . . c n 0 0 . . . 0                       , M x =                       2x 0 -c 1 -c 2 . . . -c n -c 1 2x 1 0 . . . 0 -c 2 0 2x 2 . . . 0 . . . . . . . . . . . . . . . -c n 0 0 . . . 2x n                      
It is easy to see by induction that

det M x = 2 n x 1 × • • • × x n        2x 0 - n i=1 c 2 i 2x i        , C W = {(x 0 , . . . , x n ); x 0 , . . . , x n > 0, 2x 0 - n i=1 c 2 i 2x i > 0}.
It is elementary to write M -1

x explicitly. If we write for simplicity

M(a, b, c) =                       a c 1 c 2 . . . c n c 1 b 1 0 . . . 0 c 2 0 b 2 . . . 0 . . . . . . . . . . . . . . . c n 0 0 . . . b n                       B = b 1 × • • • × b n , D = det M(a, b, c) = B a -n i=1 c 2 i b i and H = M(a, b, c) -1 = (h i j ) 0≤i
, j≤n then for i j and distinct from 0 we have

h 00 = B D , h 0i = - B D c i b i , h ii = 1 b i       1 + B D c 2 i b i       , h i j = c i c j b i b j        1 + B D ( c 2 i b i + c 2 j b j )        For n = 2 it gives D = det M x = 8x 0 x 1 x 2 -2x 2 c 2 1 -2x 1 c 2 2 and
M -1 x = 1 D           4x 1 x 2 2c 1 x 2 2c 2 x 1 2c 1 x 2 4x 0 x 2 -c 2 2 c 1 c 2 2c 2 x 1 c 1 c 2 4x 0 x 1 -c 2 1          

The chain

Define A n+1 as the graph 0

• -

1 • - 2 • -. . . - n • corresponding to the matrix W =                                  0 c 1 0 0 • • • 0 0 c 1 0 c 2 0 • • • 0 0 0 c 2 0 c 3 • • • 0 0 0 0 c 3 0 • • • 0 0 • • • • • • • • • • • • . . . • • • • • • 0 0 0 0 • • • 0 c n 0 0 0 0 • • • c n 0                                 
where c 1 , . . . , c n > 0. Thus M x = -W + diag(2x 0 , 2x 1 , . . . , 2x n ) is a Jacobi matrix. Without losing generality we may assume that c 1 = . . . = c n = 1 by the transformation diag(λ 0 , λ 1 , . . . , λ n ) M x diag(λ 0 , λ 1 , . . . , λ n )

where

λ 0 = 1, λ 1 = 1 c 1 , λ 2p = c 1 c 3 . . . c 2p-1 c 2 c 4 . . . c 2p , λ 2p+1 = c 2 c 4 . . . c 2p c 1 c 3 . . . c 2p+1
thus replacing x i by the affinity x i λ2 i . If D 0 = 2x 0 and D 1 = 4x 0 x 1 -1 then the determinant D n of the matrix

M x =                                  2x 0 -1 0 0 • • • 0 0 -1 2x 1 -1 0 • • • 0 0 0 -1 2x 2 -1 • • • 0 0 0 0 -1 2x 3 • • • 0 0 • • • • • • • • • • • • . . . • • • • • • 0 0 0 0 • • • 2x n-1 -1 0 0 0 0 • • • -1 2x n                                  is computable by the induction formula D n = 2x n D n-1 -D n-2 .
For instance for n = 3 the set C W is described by the four inequalities

x 0 > 0, 4x 0 x 1 -1 > 0, 4x 0 x 1 x 2 -x 0 -x 2 > 0, 16x 0 x 1 x 2 x 3 -4x 0 x 3 -4x 2 x 3 -4x 1 x 2 + 1 > 0.
Since the chain A n+1 is also a tree, results of Section 5 below are applicable to this example.

4.

A study of the MRIG n distributions

MRIG n as a natural exponential family

Writing s i = a 2 i in ( 7) we obtain

2 π n/2 C W e -x,s -1 2 b M -1 x b dx √ det M x = 1 √ s 1 × • • • × s n e -(b 1 √ s 1 +•••+b n √ s n )-1 2 n i, j=1 w i j √ s i s j , (23) 
which suggests that the natural exponential family (NEF) concentrated on C W ⊂ R n generated by the unbounded measure

µ(b, W)(dx) = e -1 2 b M -1 x b 1 C W (x) dx √ det M x (24) 
is interesting to study. For n = 1 if b 1 > 0 this is nothing but a RIG distribution mentioned in (3) and if b 1 = 0 it is a Gamma family with shape parameter 1/2. For n > 1 and b = 0 this family is considered in Sabot, Tarrès and Zeng (2016). Given W and a ∈ (0, +∞) n , b ∈ [0, +∞) n we consider the probability on [0, +∞) n defined by

P(a; b, W)(dx) = ( 2 π ) n/2         n j=1
a j e a j b j

        e -1 2 a M x a-1 2 b M -1 x b 1 C W (x) dx 1 × • • • × dx n √ det M x .
We say that P(a; b, W) is a MRIG n distribution. Theorem 2.2 proves that it is indeed a probability. From time to time we will use the notation f (a; b, W)(x) for the density of P(a; b, W). Note that (X 1 , . . . , X n ) ∼ P(a; b, 0) iff X 1 , . . . , X n are independent and X k ∼ RIG(a k , b k ), k ∈ {1, . . . , n}.

In this section, we show that if X has a MRIG n distribution then the subvector (X 1 , . . . , X k ) has a MRIG k distribution. We also show that up to a translation factor, the conditional distribution of (X k+1 , . . . , X n ) given (X 1 , . . . , X k ) has a MRIG n-k distribution. Thus the class of MRIG n distributions has a remarkable property of stability by marginalization and conditioning. These facts have been independently observed by Sabot and Zeng (2019) in their Lemma 5, and also mentioned in Sabot and Zeng [START_REF] Sabot | Hitting times of interacting drifted Brownian motions and the vertex reinforced jump process[END_REF] quoting the arXiv versions of Sabot and Zeng [START_REF] Sabot | Hitting times of interacting drifted Brownian motions and the vertex reinforced jump process[END_REF] and of the present paper.

We begin with the calculation of the Laplace transform of P(a; b, W). Introducing the following function:

G(a; b, W) = ( π 2 ) n/2         n j=1 e -a j b j a j         e -1
we remark that P(a; b, W)(dx) can be written as

P(a; b, W)(dx) = 1 G(a; b, W) e -(x 1 a 2 1 +•••+x n a 2 n ) µ(b, W)(dx). (26) 
Under the form (26) we see that for fixed

b ∈ [0, ∞) n F b = {P(a; b, W), a ∈ (0, ∞) n }
is a natural exponential family, parameterized by a and not by its natural parameter (s 1 , . . . , s n ) = (a 2 1 , . . . , a 2 n ), and generated by µ(b, W). From the fact that the mass of (26) is one, the Laplace transform of µ(b, W) is defined for s

∈ (0, ∞) n by L µ(b,W) (s) = G(( √ s 1 , . . . , √ s n ); b, W).
We deduce from this the form of the Laplace transform of P(a; b, W) itself.

Proposition 4.1. If (X 1 , . . . , X n ) ∼ P(a; b, W) then

E(e -(s 1 X 1 +•••+s n X n ) ) = e a,b - √ a 2 +s,b e a Wa- √ a 2 +s W √ a 2 +s n j=1 a j a 2 j + s j , (27) 
where we have written symbolically

√ a 2 + s = ( a 2 1 + s 1 , . . . , a 2 n + s n ) . In particular E(X i ) = m i = 1 2a i         b i + j i w i j a j         , (28) 
Var(X i ) = 1 4a 4 i + m i 2a 2 i , (29) 
Cov(X i , X j ) = -w i j 4a i a j .

Comments. The one dimensional margins are the classical RIG distributions (3). More specifically the distribution of X i is

RIG(a i , b i + n j=1
w i j a j ) = RIG(a i , 2a i m i ).

In other terms the two parameters of the distribution of X i 's are the i components of the vectors a and b + Wa. Formula (28) expresses m i with a formula which is the successful change of variable [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric sigma model[END_REF] where the pair (x, y) is replaced here by (m, a). Observe also that the covariance of (X i , X j ) is never positive. It can be mentioned that, like for a Gaussian distribution, the parameters (a, b, W) of the distribution MRIG n are determined if we know the distributions of all pairs (X i , X j ) : the knowledge of the distribution of X i gives from (28) and (29) the knowledge of m i and a i . The knowledge of the distribution of (X i , X j ) and of a gives from (30) the knowledge of w i j and W, and then (28) gives the value of b i . Estimation of the parameters can be designed from this remark. One more analogy with the Gaussian distributions is the fact that if X ∼ MRIG n then X i and X j are independent if and only if they are uncorrelated: this can be read from the Laplace transform of X.

Proof of Proposition 4.1. Formula (27) comes immediately from

E(e -s 1 X 1 -...-s n X n ) = G( a 2 1 + s 1 , . . . , a 2 n + s n ); b, W) G(a; b, W)
.

Equations ( 28) and ( 29) are consequence of the properties of the one dimensional RIG given in (4). The simple formula (30

) is obtained by Cov(X i , X j ) = ∂ 2 ∂s i ∂s j log G( a 2 1 + s 1 , . . . , a 2 n + s n ); b, W)| s=0 .

The marginals of the MRIG n distribution

For stating the next results we need the following notations:

• For vectors (a 1 , a 2 , . . . , With this notation sometimes we write P(ã n ; bn , W) for P(a; b, W).

• If 

W n =                  0 
                
for k ∈ {2, 3, . . . , n} we take c k ∈ R k-1 defined as the kth column of W n but restricted to be above the diagonal, namely c k = (w 1k , w 2k , . . . , w k-1,k ) .

• If k ∈ {1, 2, 3, . . . , n} we write W n by blocks as follows

W n = W k W k,n-k W k,n-k W n-k .
In other terms

W k = [w i j ] 1≤i, j≤k , W n-k = [w i j ] k+1≤i, j≤n .
• The killing symbol K from R n to R n-1 is defined by

K(x 1 , . . . , x n ) = (x 1 , . . . , x n-1 ) .
For instance K bk = bk-1 . In general for k < n we have

K n-k (x 1 , . . . , x n ) = (x 1 , . . . , x k ) . Proposition 4.2. If (X 1 , . . . , X n ) ∼ P(ã n , bn , W) then (X 1 , . . . , X k ) ∼ P(ã k , B k , W k )
where

B k = bk + n j=k+1 a j K j-k-1 c j = bk + W k,n-k (a k+1 , . . . , a n ) .
Proof. For k = n -1, this is claiming that (X 1 , . . . , X n-1 ) ∼ P(ã n-1 , bn-1 + a n c n , W n-1 ). Such a formula is essentially formula [START_REF] Massam | The Matsumoto-Yor property on trees[END_REF] when replacing n by n + 1.

We now prove the result by induction on nk. Suppose that (X 1 , . . . , X k ) ∼ P(ã k , B k , W k ) is true. Then as for the passage from n to n -1 we can claim that (X 1 , . . . , X k-1 ) ∼ P(ã k-1 , KB k + a k c k , W k-1 ). Now we have

KB k + a k c k = K bk + a k c k + K n j=k+1 a j K j-k-1 c j = bk-1 + a k c k + n j=k+1 a j K j-k c j = B k-1 ,
and the induction is extended.

Comments.

• Proposition 4.2 could have been proved with the Laplace transform of Proposition 4.1, but is seems that after all induction is simpler.

• A reformulation of Proposition 4.2 is the explicit form of the integral

C W n-k f ãn ; bn ,W n ( xk , x k+1 , . . . , x n )dx k+1 . . . dx n = f ãk ,B k ,W k ( xk ), namely ( 2 π ) n/2         n j=1 a j         e a,b -1 2 a Wa C W n-k e -(x 1 a 2 1 +•••+x n a 2 n )-1 2 b M -1 x b 1 C W (x) dx k+1 . . . dx n √ det M x = ( 2 π ) k/2         k j=1 a j         e ãk ,B k e -1 2 ã k M xk ãk -1 2 B k M -1 xk B k 1 C W k ( xk ) 1 det M xk .
• Inserting b = 0 in Proposition 4.2 makes that (X 1 , . . . , X n ) has an S T Z n distribution. If we also take k = n -1 we see that B n-1 = a n c where c = (w i,n ) n-1 i=1 . As a consequence, we see that any MRIG n-1 distribution is a projection of some S T Z n distribution. This explains why Sabot, Tarrès and Zeng [START_REF] Sabot | The vertex reinforced jump process and a random Schrodinger operator on finite graphs[END_REF] indeed observe that one dimensional margins of an S T Z n distribution are RIG ones.

Conditional distributions under MRIG n

Let us begin by some general observations about exponential families on a product E × F of two Euclidean spaces generated by the distribution π(dx)K(x, dy). Let Θ ⊂ E × F be the interior of the set

{(t, s) ; L(t, s) = E×F e -t,x -s,y π(dx)K(x, dy) < ∞}.
Let us assume that Θ is the product of two open subsets of E and F respectively:

Θ = Θ E × Θ F , (31) 
let us fix (t 0 , s 0 ) ∈ Θ and consider a random variable (X, Y) valued in E × F with density 1 L(t 0 , s 0 ) e -t 0 ,x -s 0 ,y π(dx)K(x, dy).

We are interested in the Laplace transform of the conditional distribution of Y|X. For computing this, consider the marginal density of X with respect to π : 1 L(t 0 , s 0 ) F e -t 0 ,x -s 0 ,y K(x, dy) = e -t 0 ,x g(s 0 ; x) L(t 0 , s 0 ) ,

where we have introduced the auxiliary function g(s 0 ; x) = F e -s 0 ,y K(x, dy) defined on Θ F × E. As a consequence, the conditional distribution of Y|X is e -s 0 ,y K(X, dy)/g(s 0 ; X) and its Laplace transform is for s + s 0 ∈ Θ F the ratio

s → g(s + s 0 ; X) g(s 0 ; X) . (32) 
Suppose now that we are able to identify a density on F having (32) as Laplace transform. In this case the problem of computation of the density of Y|X will be solved. This program will be applied to

E = R k , F = R n-k
, to a probability on R n defined by its density

f (x) ∝ e -1
and finally to t 0 = (a 2 1 , . . . , a 2 k ), s 0 = (a 2 k+1 , . . . , a 2 n ). We prove in Section 7 that f is continuous on R n when b 1 , . . . , b n is not zero and when the graph associated to W is connected.

This condition (31) is fulfilled with

Θ E = (0, ∞) k and Θ F = (0, ∞) n-k . Of course Xk = (X 1 , . . . , X k
) and (X k+1 , . . . , X n ) replace X and Y. Also s is now (s k+1 , . . . .s n ) and s + s 0 is described by

A k (s) = ( a 2 k+1 + s k+1 , . . . , a 2 n + s n ) .
The crucial function g(s 0 ; x) is now constructed from Proposition 4.2, where the marginal law of (X 1 , . . . , X k ) is computed. We get

g(a 2 k+1 , . . . , a 2 n ; xk ) = G(a; b, W) G(ã k ; B k , W k ) e -1 2 B k M -1 xk B k det(M xk ) 1 C W k ( xk ), (33) 
where the function G(a; b, W) has been introduced in (25). Remember that the right hand side of (33) depends of a k+1 , . . . , a n also through B k = bk + W k,n-k (a k+1 , . . . , a n ) . Let us adopt the notation

B k (s) = bk + W k,n-k A k (s). (34) 
Here is now the Laplace transform of (X k+1 , . . . , X n ) given Xk

E(e -s k+1 X k+1 -...-s n X n | Xk = xk ) = g((a 2 k+1 + s k+1 , . . . , a 2 n + s n ); xk ) g(a 2 k+1 , . . . , a 2 n ; xk ) = PQR P = G((ã k , A k (s)); b, W) G(a; b, W) , Q = G(ã k ; B k , W k ) G(ã k ; B k (s), W k ) , R = e -1 2 B k (s) M -1 xk B k (s)+ 1 2 B k M -1 xk B k . (35) 
It is our intention to prove the existence of α = (α k+1 , . . . , α n ) , β = (β k+1 , . . . , β n ) , γ = (γ k+1 , . . . , γ n ) and of a matrix W such that

PQR = G( α 2 k+1 + s k+1 , . . . , α 2 n + s n ; β, W) G(α k+1 , . . . , α n ; β, W) e -γ k+1 s k+1 -...-γ n s n
which is saying that the conditional distribution of (X k+1 -γ k+1 , . . . , X n -γ n ) given Xk is a MRIG n-k distribution. The next proposition gives the complete result: 

W = W n-k + W n-k,k M -1 Xk W k,n-k -D.
Then the conditional distribution of (X k+1 -γ k+1 , . . . , X n -γ n ) given Xk is P(α, β, W).

Proof. We have to analyze the dependency on s of the three quantities P, Q, R defined above by (35). However for simplification, we do not write the factors which do not depend on s. More specifically we introduce the following equivalence relation among non-zero functions f or g depending on s and possibly on other parameters like a, b, W by writing f ≡ g if f (s)/g(s) does not depend on s. For instance

P ≡ n j=k+1 (a 2 j + s j ) -1 2 × e -(b k+1 √ a 2 k+1 +s k+1 +•••+b n √ a 2 n +s n ) e -ã k W k,n-k A k (s)-1 2 A k (s) W n-k A k (s) , Q ≡ e ã k W k,n-k A k (s) , R ≡ e -1 2 B k (s) M -1 Xk B k (s) ≡ e -A k (s) W n-k,k M -1 Xk bk × e -1 2 A k (s) W n-k,k M -1 Xk W k,n-k A k (s) .
A patient analysis of the product PQR as a function of A k (s) gives Proposition 4.3.

(ii) if G is a tree or a forest, if M is positive definite and if ( i j ) 1≤i, j≤n is a symmetric matrix such that i j = ±1 and ii = 1 for all i, j then the symmetric matrix ( i j m i j ) 1≤i, j≤n is also positive definite;

(iii) if the graph has a cycle then det M is a sum of monomials such that at least one of them contains an odd power of some m i j with i, j ∈ E.

Comments. In general, changing the two off-diagonal entries m i j and m ji of a positive definite matrix M into -m i j and -m ji creates a new symmetric matrix which can be not positive definite anymore. The proposition shows that this is not the case when the graph associated to M is a tree. Part 3 shows that the fact that det M is a polynomial in (m 2 i j ) I,J ∈ E characterizes the fact that the graph is a tree or a forest.

Proof. We prove (i) by induction on n. The result is clear when n = 1 and n = 2. Suppose that it is true for n and consider the case of a symmetric matrix M 1 order n + 1 such that its associated graph G 1 is a tree. Without loss of generality, we may assume that n + 1 has only one neighbour in the tree and that this neighbor is n. This implies that M 1 has the form

M 1 = M v v m n+1,n+1 , v = (0, . . . , 0, m n+1,n ),
where the symmetric matrix M of order n is associated to the graph G which is G 1 minus the vertex n + 1.

Since n + 1 had n as the only neighbour, G is also a tree. Write also

M = M -1 v -1 v -1 m n,n ,
where M -1 is symmetric of order n -1. Assume that m n+1,n+1 0 and denote c = m 2 n+1,n /m n+1,n+1 and

M = M -1 v -1 v -1 m n,n -c .
Therefore we get that det M 1 = m n+1,n+1 det M .

Since M is symmetric and since its associated graph is the tree G, the induction hypothesis implies that det M is a polynomial with respect to the squares of the m i j with 1 ≤ i < j ≤ n where (i, j) is an edge of G. Also, det M is an affine function of c. Since c is a multiple of m 2 n+1,n , therefore the extension of the induction hypothesis to n + 1 is done when m n+1,n+1 0. The extension to the case m n+1,n+1 = 0 is done by continuity of the polynomial det M 1 .

For showing (ii) we now apply (i) to the case where M is positive definite and we assume without loss of generality that G is a tree. We number its vertices {1, . . . , n} such that if G k is the graph associated to the restriction M k of M to {1, . . . , k} 2 , then G k is a tree, a point which can be proved by induction. Denote M k ( ) = ( i j m i j ) 1≤i, j≤k . Since G k is a tree and since M is positive definite, then det(M k ( )) > 0. From the theorem of principal determinants, M n ( ) is positive definite.

For showing (iii) we assume first that G contains the cycle 1 -2 -. . .n -1. We choose m i j = 0 if |i -j| 1 m 12 = m 21 = a and m i, j = 1 for the other edges of the cycle. With this choice the matrix M is

M n =                                  0 a 0 0 • • • 0 1 a 0 1 0 • • • 0 0 0 1 0 1 • • • 0 0 0 0 1 0 • • • 0 0 • • • • • • • • • • • • . . . • • • • • • 0 0 0 0 • • • 0 1 1 0 0 0 • • • 1 0                                  . Standard techniques show that det M n = det M n+4 for n ≥ 3 and that det M 3 = det M 5 = 2a, det M 4 = (a -1) 2 , det M 6 = -(a + 1) 2 .
Therefore one of the monomials is ±2a: this odd power is the one which was announced and this ends the proof of Proposition 5.1.

For stating Proposition 5.2 we need to introduce the MacDonald function on (0, ∞) :

K q (x) = 1 2 ∞ 0 u q-1 e -1 2 x(u+ 1 u ) du.
It is useful to display a property of this integral

2 b a q K q (2ab) = ∞ 0 v q-1 e -a 2 v-b 2 v dv. (37) 
We denote by s(i) the number of neighbours of i in the tree, namely the size of { j : w i j > 0}.

Proposition 5.2. Let W = (w i j ) 1≤i, j≤ j be a symmetric matrix with zero diagonal such that its associated graph G is a tree. Let M x = 2 diag(x 1 , . . . , x n ) -W and let C W be the set of x's such that M x is positive definite. If q > 0 then

C W e -1 2 a M x a (det M x ) q-1 dx = 2 q-1 Γ(q)e 1 2 a Wa n i=1 a q(s(i)-2) i i< j |w i j | q K q (a i a j |w i j |). (38) 
Comments.

• For y 1 , . . . , y n > 0 another presentation of (38) is

C W e -x,y (det M x ) q-1 dx = 2 q-1 Γ(q) n i=1 y 1 2 q(s(i)-2) i i< j
w q i j K q ( √ y i y j w i j ).

• Of course, inserting q = 1/2 gives back the Sabot -Tarrès -Zeng-integral in the case where G is a tree. To check this we use Lemma 2.1 above which says

K 1/2 (x) = π 2x e -x , x > 0.
For q = 3/2 we use Watson [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF] page 90 formula 12 for getting

K 3/2 (x) = π 2x e -x 1 + 1 x , x > 0,
and we obtain

C W e -1 2 a M x a det M x dx = π 2 n/2 n i=1 a -3 i i< j
(1 + a i a j w i j ).

• We give a proof of Proposition 5.1, while another proof could be extracted from Massam and Wesołowski (2004), where the authors consider the NEF generated by the unbounded measure

1 C W (x)(det M x ) q-1 dx
and independence properties of distributions from this NEF. Bobecka [START_REF] Bobecka | The Matsumoto-Yor property on trees for matrix variates of different dimensions[END_REF] has a multivariate generalization.

Proof. We proceed by induction on n. This is correct for n = 1 since in this case s(1) = 0 and since the empty product i< j is one. Suppose that the formula (38) is true for n and let us extend it to n + 1. We use the same notation as in Section 2.2: we keep the notations a, W and M x for the matrices of order n as before and we consider the block matrices M 1 and W 1 defined by [START_REF] Disertori | A supersymmetric approach to martingales related to the vertex-reinforced jump process[END_REF]. We now use a different factorization of M 1 by writing

M 1 = I n -c 2x n+1 0 1 M x -cc 2x n+1 0 0 2x n+1 I n 0 -c 2x n+1 1 . (39) 
Since the graph G 1 which is associated to W 1 is a tree, without loss of generality we assume that the vertex n + 1 has only one neighbour which is n. In other terms, we may assume that the vector c of R n has the form c = (0, . . . , 0, w n,n+1 ) .

This choice implies also that the graph G associated to W is still a tree. Formula (39) implies that C W 1 is the set of (x, x n+1 ) ∈ R n+1 such that x n+1 > 0 and such that the diagonal y of the matrix

M y = M x -cc 2x n+1 = M x -        0 0 0 w 2 n,n+1 2x n+1        , namely y = (x 1 , . . . , x n-1 , x n - w 2 n,n+1 4x 
n+1 ) , belongs to C W . The Jacobian of the transformation (x, x n+1 ) → (y, x n+1 ) is one. Therefore we can write

C W 1 e -1 2 a M x a+a ca n+1 -a 2 n+1 x n+1 (det M 1 ) q-1 dxdx n+1 = e a ca n+1 C W 1 e -1 2 a (M x -cc 2x n+1 )a-(c a) 2 4x n+1 -a 2 n+1 x n+1 det(M x - cc 2x n+1 ) q-1 (2x n+1 ) q-1 dxdx n+1 = C W e -1 2 a M y a (det M y ) q-1 dy × e a ca n+1 ∞ 0 e -(c a) 2 4x n+1 -a 2 n+1 x n+1 (2x n+1 ) q-1 dx n+1 .
The latter integral is expressed with (37) as

e |w n,n+1 |a n a n+1 a q n a q n+1 |w n,n+1 | q K q (a n a n+1 |w n,n+1 |),
and the former one is (38), from the induction hypothesis. To conclude, observe that the number of neighbours of n + 1 in G 1 is one, and that the number of neighbours of n in G 1 is the number s(n) of neighbours of n in G plus one. 

θ = (θ 1 , . . . , θ n ) ∈ R n + and x ∈ C W , denote R n + e -θ,b g x (b)db = f (x, θ). Then for y = (y 1 , . . . , y n ) ∈ R n + we have C W e -x,y f (x, θ)dx = 1 2 n y 1 (y 1 + θ 1 ) . . . y n (y n + θ n ) e -1 2 n i, j=1 w i j √ y i y j . (40) 
In particular

C W e -x,y f (x)dx = 1 2 n y 1 × • • • × y n e -1 2 n i, j=1 w i j √ y i y j .

Proof. Enough is to multiply both sides of ( 23) by e -θ,b and integrate with respect to b on R n + . Permuting the integrations on the left hand side leads to (40). Corollary 6.2.

f (x) = 1 (2π) n/2 C W ∩{t≤x} dt √ (x 1 -t 1 ) . . . (x n -t n ) √ det M t . (41) 
Proof. Denote

h(x) = 1 π n/2 (x 1 × • • • × x n ) 1/2 1 R n + (x), g(x) = 1 (2π) n/2 1 √ det M x 1 C W (x).
Consider the Laplace transforms L f (y), L g (y), L h (y) defined for y 1 , . . . , y n > 0. They are respectively given by ( 40) with θ = 0 , by the Sabot-Tarrès-Zeng integral (1) and by

R n + e -x,y h(x) = 1 √ y 1 × • • • × y n .
As a consequence L f = L g L h which implies that f is the convolution product of g and h and proves (41). 

f (x) = 1 (2π) n/2 √ y 1 × • • • × y n (0,∞) n        det(D -1 u+y + L W ) n i=1 (u i (u i + y i )))        1/2 du 1 . . . du n (42) 
with the Laplacian L W defined in [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functionals. Part II: The role of the generalized inverse Gaussian laws[END_REF].

Proof. In (41) we make the change of variable introduced in Lemma 2.4, namely s = M -1 t b. We also observe that again from Lemma 2.4 it follows that M x -M t = D b (D -1 y -D -1 s ) and that n i=1 Hence the change of variables: u i = s iy i , i ∈ {1, . . . , n}, yields (42).

(x i -t i ) = 1 2 n det(M x -M t ) = 1 2 n det D b (D -1 y -D -1 s ) =
Comments.

• Applying formula (41) even to the case n = 2 is surprising, since the left hand side is explicitly known: recall that if

(X 1 , X 2 ) ∼ N 0, 1 -cos α -cos α 1 ⇒ Pr(X 1 > 0, X 2 > 0) = α 2π .
Therefore, if M x = 2x 1 -w -w 2x 2 formula (41) gives the following double integral on the domain

D = {(t 1 , t 2 ), t 1 < x 1 , t 2 < x 2 , w < 2 √ t 1 t 2 }: arccos w 2 √ x 1 x 2 = D dt 1 dt 2 (x 1 -t 1 )(x 2 -t 2 )(4t 1 t 2 -w 2 )
, an identity not so easy to check directly.

Since 0 = M x t = M x t + -M x t -we multiply by (t + ) on the left for getting (t + ) M x t + = (t + ) M x t -. Since t + i t - i = 0 we have that (t + ) M x t -≤ 0. Since M x is positive semidefinite we have that (t + ) M x t + = 0 and therefore M x t + = 0. Without loss of generality, assume that t + = (t 1 , . . . , t k , 0, . . . , 0) with t 1 , . . . , t k > 0. Let us show that k = n. Since t i 0 > 0 we have k > 0. Suppose that k < n. We now split M x in blocks

M x = A B B C ,
where A is a (k, k) matrix. Clearly since M x t + = 0 we get B (t 1 , . . . , t k ) = 0. Since it holds for all t j > 0 for j ∈ {1, . . . , k} this implies that B = 0. This contradicts the fact that G is connected, and finally k = n.

Second step. We show that no principal minor of M x of order n -1 can be zero. Suppose for instance that the cofactor C i 0 (x) of 2x i 0 is zero. This implies that there exists a non-zero t ∈ R n such that M x t = 0 and t i 0 = 0. From the first step, this is impossible.

Third step. Consider a sequence (x k ) ∞ k=1 in C W converging to x and let us show that f (x k ) converges to zero. This is equivalent to show that

E k = b M -1
x k b + log det M x k → ∞. Recall that we have assumed that there exists i 0 such that b i 0 > 0. Recall also that all coefficients of M -1

x k are non-negative. As a consequence

E k ≥ b 2 i 0 C i 0 (x k ) 1 det M x k + log det M x k .
As polynomials in x k we have that C i 0 (x k ) converges to C i 0 (x) and det M x k converges to det M x . Since C i 0 (x k ) > 0 from the second step and since det M x = 0, we have shown that E k tends to infinity and the proof is done.
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A convolution property of the MRIG n laws

The following proposition is a generalization of the following additive convolution:

(see Barndorff-Nielsen and Koudou [START_REF] Barndorff-Nielsen | Trees with random conductance and the (reciprocal) inverse Gaussian distribution[END_REF], Barndorff-Nielsen and Rydberg [START_REF] Barndorff-Nielsen | Exact distributional results for random resistance trees[END_REF] and Barndorff-Nielsen, Blaesild and Seshadri [START_REF] Barndorff-Nielsen | Multivariate distributions with generalized inverse Gaussian marginals and associated Poisson mixtures[END_REF]) with definitions in (2) and (3).

Proposition 4.4. Let a i , b i , b i > 0 for i ∈ {1, . . . , n}. If X = (X 1 , . . . , X n ) has the MRIG n distribution P(a; b, W), if Y = (Y 1 , . . . , Y n ) such that Y i ∼ IG(a i , b i ) with independent components, and if X and Y are independent, then

Proof. Compute the Laplace transform, using Proposition 4.1 and (2).

Questions

Here are some unsolved problems linked to MRIG n laws:

This random matrix is concentrated on a manifold of dimension n. This is a natural question since in one dimension if X ∼ RIG(a, b) then the distribution of 1/X is known and is IG(b/2, 2a). However the Laplace transform of M -1 X , namely L(s) = E(e -tr (sM -1 X ) ) defined when s is a positive definite matrix of order n is not known in general. If b = 0 then X has an S T Z n distribution and Theorem 2.2 shows that L(s) is known for s of rank one.

• Since in one dimension IG and RIG distributions are particular cases of the generalized inverse Gaussian laws, the natural extension of the MRIG n laws is to consider the probability densities on

extending our familiar MRIG n integral from 1/2 to an arbitrary real number q. But the corresponding integral extending Theorem 2.2 is untractable. However, in a particular case, namely if b = 0 and if the graph G associated to W is a tree, Proposition 5.1 below computes the integral on C W of the function (36). A related distribution has been analyzed in Massam and Wesołowski [START_REF] Massam | The Matsumoto-Yor property on trees[END_REF] in connection with a multivariate version of the Matsumoto-Yor property (see e.g. Matsumoto and Yor [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functionals. Part II: The role of the generalized inverse Gaussian laws[END_REF], Letac and Wesołowski [START_REF] Letac | An independence property for the product of GIG and gamma laws[END_REF] and Massam and Wesołowski [START_REF] Massam | The Matsumoto-Yor property and the structure of Wishart distributions[END_REF]).

• Probabilistic interpretations of the one dimensional laws IG and RIG are known, as hitting time and time of last visit of an interval [a, ∞) by a drifted Brownian motion t → mt + B(t) (in the respective cases m > 0 and m < 0). How to extend this to MRIG n laws? An answer to this problem is given in Sabot and Zeng (2017) but one may look for other interpretations.

Another generalization of the Sabot-Tarrès-Zeng integral: the case of a tree

In this section we consider another generalization of a specialization of the Sabot-Tarrès-Zeng integral (1): we assume that the graph G associated to W is a tree but we replace in (1) the power -1/2 of det M x by the real number q -1 > -1. Furthermore in Proposition 5.2, we are able to drop the restriction w i j ≥ 0 that we have done all along the paper, because of the following proposition of linear algebra: Proposition 5.1. Let M = (m i j ) 1≤i, j≤n be a symmetric matrix and let

Assume that G is a graph with set of vertices {1, . . . , n} and with E as set of edges. Then (i) If G is a tree or a forest, det M is a polynomial in (m ii ) n i=1 and in (m 2 i j ) (i, j)∈E ;

• Some comments about tentative applications to Bayesian analysis of MRIG n are in order. Recall that a positive matrix A = ρI n -C is called a M-matrix if C = (c i j ) 1≤i, j≤n is such that c i j ≥ 0 for all i, j.

Of course with our usual notation and for x ∈ C W then M x is a M-matrix: we have just to define c i j = w i j for i j, ρ = max i 2x i and c ii = ρ -2x i for seeing this fact. The M-matrices are widely used in statistics since for X ∼ N(0, Σ) then the density g(x) of X has the MT P 2 property, namely for all x, y ∈ R n g(min(x 1 , y 1 ) . . . , min(x n , y n ))g(max(x 1 , y 1 ) . . . , max(x n , y n )) ≥ g(x)g(y)

if and only if Σ -1 is a M-matrix: we refer for instance to [START_REF] Karlin | M-matrices as covariance matrices of multinomial distributions[END_REF] Page 482 for this fact. In Theorem 3 of the same paper it is proved that for X ∼ N(0, Σ) and for all i, j the covariance of X i , X j conditioned by {X k ; 1 ≤ k ≤ n, k i, j} is non negative if and only if Σ -1 is a M-matrix.

From the point of view of Bayesian analysis two types of Gaussian models come to mind

The densities have the MT P 2 property and the conditional covariances are all non negative. In order to use the MRIG n integral one is tempted to consider the a priori measure

which is unfortunately unbounded since x → C W N(0, M θ )(x)π(dθ) is an unbounded density. From (23) and the last comment before the proof of Theorem 2.2, this density is proportional to

These densities have less attractive properties from the MT P 2 point of view. Nevertheless the a priori measure

is bounded. However a major defect of this choice is the fact that x → C W N(0, M -1 θ )(x)π(dθ) is computable (by (23)) only if x 1 , . . . , x n are all non negative (again, see example n = 2 in Section 3). 

Proof. The continuity of f is clear outside of the boundary of C W , namely outside of the set ∂C W of x ∈ R n such that M x is positive semidefinite with det M x = 0. In the sequel we fix x ∈ ∂C W and we prove the continuity of f at this point x.

First step. We show that if t = (t 1 , . . . , t n ) ∈ R n is such that M x t = 0 and if t i 0 > 0 for some i 0 , then t i > 0 for all i = 1, . . . , n. To see this, we use the notation t + i = max(0, t i ) , t - i = t + it i and t + = (t + 1 , . . . , t + n ) , t -= t +t.