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Abstract : 

For laser users, the usual Gaussian beam (GB) may not always be the best intensity profile. 

Often, a preferred option is a Flat-Top (FT) beam which is generally obtained by using 

diffractive optics in a reshaping operation. In this case, the resulting FT profile occurs only in 

the focal plane of the focusing lens, and its vicinity. We consider here the generation of a 

shape-invariant FT laser beam resulting from the incoherent weighted (50%-50% in power) 

mixing of LG00 (GB) and LG01 (doughnut) beams. For that we consider the insertion inside 

the laser cavity of a diaphragm and an absorbing ring, and optimising their sizes makes 

possible the simultaneous oscillation on LG00 and LG01 modes allowing the generation of a 

shape-invariant laser beam.. 
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1. Introduction 

The usual Gaussian beam (GB) may not always be the best intensity profile for many 

laser applications. For instance, an intensity profile, in the focal plane of a focusing lens, 

having the shape of a flat-top can be very useful [1]. As shown in Fig. 1, the Flat-Top (FT) 

intensity profile refers to a profile which is flat over most of the beam cross section contrary 

to the Top-Hat profile for which the intensity is ideally constant over all the beam cross 

section. Two families of technique can be used for getting a FT intensity profile. The first one 

consists to transform the usual Gaussian beam into a FT intensity profile by using a diffractive 

technique [2-7] or an interferometric technique based on the coaxial coherent superposition of 

two Gaussian beams having the same width and two opposite curvatures [8], and a focusing 

lens. The second technique called as intra-cavity beam shaping consists to insert some phase 

mask inside the laser cavity so that its fundamental mode takes the shape of a FT beam [9-10]. 

In both cases, the FT beam is not invariant in shape with propagation distance. This means 

that the intensity profile evolves as the beam is propagating, and the desired FT intensity 

profile only occurs in the vicinity of the focal plane of the focusing lens. In contrast, it could 

be interesting to generate a FT beam keeping its shape along propagation. Indeed, one can 

guess the usefulness of such invariant FT beams in many practical applications such as, for 

instance, material processing, nonlinear frequency conversion, material sputtering,… The 

generation of shape-invariant FT laser beams has been experimentally demonstrated by using 

two different techniques: (i) diffractive intra-cavity beam shaping with amplitude objects [11], 

and (ii) by optical feedback [12] which is basically in fact an interferometric technique. 
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Figure 1: Flat-Top and Top-Hat intensity profiles. 
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In this paper we will visit again in Section 2 the technique used in REF. [11] for 

producing a shape-invariant flat-top beam by introducing inside a two-mirror laser cavity an 

absorbing ring on the plane mirror and a diaphragm on the concave mirror. The interpretation 

given in [11] was that the shape-invariant FT beam results from the incoherent superposition 

of a LG00 (Gaussian beam) and LG10 (one central peak surrounded by one ring of light) 

beams. This statement is unfortunately wrong because the incoherent superposition of LG00 

and LG10 beams (addition of intensity profiles) does not give any FT profile whatever the 

power weighting of each beam. However, one has to remember from the experimental 

evidence in [11] that a plano-concave laser cavity including an absorbing ring and a 

diaphragm can sustain a laser oscillation taking the form of a shape-invariant FT beam. We 

will give in Section 2 an interpretation which we think corresponds to the right one, and will 

make a complete modelling of the laser cavity including amplitude masks in order to force the 

laser oscillation to take place simultaneously on the LG00 and LG01 Laguerre-Gauss 

eigenmodes. Achieving a remarkable experimental observation such as the generation of a 

shape-invariant FT laser beam [11] is useful, but a full understanding of the ins and outs of 

the issue is even better. This is what has motivated the study presented in this paper. 

 

2. Generation of a shape-invariant Flat-Top laser beam 

In the following, we will consider the coaxial incoherent superposition of LG00 (Gaussian) and 

LG01 (doughnut) Laguerre-Gauss eigenmodes. The intensity profiles I00 and I01 associated, 

respectively, with the LG00 and LG01 modes are expressed as follows 
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where 00P  and 01P  are the power carried by the 00LG  and 01LG  beams, respectively. 

A remarkable intensity profile is obtained from this beam mixing when they have the same 

power ( 0100 PP = ) since a Flat-Top intensity profile is obtained as shown in Fig 2. Since the 

00LG  and 01LG beams are eigenmodes, namely they keep their shape as they propagate, it 

results that their weighted (50%-50% in power) incoherent mixing leads to a shape-invariant 

Flat-Top beam. It is seen in Fig. 2 that the FT beam results from the filling of the doughnut 

LG01 beam by the Gaussian LG00 beam. It is important to note that in Fig. 2 the plot of 01I  is 
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not to scale. Indeed, the maximum intensity of the ring associated with a lLG0 beam of power 

P is given by [13]: 

     ll
elII

−= 0max      (3) 

where )/(2 2

0 WPI π= is the on-axis intensity of the 00LG  Gaussian beam carrying the power 

P. For l=1, one has 0max 36.0 II ×= . 

 

 

 

 

 

 

 

 

Figure 2: Generation of a flat-top intensity profile from the incoherent superposition of LG00 

and LG01 eigenmodes. 

 

 

It is important to note that the coherent coaxial mixing of Gaussian 00LG  and doughnut lLG0  

beams, correctly weighted, leads to a space-invariant flat-top beam only for l=1. Now, it 

remains to look at the possibilities to achieve the incoherent coaxial mixing of 00LG  and 

01LG beams. First, it is worth noting that the necessary incoherence between 00LG  and 

01LG beams, in order to add the intensities I00 and I01 given by Eqs. (1) and (2) without 

interference, is fulfilled when their frequencies are different. The authors of REF. [14] have 

experienced the generation of a FT intensity profile by using two Nd:YLF lasers with one 

operating in 01LG  (doughnut) mode, and the other in 00LG  (Gaussian) mode. By adjusting the 

power ratio of the two lasers, a FT intensity profile can be reached [14]. Here, in this paper, 

and elsewhere in the experimental generation of a shape-invariant Flat-Top laser beam [11,12] 

we consider a single solid-state laser forced to oscillate simultaneously in the LG00 (Gaussian) 

and LG01 (doughnut) Laguerre-Gauss eigenmodes. For doing that we have to make sure that 

their loss levels are equal. In other words, we have to insert inside the cavity some amplitude 

masks meeting the condition of equal losses in order that these two modes should oscillate 
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simultaneously as soon as the laser threshold is reached. Before proceeding, it is worthwhile 

to note the two following points: 

(i) The transverse LG00 mode does not compete very much against LG01 mode in the 

amplifying medium because they extract energy from different regions of the 

active medium: central for the LG00 mode, and peripheral for the LG01 mode. 

(ii)  It is worthwhile to note that the mixing of transverse LG00 and LG01 modes of a 

given laser is necessarily incoherent since the different transverse modes oscillate 

on distinct frequencies.  

 

 

The envisaged laser cavity allowing the simultaneous oscillation of LG00 and LG01 modes is 

illustrated in Fig. 3. The amplitude masks mentioned above are a circular aperture set against 

the concave mirror and a circular absorbing ring against the plane mirror. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Scheme of the laser cavity of length L made up of a plane mirror Mp and a concave 

mirror Mc of radius of curvature noted R. The transverse mode selection is achieved by the 

combined effects of a circular aperture (2) against Mc and a circular absorbing ring (1) set on 

Mp. 

 

We have to recognise that the ring and the diaphragm are lossy devices, and there might be a 

temptation to believe that the use of a phase mask should be preferable for selecting a high 

order Laguerre-Gauss mode as a fundamental mode. Before to proceed, we would like to 

bring a very widespread but false idea which states that the use of a phase mask in place of an 

amplitude mask is always more efficient because it is intrinsically transparent, and therefore 

less lossy. This point has been discussed in details elsewhere [15], and it has been 
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demonstrated that the use of an absorbing mask can be less lossy than a phase mask for the 

same transverse mode selection. It is important to note that the losses introduced by an 

absorbing ring can be reduced by its segmentation [16] while its ability to discriminate the 

desired transverse mode is maintained. In addition, it can be noted that a basic amplitude 

mask such as diaphragm or ring is probably more simple to fabricate, and less expensive than 

any phase mask. 

Another possibility for selecting a high order LG mode without any intra-cavity mask is to 

reshape the laser beam pump when the pumping is longitudinal. This has been already 

achieved by pumping a solid-state laser with a light ring forcing the laser to oscillate on a 

LG0l mode [17,18]. In our case this concept of transverse mode control is not applicable 

because an annular gain region does not sustains laser oscillation on a Gaussian beam which 

is absolutely essential for finally getting a shape-invariant FT laser beam. We can also note 

that simultaneous oscillation of LG00 and LG0l modes has been recently reported [19] with a 

particular laser configuration. The latter is made up of a single laser crystal in the main cavity 

shared by two secondary cavities in which the desired transverse mode selection is made 

independently. However, authors of REF [19] have not considered the mixing of doughnut 

and Gaussian beams, and consequently did not observe any Flat-Top beam. 

The geometry of the diaphragm and absorbing ring is given in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Geometry of (a): absorbing ring, and (b): circular aperture 

 

For convenience, we will use the normalised radius cDD WY /ρ=  for the diaphragm (circular 

aperture), and pAA WY /ρ=  for the absorbing ring; where pW  ( cW ) is the beam radius of the 
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fundamental Gaussian beam on the plane (concave) mirror of the bare cavity, i.e. without the 

amplitude masks. The widths pW  and cW  are given by 
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where )/1( RLg −=  is the stability parameter of the resonator. For convenience we will note 

)( hAB += ρρ  and pBB WY /ρ= , where h is the width of the absorbing ring. 

The eigenmodes of the bare cavity (without the masks) are assumed to be the Laguerre-

Gaussian LGpl modes characterised by a width Wpl increasing with the mode orders p and l 

[20] 

    12 ++= mpWWpl       (5) 

 

where W represent the width of the Gaussian LG00 mode. The mechanism of transverse mode 

discrimination is based on the losses resulting from the beam truncation achieved by the ring 

and diaphragm. As it will be shown below, the behaviour of the ring and diaphragm in term of 

resulting losses is very different. It is important to recall that when selecting the fundamental 

Gaussian beam of a cavity using one or two diaphragms, it results a perturbation by 

diffraction so that it is no longer Gaussian in shape. This has been theoretically [21-23] and 

experimentally [24] demonstrated. Consequently, the study of the transverse mode selection 

using some amplitude masks inside a cavity needs the determination of the resonant field 

using for instance the Fox and Li method [25], or a modal decomposition method [26]. Such  

methods are necessary but relatively numerically cumbersome so as at first sight we can start 

by considering the single pass properties of the diaphragm or absorbing ring when they are 

enlighten by a pure LGpl beam. This approach will be followed hereafter.   

 

2.1 Single pass transmission of the ring and diaphragm 

By analogy with the case of a Gaussian beam incident on some amplitude mask [27] we 

can expect that diffraction of a LGpl beam upon a diaphragm or an absorbing ring will affect 

the beam characteristics which are: 

(i) the longitudinal intensity distribution; 

(ii) the transversal intensity distribution in the near-field and far-field regions; 

(iii) the far-field angular divergence; 
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(iv) the beam quality factor M2. 

 

In this paper, we will be mainly interested in the dependence of the single pass transmission 

of a diaphragm and absorbing ring upon their geometry characteristics, and LGpl mode orders. 

This will give a first glance about the selection issue of LG00 and LG01 modes having almost 

the same loss level. The calculation of the single pass transmission of the diaphragm and 

absorbing ring is made using a power ratio between the transmitted and incident powers. The 

relation between losses L and transmission T is assumed to be given by the equation L=1-T.  

Role of the diaphragm: The variations of the diaphragm transmission, as a function of DY , its 

normalised size, is shown in Fig. 5. On can deduce that the losses due to the diaphragm 

increases with the mode orders p and l.  
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Figure 5: Variations of the single pass transmission for several LGpl beams through a 

diaphragm of normalised radius DY . 

 

Consequently, one can reasonably expect that for a diaphragmed laser cavity, by an adequate 

choice of the diaphragm diameter, it could be possible for LG00 and LG01 modes to reach the 

laser threshold unfortunately with unequal losses. We will see below that it is possible to 

balance the losses of LG00 and LG01 modes by a judicious choice of the ring size. 
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Role of the absorbing ring: 

It is clear from Fig. 5 that the losses, due to the diaphragm, are greater for the LG01 beam than 

for the LG00 beam for a given diaphragm. The ring transmission of the LG00 and LG01 beams 

is shown in Fig. 6. as a function of AY  its normalised radius. Consequently, depending upon 

the value of AY  with respect to the crossing point it is possible to make the losses of the LG01 

beam greater or smaller than the losses of the LG00 beam. This is the basic idea for balancing 

the losses of the LG00 and LG01 modes of the cavity shown in Fig. 3. 
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Figure 6: Variations of the single pass transmission for LG00 and LG01 beams through an 

absorbing ring versus the normalised radius AY . 

 

2.2 Cavity with a ring and a diaphragm 

The determination of the resonant field of the cavity shown in Fig. 3 including an absorbing 

ring and a circular aperture involves a decomposition into two progressive components: a 

forward beam propagating in the z>0 direction, and a backward beam in the opposite 

direction. Hereafter, the subscripts f and b refers to forward and backward quantities, 

respectively. We should note in passing that these two progressive beams should be 

characterised by two different transverse field distributions due to the diffraction on the ring 

and aperture. This has been experimentally demonstrated in the case of a laser cavity 

including a single diaphragm [24]. The numerical calculation of the resonant field in the 

resonator including the amplitude masks (ring and diaphragm) is based on its expansion on 
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the basis of the eigenfunctions of the bare cavity consisting solely of the two mirrors. This 

method has been initially perfected for the cavity assumed to be axially symmetric and 

including one diaphragm [28]. Later, this method has been applied to a cavity including: (i) 

two circular apertures [27], (ii) a binary phase object and a diaphragm, and (iii) an absorbing 

ring and a diaphragm [26]. However, in these works [22, 26, 28] the resonant field was 

decomposed on the set of the radial Laguerre-Gauss eigenmodes ( 0,0 =≠ lp ) owing the 

assumed cylindrical symmetry. Here, in this paper we will made up the field decomposition 

upon the Laguerre-Gauss eigenmodes ( 0,0 ≠≠ lp ) in order to consider the possibility of 

oscillation over any high-order LGpl transverse modes. 

The orthormalised basis is formed by the Laguerre-Gauss functions ),( zG fpm ρ , for the 

forward wave, and ),(),( zGzG fpmbpm ρρ ∗= :  
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where  λπ /2=k  and 
m

pL  is an associated Laguerre polynomial [30], m and p are the 

azimuthal and radial mode numbers, respectively. The Gaussian mode of the bare cavity is 

characterised by its beam diameter 2W(z), and its radius of curvature Rc at point z. These 

quantities as well as the Gouy phase shift θ  are z dependent and are expressed as 
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where λπ /2

pR Wz =  is the Rayleigh range. 

The forward and backward fields are assumed to be linearly polarised and are expressed as 

linear combination of the basis functions: 
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We are considering the stationary field for t=0 and then 1)exp( =− tiω . The knowledge of the 

resonant fields components fE  and bE  requires the determination of the coefficients pmf  and 

pmb which are related to each other by the boundary conditions imposed by the mirrors, the 

absorbing ring and the diaphragm. The boundary conditions write as follows: 

At the plane mirror of reflectance (field ratio) 1r  
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and at the concave mirror of reflectance (field ratio) 2r  
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By a calculation easily adapted from Refs. [22,31,32], one can express the change of the 

forward coefficients after a round trip inside the resonator by a relation involving a matrix M 

called as round-trip operator [22,31,32] which typical element is written as: 
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The integrals in the above equations are numerically calculated by using a FORTRAN routine 

based on a numerical integrator from the International Mathematics and Statistics Library 

(IMSL). The round-trip operator is a complex matrix of sizes nspr ×××  and its complex 

eigenvectors represent the eigenmodes of the cavity including a diaphragm on the concave 

mirror and an absorbing ring on the plane mirror. Associated Laguerre-Gauss polynomials are 

used up to the orders 10maxmax == sm  and 80maxmax == rp . Each of eigenvectors u of the 

round-trip operator is characterised by a complex eigenvalue Γ  such that Mu=Γu. 

Determination of eigenvectors of M is done numerically by using a FORTRAN routine based 
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on IMSL subroutines. The eigenvector of M  having the largest eigenvalue 00Γ , calculated 

for an azimuthal order fixed to zero, corresponds to the fundamental mode 00TEM  whose 

power losses per round-trip is given by 

2

0000 1 Γ−=L      (17) 

The eigenvector of M having the largest eigenvalue 01Γ  calculated for an azimuthal order 

fixed to unity corresponds to the 01TEM  whose power losses per round-trip is given by 

2

0101 1 Γ−=L      (18) 

The aim of the calculation is to find the geometrical parameter AY  associated to the ring for 

which 00L  and 01L  are equal or very close. An important point which has been raised in 

Section 2.1 is that the role of the ring is to rebalance the losses 00L  and 01L  since the 

diaphragm has the tendency to make  01L  larger than 00L . The other geometrical parameters 

of the cavity ( DY , L, R and h) are held fixed when varying the ring radius Aρ , i.e. AY .  
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Figure 7: Variations of losses 00L  and 01L  versus parameter AY  for L=252mm, g=0.5, 

6.1=DY , h=20µm. µmWp 292= , µmWc 649= . 
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It is seen in Fig. 7 that the ring behaviour depicted in Fig. 6 in a single-pass situation is also 

present inside a resonant cavity. We find that there are two values of AY  (0.04 and 0.48) for 

which the losses 00L  and 01L are equal. For 48.0=AY  the losses are four times the losses for 

04.0=AY .  These numbers mean that the power of the beam inside the laser cavity reduces, 

due to diffraction, by about 5% (16.5%) for 04.0=AY  ( 48.0=AY ) after a round-trip in the 

resonator. One can conclude that while we use amplitude mask (ring and diaphragm) the 

diffraction losses are not necessarily large. However, our study involves a bare cavity, i.e. 

without gain medium, which could put into question the above findings obtained on the 

assumption that the nonlinear properties (saturation for instance) of the gain medium are 

ignored. In fact, the resonant field of the “cold” cavity (without gain medium) including 

amplitude masks is not significantly different from the resonant experimental field probed in a 

“hot” cavity, i.e. including a gain medium [24]. However, one particular property of a “hot” 

cavity cannot be ignored. This property concerns the induced thermal effect by the pump 

absorption in the gain medium. At least, the resulting thermal lensing effect will change the 

operating point of the cavity so that the beam widths given by Eq. (4) will drift causing a 

change in AY  and DY . In return, this could break the weighting of LG00 and LG10 beams power 

leading to the loss of the targered beam, i.e. the shape-invariant Flat-Top beam. In fact, this 

“catastrophic scenario” is going a bit too far since experimentally [11] the shape-invariant 

Flat-Top laser beam was observed to be very stable at different level of power pump. 

However, in case of important thermal effects in a laser cavity, it is possible to stabilise the 

cavity against thermal perturbations [33-37]. 

Let us now come back to the experimental observations [11] which demonstrate that insertion 

of an absorbing ring together with a circular aperture arranged similarly to Fig. 3 inside a laser 

cavity can force the oscillation to take the form of a shape-invariant FT beam. The 

interpretation given in [11] was that the shape-invariant FT beam should result from the 

incoherent superposition of a LG00 (Gaussian beam) and LG10 (one central peak surrounded 

by one ring of light) beams. This statement is wrong because the incoherent superposition of 

LG00 and LG10 beams (addition of intensity profiles) does not give any FT profile whatever 

the weighting of each beam power. In fact, the study presented in this paper shows that the 

correct interpretation of the shape-invariant FT beam observed experimentally in [11] results 

rather from an incoherent superposition of LG00 (Gaussian mode) and LG01 (doughnut mode) 

beams. It is worth noting that the two oscillating modes are here necessarily incoherent 

because their oscillation frequencies are different since depending on the mode orders [38]. 
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3. Conclusions 

We have considered the generation of a shape-invariant flat-top (FT) laser beam. Such 

focused laser beams are very interesting for most of laser applications since the FT intensity 

profile remains unchanged on both sides of the focal plane. It is worth noting that this 

contrasts with flat-top beams obtained by diffractive beam shaping since in this case the 

intensity profile evolves on both sides of the focal plane. This property of shape invariance in 

a FT beam can be very useful in many practical applications such as, for instance, material 

processing, nonlinear frequency conversion, material sputtering,… 

Finally, we have modelled the laser cavity able to sustain the simultaneous oscillation of the 

LG00 and LG01 modes. For that, we have considered a plano-concave cavity including two 

amplitude masks: an absorbing ring set on the plane mirror, and a circular aperture on the 

concave mirror. By optimising the size of these two masks it is possible to set equal the losses 

associated with LG00 and LG01 modes, and consequently to allow the simultaneous oscillation 

of the two modes and consequently to get a shape-invariant flat-top (FT) inside and outside 

the laser cavity. These theoretical results give a correct interpretation of some experimental 

observations previously done [11] but with a misinterpretation.    
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