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Abstract

Rotator cuff lesions are very frequent events. The diagnosis of these lesions
is challenging and requires experience. The goal of this study is to develop
a computer aided diagnosis (CAD) system based on Capsule Network (Cap-
sNet) to classify rotator cuff lesions as normal, degenerated or torn in a new
dataset of 1006 shoulder proton density (PD) weighted MRIs. Increasing the
number of primary capsules and adding two cascaded convolution layers before
capsule layer provided the CapsNet model to extract discriminative features
for the better recognition of rotator cuff pathologies. The overall success rate
of proposed Capsnet model was 94.75%, compared to custom designed CNN,
AlexNet, GoogLenet and the gray level co-occurrence matrix (GLCM) which
provided overall success rates of 93.21%, 88.45%, 87.63% and 85.20%, respec-
tively. CapsNet performs better than CNNs on the augmented dataset as well,
and robustly handles classification difficulties of rotator cuff pathologies from
MRI.

Keywords: Capsule network, convolutional neural network, rotator cuff
pathologies, PD weighted MRI, image classification

1. Introduction

1.1. Overview of Rotator Cuff Pathologies and Imaging Modalities

Shoulder pain is highly frequent. Although certain rotator cuff injuries may
be clinically silent, they are the leading source of shoulder pain worldwide [1].
The incidence of rotator cuff wear or tear increases with age. The spectrum of5

these lesions ranges from degeneration to complete tears. Rotator cuff injuries
are usually associated with both loss of function and pain [2].
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The rotator cuff is a musculotendinous structure that originates from the
scapula and attaches to the humeral head as a broad band. It is a highly
important functional unit of the shoulder including 4 muscles (supraspinatus,10

infraspinatus, teres minor and subscapularis) that occupy the subacromial space
(Fig.1). A well-functioning rotator cuff serves as the primary abductor and
rotator of the shoulder joint as well as the stabilizer of the humerus against
proximal static and dynamic migration.

Rotator cuff integrity is crucial for the balance of all the muscular compo-15

nents of the rotator cuff due to shared anchoring to the humeral head. The
tendon of the supraspinatus muscle is the most frequently injured (Fig.1). Cuff
insufficiency and pain are the main indications for surgical treatment. Clin-
icians have recently reported that the rotator cuff tends to retract following
tears creating a wider gap between torn ends requiring more frequent surgical20

interventions. Moreover, loss of rotator cuff function creates impingement of the
cuff itself between the humeral head and acromion resulting in a further risk of
loss of integrity and cuff tear arthropathy [3].

There are numerous imaging techniques to assess rotator cuff integrity. X-
ray is the first line imaging technique in clinical settings and provides valuable25

information on the skeletal anatomy of the shoulder joint. However, even the
most suspicious X-ray findings are only an indirect sign of rotator cuff malfunc-
tion [4]. Ultrasound is a very useful technique for the evaluation of soft tissues
such as the rotator cuff [5]. This inexpensive and extensively used approach has
innate limitations such as operator dependency, anisotropy and unreliability30

in patients with highly abnormal echogenicity [1]. Computerized tomography
(CT) is widely used for many musculoskeletal problems of shoulder. It provides
precise visualization of bony structures and is potentially convertible to three di-
mensional images. CT is routinely used for fractures of shoulder bones, tumoral
lesions of shoulder, evaluation of bony instability and sometimes for preopera-35

(a)

Figure 1: a) Demonstration of subacromial space on an anatomical diagram. Rotator cuff
muscles are located between the humerus and acromion. The orange line delineates the
original attachment site of supraspinatus tendon. The green line stands for torn and retracted
supraspinatus tendon.
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tive templating before shoulder arthroplasty [6]. Although CT has been shown
to be successful in evaluating bone, results in soft tissues like rotator cuff are
less good. The radiation exposure and mis-diagnosis risk of computerized to-
mography decreased its popularity for the rotator cuff pathologies. Contrast
enhanced CT and MR arthrography provide better visualization of rotator cuff40

tears, however special expertise is required for these interventional protocols,
which are not possible in all facilities. There here are also some concerns about
patient acceptance due to pain during interventional techniques.

MRI is a reliable technique that can visualize all the components and dimen-
sions of the shoulder. High resolution MR imaging is useful for the preoperative45

assessment of the rotator cuff [3]. An intact and well-functioning cuff is al-
most smooth on MR imaging while tears are seen as high intensity areas on
proton-density (PD) weighted sequences. MR imaging is a sensitive and spe-
cific technique that defines the size of defects, retraction, tear shape, and muscle
status [7]. It also provides very important information when deciding on rota-50

tor cuff tear repair in relation to the location and size of the tear as well as the
quality of injured tissue [3].

There are more patients with asymptomatic partial tears and degeneration
in the population than expected. In symptomatic patients with partial tears or
degeneration a clinical examination and imaging may not be enough for discrim-55

ination. Although MR imaging is the technique of choice for rotator cuff injuries,
it is not always easy differentiate partial tears from degeneration in MRI, as well
[8]. Degeneration and partial thickness tears are seen as inhomogeneous gray ar-
eas on MR imaging, which are very similar visually. In controversial cases CAD
systems may be a useful, effective, consistent and quantitative decision-making60

system for less experienced evaluators [1].
In this study an automatic recognition system was designed for rotator cuff

injuries using MRI to decrease evaluator workload and observer dependency.
This tool can help radiologists and orthopedists obtain a more precise diagnosis
of rotator cuff tears, which can influence patient treatment options. This CAD65

system can also be used in epidemiological research for rotator cuff pathologies
and help public health experts more thoroughly define the social and economic
impact of these lesions.

1.2. Related Work

Computer based classification of medical images is mainly based on the70

recognition of distinctive imaging features. Various shape and texture features
have been extracted by various feature extraction methods such as histograms
oriented gradient, local binary pattern and the gray level co-occurrence matrix
(GLCM). Although combinations of these features have been used to increase
the efficacy of medical image classification in the literature, this has not reliably75

improved performance because it may increase the so-called ”curse of dimension-
ality”. Consolidating too many scalar and source-generated features increases
the combinatorial complexity of classification and may even cause suboptimal
results. Zheng, H. et al combined multiple features by multiple kernel learning.
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This approach increased the performance of handcrafted classification methods80

but increased the complexity of the system.
An alternative approach to artificial intelligence based image processing is an

imitation of natural inherited methods of perception and analysis. Deep CNN, a
popular machine-learning approach [9], was designed to mimic the mechanism of
the visual cortex of vertebrates. A typical CNN recognizes the texture and shape85

characteristics of an image by processing them through several layers of virtual
neurons. By changing the hierarchical organization or the number of layers of
CNNs, the system can be modified to reach the desired goal. Shallow CNNs
are used to recognize basic structures such as lines and edges. More complex
structures can be learned by increasing the depth of a CNN. Several studies90

have investigated the accuracy of convolutional network depth for general image
classification and obtained significant improvement by increasing network depth
[10]. However, as network depth increases, accuracy saturates and then rapidly
degrades.

CNNs are high capacity networks with complex layers of working mecha-95

nisms used to extract unchanging features such as translation, rotation or scale.
The primary requirement of any CNN, whatever the organization, is the need
for massive training data that is not easily obtained in the field of medical im-
age analysis. Another limitation is the loss of information due to local details
such as location and pose during CNN image processing. Therefore, CNNs are100

not optimal for extracting diverse features such as semantic class, orientation,
location or scale, which are needed for accurate image reconstruction.

A study by Hinton et al. attempted to overcome the limitations of CNNs.
They depicted human visual perception as the deconstruction of an image in
the brain to simulate its hierarchical representation [11]. They assumed that105

the representation of an image in the human brain depends upon hierarchical
pose (translation and rotation) relationships rather than angular information
that must be preserved during image processing. Therefore, the capsules of
this CapsNet method were designed to represent output information in terms of
vectors rather than single scalar values. In this way the model could be forced110

to learn the feature variants of an image. Thus, potential variants could be
more effectively extrapolated by the model with less training data [11, 12].

Deep learning requires relatively big datasets for training which, in fact, is
not an easy task to overcome in medical field. Data augmentation is one of
the alternative techniques to reduce over fitting, in case of inadequate dataset.115

There are numerous data augmentation approaches defined for different im-
age classification problems, such as translation, rotation, mirroring or scaling
of target and adding noise [13]. There are also alternative data augmentation
techniques, published in the literature. DeVries et al. [14] proposed to use an
autoencoder for the purpose of data augmentation. They concluded that their120

proposed technique based on transformation was more successful in a learned
feature space than in input space. Ding et al. proposed data augmentation in
synthetic aperture radar (SAR) images by increasing speckle noise [13]. Fawaz
et al. utilized dynamic time warping distance for data augmentation using syn-
thetic data with deep residual networks [15]. Kooi et al. applied scale and125

4



translation transformation to mammography images using the center informa-
tion of the lesions [16]. Wang et al. studied the performance of CycleGAN
for data augmentation and concluded that generative adversarial networks were
less energy efficient and less effective than traditional techniques [17].

At present there are a few studies analyzing medical images for the classifi-130

cation and segmentation of rotator cuff lesions. Shoulder ultrasound is popular
due to its extensive use in the medical field. Horng et al. classified ultrasound
images of cuff lesions using multiclass fuzzy support vector machines and firefly
algorithms with texture analysis and GLCM and texture feature coding in a
population of 75 patients divided into 4 classes with a success rate of 92.5%135

[18]. Chao et al. extracted texture features based on GLCM, texture spectrum,
fractal dimension and texture feature coding to classify 80 rotator cuff ultra-
sound images. Firefly radial basis function was used to classify rotator cuffs into
four classes with a success rate of 93.75% [19]. Chang et al classified rotator
cuff lesions as tears, inflammation and calcific tendinitis based on GLCM with140

a success rate of 87%. Park et al. have proposed a computer aided diagnosis
system based on texture analysis with a histogram, GLCM and grey level run
length matrix and classified rotator cuff lesions from ultrasound images of 40
patients [20]. Gupta et al. reported a segmentation study of ultrasound im-
ages of supraspinatus tendon based on curvelet transform, and they ignored the145

classification of cuff lesions [21].
Although ultrasound is extensively used and less expensive for the visualiza-

tion of the rotator cuff, MRI provides clearer and anatomically exact images.
Kang et al. studied texture analysis of rotator cuff tears by T2-weighted mag-
netic resonance arthrography in 50 patients based on GLCM [22]. The limited150

data with arthrography may be due to the invasiveness of this approach. Our
study used PD weighted coronal shoulder MRI which is a routine and easily
accessible sequence.

Although CNNs are powerful tools for the representation of medical images,
and there are numerous studies in the medical field using deep CNNs, there are155

very few studies in the literature on musculoskeletal imaging. Deep CNNs have
been used for the segmentation and localization of human vertebrae on CT and
MRI. Roth et al. used deep CNNs in the detection of sclerotic spinal metastases
in spinal CT images of 59 patients with a success rate of 83% [23]. Geng et al.
studied bone tumors on scintigraphy with a success rate of 88% based on a dice160

metric [24]. CNNs were also used to assess age from hand X-rays [25] imaging.
CNNs were applied to diagnose brain related diseases from MR images [26].
Our search of the literature did not identify any studies of deep CNNs for the
classification of rotator cuff lesions on MR imaging.

At present there are only a few studies using CapsNet in medical image165

analysis, probably because this is a very recent technique in the computer vi-
sion field. Qiao et al. reported highly positive results with CapsNet for the
reconstruction of image stimuli in human fMRI. In a study by Afshar et al.
CapsNet was found to be highly effective in the recognition of brain tumors
from human brain MRI [27]. Mobiny et al. used CapsNet for the detection of170

lung nodules on CT. CapsNet was found to be significantly better than CNNs
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when the number of training samples is small [28]. Rodney et al. proposed
SegCaps to segment pathological lungs from low dose CT scans and reported a
dice metric of 98.47% [29].

In this study a CapsNet model was proposed to classify rotator cuff lesions175

from coronal PD-weighted MRI images of the shoulder.
This study is novel for the following reasons:

• To the best of our knowledge there are no studies in the literature evalu-
ating deep learning for the diagnosis of rotator cuff lesions on MRI. This
study describes a CapsNet based CAD system to classify rotator cuff le-180

sions and compares the results with a custom-designed CNN, pre-trained
CNNs and GLCM.

• A new dataset including coronal PD weighted MR imaging of the shoulder
in 1006 patients were collected for this study. This is a significantly larger
dataset than those found in other studies in the literature.185

• The region of interest was automatically determined to feed our proposed
CapsNet to classify rotator cuff images as normal, degenerated or torn.
The results of our system are highly promising compared to hand-labeling
by an experienced orthopedist.

The remainder of paper is organized as follows: Section II describes the dataset190

and proposed method in detail. Experimental result and discussion are given in
Section III and IV.

2. Materials and Methods

MRI from 1006 patients with shoulder pain admitted to an outpatient clinic
were included in this study. All shoulder images were obtained from the Sisli195

Hamidiye Etfal Training and Research Hospital on a 1,5 Tesla Picker MR Unit
(Philips Medical Systems Eindhoven, Netherlands) and a shoulder coil was used
during investigations. Coronal PD weighted MR images of the shoulder were
selected to analyze the condition of the rotator cuffs and labeled by an expe-
rienced orthopedic surgeon as 316 normal and 311 degenerated and 379 torn200

rotator cuffs.
Coronal PD weighted MR images of the shoulder were selected to detect

rotator cuff lesions as this view is preferred by clinicians. Coronal images are
useful to clinicians because they provide sections of the longitudinal axis of
the cuff muscles. Mid-humeral coronal sections were selected to include the205

supraspinatus, which is the most frequently affected muscle in cuff injuries.
Although T1-weighted MRI provides better contrast between the humeral

attachment of the rotator cuff and the humerus, PD weighted sequences pro-
vide more anatomical detail. Identification of cuff injuries is also better on PD
weighted images showing clear changes in intensity in the presence of a tear.210

In the presence of a cuff tear the space that should be occupied by the cuff
is filled with joint fluid, which is seen as a high intensity white image on PD
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(a) (b) (c) (d)

Figure 2: a) Coronal T1 MR image of shoulder. Green line stands for rotator cuff footprint
on humerus. The red arrow stands for supraspinatus tendon. b) PD weighted MR image of
shoulder. Black arrow indicates supraspinatus tendon. The transition zone between humerus
and supraspinatus tendon may be compared between a and b. c) PD weighted MR image
demonstrating supraspinatus degeneration and edema. d) Tear of supraspinatus detected in
PD weighted shoulder MR (blue arrow).

(a)

Figure 3: a)PD weighted coronal MR images of the shoulder. For the sake of demonstration
of differences in each group of patients three examples belonging to the same group were given
in a row. The three images in the first row represent normal rotator cuff, second row contains
degenerated cuff images and the third row includes shoulders with rotator cuff tear. In each
of the nine images the surrounding soft tissues and bones reflect multiple shape and texture
variances in forms of arthrosis or edema. Additionally as may be confronted from the MR
image of left shoulder in the second column of the first row there is a rotational variance from
the other images which are images of right shoulders.

weighted MRI. On the other hand, in the presence of degeneration or a partial
tear, effusion around the ligament is seen as patchy area, with uneven intensity
making visual discrimination difficult (Fig.2).215

The anatomical, pathological and rotational differences in the MR images
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of individual patients must be considered when constructing a CAD system.
These differences may be significant, even in patients in the same group. The
presence of right and left shoulders in the dataset is another important factor
that may require geometric translation (Fig.3). Therefore, a CAD system for220

the classification of the rotator cuff on MR imaging must successfully interpret
different poses, views and orientations.

2.1. Automatic determination of Region of Interest

The he subacromial space was selected as the region of interest (ROI) (Fig.1).
The first area to be identified when an evaluator analyzes coronal PD-weighted225

MRI of the shoulder is the subacromial space where the rotator cuff is located.
This 1 to 2- centimeter wide space between the humerus and the acromion is cov-
ered in bony structures and includes nearby tissues with similar characteristics.
The rotator cuff muscles share the subacromial space with other anatomical
structures such as the subacromial bursa. Unfortunately, the shape and vol-230

ume of the subacromial space are not standard due to anatomical differences
in bony structures such as the acromion, and narrowing of the space in case of
acromioclavicular or glenohumeral arthritis and cuff tears (Fig.3).

Therefore, to identify the region of interest the Circular Hough Transform
(CHT), an extensively used pattern recognition and computer vision technique235

for the detection of regular curves, was used. CHT can detect circular shapes
based on a parametric equation of circles [25]. In our study CHT located the
humeral head in all cases on coronal PD weighted MR images of the shoulder
even in the presence of image noise. A demonstration of humeral head detection
on a PD weighted MR image is shown in Fig.4.240

Our goal was to define a ROI that included both the rotator cuff muscles
and the surrounding bony structures, in particular the superior part of humerus
where the cuff muscles are attached, the superior corner of the glenoid and the
bony roof of the subacromial space including the acromion and distal clavicula.
An optimal ROI should include the rotator cuff from the point of insertion on the245

humerus to the glenoid, which is found between these anatomical structures.The
ROI was determined by using the humerus as the central point. It was defined
automatically using parameters of the center and radius obtained by CHT.

A rectangular ROI window was initially placed on the center of the humeral
head whose inferior border was situated on the radius of the circle determined250

by CHT. However, the initial ROI did not include the subacromial space. For an
optimal ROI it was shifted slightly upwards from the center of the humeral head
along the y axis. After confirming that the inferior border of the ROI remained
just below the superior margin of the glenoid in all images, the lower margin
of the ROI was placed 12 pixels above the center of the humeral head. The255

ROI area was also enlarged to include the distal attachment and the proximal
orientation of the rotator cuff muscles (Fig.4) Finally, a ROI was constructed
with a short edge equal to the radius of the circle and a long edge that was
twice the radius of the circle but elongated by 5 pixels on each side. The ROI
was constructed instead of using a complicated segmentation algorithm for the260

rotator cuff. Automatic determination of the ROI made it possible to locate
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(a)

Figure 4: a) Detection of humeral head with Circular Hough Transform and determination of
ROI by using the center information gathered from Circular Hough Transform.

the rotator cuff with the fewest possible unnecessary components and with less
noise. Each ROI was re-sized to 64x64 to feed the capsule network and CNNs.
The use of a ROI also decreased the area of interest by down-sampling the MR
images from 256 X 256 to 64 X 64 pixels. As stated in the original CapsNet265

paper by Hinton et al., capsules tend to model everything in the input image
[11]. Thus, decreasing the background area also decreased unnecessary fields,
avoided complexity and provided a precise determination of the rotator cuff
region.

Rotator cuff areas were determined by an expert in all images to obtain con-270

trol data to compare our classification results. One of the manual segmentations
by the expert on the screen was demonstrated in Fig.5.

(a) (b)

Figure 5: a) PD weighted MR image of right shoulder. b) Manual segmentation result of
supraspinatus tendon by the expert.

2.2. Capsule Network

Hinton et al. changed the point of view in image analysis from invariance to
equivariance while still taking into consideration invariance [11, 12]. Invariance275

and equivariance are two major components of visual representation. Invariance
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is designed for a specific task while equivariance is designed for various tasks
such as location, pose or orientation. In other words, equivariance keeps nearly
all the information needed to represent an image.

The CapsNet model is one of the newest research topics in the literature. The280

basic unit of CapsNet is a capsule, which contains a group of organized neurons.
The length of the capsule depends upon invariance, while the number of features
to reconstruct the image are measurements of equivariance. Capsules produce
vectors of the same magnitude but with different orientations. The orientation
of a vector represents its parameters, that is, the information of the properties285

preserved from an image.
While a regular neural network needs additional layers to increase detail

and accuracy, with CapsNet, a single layer can nest other layers. The capsules
effectively represent different types of visual information, so called instantiation
parameters, such as pose, which is a combination of position, size and orienta-
tion. The output of a capsule is a vector, which can be sent to a layer above to
match its appropriate parent. The output of a capsule i was considered to be
ui , and transformation matrix Wij was applied to capsule output to calculate
the prediction of parent capsules j by transforming ui to the prediction vector
Ûj|i.

Û j|i = Wijui (1)

where Ûj|i is the prediction vector of the output of the jth capsule in a higher
level computed by capsule i in the layer below, and Wij is the weighting matrix
that needs to be learned in the backward pass. The parameter sj is a weighted
sum over all prediction vectors uj|i where cij are the coupling coefficients calcu-290

lated by the dynamic routing process to determine the degree of conformation
between the capsules in the layer below and the parent capsules. Dynamic rout-
ing is the process of producing parent capsules by coupling the capsules via
a ”routing by agreement” approach. This relationship is not implemented by
”max pooling” of standard CNNs. Unlike in max pooling, all the necessary295

information from details is preserved, thus increasing success by overlapping
images. Dimensionality of the capsules also increases as the hierarchy ascends.

An activation function called squashing shrinks the final output vectors to
zero if they are small and to unit vectors if they are large, to produce capsule
lengths. Activity vector vj is calculated with the following non linear squashing
function.

vj =
||sj||2

1 + sj||2
sj

||sj||
(2)

The cij is computed as the softmax of bij . The coupling coefficient is defined
as the degree of conformation between the capsule and the parent capsule.

cij =
exp(bij)∑
k exp(bik)

(3)
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bij is the similarity score that takes into account both likeliness and feature
properties rather than just likeliness in neurons.

bij = bij + Ûj|ivj (4)

2.3. Our Proposed Capsule Network

CapsNet offers a different approach from other computer vision methods.
Indeed, existing computer aided image classification systems based on deep300

learning and/or hand designed methods cannot adequately handle the prob-
lems generated by local and global rotations in images obtained in different
orientations. Rotation information plays an important role in the successful
classification of many medical images, including rotator cuff lesions. In our
study right or left shoulders could be handled as the mirror image of each other.305

Moreover, besides the positioning of the patient in the MR imaging machine,
anatomical and pathological variances may also have affect the rotation of the
arm in the image.

Table 1: Accuracy rates of different Capsule network models for classification of rotator cuff
pathologies.

Models Accuracy rate (%)
MNIST Model Baseline
(256 feature maps + 32 Primary caps)

90.50

One Convolution layer with
512 feature maps + 32 Primary capsules of
dimension 6, number of routing is 3

91.77

One Convolution layer with
256 feature maps + 64 Primary capsules of
dimension 11, number of routing is 3

92.86

Two Convolution Layers with
128 and 256 feature maps + 64 Primary capsules of
dimension 9, number of
routing is 5

94.75

Automatically determined image patches were given to the original capsule
network architecture designed for the MNIST dataset, which has one layer of310

convolution, two layers of capsules and three fully connected layers to classify
rotator cuff MR images. In this study different CapsNet models were applied to
evaluate the classification of rotator cuff pathologies (Table 1). Two strategies
were used to increase the accuracy of the system. First, the number of primary
capsules was increased. In this way, the learning of discriminative features was315

improved. Additionally, two convolution layers were cascaded before the capsule
layer, which could also improve accuracy by creating more complex image coding
before feeding it into the capsule layer (Fig.6).

Two cascading convolution layers were applied and each of the image patches
was convolved with different sized kernels to obtain feature maps. One hundred320
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(a)

Figure 6: a) Our proposed Capsule network model for classification of rotator cuff lesions.

twenty-eight size 7 x 7 feature maps, were generated by the first convolution
layer with a stride (S) size of 2, with no padding (P) and the spatial dimension
was reduced to 29x29. Output of the first convolution layer was given to the
second convolution layer as input to extract useful low level features. At this
stage 256 size 9 x 9 feature maps were obtained with the parameters S=1. The325

next layer is a primary capsule layer, which generated 64 8-D capsules using 9
x 9 kernels with S=4. Each primary capsule contains 6 convolution units with
a 11 x 11 kernel. 64 x 5 x 5 capsules were obtained and fed into digitcaps.

The final capsule layer included 3 capsules, referred as ”Class Capsules”,
one for each type of rotator cuff. The dimension of these capsules was 16. The330

decoder element included three fully connected layers with 512, 1024 and 4096
neurons, respectively. The number of neurons in the last fully connected layer
was the same as the number of pixels in the input image, because the goal was
to minimize the sum of squared differences between input and reconstructed
images. The success rate of the optimized CapsNet model was 94.75%, which335

was higher than the original MNIST CapsNet.

2.4. Comparative Methods

The success of our CapsNet system was compared to that of CNN for the
discrimination of rotator cuff lesions. The progress of CNNs in the image recog-
nition field has been remarkable. The success rate in different types of image340

datasets including in medical images is high. The success rate of a CNN for
a specific task depends upon the optimization of its architecture. The depth
and breadth of CNN architecture affects extractions of differentiating texture
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and shape features. For this reason, different CNN models were tested for the
classification of rotator cuff lesions.345

The most successful CNN model included five convolutional and three max
pooling layers in the feature learning step. Size 64 x 64 image patches were used
in the first convolutional layer and 256 size 64x64 feature maps were generated.
A rectified linear unit (ReLU) which replaces the negative value of feature maps
with zero next to the first convolutional layer, was placed. The second convo-350

lutional layer with a kernel size of 5x5 was placed and 512 size 64x64 feature
maps were generated. The pooling operation was employed after two cycles of
convolution and activation function (ReLU). Max-pooling was applied to fea-
ture maps with a stride size of two pixels. The third and fourth convolutional
layers generated 256 and 64 size 32x32 feature maps, respectively. The last355

convolutional layer was used to obtain 128 size 16x16 feature maps. Finally, a
fully connected layer with 128 hidden units with max-out activation function
was stacked to label each image patch (Fig.7). Exponential linear unit (ELU)
was introduced to the computer vision field with the capability to speed up
learning in CNNs with higher classification accuracy levels. ELUs alleviate van-360

ishing gradient problem of deep architectures by pushing mean unit activations
closer to zero via utilization of both positive and negative values. By this way
gradient values get closer to the unit natural gradient, in other words the bias
shift effect decreases and the learning speed increases. Unlike leaky ReLU and
parametrized ReLUs which have negative values, as well, ELUs ensure a noise365

robust deactivation state. ELUs have the tendency to model the degree of pres-
ence of particular object while not coding its absence. This one-sided saturation
property of ELUs was stated to lead to a better convergence [30]. For sake of
comparison, we trained our dataset with the same proposed network model with
ELU. Our goal was to obtain the probability of three groups of rotator cuffs,370

normal, degenerated and torn, from the softmax function of the classification
step of our proposed CNN.

Transfer learning was another comparative method, used for the classifi-
cation of rotator cuff pathologies. Transfer learning performs well with small
training datasets, which is a common situation in medical imaging. In our study375

collecting and labeling a large number of rotator cuff images was time consum-
ing. AlexNet [31] and GoogLenet [32] have been shown to provide successful
results if the training and architecture hyper-parameters were optimally tuned.

GLCM has been routinely used in the classification of ultrasound images of
rotator cuff lesions in literature. GLCM calculates the offset values of an image380

in a given displacement (d:distance) and orientation (θ :angle). Different offset
values will result in changing second order GLCM matrices and different co-
occurrence distributions causing different image features for the same reference
image. In our study Haralick features were extracted for different offset values.
The best result was obtained for d = 4 and θ : 00, 450, 900, 1350.385
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(a)

Figure 7: a) Details of proposed CNN model (Conv: Convolutional Layer,MP: Max pooling
layer, FC: Fully connected layer)

3. Experimental Results

In this study the subacromial space, which includes the rotator cuff, was au-
tomatically and precisely defined by CHT in the entire dataset. The center and
radius parameters obtained from CHT were used to determine images patches.

A 10-fold cross-validation method was used to check the stability and relia-390

bility of the proposed CapsNet. The dataset was split into two, as 70% training
and 30% test sets. Random sampling was performed ten times to produce dif-
ferent training and testing sets from the data-set and decrease selection-bias.
Our implementation was in TensorFlow and we used the Adam optimizer [33]
with learning rate of 0.001 for 50 full epoches.395

The success rate of our classification system was 90.50% with the origi-
nal baseline architecture of CapsNet designed for the MNIST dataset. Certain
components of the baseline MNIST CapsNet model were changed to extract dis-
criminative features. Increasing the number of primary capsules and convolution
layers before the capsule layer improved classification. When one convolution400

layer and 512 feature maps were used and the number of primary capsules was
increased from 32 to 64, the overall accuracy of our system increased to 92.24%
from 91.77%. Table 2 shows the confusion matrix of our proposed fully auto-
mated system to classify rotator cuff lesions as normal, degenerated or torn.
The overall accuracy of our system was 94.75%.405

The relevance of a CAD system can be measured by positive predictive
(precision) and recall (sensitivity) values and F1-scores. The precision of a
system is the rate of relevant instances among retrieved instances. The recall
value of a system is the rate of relevant instances over the total amount of
relevant values. The F1 score is the harmonic mean of the precision and recall410

values. The overall recall rates of our proposed CAD system were 95%. However,
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the recall values of the cuff tear and degeneration groups were 96% and 97%,
respectively, which confirms the power of the proposed system for the recognition
of pathological rotator cuffs (Table 2).

Table 2: The confusion matrix of overall accuracy for our CapsNet model with 10 iterations
(automatically determined ROI)

Confusion Matrix For
Our Proposed CapsNet

Classification result of rotator cuff
lessions by our proposed CapsNet

Total
Number
of Data

Normal Degeneration
Cuff
Tear

Precision Recall F1-Score

Normal 316 88.60 1.91 9.49 0.93 0.89 0.91
Degeneration 311 0.32 96.46 3.22 0.94 0.97 0.95
Cuff
Tear

379 2.12 1.84 96.04 0.95 0.96 0.96

Table 3: The confusion matrix of overall accuracy for our CapsNet model with 10 iterations
(manually segmented images)

Confusion Matrix For
Our Proposed CapsNet

Classification result of rotator cuff
lessions by our proposed CapsNet

Total
Number
of Data

Normal Degeneration
Cuff
Tear

Precision Recall F1-Score

Normal 316 85.32 2.21 11.45 0.92 0.81 0.86
Degeneration 311 1.92 90.67 7.34 0.94 0.91 0.92
Cuff
Tear

379 1.85 4.22 93.93 0.9 0.94 0.92

The purpose of CAD systems is to help clinicians obtain a correct diagnosis,415

in particular by eliminating the underestimation of disease. A low false nega-
tivity rate is a measure of reliability and is a prerequisite for the use of CAD
systems in the clinical setting. Our system labeled 1 degenerated cuff and 8 torn
cuffs as normal in the entire dataset. Nine out of 690 patients were misclassified
as normal. The rate of diseased cuffs misclassified as normal was 1.34% with420

our system (Table 2). These promising results suggests that this system can be
used in clinical settings as a powerful diagnosis tool.

To validate our fully automated rotator cuff classification system, the success
of our system in manually segmented shoulder MR images was evaluated. Table
3 demonstrates the confusion matrix of our CapsNet method for classifying ro-425

tator cuff lesions as normal, degenerated or torn in manually segmented images.
The overall accuracy rate of our CapsNet system in the manually segmented
dataset was 92.07%. Our CapsNet correctly labeled 356 out of 379 rotator cuff
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Table 4: Overall accuracy rate of different methods for classification of rotator cuff lesions

Methods For Diagnosis
of Rotator Cuff Lesion

Overall Accuracy Rate of
the system (%)

CNN Model with original dataset 93.21
CNN Model with augmented dataset by transformation 94.42
CNN Model with augmented dataset by adding noise 94.87
CapsNet Model with original dataset 94.75
CapsNet Model with augmented dataset by transformation 95.36
CapsNet Model with augmented dataset by adding noise 95.48
AlexLeNet 88.45
GoogleLeNet 87.63
Gray Level Co-occurrence Matrix (GLCM) 85.20

tears (93.93% CI:95%) in the manually segmented dataset. On the other hand,
364 out of 379 rotator cuff tears (94.75% CI:95%) were correctly labeled by our430

system when the ROI was determined automatically. Thus, the performance of
our proposed system was better in automatically determined ROI patches than
in rotator cuff areas that were selected by an expert. This might be explained by
the preservation of the spatial relationship of bones and the changes in the over-
all structure of the subacromial space in case of cuff rupture in automatically435

determined ROI.
The accuracy rates of our system with GoogLeNet and AlexNet pre-trained

CNNs were also compared. GoogLeNet and AlexNet can be good solutions in
the small training datasets that are common in the classification of medical
images. However, there is no consensus in the literature for the optimization440

of hyperparameters and to determine the optimal learning rate of AlexNet and
GoogLeNet for different layers. There are numerous architectural and training
hyperparameters whose relevance has not been clearly defined. The approach
by Sharif et al. using very small learning rates compared to default was applied
[34]. After careful parameter tuning, the most successful model in this situation445

was obtained. As shown in Table 4, the accuracy rates of GoogLeNet and
AlexNet were 88.45% and 87.63%, respectively.

The incremental gradient descent is the mostly used method for training a
deep learning network. It is an iterative method to minimize the given objective
function using batch samples. Optimum size of mini batches is very important450

to decrease memory requirements and increase the training speed [35]. However,
determination of the optimum mini batch size is still accomplished by a trial and
error approach. Proposed CNN model had 3 hidden layers of 128 units each.
It was trained 300 epochs by stochastic gradient descent with mini batches of
size 32 and learning rate of 0.01 by non-linear activation function of ReLU and455

ELU. In order to prevent over-fitting and reduce error we added dropout only
to the fully connected layers with the probability of 0.02.

The classification accuracy of CNN were 92.50% and 93.21% with ReLU and
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ELU, respectively. The overall success rate of our CNN was 93.21%, which was
better than that of GoogLeNet and AlexNet for identifying rotator cuff lesions.460

One possible explanation for this may be that AlexNet and GoogLeNet were
pre-trained on natural images, which are completely different from shoulder MR
images.

Increasing amount of training data is presumed to have a positive effect
on the success rate of the CNN. Though it may be achieved with some data465

multiplication protocols, such as rotation, mirroring, and scaling. In this study
data augmentation by scale and translation transformation were used to over-
come the effects of data scarcity and over-fitting. The overall success rate was
increased by using augmented data by transformation to 94.42% from 93.21%
and 95.36% from 94.75 for CNN and CapsNet, respectively (Table 4).470

The effectiveness of data augmentation in rotator cuff image classification
was assessed by increasing noise, as reported by Ding et al. [13]. The overall
accuracy rates of the system were 94.87% and 95.48% for the augmented dataset
based on adding noise for CNN and CapsNet, respectively. Data augmentation
prevented over-fitting and increased the success rate to a degree for two proposed475

models. The results demonstrate that CapsNet is more successful than CNN
in all cases. The application of transformation-based augmentation protocols
may result in pose and orientation problems of the anatomical relationships,
however, CapsNet seems to be robust to transformation and require far less
training data compared to CNN.480

The performance of CapsNet models were tested on the fashion dataset
which comprises of 28 28 gray-scale images of 70,000 fashion products from 10
categories. The overall accuracy rate was 92.15% and 93.86% for original and
proposed CapsNet models, respectively.

GLCM has been shown to successfully classify ultrasound images of the ro-485

tator cuff. However, the overall success rate of GLCM for the classification of
the rotator cuff was 85.20% with our automatically determined ROI. CapsNet
was more successful than deep CNN, pre-trained networks and GLCM based
methods in handling the problems of different poses and orientations of rota-
tor cuff images and in determining the complex texture and shape information490

needed to classify rotator cuff injuries.

4. Discussion

There are a few studies in the literature evaluating the segmentation and
classification of rotator cuff lesions. Most studies were performed in ultrasound
images and were based on commonly used methods of texture analysis. This495

study was performed in coronal PD weighted MR images of the shoulder.
The use of MR imaging in rotator cuff injuries has been shown to be sig-

nificantly better than ultrasound in the literature. Lenza et al. compared MR
imaging and ultrasound for the assessment of rotator cuff tears. The sensitivity
and specificity of MRI was 98% (95% CI 92% to 99%) and 79% (95% CI 68%500

to 87%), respectively (6 studies, 347 shoulders), and 91% (95% CI 83% to 95%)
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(a)

Figure 8: a) Demonstration of images labeled incorrectly by the proposed CAD system. The
first column contains torn rotator cuff images misclassified as degeneration, the second column
demonstrates images classified as torn rotator cuff due to adjacent intensity changes and the
third column contains images misclassified as torn rotator cuff due to high level degeneration.

and 85% (95% CI 74% to 92%), respectively, for ultrasound (13 studies, 854
shoulders) [8].

MR imaging is extensively used as a reference clinical imaging technique.
Although the anatomy of the rotator cuff is visualized in detail in PD weighted505

sequences, there are some difficulties in pattern recognition due to anatomical
and pathological features. First, the intensity of the bony cortex in PD weighted
images is very close to that of the rotator cuff. PD weighted sequences may
also be difficult to evaluate because of the low signal to noise ratio, which
may be increased by changes in intensity from trauma, degeneration or edema.510

Moreover, CapsNet uses the entire image to represent imaging features and
may be affected by image complexity. Therefore, automatic determination of
rotator cuff ROI is essential for PD weighted sequences. CHT was used to
automatically determine ROI to overcome unnecessary workload and irrelevant
features by CNN and CapsNet.515

CapsNet successfully classified automatically determined ROI with an over-
all sensitivity and specificity of 98.66% (95%CI: 97.48% to 99.39%) and 88.61%
(95% CI: 84.58% to 91.89%), respectively, and a confidence level of 95%. Sensi-
tivity and specificity are two important values when a CAD classification system
is put into practice. Although the sensitivity rate of our system was high its520

specificity must be improved in cuff pathologies.
The results of our CAD system were compared to the most common state

of the art methods; a custom-designed CNN, pre-trained CNNs [31, 32] and
GLCM. The overall success rate of our CapsNet system for the classification of
rotator cuff images was 94.75% while the success rates of CNN, GoogLeNet and525
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AlexNet were 93.21%, 87.63%, 88.45%, respectively. The F1-score of normal,
degeneration and tear groups were 91%, 95%, 96%, respectively with the pro-
posed CAD system. On the other hand CNN performed F1-score of 88%, 95%,
94% for normal, degenerated and tear groups, respectively which were slightly
lower than the proposed CAD system. Both of the proposed CAD system and530

CNN performed higher F1-scores for degeneration and tear groups than normal
group. The F1-score of degeneration group was surprisingly the highest con-
trary to the clinical performance of MRI which is higher in discrimination of
the tear and normal groups [8].

The proposed CAD system successfully classified the rotator cuff MRIs given535

in Fig.3 but could not correctly classify the images demonstrated with Fig.8.
In the first column there are two images which were labeled as cuff tears by
the expert but as degenerations by the CapsNet system (Fig.8). The image in
the first row contains a torn rotator cuff with underlying degeneration and the
image below is a nonretracted tear resembling intratendinous density changes540

like degeneration. In the second column the images were misclassified as tear
instead of normal cuff. The image in the first row contains fluid accumulation
around the cuff and in the image below there is extensive edema in the humeral
head. Those two images represent increased intensities in the ROI which is
possibly the reason of misclassification. The third column contains two images545

misclassified as tear although those cuff tissues were homogeneously degenerated
with white appearance.

There are an increasing number of image classification and segmentation
[25] studies with CNNs in the literature. The success rates of CNN are mainly
dependent upon obtaining an adequate number of high quality training datasets.550

Although data augmentation seems to be a solution for deep CNN, collecting
images with all possible poses for each class is unfeasible, especially in the
medical field. Although 1006 MR images of the shoulder were included in this
study, classification could be improved with a larger dataset. Images with higher
quality may also provide better results. In this study 1.5 Tesla MR images were555

utilized. Regarding the fact that 3 Tesla MRI provide a higher signal to noise
ratio [36] further studies with 3 Tesla MR images would increase the image
quality and the success of the proposed CAD system.

Transfer learning based CNNs of GoogLeNet [32] and AlexNet [31] success-
fully classifies images in small datasets. GoogLeNet and AlexNet are trained on560

natural images that are completely different from our datasets. To our knowl-
edge there are no available pre-trained CNNs similar to our dataset.

Previous studies of the classification of rotator cuff lesions have been based
on hand-crafted methods such as GLCM, gray level run length matrix or texture
analysis with histogram [18, 19, 20]. All of these texture analysis-based CAD565

systems used manually segmented ultrasound images from a small group of
data as well as GLCM. Although GLCM is highly sensitive to the selected
offset direction and orientation values, the data was analyzed with GLCM for
comparison. While the size of our dataset was favorable, the success rate of
GLCM was 85.20% compared to a 94.75% success rate with our system.570

Cho et al. conducted a study on CT images of different body parts in 6000
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patients to estimate the minimum training data requirement in a medical image
deep learning system to achieve high accuracy [37]. They reported that training
data over 200 may not yield significantly better results in the classification
success. The classification success increases steeply over 100 samples and forms575

a plateau after 200 samples. The only apparent advantage of increasing the
training data size over 200 is a decrease in the standard deviation.

With regard to the state of the art methods results of this study suggest
that capsule networks can be trained with less amount of data for the same or
better performance and are more robust to an imbalanced class distribution [38],580

which makes our approach very promising for the medical imaging community.
Although the training time for the capsule network is longer compared to the
CNN [39] which may be attributed to its computational complexity, it provides
a superior performance of classification in the diagnosis of rotator cuff lesions
from MRI.585

In this study, a ROI that included surrounding bony structures was automat-
ically determined. The success rate of manually and automatically determined
ROI with our CapsNet system was 92.07% and 94.75%, respectively. The suc-
cess rate of the classification of MR images of the shoulder was increased by
preserving local anatomical information about neighboring structures that were590

on the periphery of injured areas. Therefore, under disease conditions, which
result in peripheral spatial effects, image modalities that can provide detailed
anatomical information such as MR imaging may be more effective than ul-
trasound. Furthermore, a wider ROI including adjacent anatomical structures
may provide a better overall picture of disease because of the dynamic periph-595

eral impact of tendon ruptures. Therefore, in musculotendinous disorders such
as the rotator cuff we recommend defining a wider ROI that contains bony
relationships instead of manual segmentation of the diseased structure alone.

Selection of a ROI that is large enough to include the whole attitude of the
rotator cuff pathologies and its surroundings is very important for the repre-600

sentability of it. However, there are intractable pitfalls which lead to misclas-
sification but still located in the ROI. Local intensity changes like bone edema
or fluid collections around the rotator cuff and highly degenerated cuff tissue
itself were the main reasons of misclassification of rotator cuff pathologies in
this study.605

5. Conclusion

The increasing prevalence and clinical severity of rotator cuff lesions are a
public health problem. We proposed a new CAD system based on CapsNet for
the classification of rotator cuff injuries from coronal PD weighted MR images.
The proposed CapsNet system was found to be successful and the results were610

quite similar to those of an expert with a sensitivity of 98.66%. The results
of proposed automatic CapsNet based CAD system were promising compared
to CNN, transfer learning and handcrafted methods. The use of ELU as the
activation function increased the success rate of the proposed CNN from 92.50
to 93.21 which was still lower than the CapsNet. This system could be a useful615

20



decision-making tool for less experienced radiologists and orthopedic experts.
One limitation of this study is the inclusion of 2D images from one institution.
A bigger dataset with higher quality images may yield better results. CapsNet
may be considered one of the most innovative and successful models in the field
and should be evaluated in further studies.620
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[10] D. CireşAn, U. Meier, J. Masci, J. Schmidhuber, Multi-column deep neural
network for traffic sign classification, Neural networks 32 (2012) 333–338.

21



[11] G. E. Hinton, S. Sabour, N. Frosst, Matrix capsules with em routing.

[12] S. Sabour, N. Frosst, G. E. Hinton, Dynamic routing between capsules, in:655

Advances in Neural Information Processing Systems, 2017, pp. 3856–3866.

[13] J. Ding, B. Chen, H. Liu, M. Huang, Convolutional neural network with
data augmentation for sar target recognition, IEEE Geoscience and remote
sensing letters 13 (3) (2016) 364–368.

[14] T. DeVries, G. W. Taylor, Dataset augmentation in feature space, arXiv660

preprint arXiv:1702.05538.

[15] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.-A. Muller, Data
augmentation using synthetic data for time series classification with deep
residual networks, arXiv preprint arXiv:1808.02455.

[16] T. Kooi, G. Litjens, B. Van Ginneken, A. Gubern-Mérida, C. I. Sánchez,665

R. Mann, A. den Heeten, N. Karssemeijer, Large scale deep learning for
computer aided detection of mammographic lesions, Medical image analysis
35 (2017) 303–312.

[17] L. Perez, J. Wang, The effectiveness of data augmentation in image classi-
fication using deep learning, arXiv preprint arXiv:1712.04621.670

[18] M.-H. Horng, Performance evaluation of multiple classification of the ultra-
sonic supraspinatus images by using ml, rbfnn and svm classifiers, Expert
Systems with Applications 37 (6) (2010) 4146–4155.

[19] C.-F. Chao, M.-H. Horng, The construction of support vector machine
classifier using the firefly algorithm, Computational intelligence and neu-675

roscience 2015 (2015) 2.

[20] B. E. Park, W. S. Jang, S. K. Yoo, Texture analysis of supraspinatus ultra-
sound image for computer aided diagnostic system, Healthcare informatics
research 22 (4) (2016) 299–304.

[21] R. Gupta, I. Elamvazuthi, S. C. Dass, I. Faye, P. Vasant, J. George, F. Izza,680

Curvelet based automatic segmentation of supraspinatus tendon from ul-
trasound image: a focused assistive diagnostic method, Biomedical engi-
neering online 13 (1) (2014) 157.

[22] Y. Kang, G. Y. Lee, J. W. Lee, E. Lee, B. Kim, S. J. Kim, J. M. Ahn, H. S.
Kang, Texture analysis of torn rotator cuff on preoperative magnetic reso-685

nance arthrography as a predictor of postoperative tendon status, Korean
journal of radiology 18 (4) (2017) 691–698.

[23] H. R. Roth, J. Yao, L. Lu, J. Stieger, J. E. Burns, R. M. Summers, Detec-
tion of sclerotic spine metastases via random aggregation of deep convolu-
tional neural network classifications, in: Recent advances in computational690

methods and clinical applications for spine imaging, Springer, 2015, pp.
3–12.

22



[24] S. Geng, S. Jia, Y. Qiao, J. Yang, Z. Jia, Combining cnn and mil to assist
hotspot segmentation in bone scintigraphy, in: International Conference on
Neural Information Processing, Springer, 2015, pp. 445–452.695

[25] C. Spampinato, S. Palazzo, D. Giordano, M. Aldinucci, R. Leonardi, Deep
learning for automated skeletal bone age assessment in x-ray images, Med-
ical image analysis 36 (2017) 41–51.

[26] E. Goceri, Diagnosis of alzheimer’s disease with sobolev gradient based
optimization and 3d convolutional neural network, International journal700

for numerical methods in biomedical engineering (2019) e3225.

[27] K. Qiao, C. Zhang, L. Wang, B. Yan, J. Chen, L. Zeng, L. Tong, Accurate
reconstruction of image stimuli from human fmri based on the decoding
model with capsule network architecture, arXiv preprint arXiv:1801.00602.

[28] A. Mobiny, H. Van Nguyen, Fast capsnet for lung cancer screening, arXiv705

preprint arXiv:1806.07416.

[29] R. LaLonde, U. Bagci, Capsules for object segmentation, arXiv preprint
arXiv:1804.04241.

[30] D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep
network learning by exponential linear units (elus), arXiv preprint710

arXiv:1511.07289.

[31] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Advances in neural information
processing systems, 2012, pp. 1097–1105.

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-715

han, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in:
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2015, pp. 1–9.

[33] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980.720

[34] A. Sharif Razavian, H. Azizpour, J. Sullivan, S. Carlsson, Cnn features
off-the-shelf: an astounding baseline for recognition, in: Proceedings of the
IEEE conference on computer vision and pattern recognition workshops,
2014, pp. 806–813.
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