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ABSTRACT 

Background: The growth of the posterior fossa in syndromic craniostenosis was studied 

in many papers. However, few studies described the pathophysiological growth 

mechanisms in non-operated infants with fibroblast growth factor receptor (FGFR) type 

2 mutation (Crouzon, Apert or Pfeiffer syndrome), although these are essential to 

understanding cranial vault expansion and hydrocephalus treatment in these syndromes.  

 

Objective: A review of the medical literature was performed, to understand the 

physiological and pathological growth mechanisms of the posterior fossa in normal 

infants and infants with craniostenosis related to FGFR2 mutation. 

 

Discussion: Of the various techniques for measuring posterior fossa volume, direct slice-

by-slice contouring is the most precise and sensitive. Posterior fossa growth follows a 

bi-phasic pattern due to opening of the petro-occipital, occipito-mastoidal and spheno-

occipital sutures. Some studies reported smaller posterior fossae in syndromic 

craniostenosis, whereas direct contouring studies reported no difference between normal 

and craniostenotic patients. In Crouzon syndrome, synchondrosis fusion occurs earlier 

than in normal subjects, and follows a precise pattern. This premature fusion in Crouzon 

syndrome leads to a stenotic foramen magnum and facial retrusion. 

 

Keywords: Complex craniosynostosis, Posterior fossa, Growth, Skull-base 

synchondrosis, FGFR-2 

  



 

INTRODUCTION 

The posterior fossa derives from two different embryonic tissues: the para-axial 

mesodermis forming the chondrocranium, and the neural crest forming the neurocranium 

[1]. The chondrocranium comprises the sphenoidal body, the petrosal part of the 

temporal bone, and the basi-occipital, exo-occipital and inferior part of the supra-

occipital bone [2,3]. The neurocranium includes only the superior part of the supra-

occipital bone [2,3]. 

The membranous sutures of the cranial dome (calvaria) are formed by mesenchymal 

cells that later differentiate into osteoblasts. Differentiation is controlled by the Runx2 

gene [1,4–12]. Runx2 activation depends on Dlx-2, Dlx-5 and ß-catenin pathways and 

inhibition on Msx-2 and Twist pathways [1,4–9]. Transforming growth factor-ß, bone 

morphogenetic proteins and fibroblast growth factors are other factors produced by the 

dura and that induce osteoblastic cellular differentiation [13,14]. Biomechanical factors 

may also be involved in calvaria growth. Experimental studies have proved that pressure 

applied on the inner surface of the cranium by cerebral expansion induces osteoblastic 

differentiation in the periostea of the cranial sutures [15,16].  

The skull base includes the cartilaginous synchondrosis. Chondroblast cellular 

differentiation is regulated by transcription factors such as SOX9, SOX5 and SOX 6 and 

by growth factors such as bone morphogenetic protein, fibroblast growth factor, and 

insulin-like growth factor [17,18]. Calcification of the cartilaginous matrix is induced by 

matrix metalloproteinase-13, angiogenic growth factor, vascular endothelial growth 



factor and Runx2, since SOX9 is not expressed during this step [17–19]. The calcified 

cartilage is then replaced by endochondral bone [19].  

 

The relation between cranial dome growth, skull-base growth and facial growth is 

complex. The growth of these three parts is synergic, and any minor change in the 

growth of one part will have consequences on the growth of the others. Premature 

ossification of the cranial sutures in infants strongly affects the growth of the basal 

craniofacial skeleton [20], especially in case of FGFR2-related faciocraniosynostosis (in 

particular, Crouzon, Apert or Pfeiffer syndrome)  [21,22]. These changes in the posterior 

fossa can lead to active cerebrospinal fluid circulation disorders requiring treatment [21], 

cerebellar tonsil ectopia requiring occipital fenestration [21], or turribrachycephaly 

requiring posterior cranial vault expansion [21]. Ossification of the cranial sutures 

(membranal and cartilaginous) can be analyzed on CT. In 1995, Madeline and Elster 

[23] proposed a 5-grade classification of this ossification based on CT images (Table1): 

Grade I, absence of ossification [23]; Grade II, incipient ossification, with “suspicious 

areas for bony bridging” [23]; Grade III, intensification of ossification and “fusion or 

bridging across a portion of the synchondrosis” [23]; Grade IV, fused suture with a small 

“remnant sclerotic margin” [23]; and Grade V, completely fused suture [23]. CT studies 

of the ossification process of the cranial sutures shed light on posterior fossa growth in 

normal infants and in patients with faciocraniostenosis: a correlation was reported 

between volumetric growth of the posterior cranial fossa and ossification of the sutures 

graded according to Madeline and Elster. We will not distinguish hereinafter between 

membranous and cartilaginous sutures, for reasons of convenience. 

 



 

 

METHOD 

Two literature searches were conducted on PubMed: one with keywords “posterior 

cranial fossa”, “growth”; and one with “fibroblast growth factor type 2 receptor”, 

“posterior cranial fossa”, “growth”. Respectively, 317 and 4 articles were retrieved; only 

16 of the 317 articles dealt with the growth of the posterior cranial fossa in healthy 

children. The complete reference lists of all 20 articles were exhaustively analyzed. 

 

POSTERIOR FOSSA GROWTH 

 

Practical considerations 

Estimations of posterior fossa growth and volume are an important aspect of the analysis 

of the pediatric literature on developmental diseases. Two methods exist: direct and 

indirect segmental methods. Direct segmentation is more precise than indirect methods, 

in which the margin of error can exceed 5%. Despite this generally admitted fact, most 

studies estimated posterior fossa volume and growth by indirect segmentation, such as 

Cavalieri’s method [24–29], and few used direct segmentation [21,30].  

 

 

Growth in normal subjects 

A study by Coll et al. in 2016 measured the volumetric growth of the posterior fossa in 

235 infants (132 boys and 103 girls) [31]. The posterior fossa was manually contoured 

on millimetric CT slices by a single neurosurgeon (figure1) [31]. Volumetric growth 



correlated with fusion grade in the 12 sutures of the posterior fossa: anterior 

interoccipital synchondrosis (AIOS), posterior interoccipital synchondrosis (PIOS), 

petro-occipital synchondrosis (POS), occipitomastoidal synchondrosis (OMS), spheno-

occipital synchondrosis (SOS), Kerckring supra-occipital synchondrosis, and the 

lambdoid sutures (LS) (figure 2) [31]. Posterior fossa growth comprises two phases: [31] 

a rapid growth phase from birth to 3.58 years, and then a slow growth phase until 16 

years (figure 3). The rapid growth phase is explained by the absence of ossification 

(Madeline and Elster grade I) of OMS, POS and SOS, the mean age of grade I in OMS, 

POS and SOS being 1.95, 3.58 and 5.09 years, respectively. The first sutures to fuse are 

PIOS and AIOS, at around 1.72 and 4.23 years, respectively. The slow growth phase is 

due to POS and SOS being in grade II until 10.37 and 10.14 years, respectively. 

Posterior fossa growth differs between sexes: the rapid growth phase is shorter and faster 

in girls (birth to 2.67 years) than boys (birth to 4.5 years) (figure 3) [31]. The final 

(adult) volume of the posterior fossa is greater in boys (figure 4) [31]. This difference in 

volume is not caused by growth rate but by a smaller posterior fossa volume at birth in 

girls (64.92 cm3 vs. 104.73 cm3; p=0.002) (figure 4) [31].  

 

 

Growth in faciocraniostenosis 

In 1976, Hoffman [32] was the first to postulate that the posterior fossa is smaller in 

syndromic craniostenosis than in normal subjects. This was later confirmed 

experimentally by Marin Padilla, estimations of posterior fossa volume by Sgouros [6] 

and Wang [46], and isotopic cisternographic studies [33]. Selection bias must be borne 

in mind in these studies. It is frequent that infants with syndromic craniostenosis 



undergo neurosurgical procedures in their first years to treat cerebrospinal fluid (CSF) 

circulation abnormalities, tonsillar prolapse or posterior expansion. These procedures 

alter the natural growth of the posterior fossa, and it is difficult to find a study that 

includes only non-operated patients. Some studies included craniostenotic patients with 

unidentified syndromes in order to increase sample size [34] or because genetic testing 

was not available [35]. One study [21] compared posterior fossa volume in FGFR2-

induced faciocraniostenosis (14 Crouzon, 6 Pfeiffer and 11 Apert syndromes) versus 

normal subjects. Volumes were calculated on millimetric CT slices by contouring the 

space between the tent of the cerebellum, occipital bone, clivus and temporal bone [14]. 

The anterolateral boundary was the ridge of the petrous part of the temporal bone and 

the anterior boundary its connection with the posterior petroclinoid ligament [14]. No 

significant difference was found between patients and normal subjects [14]. The main 

bias in this study was age at inclusion: birth to 2 years [14]. However, the study by 

Sgouros [6], which included only patients of the same age-group and had broader 

inclusion criteria, including non-syndromic craniostenosis, found differences between 

craniostenotic and normal subjects [6].  

 

The smaller posterior fossa volume in syndromic craniostenosis correlated with early 

fusion of the lambdoid suture [35]. This fusion is earlier in Crouzon patients (median, 21 

months) than in Apert patients (median, 60 months) [35]. Moreover, the study by 

Sgouros [6] correlated the smaller posterior fossa volume in syndromic craniostenosis to 

a pathological skull dome (calvaria), particularly for the coronal and spheno-occipital 

sutures. 

 

 



Particularities of skull-base synchondrosis ossification in Crouzon syndrome. 

Coll et al. studied 11 skull-base sutures, using the Madeline-Elster classification [23], in 

30 infants (17 boys and 13 girls) with genetically confirmed Crouzon syndrome [22]. CT 

scans were taken before any neurosurgical procedure [22]. This was the only study with 

precise selection criteria, ensuring the homogeneity of the study population [22]. Other 

skull-base ossification studies in Crouzon syndrome also included patients after 

neurosurgery [36–38], or did not perform genetic tests to confirm diagnosis [36,39]. In 

comparison to normal subjects, skull-base sutures fuse prematurely in Crouzon 

syndrome (p=0.002) [22] (figure 5). The pattern of synchondrosis ossification in 

Crouzon patients differs from that in normal subjects (figure 6). PIOS and LS fuse at 

approximatively 10 months of age. This is followed by AIOS and OMS fusion during 

the second year. Finally, SOS and POS fuse at the end of the first trimester of the third 

year (figure 7) [22]. This early skull-base synchondrosis ossification has multiple 

repercussions on the growth of the posterior fossa. The fusion of the interoccipital 

synchondroses, and especially PIOS, decreases the area of the foramen magnum 

[22,31,38,40,41]. Premature fusion of POS [22] and SOS [22,36,37,42] may be the key 

to explaining facial retrusion in Crouzon Syndrome: these sutures fuse during the third 

year in Crouzon patients, in contrast to the 13th year in normal subjects [22].  

 

No difference in posterior fossa volume was observed between normal infants and 

Crouzon patients up to 2 years of age [21], in contrast to other studies with less selective 

inclusion criteria [34,43–46]. It is important to bear in mind a potential selection bias 

related to age: in Crouzon patients, skull-base synchondrosis ossification is at grade IV 



or V, after 2 years of age [22]; in contrast, these synchondroses still have growth 

potential after 2 years in normal subjects [22]. 

 

CONCLUSION 

Posterior fossa growth in FGFR2-related syndromic craniostenosis (Crouzon, Apert, or 

Pfeiffer syndrome) is difficult to analyze, because it requires non-operated patients with 

genetically confirmed diagnosis. Few studies in the literature meet these conditions 

[21,22,41], but reported modifications in the posterior fossa in Crouzon patients, and 

particularly a decrease in foramen magnum area and facial retrusion. These 

modifications are caused by premature ossification of the posterior interoccipital 

synchondrosis (PIOS) and of the petro-occipital and spheno-occipital synchondrosis 

complex.  



FIGURE LEGENDS 

 

Figure 1. Three-dimensional reconstruction, axial, sagittal, and coronal computed 

tomography millimeter slices showing posterior fossa volume calculation in a 5-day-old 

girl (iPlan stereotaxy 3.0.2; Brainlab, Munich, Germany). Color version available online 

only. Adapted from reference 31. 

 

Figure 2. A: 3D reconstruction of the skull base in a 5-day-old girl (control group), 

inferior view showing (1) the anterior interoccipital synchondroses, (2) posterior 

interoccipital synchondroses, (3) occipitomastoidal synchondroses, (4) lambdoid sutures, 

(5) petro-occipital synchondroses, and (6) spheno-occipital synchondrosis. B: 3D 

reconstruction of the skull base in a 5-day-old girl (control group), posteroinferior view 

showing (1) the anterior interoccipital synchondroses, (2) posterior interoccipital 

synchondroses, (3) occipitomastoidal synchondroses, and (4) lambdoid sutures. C: 3D 

reconstruction of the skull base in a 5-day-old girl (control group), endocranial view 

showing (1) the anterior interoccipital synchondroses, (2) posterior interoccipital 

synchondroses, (3) occipitomastoidal synchondroses (not shown), (4) lambdoid sutures, 

(5) petro-occipital synchondroses, and (6) spheno-occipital synchondrosis. D: 3D 

reconstruction of the skull base in a 5-day-old girl (control group), endocranial view 

showing (1) the anterior interoccipital synchondroses, (2) posterior interoccipital syn- 

chondroses, (3) occipitomastoidal synchondroses, (4) lambdoid sutures, (5) petro-

occipital synchondroses, and (6) spheno-occipital synchondrosis. Adapted from 

reference 31. 

 



Figure 3. Posterior cranial fossa volume (PCFV) distribution by sex and age with lower 

curves extrapolating the change of PCFV. Error bars for the PCFV; circles represent the 

mean; bars represent the 95% confidence interval (CI); boys are compared with girls. 

Adapted from reference 31 

 

Figure 4. Error bars for the posterior cranial fossa volume by age class of 1 year; circles 

represent the mean; bars represent the 95% confidence interval (CI). Comparison 

between boys and girls. Adapted from reference 31. 

Figure 5. Error bars for Madeline-Elster grade by synchondrosis. Comparison of 

Crouzon children and controls. Central symbols represent mean ages according to grade, 

bars represent the 95% confidence interval. (A) Anterior intraoccipital synchondrosis. 

(B) Lambdoid suture. (C) Occipitomastoid synchondrosis. (D) Posterior intraoccipital 

synchondrosis. (E) Petro-occipital synchondrosis. (F) Spheno-occipital synchondrosis. 

CI: confidence interval. Adapted from reference 22. 

Figure 6. Schematic view of ossification of skull base synchondroses. The healthy 

pattern of ossification is compared with children with Crouzon syndrome. Mean ages of 

closures are color coded. Adapted from reference 22. 

Figure 7. Error bars for Madeline-Elster grade by synchondrosis, according to grade. 

Central symbols represent mean ages of grade. Skull-base synchondroses in children 

with Crouzon syndrome are compared and bars represent the 95% confidence interval 

(CI). Adapted from reference 22.  
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Table 1. Madeline and Elster synchondrosis closure grades, adapted from [23] 

Grade Character 

I Margins of the synchondrosis (suture) are clearly separated on all sections. 

II Clear separation of the synchondrosis (suture) is seen along most sections, 

but some areas are indistinct or suspicious for bony bridging. 

III Area of fusion or bridging across a portion of the synchondrosis (suture) is 

seen. 

IV Complete fusion of the synchondrosis (suture) with remnant sclerotic 

margin is seen. 

V Complete closure is seen with no apparent vestige remaining. 

  

 




