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QSPR versus fragment-based methods to predict octanol-air partition coefficients: Revisiting a recent comparison of both approaches

Introduction

The octanol-air partition coefficient (K OA ) is needed to establish environmental models to evaluate the global distribution, transport and ultimate fate of organic pollutants [START_REF] Prevedouros | Estimation of the production, consumption, and atmospheric emissions of pentabrominated diphenyl ether in europe between 1970 and 2000[END_REF]. Since the experimental determination of this property is costly and tedious, many models have been developed to estimate K OA values using only molecular structure as input, including group-contribution (GC) methods [START_REF] Li | The fragment constant method for predicting octanolair partition coefficients of persistent organic pollutants at different temperatures[END_REF] and quantitative structure-property relationship (QSPR) models (Chen et al., 2002a(Chen et al., ,b, 2003a,b;,b;[START_REF] Hongxia | Octanolair partition coefficients of polybrominated biphenyls[END_REF][START_REF] Staikova | Molecular polarizability as a single-parameter predictor of vapour pressures and octanolair partitioning coefficients of non-polar compounds: a priori approach and results[END_REF][START_REF] Zhao | Prediction of oc[END_REF][START_REF] Zeng | Qspr modeling of n-octanol/air partition coefficients and liquid vapor pressures of polychlorinated dibenzop-dioxins[END_REF][START_REF] Liu | Improved 3d-qspr analysis of the predictive octanolair partition coefficients of hydroxylated and methoxylated polybrominated diphenyl ethers[END_REF][START_REF] Jiao | QSPR study on the octanol/air partition coefficient of polybrominated diphenyl ethers by using molecular distance-edge vector index[END_REF][START_REF] Chen | Prediction of octanol-air partition coefficients for polychlorinated biphenyls (pcbs) using 3d-qsar models[END_REF][START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF][START_REF] Jin | Development of polyparameter linear free energy relationship models for octanolair partition coefficients of diverse chemicals[END_REF]. The large number of QSPR methods reported so far stems partly from the fact that many of them are restricted to specific chemical families and none of them proves clearly superior to the others. In addition, as pointed out by [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF], some models lack external validation or definition of the applicability domain (AD). Finally, most published QSPR models focus on data measured under standard conditions and do not account for the temperature dependence of K OA . On the other hand, K OA may be calculated from theoretical values of the solvation free energy ∆G OA of the compound from air to octanol [START_REF] Nedyalkova | Calculating the partition coefficients of organic solvents in octanol/water and octanol/air[END_REF] which may be derived from either classical molecular simulations [START_REF] Duarte Ramos Matos | Approaches for calculating solvation free energies and enthalpies demonstrated with an update of the freesolv database[END_REF] or quantum chemical computations for the molecule in interaction with an implicit solvent, as done in quantum solvation models like COSMO-RS [START_REF] Klamt | Cosmo-rs: An alternative to simulation for calculating thermodynamic properties of liquid mixtures[END_REF] or the SMx solvation models [START_REF] Marenich | Generalized born solvation model sm12[END_REF]. However, classical simulations require that a reliable force field is available, whereas COSMO-RS or SMx approaches are universal solvation models that may be expected to be less accurate than a method targeted at a specific solvent, as observed to be the case for SM8 [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF].

In this context, [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF] carried out an interesting comparison of current approaches and came up with a QSPR model that performs significantly better than the other methods considered (including a GC method and the SM8 model) in predicting K OA at different temperatures. The lower accuracy of SM8 [START_REF] Marenich | Self-consistent reaction field model for aqueous and nonaqueous solutions based on accurate polarized partial charges[END_REF] is perhaps unexpected in view of the excellent results reported very recently for simple molecules by [START_REF] Nedyalkova | Calculating the partition coefficients of organic solvents in octanol/water and octanol/air[END_REF] using a similar approach. However, it is understandable as such quantum chemical solvation models are applicable to any solvent for which all required input properties are available. As a consequence, corresponding predictions are not necessarily better than obtained using more empirical schemes fitted against a specific solvent.

Nevertheless, the lower performance of the GC method compared to a QSPR is more surprising. According to the experience of the present author in predicting vapor-solution equilibria in the context of vapor sensing, a wellparametrized additivity scheme should perform better than the GC method reported by [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF], and probably better than currently available QSPRs as well.

Notwithstanding accuracy, QSPR models exhibit a number of drawbacks.

In particular, their limitations are difficult to determine unambiguously. In the lack of well-defined physical approximations, one has to resort to a statistical definition of their applicability domain (AD) based on statistical considerations [START_REF] Sahigara | Comparison of different approaches to define the applicability domain of qsar models[END_REF]. Various definitions yield inconsistent boundaries for the AD, and it was previously observed that they often fail to identify compounds associated with the most significant errors [START_REF] Tetko | How accurately can we predict the melting points of drug-like compounds?[END_REF][START_REF] Mathieu | Physics-Based Modeling of Chemical Hazards in a Regulatory Framework: Comparison with Quantitative StructureProperty Relationship (QSPR) Methods for Impact Sensitivities[END_REF][START_REF] Mathieu | Solubility of organic compounds in octanol: Improved predictions based on the geometrical fragment approach[END_REF]. In addition, as pointed out by [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF], the need to determine whether a given compound lies within the AD of the model increases the complexity of the prediction process. On the other hand, the OECD principles for the validation of QSPR models of potential interest for regulatory purposes recommend that a mechanistic interpretation of the model is provided (OECD, 2007). This is especially difficult to satisfy for QSPR schemes based on arbitrary pools of descriptors, like the one put forward by [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF]. Finally, a practical drawback of this model stems from its reliance on proprietary software to compute the descriptors, which limits its availability.

In fact, a close examination of the models considered by [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF] shows that the procedure presented as a GC method is unlikely to yield good results. Indeed, it is not consistent with the equation linking K OA to the corresponding solvation free energy ∆G OA and ideal gas constant R at temperature T :

log(K OA ) = - ∆G OA 2.303RT (1) 
In contrast to this equation, the [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF] relationship implies that the log(K OA ) contribution inversely proportional to temperature is independent of the structure of the molecule, and simply equal to (3300 K)/T. In addition, the involved fragments are selected using stepwise multilinear regression (MLR) followed by partial least squares (PLS) analysis. As a result of this variable selection step, many molecular fragments are left without associated parameters. In other words, their contribution to ∆G OA is simply ignored. In fact, this procedure should be considered as a QSPR model re-stricted to the use of constitutive (1D) descriptors, rather than as a genuine fragment-based additivity scheme. In this context, the present paper revisits the potential interest of a standard fragment-based method to predict K OA .

It will be shown that compared to the QSPR put forward by [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF], a very simple pencil and paper model provides more accurate predictions, as well as many additional benefits.

Present model

Dataset

To make comparison easier, the present model is fitted and validated using the dataset of 939 K OA values compiled by [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF] 

Modeling approach

The present fragment-based model for K OA is very similar to a recent one recently reported to predict solubility in octanol (S oct ) for both liquid and solid organic compounds. For this latter application, the additivity approach predicts log(S oct ) with an accuracy on par with a much more complicated random forest procedure [START_REF] Mathieu | Solubility of organic compounds in octanol: Improved predictions based on the geometrical fragment approach[END_REF]. This performance is especially remarkable for solids, as the corresponding log(S oct ) values exhibit a complex entropic contribution proportional to the melting point. Moreover, the quantitative modeling of S oct is made difficult as different compounds undergo transitions from liquid octanol to a variety of environments corresponding to their respective pure phases. By contrast, the octanol-air transition does not involve any melting transition and all compounds see a similar variation in their environment on going from octanol to air. Therefore, K OA should be easier to model than S oct .

Accordingly, the present model closely follows the previous one developed for S oct [START_REF] Mathieu | Solubility of organic compounds in octanol: Improved predictions based on the geometrical fragment approach[END_REF]. Instead of log(S oct ), the quantity that lends itself to decomposition into additive fragments is log(K OA ):

log(K OA ) = 1 T T 0 + i n i T i (2) 
In this equation, the index i runs over all constitutive fragments, and n i is the number of occurrences of fragment i in the molecule. The T 0 term accounts for deviations from size-extensivity that may be expected owing to the entropic contribution to ∆G OA .

This model is based on the so-called geometrical fragment (GF) approach, an extremely simple atom additivity scheme based on elementary physical considerations regarding the ability of a given atom to interact with neighboring molecules. Derived from an earlier model developed to estimate molar volumes in organic crystals [START_REF] Beaucamp | Optimal partitioning of molecular properties into additive contributions: the case of crystal volumes[END_REF], this method is mainly targeted at properties fully determined by intermolecular interactions. For such properties, it proves remarkably successful, as shown recently for the molar volume of liquids [START_REF] Mathieu | Reliable and versatile model for the density of liquids based on additive volume increments[END_REF] or the sublimation enthalpy of crystals, either near triple point conditions [START_REF] Mathieu | Simple alternative to neural networks for predicting sublimation enthalpies from fragment contributions[END_REF] or (to a lesser extent) at ambient temperature [START_REF] Mathieu | Accurate or fast prediction of solid-state formation enthalpies using standard sublimation enthalpies derived from geometrical fragments[END_REF]. More surprisingly, it yields state-of-the-art accuracy for more complex properties like refractive index [START_REF] Bouteloup | Improved model for the refractive index: application to potential components of ambient aerosol[END_REF], flash point [START_REF] Mathieu | Insight into the contribution of individual functional groups to the flash point of organic compounds[END_REF] or flammability limit temperatures [START_REF] Mathieu | Power law expressions for predicting lower and upper flammability limit temperatures[END_REF]. For the two latter properties, this probably reflects the fact that vapor pressure plays a more important role than reactivity.

The fragments are identified with non-hydrogen atoms in a similar fashion as done previously for log(S oct ), according to the standard GF approach [START_REF] Mathieu | Solubility of organic compounds in octanol: Improved predictions based on the geometrical fragment approach[END_REF]. The only difference stems from the fact that distinct parameters are introduced for atoms depending on whether they belong to a ring or not. For instance, a characteristic temperature of 140.8 K is associated with every methylene group (>CH 2 ). However, this value is only 102.4 K for methylene groups involved in rings. This distinction is motivated by the fact that the interactions that a given atom may develop with surrounding molecules usually decrease as the atom gets involved in a ring, as they get screened by the other atoms in the ring.

The characteristic temperatures T i are obtained from a multilinear regres-sion carried out using the Statsmodels package (http://statsmodels.sourceforge.net). Such data may be useful to assess the confidence that can be placed in an estimate. For instance, the parameter associated with the iodine atom (350.2 K) is derived from experimental measurements for only two compounds, namely iodomethane and iodoethane. As indicated in Table 1, none of these compounds exhibits more than one iodine atom. Therefore, the model might be unreliable for molecules with a -CI 3 group where interactions involving any I atom is screened by others in geminal positions. 

Results

Model parameters

Predicted data

Present results are reported in full details in Supplementary Data. The ability of the GF model to predict log(K OA ) for the training and test sets is illustrated on Fig. 1. As previously observed for the QSPR [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF], only few deviations from experiment are larger in magnitude than 2 log units. Whatever the model accuracy, such deviations cannot be ruled out in view of uncertainties that may affect some measurements [START_REF] Linkov | Uncertainty in octanol-water partition coefficient: Implications for risk assessment and remedial costs[END_REF]. Using the GF model, the most significant deviation is for N,N-dimethylacetamide (Fig. 1) for which log (K OA ) is 2.4 log units below experiment. The dataset includes only two additional amide compounds, namely N,N-dimethylformamide and p-acetophenetidide, for which calculated log (K OA ) values are about 1.6-1.7 log units below experiment. Therefore, it appears that the present GF model systematically underestimates log (K OA ) for amides, probably owing to the fact that the specially high polarity of this group is not taken into account. Present results suggest that an additive correction to log (K OA ) would satisfactorily repair this deficiency.

On the other hand, the most severely overestimated log (K OA ) value (+1.9 log unit) is observed for 1,4-butanediol dinitrate, while good agreement with experiment is obtained for the five other nitrate compounds in the dataset.

Table 2 compares the average performance of the GF model to corresponding data for the earlier QSPR scheme recommended by [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF].

The latter being selected from a huge number of putative models on the basis of its performance for the training set, it is expected to yield better values of the goodness-of-fit and robustness. This is what is actually observed. However, the difference is very small. On going from the QSPR to the GF model, the root mean square error (RMSE) increases from 0.46 to 0.47 log units, while the cross-validated R 2 decreases from 0.97 to 0.96.

A somewhat more significant difference is observed with regard to the ability of the models to predict K OA for compounds outside the training set.

Indeed, on going from the training set to the test set, a significant increase of the RMSE (from 0.46 to 0.60 log units) is observed for the QSPR, hence reflecting the fact that this model is probably overfitted to some extent. In contrast, the RMSE obtained using the GF model is hardly changed (from 0.47 to 0.50 log units), whereas R 2 remains constant at 0.97. Although the improvement observed on going from a QSPR to the GF model is not large, it is remarkable given the extreme simplicity of the latter. This illustrates that the fact that current QSPR models are not necessarily better than simple, physically motivated additivity schemes. The extensive search for the best set of input variables among a large pool of descriptors tends to yield especially small errors for the training set, and the robustness arises as a consequence of the small number of adjustable parameters.

The good overall performance of the GF model is especially remarkable considering the fact that in contrast to typical QSPR schemes like the one recommended by [START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF], it is applicable to all compounds presently considered. Nevertheless, as mentioned above, predictions involving seldom encountered fragments should be considered with caution, as the corresponding parameter T i depends on the reliability of a small number of measurements.

Uncertainties associated with experimental data may be assessed by plotting measured log (K OA ) values according to temperature, as done on Fig. 2 for a random selection of compounds taken from the test set. Non-monotonous variations of this property (i.e. the spread of experimental data points) reflect experimental uncertainties and make it clear that obtaining more accurate predictions is hardly possible for such models fitted against experiment.

Interestingly, the RMSE steadily decreases as the temperature increases, from 0.58 for the 73 data points measured between -10 • C and +10 

Conclusion

Present results demonstrate that current QSPR models for octanol-air partition coefficients of organic compounds do not yield any improvement over additivity schemes. In particular, the simple geometrical fragment (GF) approach considered in this work outperforms the best QSPR model presently reported in literature. There are several reasons why this approach is recommended over available QSPRs, including state-of-the-art accuracy, simplicity and availability to any researcher. To make it even easier to apply to many compounds, it is implemented in a simple and hackable Python script 

Figure 1 :

 1 Figure 1: Predicted versus measured values of log (K OA ).

  provided as supplementary data to this article. Furthermore, by comparison with models based on statistical or machine learning techniques, the present GF method meets the required criteria for the regulatory acceptance

Figure 2 :

 2 Figure 2: Dependence of log (K OA ) on temperature for a random selection of molecules (referred to using their CAS registry numbers) from the external test set: calculated data (solid lines) versus experiment (symbols).

  Table 1 lists the optimal values of the characteristic temperatures T i obtained from the present regression and corresponding standard errors σ

i . The number of entries in the training set involving a given fragment is denoted as N occ . This shows that such fragments as CH 4 (only relevant for methane), =S< or >Sn< are encountered only once in the training set. Obviously, standard errors are especially large for the associated parameters. Compounds that exhibit the corresponding fragments might be considered as lying outside the applicability domain (AD) of the model, in addition to compounds with fragments not encountered in the present dataset.

Also listed in Table

1

is the maximum number n max of occurrences of a fragment on any single compound. For instance, n max =2 for =CH 2 indicates that no molecule in the training set exhibits more than two =CH 2 fragments.

  • C, to 0.35 for the 88 data points measured between +10 • C and +60 • C. Keeping in mind the assumption in the GF model that each atom interacts with an average environment determined by its covalently bound neighbors, the smaller errors obtained at higher temperature might be explained by the enhanced efficiency of thermal averaging to mitigate the potential specificity of each atomic environment.

Table 1 :

 1 Fit of Eq. 2 against the training set: T i and σ i are the values of the characteristic temperatures and associated standard errors (in K). See text for further details.

	parameter	T i	σ i N occ n max
	T 0	241.3 42	-	-
	≡C-	203.2 36	6	1
	=C<	207.7 29	23	2
	=C< (ring)	190.7	8 188	12
	=CH-	169.6 39	15	2
	=CH-(ring) 127.0	6 175	14
	=CH 2	-73.5 57	6	2
	>C<	202.2 34	14	1
	>C< (ring)	-71.4 14	8	3
	>CH-	196.1 27	19	2
	>CH-(ring) 237.9	9	13	6
	>CH 2	140.2	7	59	15
	>CH 2 (ring)	103.9 14	16	6
	-CH 3	43.4 22	85	4
	CH 4	-354.6 150	1	1
	≡N	144.3 40	5	1
	>N-	117.6 65	10	2
	>N-(ring)	385.0 152	1	1
	>NH	563.2 72	4	1
	>NH (ring)	500.2 115	2	1
	=O	187.3 37	38	4
	>O	79.7 20	66	2
	>O (ring)	41.3 16	28	2
	-OH	295.0 22	36	2
	=S	117.7 67	1	2
	=S<	963.4 150	1	1
	=S< (ring)	457.3 89	1	1
	S in sulfone	123.0 88	3	1
	-F	-69.2 16	13	21
	-Cl	135.8 12 127	9
	-Br	198.0 13	49	6
	-I	353.3 105	2	1
	>Sn<	366.2 155	1	1
		21			

Table 2 :

 2 Comparison of the present GF model with the QSPR model recommended by[START_REF] Fu | Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds[END_REF].

		N obs	R 2 RMSE Min Max
	Training set		
	GF	715 0.97	0.47 -2.4 +1.9
	QSPR 710 0.97	0.46	-	-
	Test set			
	GF	220 0.97	0.50 -1.6 +1.4
	QSPR 208 0.95	0.60	-	-

of QSPRs better, especially with regard to applicability and interpretability.

Nevertheless, such a simple model necessarily exhibits deficiencies, especially for compounds involving atoms and/or atomic environments poorly represented in the training set (like iodine compounds). Moreover, according to the present GF approach, the ability of an atom to interact with octanol depends only on its immediate surroundings, i.e. on the atoms of the molecule under study to which it is covalently bound. Therefore, it ignores the fact that large flexible molecules may adopt a large number of more or less coiled conformations, in addition to the extended ones, thus overestimating the contribution of atoms that get buried in coiled conformations. On the opposite, the negative contribution to log (K OA ) associated with quaternary sp3 carbon atoms might prove too negative whenever these atoms are buried.

Although the present GF model is recommended over QSPRs for quick evaluations of octanol-air partition coefficients, more rigorous procedures like molecular simulations or quantum chemical solvation models [START_REF] Duarte Ramos Matos | Approaches for calculating solvation free energies and enthalpies demonstrated with an update of the freesolv database[END_REF][START_REF] Nedyalkova | Calculating the partition coefficients of organic solvents in octanol/water and octanol/air[END_REF]