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Drag computation for incompressible flows with a Nitsche’s type
stabilization method

Daniela Capatina®* Robert Luce®, David TrujilloP

b LMAP € CNRS UMR 5142, University of Pau, IPRA BP 1155, Av. de I’Université, 64013 Pau, France

Abstract

In this paper we study the drag error for the incompressible Navier-Stokes equations, satisfying a modified
outflow condition allowing to take into account re-entrant flows, and approximated by conforming (Py)? x
Py or (Q1)? x @ finite elements. The numerical scheme uses a SUPG stabilization on the cells and a new
Nitche’s type stabilization on the whole boundary, with well-chosen non-linear stabilization parameters.
We introduce a definition of the discrete drag which contains additional terms, resulting from the treatment
of the non-linearity and from Nitsche’s stabilization on the Dirichlet boundary, and we prove O(h?)
convergence for the drag error. The approach employed for the theoretical study of the drag error uses
duality arguments. Numerical tests illustrating the theoretical results are presented. The extension to
other finite element methods is also discussed.

Keywords: Navier-Stokes, drag, convergence order, duality, stabilized finite elements, Nitsche’s method

1. Introduction

We consider here an incompressible flow governed by the Navier-Stokes equations in a bounded domain
of R?, approximated by a stabilized (P;)? x P; or (Q1)? x Q1 continuous finite element method similar
to the one introduced in [8]. We consider a Dirichlet condition on the inflow or the wall boundaries and
a modified Neumann condition on the outflow (see [7]), allowing to treat re-entrant flows.

We recall that the drag on a closed and simply connected boundary ¥ contained in the Dirichlet
boundary is defined by

J(u) = / (4B — pm) - 1, (1)

where u = (v,p) with v the fluid’s velocity and p its pressure, and e; is a given unit vector. In the case
of a flow around an obstacle, e; is opposed to the obstacle’s relative velocity.

In this paper, we are interested in defining a numerical drag value for which we can establish an
improved convergence rate, under standard regularity assumptions. The proposed formula results from the
weak formulation and takes into account the contribution of Nitsche’s term on X, as well as a correction
term related to the convection. A similar study can be carried out for the lift, replacing e; by an
orthonormal vector ez in (1).

A direct bound of |J(up) — J(u)| yields the same convergence order as u — uy, in the H(2)? x L%(Q)-
norm, that is O(h). However, it is known that the post-processing of certain quantities of physical
interest such as displacements, stresses etc. can be computed with an improved convergence order. This
was established in [1] for some model problems, by means of a duality argument. As regards the drag
computation, this phenomenon was observed numerically for different finite element methods, see for
instance [21], and more recently for B-splines/NURBS approximations in the framework of isogeometric
analysis (see [18], [19]).
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In the present work, we prove theoretically that the proposed numerical drag converges as O(h?) for
the considered stabilized scheme. For this purpose, we use a duality technique as in optimization and
control theory, or in goal-oriented a posteriori error estimates [9], [6].

As regards the numerical method, we consider here low-order continuous finite elements which need to
be stabilized. Different weak formulations and stabilization forms exist in the literature. We have chosen
the numerical approach proposed in [7], which presents several advantages: it enhances the coercivity of
the discrete problem and yields an energy estimate, it allows to treat different types of boundary conditions
in a unified manner, and it can also be applied in the limit case of the Euler equations. Note that the
weak formulation contains antisymmetric terms related to the convection and the pressure.

We consider as interior stabilization the SUPG method proposed in [8], which follows the ideas of [13],
[20]. We also stabilize both the Dirichlet and Neumann boundary conditions by means of a Nitsche’s type
method, similarly to [7]. We recall that Nitsche’s method was originally developed to handle Dirichlet
boundary conditions for elliptic problems [24], and then it has been extended to the Stokes and Navier-
Stokes equations, see for instance [5], [15], [3]. The stabilization parameters in the SUPG and the boundary
stabilization forms are chosen such that the scaling of the equations is preserved and that the method is
robust with respect to the value of the viscosity.

In order to illustrate our approach, we first consider in Section 2 the Stokes equations discretized by
continuous (P1)? x Py or (Q1)? x @ finite elements with SUPG stabilization. In this linear case, the
discrete drag contains one additional Nitsche’s term and is defined as follows:

Js(uh J(up) Z/T;T ) €1,

Scx

with v the Dirichlet data and ; > 0 a stabilization parameter. We show O(h?) convergence rate for the
drag error J%(up) — J(u).

We focus in Section 3 on the incompressible Navier-Stokes equations. Independently of the stabiliza-
tion, the non-linearity of the problem leads to additional terms in the drag error. We show that all of
them behave as O(h?), except for a certain boundary integral on X, which we add to the discrete drag.
This leads us to define:

TS (an) = 3 (un) = [ B onn = o200 1t p(eE)* (= 0P e,
2

where v? is the Dirichlet data on X.

Then we treat the stabilization terms. Similarly to the Stokes equations, we first consider in subsection
3.1 the discrete formulation with the interior stabilization proposed in [8]. We show that the contribution
of the SUPG term to the drag error is of the same order as in the Stokes case, that is O(h?).

Next we study in subsection 3.2 the influence of the boundary stabilization terms. It turns out that the
form living on the Neumann boundary introduced in [7] does not allow to improve the convergence rate
for the drag error. Therefore, we propose here a modified stabilization which uses an adjoint boundary
operator as well as a slightly different stabilization parameter. This new form preserves the good properties
of the numerical scheme, in particular the consistency and the coercivity, and it yields a O(h?) drag error,
with the new expression of the drag given below:

JNS(uh):jNS(uh)f/GE(vnﬁfvf)nﬁl.
)

The additional term results from Nitsche’s stabilization, similarly to the Stokes case, and 0,’? is a stabi-
lization parameter.

We present in Section 4 some numerical tests which illustrate the theoretical results, for both Stokes
and Navier-Stokes systems. We first consider a manufactured solution, and then the well-known cylinder
benchmark of [26] for which a reference drag value is known. We retrieve the expected convergence rate
for the drag. We also present some numerical results for a time-dependent flow studied in the cylinder
benchmark, and show that they compare well with the literature [22], [18].



Finally, let us note that the approach developed for the continuous (Py)? x Py and (Q1)? x Q1 stabilized
formulations can be applied to other finite element methods. In the appendices, we discuss two well-known
approximations of the Navier-Stokes equations, both inf-sup stable: the conforming (P,)? x P; and the
nonconforming (P;)? x Py methods. We show an improved convergence rate of the drag error for both
discretizations.

2. Stokes equations

For the sake of simplicity, we assume in the theoretical analysis that €2 is a bounded polygonal domain
of R? and T'P, T'V a partition of its boundary. However, in the numerical tests we also treat the case of a
curved boundary ¥, which is approximated by piece-wise second order polynomials (see for instance the
cylinder benchmark). We denote by n the unit outward normal to 92 and we assume that ['? # {).

We consider here the model problem:

—pAv+Vp =f in
divoe =0 in
v = ’UD on FD ) (2)
wopv —pn = —pn on TN

with data f € L?(Q)2, vP € HY/?(TP)? and p"V € L2(TV).
The classical velocity-pressure variational formulation of (2) is given by:

u = (’U,P) S V’UD X Lz(Q), as(u, 'l,ZJ) — ls(w)’ vw — ((b’X) c VO % L2(Q)
where
vl = {v S Hl(Q>2; v|ro :vD}’ Vo — {v c Hl(Q)Q; v = 0},

S _ . o — i S — b — Ng.
(u0) = [ 10s Yo+ [ xivo = paivs )= [ ro- [ on

We are interested in the computation of the drag J(u) defined in (1), with ¥ C T'P.
Let £ € H'(Q2)? any function satisfying £ = e; on ¥ and £ = 0 on I'? \ . We have, by using the
continuous Stokes problem, that
J(u) = a®(u,9) = 15(¥), VeV x L2(Q). (3)
It is useful to consider the adjoint problem:

2= (20,2p) EVEX LX),  d®(n,2) =0, Yn=(n,mp) € V®x L2(Q).

It yields that:

pAzy, +Vz, =0 in Q2
divz, =0 in )

Zy =¢& onI'P

wonzy + zpn =0 onT'N

For the finite element approximation of the Stokes equations, we consider either triangular or quadri-
lateral meshes. Let (Kp,)p be a regular family of meshes of Q, Q) = Ugex, K; this ensures that the aspect
ratio of the cells K € K}, is uniformly bounded. Let S;"* and S}’ denote the set of interior and of Dirichlet
sides, respectively.

We consider here the finite dimensional spaces of Lagrange finite elements of degree 1 for both the
velocity and the pressure, denoted by V;, and M}, respectively. Let us recall that on a triangular mesh,
one has

Mh:{XhGCO(Q); (Xh)\KGPh VKGIC}L}, Vh:M;%.



On a quadrilateral mesh, one imposes in the definition of M}, that (xn oFK)‘ % € Q1, with K the reference

element and Fk : K — K the usual transformation.
We have chosen to treat the Dirichlet boundary condition by means of Nitsche’s method. We begin
by considering the following discrete formulation : up = (v, pr) € Vi X My,

a®(un, n) — I (un, n) — To(n, v — v2) 4+ s(vp, — 0P, 0) = 5(bn),  Ybn = (bn, xn) € Vi x My,

where:

nwo)= [ @ow—pn)-o. b= [ @o0cm- swo= 3 0o

Sesp

This formulation is symmetric with respect to v and anti-symmetric with respect to p. Here above, 73 > 0
is a stabilization parameter, which can be chosen independently of the discretization parameter, see for
instance [5],[15], [3].

Since the pair (V4, M}) is not inf-sup stable, the approximation method needs additional stabilization.
We employ the well-known SUPG stabilization for the Stokes equations:

5ap (s Pn) = Z dK/ 75 —f) - R(¢n) + Z Wsz/ Osdivuy, divey,

KeKy, KeKp

with "
(0s)x = Vg R(Yn) = —puAdn + Vxn.

Note that since ¢, is a harmonic function on any cell K, we have R(¢y) = Vxy, for any discrete test-
function vy, = (¢n, xn)- The stabilization parameters v, > 0, v3 > 0 are numerical constants, while dx
denotes the diameter of the cell K.

We next add a5, (un, %) to the previously introduced bilinear form of the discrete problem. Clearly,
the added term is consistent: a5, (u,1) = 0 for any sufficiently smooth test-function ¢, since R(u)—f =0
and dive = 0.

So the discrete problem finally reads: up = (v, pr) € Vi X Mj,

(a° + aSan) (U, ¥n) — I (un, én) — Lo(tn, vn — v7) + s(vn — 0”, ¢p)
=15(n), Yo = (¢, Xn) € Vi, X M.

For ~; large enough, the discrete problem is well-posed and yields an optimal O(h) convergence rate
for a smooth exact solution. More precisely, by putting for ¢ = (¢, x):

(4)

Y1k
ll1* = plof o + - ||X||o o MWIP=1wl®+ > 1915, -

Sesp |S|
we have for u = (v,p) € H?(Q)? x HY(Q):
1 = unllI* + afan (u = un,u —up) < ch®.

In the following, we are interested in defining a discrete drag value and in establishing an improved
convergence rate of the drag error for the approximation method (4), under the regularity assumptions
u, 2 € H2(Q)? x HY(Q).

Let us note that J(u) = I (u,§). Then we define the discrete counterpart of the drag by:

P3(un) = D) = s0n =07, = X [ (uon == Fetwn = 09)) e

Scx

It is useful to introduce an interpolation L,z of z in Vj, x Mj,, satisfying Lz, = & on T'P.



Remark 1. One can employ the Lagrange interpolation operator for z, € C°(Q); it clearly satisfies the
boundary condition Lp,z, = z, on T'P. As regards the pressure zp, which may be discontinuous, one can
interpolate it by means of a Clément type operator.

Lemma 1. One has that
IS (un) = J(u) = T° + adup, (un, Ln2), (5)

where

TS = aS(up —u, Lnz — 2) — I(Lpz — 2,05 —v). (6)
Proof. By definition of J° and J, we have:
Js(uh) - J(“’) = Il(uh —u, f) - S(’Uh - UDag)'

We next take £ = L2, which belongs to both V}, and H'(Q2)2. So, we get thanks to the discrete problem
(4) and to (3) with the test-function £z that:

Js(uh) —J(u) = as(uh —u, Lpz) — Io(Lpz,vp — UD) + afmb(uh, Lpz).
By means of an integration by parts and of the adjoint boundary value problem, we also have that:
a(n,2) = Iy(z,m0), V= (no,1,) € H' ()% x L*(Q). (7)
So by using (7) with the test-function wuj, — u, we obtain
TS (up) — J(u) = a®(up, —u, Lnz — 2) + I(z,00 —v) — Io(Lyz, v, — vP) + al,, (un, Ln2)
=754+ a5, (un, Lnz).

Theorem 1. Under the reqularity assumptions u, z € H?(Q)? x H*(Q), one has that
|J(u) — J®(up)| < ch?.
Proof. The Cauchy-Schwarz inequality applied to (5) yields, for 4, > 1, that:

1 1/2
17) — T (u)] <[l — unl] (nz — sl 4 3 1100000 — LazlE s + 1 o ﬁth|§,s>)
Sesp

+ |a§tab(uh7 [’hz)|

We next use the approximation error estimate for |||u — wy|||, the interpolation error estimate for
|z — Lnz|| as well as the following trace inequalities on S € SP N IK:

1SV 10 (20 — Lazo)lg,5 < €IS (d;&lzv — Lazolii + |20 — ﬁhzvlz,K> < cdic|zl2. k¢,

1512 (|2 — Lzpllg 5 < €S| (dK1||Zp = Lpzpllo.x + |2p — 5th|1,1<> < cdic|Zp|1 -

Using that dive = divz, = 0 and that R(uj, — u), R(Lyz) are uniformly bounded in L?(K)? for any
K € K, we next obtain:

d2 . .
aS o (un, Lnz) = Z / (up, —u) - R(Lpz) + Z ’yg'ygu/ div(v — vp)div(z, — Lrzy)
Kex, 13 K€Ky,
which yields, by bounding the L?-norm of the divergence by the H' semi-norm, that
| a5 (un, Ln2)| < ch?.

We can thus deduce the announced estimate. O



3. Navier-Stokes equations
We now consider the steady, incompressible Navier-Stokes equations:

pv-Vuv—puAv+Vp =f in Q (8)
dive =0 in 2,

satisfying the same Dirichlet boundary conditions as in (2), but a modified outflow condition allowing for
a better treatment of re-entrant flows (cf. [7]):

pv, v — pdnv +pn = pn on I'V, (9)

where a~ stands for the negative part of a and is defined by a= = (a — |al)/2.
The solution of the continuous problem satisfies the weak formulation: u = (v,p) € V¥~ x L3(Q),

a™P(u) () = N (w)(¥), Yy =(4,x) € VO x L*(Q),

where:
aS(w)(¥) = a®(u, ) + a(w)(¥), N (u)() = 15 (W) +1°(u) ()

and
c _ | P 14
@) = [ 5@ Vo) 0-0-0-90) + [ Lunlo-o,
Q oQ
Ew) == [ pe? o
D
By using the continuous problem, we now have for the drag that
J(u) = I(u, &) = a™(u) () = N (u) (1), Vo =(€x) € VE x L*(Q). (10)
We next introduce the adjoint problem: z = (z,, 2,) € V& x L?(1),
(a™®)u(n,2) =0, V= (nu,mp) € VO x L*(Q). (11)

The bilinear form (a™%)! is defined as follows:

(GNS);(W Z) :as(n? Z) +/ g ((U : Vm + Ny VU) T2y U (nv . vzv) — N - (U : Vzv))
Q

p
+ / Py (Sgn(”n)ﬁu,nv + |vn| 771)) * 2y,
00 2

where we have used that (z |z|)" = sgn(z)z +|z|. Thus, the adjoint problem yields the following equations
—pv-Vz, + g(Vv)Tzv - g(Vzv)Tv — Az, — Vz, =0, divz, =0 in Q. (12)
In order to retrieve the boundary condition on I'V, we integrate by parts in (11) and we obtain:
/FN (u@nzv + zpn + g(vn + |vn|)ze + gsgn(vn)(v . zv)n) -1, =0, v, € V0.
We further use the relation z + |z| = 22% and get

vt 2z, + gsgn(vn)(v - Zp)N + 1Op 2y + 2pn =0 on I'V. (13)



This finally yields, for any n = (n,,7,) € H'(2)? x L*(Q2), that

@)n2) = Bz + [ ootz + Gsen(on)o- 2)n) . (1)

For simplicity of the writing, it is useful to introduce the operators associated with the boundary
conditions on I'N for the direct and the adjoint problems:

C(u) =pv,, vy — pOpv - M+ p,

€ () () =pvf 6u + Ssen(va)v- @+ pdné - n+ x.
Considering the normal component in (9) and (13) yields C(u) = p" and C*¥(u)(z) = 0.

We employ the same pairs of discrete spaces (V},, M) as for the Stokes equations, that is P, or Q4
continuous elements for both the velocity and the pressure. We add two types of stabilization: a interior
SUPG one, denoted by als\gb, as well as a boundary stabilization of Nitsche’s type, denoted by s.

In order to establish an improved convergence rate for the drag error, the discrete drag needs to be
corrected by additional terms.

3.1. Drag correction due to SUPG stabilization

We consider the following consistent form, proposed and studied in [8]:

alS, (W) = Y dx / %(Ru(u)— £ Ra@)+ Y nedx /K fdivodive,

KeK, K Keky,

where
Ry(¢) = pv-Vé — pAg + V.

The role of the parameter § = 0(v) is to balance this additional term such that it has the same scaling
as a¥S. It may depend on the solution itself, on the physical parameters as well as on the discretization
parameters. The choice of [8] is to take, in the steady case,

2
0 (vn) k=3 <£{> +7;lpvnl?, VK € Ky, (15)

where the additional parameter v4 > 0 is a numerical constant. In the sequel, we shall denote 0(vy) by
05,. Note that it is not constant on K € Kj,.

Remark 2. This choice is clearly compatible with the Stokes case, for which v4 =0 and 0 = 0g. Thus,
als\gb clearly extends agtab to the Navier-Stokes case. Also note that in the case of vanishing velocity, the

stabilization parameters of al>, are similar to those used for the Brinkman equation cf. [2], [12].

Remark 3. For the first term of aé\gb, we have a similar expression of the stabilization parameter to
the one of [17]. For the second term, we recover a similar parameter to [17] in the case of large Péclet
numbers, whereas in the case of small Péclet numbers, it corresponds to the Stokes stabilization parameter.

This leads us to consider the following discrete formulation of the Navier-Stokes equations: wu; =
(Vs pn) € Vi X My,

(a8 + alon) (un) (Wn) — T (un, ¢n) — Io(Pn,vp — vP) + s(vp, — 07, é4)

16
= 1" (un) (vn), Vo = (dn, Xn) € Vi X Mj,. (16)

As for the Stokes problem, we assume that for v € H?(Q)? x H(Q) and for ~; sufficiently large, we
have:
[lu = unl]| < ch. (17)



By equivalence of the H!(€)-norm and the energy norm |||-||| on V}, together with a triangular inequality,
it follows that
lv —wvpllo, < ch.

In addition, we assume that
lu = unllo0 < ch?, (18)

which is usually proved by means of an Aubin-Nitsche duality argument. The convergence rates (17) and
(18) were checked numerically in [7].
We are next interested in estimating the drag error, under the regularity assumption:

z € H*(Q)? x HY(Q). (19)

Remark 4. This assumption may not be checked for certain configurations, in particular when ¥ and
P\ X are not disjoint. However, we can carry on ezxactly the same analysis under a weaker assumption
z € HY(Q)2 x HY(Q) and prove an O(h'*!) convergence rate for the drag error.

As regards the discrete value of the drag, let us begin by considering the same expression as in the
Stokes case and by evaluating the error J5(uy,)—J(u). We obviously have, thanks to the relation £z, = &
on I'P, that

TS (up) — J(u) = I (up, — u, Lpzy) — s(vn, — o2, Lyzy).

By using (10) with the test-function £,z € V¢ x L2(Q), as well as the discrete problem (16), we get

TS (up) — J(u) =a™ (up)(Lnz) — a5 (u)(Lpz) — Lo(Lpz, v — v)
+ I (W) (Lnz) = N (un) (Lnz) + agiay (un) (L)
:TS + Tc + Tlin + Trhs 4 Tadj + Tstab’

where 7 is defined in (6) and the other terms take into account different aspects related to the non-
linearity and the stabilization of the Navier-Stokes equations. They are defined as follows:

Lnz—2)—a’(w)(Lpz — 2),

z) —a(u)(2) — (@), (un — u, 2),
TS =10(u)(Lpz) — 19(un) (Lr2),

T2 =(aNSY (up, — u, 2) — Ir(z, v, — ),

T =ally (un) (Lnz)-

The terms 7° and 71" take into account the non-linearity of the convective term in the form ac.
Since L1z, = 2z, on I'P, T° can be written as follows:

TC :/Qg((vh —) - Vo +v-V(vp —v)) - (Lpzy — 20)

B

- /Q (v —v) - (vp - V(Lpzy — 20)) + gv “((vp —v) - V(Lhzy — 20))

[\

+ /FN g(|vn,h|(vh —0) + (|vnn] = [val)v) - (Lrze — 20)

and is of second order O(h?), like T5.



As regards 7" let us compute separately the contributions on € and on 9, respectively. The
contribution on  is given by:

7 lin, €2 :/ g ((vp - Vop) - zy —vp - (v - Vzy) — (0-V) -z, + v (v V2zy))
Q

—/Qg((v~V(vhfv)+(vhfv)~VU)'ZU*U'(U}L*U)'VZU*(Uh,*v)'(v'vzu))

:/ g((vh —v)-V(vp, —v) -2y — (vp — ) - ((vh—v)~sz)>
Q
and is also of second order. Meanwhile, the contribution on 0f2 is given by:
1in,0Q __ p P
THmO — / “(|on.nlon - 2o = Joplv - 2y) — / = (sgn(vn)(Unn — Un)V - 2y + |Un| (vh, — V) - 2y).
o0 2 o0 2
OnI'P \ ¥ we have z, = 0 whereas on ¥ we have z, = ey, such that:
7 lin, 09 :/ qun,h
5 2

+/ B(|’Un,h| - |'Un|)vh * Ry — / Bsgn(vn)(vn,h - Un)v * R
N 2 N 2

~ Joul)on - €1 — / L s (vn) (Un.n — va)0 - €1
5 2

— [ Sl = loaDon = o)zt [ (sen(enn) - sgn(en) vaso- 2,
o0 N

4 [ 2 (ol = 1081 = 5g(62) (00 = v2)) 07 1.
2

770 reflects the non-linearity of the right-hand side term and can be written as follows:
T = [ (0= 00) )P er
b

T4 corresponds to (7) in the Stokes case, where it was null; by using (14) with the test-function
up —u € HY ()2 x L2(Q), as well as the relation z, = ¢ on I'P| we get

Tadi — / p(,UTEL))-i-(vh _ ’UD) cep + gsgn(vf)(vn’h — ’UT?)UD -eq.
)

Finally, the following lemma shows that the remaining term 7% resulting from the stabilization is
of higher order.

Lemma 2. Under the assumptions (17) and (19), one has that
|7-stab| < Chz.

Proof. We write that

S ) (Ln) = 3 de /K (R (un) = ) R (£12)

KeKy, (20)
+ Z ’ygdK/ Orpdiv(vy, — 0)div(Lpzy — 24)-
KeKy, K

Concerning the first sum of (20), we note that the choice (15) of 6}, ensures that
1 < dg

_— < VK € Ky,
10n|oo,x — Y310

10



So by using that R, (up) — f and Ry, (Lnz) are uniformly bounded in L%(K)? for any K € K, we
obtain the desired convergence rate O(h?). As regards the second sum of (20), we bound it thanks to the
interpolation error, the approximation error and the following inequality:

1 1 c
10 )00,k < — (V3 + Yadk | pVR oo, k) < (y3p + cyallponllox) < —, VK € K.
dK d dK

Thus, it finally follows that

laliay (un)(Lr2)| < ch?.

We can now sum up all the previous contributions and gather them in three terms:
JS(’LLh) _ J(u) _ Th.o.tA + TN + 7—2,
where 71t contains all the higher order terms, 7V represents the remaining integral on TV in 77199
and 7> contains the integrals on ¥ in 719¢ 7rhs Tadi which are of the same convergence order as the

solution. We have that:

Thot TS L T T by [ L o] = foal)(on = 0) -2
o
T :/ g (sgn(vp,n) — sgn(vy)) U pv - 2y,
N
7%= [ o (o= @217 ) 02 wer o6 (on — o) -1 + 5
2

:/ g(vn,h — o) er + p(v)) T (on —0P) - er.
2

(21)

ol G e

In order to get a higher order convergence for the drag error, we propose to take as discrete drag value
for the Navier-Stokes equations:

TS (up) = 5 (up) — T (22)
that is:
P = 3 [ (wowan —n = 22 = 0P) = poB) (o = 07) = Blans =00 -er.
IS | 20"
scw
Thus, we can write that: ~
INS(up) — J(u) = Tt 4 TN, (23)

Thanks to Lemma 2, we have shown so far the following estimate:
|TR-0b) < ch?. (24)
Lemma 3. Assume (17), (18) and (19). Then one has that
|TN| < ch?. (25)

Proof. By using the relation sgn(a)a = |a| as well as the triangle inequality, we can bound the next term
as follows:

|(Sgn(vn7h) - Sgn(vn))vn,h| :H'Un,h — [vn| + sgn(v,) (v, — Un,h)|
S‘Un,h - ’Un‘ + |Sgn<vn)”vn - Un,h| < 2|Un — Un,h|-

Thus, we get that

T [ plon = vmalle- 2] < lon = vmaliss oo 2ollseny
I
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The regularity assumptions on v and z, allow us to bound the last term, by using Sobolev’s embedding
theorem in (2, leading thus to

TV < e > llo—wvnllLys)

Sesy

Thanks to the Cauchy-Schwarz inequality and to the trace theorem, we have for any side S C I'V that
lo = wnllzrcs) < 1S3l = vnllo,s < elllo = vallo,x + dic|v = vnl1,x),

where K € K}, is the cell containing the side S. Finally, by summing upon S and by using the assumption
(18), we obtain the announced result:

[T < e(llv = vallo.o + hlv — vnl1.0) < ch?.
O

Remark 5. If sgn(v,) = sgn(vy, 5) on the outflow boundary TN, then one has T = 0 and assumption
(18) is not necessary.

Gathering together the estimates (24) and (25), we obtain from (23) the next result.

Theorem 2. Under the regularity assumptions (17), (18) and (19), one has that:
TS (up) — J(u)] < ch?.

3.2. Drag correction due to Nitsche’s formulation

In this section, we focus on the stabilization of the boundary conditions.

Let us note that without any stabilization, the energy norm does not contain any pressure term and
degenerates for small values of the viscosity and of v, on 9€2. Indeed, if we denote by A the operator of the
discrete Navier-Stokes problem without SUPG stabilization, then we have for any ¢y, = (¢n, xn) € Va x Mp
that

~ 2 K 2 4 2
A ) = lonfa+ 3 o [ i+ [ Slownlot. (26)

Sesp

In order to improve the robustness of the numerical scheme, we add, besides the previous SUPG
stabilization, some stabilization on the boundary. The additional terms should also be consistent and
have the same scaling as the main operator.

Such a stabilization was proposed in [7] for more general boundary conditions. It allows to treat a
large range of viscosity values, including the limit case of the Euler equations, and to control the discrete
kinetic energy in the unsteady case. It can be written as follows:

[ gt =r")cwn + [ 6w = o216 1)

It is shown in [7] that this leads to the additional term / X5/0 + / 0¢hn in the energy norm.
rp

Modifications of the outflow condition aimed to increase stability in the case of re-entrant flows have also
been proposed in [14], [4], [11] from a different point of view, but they do not allow to control the pressure
and the normal velocity. A recent review on stabilizations of outflow boundary conditions can be found
n [10].

The parameter 6 scales as plv,| and p/|S|. The choice of [7] for the steady case is

2
0%(vn)|s = v?@ﬁ + 3 (pvan)?, VS €SP (28)

12



Note that (28) is compatible with the expression (15) of 6 for the SUPG stabilization, with dx and |vp|
replaced by |S| and |vy, 1|, respectively.

Unfortunately, the boundary stabilization (27) does not allow to establish an optimal convergence
rate for the drag error. Indeed, we show below that the additional term in the drag error is the first
integral of (27) with 1, = Lz, but then the resulting term C(Ly2) cannot be controlled. This leads us
to replace C(vy,) by C*Y(uy) (), which will be bounded for ¢, = L,z by using that C24(u)(z) = 0. In
order to preserve the coercivity with respect to the energy norm, we also have to modify the stabilization
parameter on T'V.

Therefore, we propose here the following boundary stabilization:

57 (un) (n) = /

N

0N (C(un) — p™)C ) (i) + / 67 (v — 02) b

D
where on any side S € S}¥ we define point-wise:

2 2
Un,h|S|

Viu2vl , +ilS12 (pv7)

(0™)? (un) = o 20, 0¥(n) = 250 i oy =0
Y3p
and on any S € SP we take 6 (v,) = 0(vp,) defined in (28). As previously, we denote 0~ (vy,) and 6P (vy,)
by 0Y and 0P, respectively.
The new form s? has the same properties as the stabilization of [7]. It is clearly consistent and it
respects the scaling, since both 0{;’ and 9,? scale as 0y,.
It is important to note that we have, on any side S € S,

S
oy < 5L (29)
Y3t
as well as
p2oy < ol (30)
V4

The first inequality is used in the proof of the convergence rate of the drag error (see Theorem 4), whereas
the second inequality is crucial for the discrete coercivity (see Theorem 3).

Theorem 3. Let 1y, = (¢n,xn) € Vi X My, and let 0 = 0N (¢y), 0P = 0P (¢1). Then for 1, 73 and v4
sufficiently large and for vanishing data, one has:

A(Wn) (n) + adioy (W) (@n) + 57 () (¥n) 2 plonlio + #Hm

Sesp &l

NS, () (W) + / L\ gunld? + / 6P, + / NS
892 b N

0.
(31)

where

A n) = ) + [ E1604l6} = 10, 0n) = Falin,bn) + 5(61,0)

Proof. By taking into account the estimate (26) for A(tr)(¢n), we only have to bound the terms on the
Neumann boundary I'"V:

/ L\ Gunld? + / B C ()2 () ().

By means of the relations a* +a~ =a, at —a~ = |a|, aTa™ =0 and a~a = (a™)?, we have:

2
C(n)C* Y (Pn) (¥n) =x7 + Xn(pdp 5 + gsgn(fbn,h)ﬁ) + %Sgn(%,h)(éﬁﬁ,h)%i

- (Han¢h : n)2 - ﬂand)h : n(p|¢n,h|¢n,h + gsgn(¢n7h)¢%)

13



Thanks to Young’s inequality, we get:

P 2 N adj 0y N 2 P 2
§\¢n,h|¢h + 0 C(n)C* () (n) ZI(4 —€)Xh — T(4 + 0) (1Ondn - n)* + §\¢n,h|¢h
0N
- %P%i,h@%
_ o

7(P¢Z,h + BSgn(%,h)(lﬁ)g

2
N P
- %(Pwn’hwn,h + §Sgn(¢n,h)¢%)2~

After developing the last two terms and using the properties of the sign function, we get:

816, a3+ O C)C™ () () (4 — )53 — a4 0) - ) + L1l
5 |9n.nl0h + O C(Yn n)n) 2=, €)X 4( +0)(1Ondn - n) +2\¢n,h|¢h

1 1 1 1\ 6y
R T W VR (T R Y
<5+6> h P Pnh P 4P¢h
1 1 1
- (5 t35+ 2) N
We next use (30) and |¢,, 5| < |¢p| in order to bound the last three terms. Thus,
P 2 L 1N N 2. 11\ 0y 5 4 L o1 1\ Nyoo o
=|on -(=-+=)0 —l=-+=) = —=-+=+=)0
2|¢,h|¢h <5+5> h P Onn (5+5 4P¢h €+5+2 h P Pn n®h

> <1 - %(3 + 2 1)) Plban

2
2 g de 462 h:

We now choose 0 < e <4,0<dand 4 >1+9(1/c+1/5) /2, for instance € = 6 = 2 and 4 > 11/2.
We also use (29) and we get point-wise, on any side S C I'"V, that:
3151
273

2y, — 11
Xi + ———pldnn

. 2
474 M(an ¢h n) .

op —

P 2 N adj 9}11\1
§|¢n,h|¢h + eh C(z/]h)c (¢h>("/}h) > 7

The last term, which is negative, is controlled for -3 sufficiently large as usually in Nitsche’s method,
by means of the discrete inequality:

3 s [3 (@ 1) < plénl

Sesy
We have thus established the coercivity (31). O

Let us next focus on the drag error, for the following discrete formulation: find u, = (v, pr) € Vi X Mp,

(@™ + alfyy, + s2) (wn) (Wn) — Li(un, én) — Lo (Yn, v — v7) + s(v, — 07, ép)
= 1™ (up) (), Vor, = (én, xXn) € Vi X M,

Exactly as in subsection 3.1, we have that
T3 (un) = J(u) = T3+ T+ T 4+ T + T2 4 T 4 69wy, ) (L 2).

By decomposing s? as sV + s with obvious notation, we can write that:

89 (up) (Lnz) = sV (un)(Lnz) + /Z 0P (Vpp —vP)n - ey,

14



So, by defining the new discrete drag as follows:
TN (up) = TS () — / 6P (vnp — v2)n - 1, (32)
b

we get:
TN (up) — J(u) = T8 TN 4 N (up,) (Ln2).

Theorem 4. Under the assumptions (17), (18) and (19), one has that
|TNS (up,) — J(u)| < ch?.

Proof. Thanks to Theorem 2, we only have to bound sV (uy)(L2). Using that C(u) = p" and that
C*i(u)(z) = 0, we can write that:

SN (un) (Lnz) = / 6N (Clun) — p™)C (un) (L1 2)

N

= [ o (et — ) (e az =) + € un)2) - ) ).

Thanks to the Cauchy-Schwarz inequality, we immediately get:

1/2
[V (un)(La2)| < V2| D0 10 |e.slICun) = C(w) 5
Sesy
D 10 lses1C* Y (un) (Lnz = 2)IIF s (33)
Sesh

1/2

+ D 107 loe,slIC* Y (un) (2) — C* Y (w)(2)1[5,
Sesy

Let S € 8 and K € K, such that S C K. In order to estimate the L?(S)-norm of C(uy) — C(u), we
use several ingredients: the estimate

la”a = b7b[ = [(a” =b7)(a” +b7)| <a = bl(|af + [b]),

the following inequality between discrete norms:

[vnlloo,s S lvalie + 1SI7 2 onllo.s S lonlre + [SIT 2 vallorn S 18172 |unllLe, (34)

as well as the estimate [|v[loo,s < [[V]|oo,ry S [|v]|2,0, the latter resulting from the Sobolev embedding
theorem applied to v € H?(2)2. Then we get:

IC(un) = C(w)llo,s S(l[vrlloo,s + [vlloc,s)lon = vnnllo,s + [|10n(v = va) -7 = (p = pn)llo.s
SISIT2 v = wnllo,s + [1#0n(v = vn) -1 = (p — pn)|

0,5
The trace inequality and the discrete inequality |S|'/2||pn — Lupllo.s < llpn — Lupllo.x give:
|S1Y2110n (v = v )llo,s S (Jv = o1, + diclvlo,x)

1SI*2|1p = prllo,s Slpn — Lupllor + Ip — Lnp
Sllpn = pllo.x + |lp — Lrp|

ok +dxlp— Lnpli,x
o,k +di|pli K.
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Thanks to the approximation and interpolation errors and to (29), we can conclude that:

1/2

g,S S ch.

> 10w slIClun) = C(w)]

Sesy

By using the same estimate (34) as previously for ||vp||eo,s, the trace inequality and the interpolation
error, we obtain similarly to Section 2 that:

IC*Y (un) (L2 — 2))|

0.5 Slvnllse.sllLrzv = 2ollo,s + 1O (Lnzo = 20) -1+ Lnzp — 2pllo.s
SIS 2(20l2,5 + 20101 )-
The inequality (29) next yields:
1/2
> ONIC* N (un) (Laz — 2)lI5,s < ch.
Sesy

In order to bound the remaining term of (33), let us first note that

C*U(up)(2) — C*V(u)(2) = p(vg ), — vi)ze -+ g (sgn(vn,n)vn — sgn(vn)v) - zo.

By using the inequalities (29) and |a* — 1| < |a — b|, we first get that:
1/2 1/2
Yo 0l — vz nllss | S| D0 ISHlon —vllgs | Hzolloorn-
Sesy Sesy

By using next the trace theorem in €, the H!(f2)-approximation error for v, — v and Sobolev’s theorem
applied to z, € H?(2)?, we further obtain:

1/2
> 0le(og, —vh)ze-nlgs | S Vallow = vllorvlzollz0 < ch.
Sesly
Similarly, hypothesis (??) leads to:
1/2 1/2
p p
> 9;JLV||§ (sen(vp,n)on — sgn(va)v) - 2[5 s <| > 9;IIVH§ (vn —v) - 203,
Sesy sSesy

SVl = vllo.ox | 2olloo,rn < ch.
Finally, by gathering together the previous estimates we deduce from (33) the desired result, that is:
|s™ (up) (Lpz)| < ch?.
O

4. Numerical results

In this section, we present some numerical experiments illustrating the theoretical results, carried out
by using a in-house C++ library. We consider here quadrilateral meshes. For the convergence analysis,
we use successive meshes obtained by uniform refinement.

We present two test-cases for which we dispose of a reference drag value. The first test-case uses
manufactured exact solutions for Stokes and Navier-Stokes equations, while the second one is the well-
known cylinder benchmark of [26] for the Navier-Stokes equations. Finally, we apply our approach to a
time-dependent flow considered in the cylinder benchmark and compare our results with the literature.
For all considered examples, we have taken e; = (1,0).
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Table 1: (Q1)2 X Q1 Stokes case: errors, drag and convergence orders

Nlllp=pmulloo ] 7 [lv—wlhe] 7 [llv-wloo] r | drag | r |

64 | 4.72¢-03 — [ 49701 | — 1.78¢-02 — [0.1280250 | —
256 | 1.51e-03 | 1.64 | 2.48¢-01 | 1.01 | 4.48¢-02 | 1.99 | 0.1123778 | 1.97
1024 | 5.080-04 | 1.58 | 1.24e-01 | 1.00 | 1.12e-03 | 2.00 | 0.1081210 | 1.97
4096 | 1.75e-04 | 1.54 | 6.1802 | 1.00 | 2.81e-03 | 2.00 | 0.1070358 | 1.98
16384 | 6.10e-05 | 1.52 | 3.09e-02 | 1.00 | 7.04e-04 | 2.00 | 0.1067602 | 1.98
65536 | 2.14e-05 | 1.51 | 1.54e02 | 1.00 | 1.76e-04 | 2.00 | 0.1066903 | 1.98

Table 2: (Q1)? x Q1 Stokes case: drag error without correction term

| N[ —Jw)l | r |
64| 00624974 | —
256 | 0.0208485 | 1.58
1024 | 0.0077612 | 1.43
4096 | 0.0032150 | 1.27
16384 | 0.0014333 | L.17

4.1. Ezact solutions

We use the computational domain €2 = [0,1]? and prescribe the data such that the exact solution is
given by:

v(a,y) = (4y(1 - )1~ 2?2, —dx(1 — P - ??),  pley) =2~y

We impose a homogeneous Dirichlet condition on the upper (y = 1) and the right (z = 1) boundaries
and a non-homogeneous Dirichlet condition on the left boundary (z = 0), whereas on the lower boundary
(y = 0) an outflow condition (9) is imposed. Note that the latter corresponds to a standard Neumann
condition, since v,; = 0. The viscosity is taken equal to p = 0.025.

We compute the drag value on the upper boundary and we compare the obtained approximation to
its exact value, equal to 8/75 = 0.10(6).

We begin by considering the Stokes system, solved by using the (Q1)? x Q; stabilized discretization of
Section 2. Table 1 gathers the H' and L?-norms of the velocity error, the L?-norm of the pressure error
and the computed values of the drag, on successive meshes. The first column of the table gives the number
of cells N on the different meshes. The columns titled by r indicate the corresponding convergence rates.
We note that we numerically retrieve the optimal convergence order O(h?) for the drag error, proved in
Section 2.

Remark 6. The correction term J°(up,) —J(up) resulting from Nitsche’s stabilization is essential in order
to obtain the O(h?) convergence rate for the drag error. Table 2 shows that without such a correction, the
convergence order decreases to O(h).

We next consider the Navier-Stokes system with the same analytical solution, boundary conditions
and viscosity as before. The numerical results obtained by the (Q1)? x @1 method of Section 3 (including
SUPG and boundary stabilization) are shown in Table 3.

We remark that we get the same convergence rates as in the Stokes case, which are those predicted
by the theory.
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Table 3: (Q1)2 X @1 Navier-Stokes case: errors, drag and convergence orders

Nlllp=pmulloo ] 7 [lv—wlhe] 7 [llv-wloo] r | drag | r |

64 5.97e-03 — 5.00e-01 — 1.48e-02 — 0.1282372 —
256 2.18e-03 1.45 2.47e-01 1.00 4.23e-03 1.80 | 0.1121847 | 1.97
1024 7.10e-04 1.62 1.24e-01 1.00 1.14e-03 1.89 | 0.1080739 | 1.97
4096 2.17e-04 1.71 6.18e-02 1.00 2.94e-03 1.96 | 0.1070244 | 1.98
16 384 6.72e-05 1.69 3.09e-02 1.00 7.43e-04 1.99 | 0.1067574 | 1.98
65536 2.18e-05 1.63 1.54e-02 1.00 1.86e-04 2.00 | 0.1066896 | 1.98

4.2. Cylinder benchmark

We now consider the benchmark of [26] describing the flow over a circular cylinder; it models a fluid
flow in a pipe with a circular obstacle. We compute the drag on the obstacle’s boundary, denoted by X.

4.2.1. Steady case

The considered geometry for the pipe is the rectangle Q = [0, 2.2] x [0,0.41] and the obstacle is a circle
centred at (0.2,0.2) of radius 0.05, see Figure 1. The fluid viscosity is taken equal to p = 0.001, which
yields a Reynolds number equal to 20.

We set the following boundary conditions:

e On the lower and upper walls as well as on the obstacle’s boundary, no-slip boundary conditions are
imposed. So, by putting I'yan = [0,2.2] x {0} U[0,2.2] x {0.41} U ¥, we have vp_,, = 0.

e On the left boundary I'y, = {0} x [0,0.41] a parabolic inflow profile is prescribed,

with vpax = 0.3.

e Finally, on the right boundary I'o,¢ = {2.2} x [0,0.41], one imposes the outflow condition
1Opv —pn = 0. (36)

Thus, we have that I'° = T'yan U Ty, and TV = I'yy;. Note that for this benchmark, it is known that
there is no recirculation on Iyt (that is, v, = 0 on T'oyt), and thus our outflow condition (9) is equivalent
to (36). The drag is computed on ¥ and compared to the reference value J = 5.57953523384, cf. for
instance [23], [21].

Figure 1: Geometry and boundary conditions for the cylinder benchmark

0.2
H Fwall
0.21
%:7 1_\in Q Fwall 1_\out 0.41
0.2
N Fwall
) 2.2 ’
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Figure 2: Cylinder benchmark: quadrilateral mesh with 2560 cells
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Figure 2 shows an intermediate mesh, while Figure 3 shows the pressure isolines obtained by a fully
stabilized (Q1)? x @1 finite element method. Table 4 presents the corresponding drag values together
with the convergence orders and the relative errors; the first two columns give the number of cells and
the number of degrees of freedom, respectively.

We note that we numerically obtain the optimal convergence rate O(h?) for the drag error, as predicted
by the theory.

We couldn’t find in the literature the drag computation for this benchmark by means of stabilized
(Q1)? x @ finite elements. However, we can note that our method yields the same convergence order
as the nonconforming (Q7°))? x Qo method, see [21] as well as Appendix B. Although these two low-
order finite element methods yield the same convergence order, it is well-known that they don’t have
similar computational costs. In Tables 4 and 5, one can see that on the same mesh, the relative error is
approximately 4 times larger and the number of degrees of freedom is approximately 1.6 times larger for
the nonconforming method. A similar behaviour is observed in [21], when comparing nonconforming and
conforming methods.

Figure 3: (Q1)? X Q1 cylinder benchmark solution: isolines of pressure

Table 4: Drag computation with the (Q1)? x Q1 method for the cylinder benchmark
N \ d.o.f. \ drag \ r relative error
640 2124 | 5.657508833113 — 0.0139749
2560 8088 | 5.593347524445 | 2.4970331 0.0024755
10240 31536 | 5.582312273511 | 2.3143329 0.0004977
40960 | 124512 | 5.580168154540 | 2.1334511 0.0001134
163840 | 494784 | 5.579689329110 | 2.0382022 0.0000276

4.2.2. Cut domain

We now test the influence of the modified outflow condition. We recall that in the previous test-case,
the flow on I'yy; is outgoing. In order to have a re-entrant flow on the outflow boundary, we have increased
the inflow velocity t0 vmax = 1 in (35), and cut the domain behind the cylinder, at z = 0.4. Figure 4
shows the velocity streamlines in the whole domain, whereas in Figure 5 we compare in the same domain
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Table 5: Drag computation with the (Q{Ot)2 X Qo method for the cylinder benchmark
N \ d.o.f. \ drag \ r \ relative error

640 3336 | 5.857557058537 | — 0.049828850
2560 | 13072 | 5.635208719813 | 2.32 | 0.009978158
10240 | 51744 | 5.590669151087 | 2.32 | 0.001995492
40960 | 205888 | 5.582009694953 | 2.17 | 0.000443489
163840 | 821376 | 5.580119287786 | 2.08 | 0.000104678

Qcut the streamlines of the velocity computed in the whole domain with those computed in the cut domain
(hence, with the modified outflow condition). Table 6 shows the drag coefficients in the two cases, on a
sequence of refined meshes. As expected, the values are close to each other but not identical, since we have
modified the model problem by cutting the domain near the cylinder. We cannot study the numerical
convergence order for the drag on the cut domain since we do not dispose of a reference value for this
domain.

Figure 4: Flow around a cylinder with increased inflow velocity: streamlines

Figure 5: Comparison in Qcut of velocity streamlines: whole (left) and cut (right) domains

4.2.8. Unsteady case

Finally, we test our approach in the case of unsteady flows. The stabilized finite element method
employed in this work can also be used for time-dependent flows, with stabilization parameters 6 which
depend on the time step (see [7], [8]). We consider here the cylinder benchmark configuration of the
previous subsection, but with an increased inflow velocity vy.x = 1.5. This yields a Reynolds number
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Table 6: Comparison of drag values for the whole and cut domains
| N(Q) | dragonQ | N(Qcy) | drag on Qcye |
640 | 1.537335646447 320 | 1.515744677887
2560 | 1.490398932070 1280 | 1.466342063137
10240 | 1.483690048328 5120 | 1.459151131886
40960 | 1.481798249598 20480 | 1.457154672672

Table 7: Comparison of minimum and maximum drag values for unsteady flow
| method | dof. | min | max |

| reference value | 667 264 | 3.1569 | 3.2200 |
(Q2)? x Pflise 10608 | 3.0992 | 3.1624
(Q2)? x Pflise 42016 | 3.1333 | 3.1958
(Q1)® x Q1 8088 | 3.1625 | 3.2301
(Q1)? x Q1 31536 | 3.1580 | 3.2178

equal to 100 and a periodic developed flow. This test-case was also used in [18] for the drag computation
with an isogeometric method based on NURBS appproximation.

Figure 6: Time-dependent flow around a cylinder: velocity magnitude

The velocity magnitude computed with our method is shown in Figure 6. In Figure 7, we compare
the computed drag over time obtained with our stabilized (Q1)? x Q1 method on two levels of mesh
refinement, with the drag obtained in [27], [22] with a (Q2)? x P{*¢ finite element method on two meshes.
The reference value is the one computed on a refined mesh with 667264 degrees of freedom, cf. [22].
First, we note that our results are in very good agreement with the reference value. Second, we can also
note that we obtain better results than in [27] when using much less degrees of freedom. We also show
in Table 7 the minimum and maximum drag values obtained with the two finite element methods on
different meshes, for At = 1/400.

5. Concluding remarks

We have considered stabilized (P;)? x Py and (Q1)? x Q1 continuous finite elements for the discretiza-
tion of the Stokes and the Navier-Stokes equations. The corresponding formulation presents interesting
numerical properties, as mentioned in the introduction.

We have focused on the computation of the drag, in particular on the convergence order. Several
numerical tests in the literature highlight an improved O(h?*) convergence rate for the drag error when
using a O(h*) approximation method, see for instance [21], [18].

In this paper, we have proved such a result. For this purpose, we have introduced a corrected drag,
which takes into account the different stabilization terms on the obstacle’s boundary, and we have used a

21



Figure 7: Comparison of drag for a time-dependent flow around cylinder

Q2/P1‘disc reference sélution
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time

duality argument. We have noted that the addition of correction terms to the discrete drag is necessary,
which leads us to believe that this should be the case for other stabilized methods, too. The theoretical
results are confirmed by numerical experiments.

Finally, the duality technique employed in this work can be applied to other finite element methods for
the Navier-Stokes equations. In the appendices, we consider two well-known inf-sup stable schemes, which
use the conforming Taylor-Hood elements and the nonconforming Crouzeix-Raviart or Rannacher-Turek
elements. We deduce again the improved convergence rate for the drag error.

Appendix A. Conforming (P)? X P; or (Q2)? X Q; discretizations

We consider Lagrange finite elements of degree 2 for the velocity and 1 for the pressure, on either
triangular or quadrilateral meshes. This pair yields a conforming inf-sup stable approximation of the
Navier-Stokes equations, and therefore can be used without any SUPG stabilization, at least for Reynolds
numbers which are not too large. In what follows, we take

aNS, =s? =0. (A1)
For u € H™1(Q)% x H™() with 1 < m < 2, one has
llu = unll| < ch™.

In order to study the convergence of the drag error, we use the same process as previously in Section
3. We define the drag value by (22). Note that, since no stabilization is used now, we have in this case

TNS(up) = TS (up) = [ (udpvn, — pun) Z %M (v, —vP) ey
/ SCE/ ‘S| (A.Q)

= [ Bwnn = oDpP e+ ploB) (on —0P) e
2
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We obtain the expression (23) for the drag error, with 7°%%> = 0. Under the hypotheses sgn(v,) =
sgn(v,,p) on TV and z € H!TH(Q)? x HY(Q) with 1 <1 < 2, it follows thanks to the interpolation and the
approximation error estimates that

|J(u) — TS (up)| < ch™H.

The optimal convergence rate O(h*) is obtained for m = [ = 2. Note that in practice, the regularity of
the adjoint problem often limits the convergence rate of the drag error.

As explained in subsection 3.2, it is useful to stabilize the boundary conditions. Adding the term s
to the discrete formulation does not change the previous convergence rate O(h™*) of the drag, which is
now defined by (32).
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Appendix B. Nonconforming (P;)? X Py and (Q7°%)? X Qo discretizations

We consider nonconforming finite elements of degree 1 for the velocity: Crouzeix-Raviart elements [16]
on triangles, Rannacher-Turek elements [25] on quadrilaterals. In both cases, we have:

/[Uh] =0, VSe Slnt, Yy, € Vj. (B.l)
s
The pressure is approximated by means of piecewise constant elements. It is well-known that the pairs
(Vi, My,) are inf-sup stable and yield the following error estimate, for u = (v,p) € H2(2)? x HY(Q):

llw = unl[n < ch,

where |||-|||;, is defined by using the H!(Q2) broken semi-norm in the definition of |||-|||. In the following, we
consider again (A.1), which yields the same expression (A.2) for the discrete drag as for the Taylor-Hood
elements. We also have 7% = (.

Lemma 4. One has that
TN (up) = J(u) = THO0 4 TN 477, (B.2)
where the additional term T is defined by:
Z / SUpZy + POn 2y + 2pn) - [Up] Z / “VpU — ft0nU + pn) - [2y — Lp2y].
Sesjnt Sesint

Proof. We use the discrete problem with the test-function £z, but, contrarily to subsection 3.1, we test
(10) with ¢ = z. We thus obtain:

TS(up) = J(u) = TS+ T¢+ 70 4770 724 4 NS (y) (2 — L12) — a5 (u) (2 — Lp2). (B.3)

The terms 75, T7¢, T and 7™ are bounded exactly as in subsection 3.1, since no integration by
parts is needed in order to estimate them.
As regards the term 724 we first use the relation (14) with 7 = u in order to obtain:

T — @, (un,2) ~ Fazvon) = [ pufv-z+ Ssgn(vn v 2,
T

Then we perform an integration by parts with respect to z and we use the adjoint boundary value problem
(12) with the boundary condition (13). This yields:

. p p
Tradj _ Z / (110020 + 2pn + 2vnzy) [vn] + /Z 5 (sgn(v?)vnno? + |vf| o) - er

Sesirtusp
- / (1On 2y + 2pn) - U, — / p(vf)*vD -e1 + Bsgn(vf)val) -eq
rp N

:/ p(v2)F(vp, —vP) g + Bsgn(fuf)(funyh — Pyl e + Z / 1onzy + 2zpn + pvnzv) [vn].
. 2 2

Sesznt
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Here above, we have used that v? + |[vP| = 2(v2)* on T'P.

The additional consistency term in (B.3) is treated by integrating with respect to u and by using the
boundary value problem (8) with the outflow condition (9), and the fact that z, = & = L2, on I'P.
Noting that

/ng-(v.v(zv—chzv)):—/ngvw (20 = Lnzo) + Z/ 3Un? [2v = Lozl

SeSh

and using v, — |v,| = 2v;, on 'V, we finally obtain that:

INS(u)(z — Lz) — a™S(u)(z — Lpz) = Z / ZUp0 — 1OpU +pn) - [2y — Lpzy].

Sesjt

Summing up the previous contributions and using the notation introduced in (21) and (22) yield the
announced result (B.2). O

Lemma 5. Under the reqularity assumptions (17) and (19), one has that

|77t < eh®.

Proof. For any interior side S € S}, the integral / (gvnv — 11Onv+pn) - [z, — Ly 2,] is bounded as usually
s

when dealing with nonconforming methods. That is, the relation (B.1) and the continuity of z, across

Bv@v—,qu—i—pI) n. By

S allow us to subtract an arbitrary constant vector to gvnv — uOpv +pn = ( 5

subtracting Cisn with the matrix Cg = 72 (gv ®v — puVu erI), we get:

|2 G o) [z~ 4]

Sesjnt
Is| v ! , )

(X ByGewo-wwospr-cs)ults) (X Al Lanllts)

Ses;nt Sesjnt

1/2 1/2

< By o tpIP ) 2z — Lozl i) <
~ Z 2”®v pVvu +pllf g Z 2 |20 nZollo,x + 1z n2oli K e

KeRk, KeKy,

As regards the remaining term in 7", we similarly get that:

|3 [ Guast nuz 2 (o

Ses;ilnt
% p i H v
(X Eamvrivataiiy) (X i)
Ke](:h Ses}iLnt

1/2
H c
sh( )3 S|||[vh—zhv1||as) ,

Sesint

with Zjv the Pj-continuous or 1-continuous interpolate of v. We next use the standard inequality on
any interior side S = 0K NOK°*:

71'}611}]”075 S/ (|’Uh 7I}CL’U|1’Km —+ |Uh 7Iﬁv|17]{ez)

— v
\/E h
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and we obtain, by means of the triangle inequality,

7
> il =Tl S (o~ T+ 3 o= vl ).
Sesjnt KeKkyn

This finally yields

| Z /(gvnzv + uOpzy + an) o]l < ch?.
sesjnt 9

We immediately get:
Theorem 5. Under the assumptions (17), (18) and (19), one has that

|J(u) — JNS(up)| < ch?.

References

[1] I. Babuska, A. Miller, The post-processing approach in the finite element method-part 1: Calculation
of displacements, stresses and other higher derivatives of the displacements, Int. J. Numer. Meth.
Engng. 20 (1984), 1085-1109.

[2] S. Badia, R. Codina, Unified stabilized finite element formulations for the Stokes and the Darcy
problems, STAM J. Numer. Anal. 47 (2009), 1971-2000.

[3] Y. Bazilevs, T.J.R. Hughes, Weak imposition of Dirichlet boundary conditions in fluid mechanics,
Comput. & Fluids 36 (2007), 12-26.

[4] Y. Bazilevs, C. Michler, V.M. Calo, T.J.R. Hughes, Isogeometric variational multiscale modeling
of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes,
Comput. Methods Appl. Mech. Engrg. 199 (2010), 780-790.

[5] R. Becker, Mesh adaptation for Dirichlet flow control via Nitsche’s method, Commun. Numer. Meth-
ods Eng. 18 (2002), 669-680.

[6] R. Becker, M. Braack, Solution of a stationary benchmark problem for natural convection with large
temperature difference, Int. J. Therm. Sci. 41 (2002), 428-439.

[7] R. Becker, D. Capatina, R. Luce, D. Trujillo, Finite element formulation of general boundary condi-
tions for incompressible flows, Comput. Methods in Appl. Mech. Eng. 295 (2015), 240-267.

[8] R. Becker, D. Capatina, R. Luce, D. Trujillo, Stabilized finite element formulation with domain
decomposition for incompressible flows, STAM J. Sci. Comp. 37 (2015), 1270-1296.

[9] R. Becker, R. Rannacher, An optimal control approach to a posteriori error estimation in finite
element methods. In Acta Numerica, A. Iserles (ed.), Cambridge Univ. Press (2001), 1-102.

[10] C. Bertoglio, A. Caiazzo, Y. Bazilevs, M. Braack, M. Esmaily, V. Gravemeier, A. Marsden, O.
Pironneau, I. Vignon-Clementel, W. Wall, Benchmark problems for numerical treatment of backflow
at open boundaries, Int. J. Numer. Methods Biomed. Eng. 34 (2018), doi:10.1002/cnm.2918.

[11] M. Braack, P.B. Mucha, Directional Do-nothing Condition for the Navier-Stokes Equations, J. Com-
put. Math. 32 (2014), 507-52.

[12] M. Braack, F. Schieweck, Equal-order finite elements with local projection stabilization for the Darcy-
Brinkman equations, Comput. Methods Appl. Mech. Engrg. 200 (2011), 1126-1136.

25



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[22]

[23]

[24]

[25]

[26]

[27]

A. Brooks, T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated

flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods
Appl. Mech. Engrg. 32 (1982), 199-259.

C.-H. Bruneau, P. Fabrie, New efficient boundary conditions for incompressible Navier-Stokes equa-
tions: a well-posedness result, RAIRO Model. Math. Anal. Numer. 30 (1996), 815-840.

E. Burman, M.A. Fernandez, P. Hansbo, Continuous interior penalty finite element method for Os-
een’s equations, STAM J. Numer. Anal. 44 (2006), 1248-1274.

M. Crouzeix, P.A. Raviart, Conforming and non-conforming finite elements for solving the stationary
Stokes equations, R.A.LR.O. Anal. Numer. 7 (1973), 33-76.

L.P. Franca, S.L. Frey, Stabilized finite element methods. II: The incompressible Navier-Stokes equa-
tions, Comput. Methods Appl. Mech. Engrg. 99 (1992), 209-233.

T. Hoang, C.V. Verhoosel, F. Auricchio, E.H. van Brummelen, A. Reali, Skeleton-stabilized isoge-
ometric analysis: High-regqularity interior-penalty methods for incompressible viscous flow problems,
Comput. Methods Appl. Mech. Engrg. 337 (2018), 324-351.

T. Hoang, C.V. Verhoosel, C.-Z. Qin, F. Auricchio, A. Reali, E.H. van Brummelen, Skeleton-stabilized
immersogeometric analysis for incompressible viscous flow problems, Comput. Methods Appl. Mech.
Engrg. 344 (2019), 421-450.

T. Hughes, L. Franca, M. Mallet, A new finite element formulation for computational fluid dynamics.
I: Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of
thermodynamics, Comput. Methods Appl. Mech. Engrg. 54 (1986), 223-234.

V. John, G. Matthies, Higher-order finite element discretizations in a benchmark problem for incom-
pressible flows, Int. J. Numer. Meth. Fluids 37 (2001), 885-903.

V. John, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylin-
der, Int. J. Numer. Meth. Fluids 44 (2004), 777-788.

G. Nabh, On high order methods for the stationary incompressible Navier-Stokes equations, In-
terdisziplindres Zentrum fiir Wiss. Rechnen der Univ. Heidelberg (1998), http://numerik.iwr.uni-
heidelberg.de/Paper/Preprint1998-14.pdf

J. Nitsche, Uber ein Variationsprinzip zur Lésung von Dirichlet-Problemen bei Verwendung von
Teilrdgumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Univ. Hamburg 36 (1971),
9-15.

R. Rannacher, S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Meth. Part.
D.E. 8 (1992), 97-111.

M. Schifer, S. Turek, The benchmark problem flow around a cylinder. In Flow Simulation with High-
Performance Computers II, Hirschel EH (ed.), Notes on Numerical Fluid Mechanics, vol. 52. Vieweg:
Braunschweig (1996), 547-566.

DFG benchmark 2D-2 (Rel00, periodic)-Featflow.
http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.hitml.

26





