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INTRODUCTION

Globally, the demand for healthcare service is continually growing as a result of the ageing population and the increasing quality of life. Meanwhile the operating theatres (OTs), composed of operating rooms (ORs) and surgical intensive care units (SICUs), contribute substantially to hospitals' revenue and cost [START_REF] Koppka | Optimal distribution of operating hours over operating rooms using probabilities[END_REF]. Therefore, hospital managers should improve the management of OT and surgical activities to meet the increasing demand with limited resources in a cost-effective manner.

Applications of operations research methodologies in OT managing and surgery scheduling have been intensively researched [START_REF] Cardoen | Operating room planning and scheduling: A literature review[END_REF][START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF][START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF][START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF][START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. In literature, the decisions to be made for OT planning are classified into three decision levels: the strategic level concerns the long-term allocation of OT resources among specialties or surgical groups; the tactical level addresses the development of medium-term master surgery schedule; the operational level focuses on the detailed planning of elective surgeries during a short period of time. The three decision levels are interrelated because the input of one level depends on the output of the previous level [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF].
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This paper considers the advance scheduling of elective surgeries at the operational level. Most of the existing works at this level employ mathematical programming (MP) formulations (e.g., [START_REF] Yih | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF][START_REF] Jebali | A chance-constrained operating room planning with elective and emergency cases under downstream capacity constraints[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. These formulations basically optimize the surgery schedule for a certain planning period (usually one week) without considering the effects of the current schedule on the surgery scheduling for following periods. However, given that the deferred surgeries will continue to generate costs in the following periods, neglecting the correlations between consecutive decision periods cannot guarantee the global optimality on the long run. To overcome this myopia, we formulate the advance scheduling problem as a Markov decision process (MDP) model which minimizes the expected total cost over infinite horizon. In this model, we consider the uncertainties in patient arrivals, surgery durations, and lengths of stay (LOS) of postoperative patients in SICU. Decisions are made on a weekly basis: at the end of each week, we determine the selection of patients that will be treated in the next week, with the objective of minimizing the total cost incurred by performing surgeries, waiting of patients, overuse of ORs, and insufficiency of SICU recovery beds.

Since the involved patients are from different specialties, we use a multiplier to indicate the relative importance of a specialty. For instance, cardiac surgeries are gener-ally more important than eye surgeries, hence the relative importance indicator of cardiology should be higher than that of ophthalmology. Moreover, considering that patients' health conditions cannot be identical, it is reasonable to assume that the patients in the waiting list are at different urgency levels. Finally, we use the product of relative importance of specialty, urgency level, and waiting time to describe the priority of a patient. The equity and efficiency of this prioritization system are well accepted in literature [START_REF] Testi | A three-phase approach for operating theatre schedules[END_REF][START_REF] Testi | Prioritizing surgical waiting lists[END_REF][START_REF] Valente | A model to prioritize access to elective surgery on the basis of clinical urgency and waiting time[END_REF]. Besides, to prevent the patients' health conditions from severely deteriorating, a maximum allowed waiting time is stipulated for each urgency group of each specialty.

In order to efficiently solve the proposed MDP model for real-sized problems, we develop an approximate dynamic programming (ADP) approach based on recursive leastsquares temporal difference (RLS-TD(λ)) learning and mixed integer programming (MIP). The application of MIP in ADP aims to facilitate the exploration of action space, while RLS-TD(λ) is a reinforcement learning methodology proposed by [START_REF] Xu | Efficient reinforcement learning using recursive least-squares methods[END_REF] for approximating the value functions of Markov chains. Incorporating RLS-TD(λ) learning into ADP reduces the computational complexity by replacing the computation of the highdimensional value function by that of a low-dimensional linear approximator. Only limited research has been conducted to study the application of RLS-TD(λ) learning in ADP, except that [START_REF] Yin | Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection[END_REF] propose a RLS-TD(λ)based ADP algorithm for traffic signal control. In summary, the major contributions of this paper are twofold: first, in comparison with existing researches on the advance scheduling of elective surgeries (e.g., Min andYih, 2010a, 2014;[START_REF] Astaraky | A simulation based approximate dynamic programming approach to multiclass, multi-resource surgical scheduling[END_REF][START_REF] Truong | Optimal advance scheduling[END_REF], we propose a comprehensive MDP model that simultaneously considers three sources of uncertainties (patient arrival, surgery duration, and LOS), two capacity constraints (OR and SICU), multiple specialties, and dynamic timedependent patient priority; second, we develop an ADP approach incorporating RLS-TD(λ) learning and MIP to overcome the inefficiency of conventional dynamic programming (DP) algorithms in solving real-sized problems.

The remainder of this paper is organized as follows: Section 2 describes the studied advance surgery scheduling problem in detail and introduces the MDP formulation. Section 3 presents the development of the ADP approach. Results of numerical experiments are presented in Section 4 to validate the computational performance of the proposed ADP approach. Finally, Section 5 concludes this work and proposes possible future extensions.

PROBLEM DESCRIPTION AND MODELLING

Description of the Studied Problem

We consider the advance surgery scheduling problem for an OT shared by J specialties. Each specialty j = 1, 2, ..., J is assigned a multiplier v j that addresses its relative importance, and the patients of specialty j are divided into U j urgency groups. The health condition of each newly arrived patient is assessed by the surgical staff, then a constant multiplier u = 1, 2, ..., U j that identifies the patient's urgency level is determined. For the patients from urgency group u of specialty j, there is a maximum allowed waiting time W ju which guarantees that every patient is treated before his/her waiting time w exceeds W ju . Based on these configurations, the priority of a patient can be defined as P r = v j uw.

Our objective is to minimize the total cost by properly determining the selection of patients to be treated in each week. A dynamic waiting list is established to manage the elective patients with different priorities. At the end of each week, we determine the patients to be treated in the following week, and update the waiting list by removing the selected patients and adding the newly arrived ones. Postoperative patients might require SICU care for a consecutive days or be discharged directly. We define that performing a surgery generates a cost of c s v j uw and postponing a surgery results in a cost of c w v j uw, where c s and c w are the unit costs of performing and postponing surgeries, respectively. Thus the patient-related costs are proportionate to the patient priority, which encourages the decision-maker to schedule high-priority patients before low-priority ones. The unit penalties incurred by overutilization of ORs and insufficiency of SICU beds are denoted by c o per hour and c e per patient-day, respectively. Each specialty j has a fixed regular OR capacity of B j per week, while the SICU capacity, R bed-days per week, is shared by all the specialties. Arrivals of new patients, surgery durations and LOS are subject to uncertainties. We assume that arrivals of new patients follow Poisson distribution, which is commonly adopted in literature to describe the stochasticity of patient arrivals [START_REF] Astaraky | A simulation based approximate dynamic programming approach to multiclass, multi-resource surgical scheduling[END_REF][START_REF] Truong | Optimal advance scheduling[END_REF][START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF][START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF]. Let superscript τ be the index of week, then ñτ ju denotes the number of newly arrived specialty-j patients with urgency level u during week τ . Further, let n juw be the number of type-juw patients (i.e., patients from urgency group u of specialty j with waiting time w) in the waiting list, and m juw be the number of type-juw patients to be treated, then the transition of waiting list from week τ to week τ + 1 can thereby be written as:

n τ +1 ju,1 = ñτ ju ∀ j, u n τ +1 ju,w+1 = n τ juw -m τ juw ∀ j, u, w < W iu (1) 
Surgery durations and LOS are assumed to be lognormally distributed, since existing researches have reported that lognormal distribution yields the best fit for hospital data [START_REF] Yih | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF][START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. We use dj and lj to denote the expectations of surgery duration and LOS of specialty-j patients.

Markov Decision Process Formulation

The studied problem is formulated as an infinite-horizon MDP which is composed of five elements: 

p(s τ , a τ , s τ +1 ) = J j=1 Uj u=1 Wju w=1 p(n τ juw -m τ juw = n τ +1 juw ) × J j=1 Uj u=1 p(ñ τ ju = n τ +1 ju,1 ) (4) 
Solving the MDP model yields the optimal policy π * that minimizes the total expected cost over the infinite horizon:

π * = arg min π E +∞ τ =1 γ τ -1 C[s τ , π(s τ )] (5) 
where π(s τ ) signifies the corresponding action of s τ under policy π.

SOLUTION TECHNIQUE

Let V (S) = {V (s)|s ∈ S} be the value function of MDP, then the dimension of V (S) is as large as that of the state space S. V (s) represents the expected total cost from state s over the infinite horizon, and can be updated in an iterative way by computing the following Bellman equation:

V n (s) = min a∈A(s) [C(s, a) + γ s ∈S p(s, a, s )V n-1 (s)] (6)
where superscript n is the index of iteration and A(s) is the set of feasible actions for state s. According to the problem descriptions presented in Section 2.1, A(s) is confined by

m juw n juw , if w < W ju m juw = n juw , if w = W ju (7) 
Conventional solution techniques for MDP models are mostly based on DP, such as value iteration (VI) and policy iteration (PI). Taking VI as an example, in each iteration, we need to compute the Bellman equation ( 6) for all the states in the state space S. When the gap between V n (S) and V n-1 (S) is lower than the threshold δ, which is usually defined as a small positive value, then V n (S) is sufficiently close to the optimal value function V * (S) and the iterations terminate. With V * (S), the optimal action π * (s) for state s ∈ S can be determined by

π * (s) = arg min a∈A(s) [C(s, a) + γ s ∈S p(s, a, s )V * (s)] (8) 
Similar to VI, other DP-based algorithms also require repeated enumerations of state space, action space and outcome space, which are known as the three curses of dimensionality [START_REF] Powell | Approximate Dynamic Programming: Solving the curses of dimensionality[END_REF]. Therefore, solving real-sized problems with DP-based algorithms can be usually computationally intractable. Regarding the studied problem, there is no upper limit for the number of newly arrived patients in each week, hence the state space and the outcome space are even infinite. Therefore, we abandon the conventional DP-based algorithms and develop an efficient ADP approach based on RLS-TD(λ) learning as the solution technique.

The basic idea of the RLS-TD(λ)-based ADP approach is to approximate the optimal value function V * (S) with a linear function V (S, Θ) = { V (s, Θ)|s ∈ S} where the structure of V (s, Θ) is defined as

V (s, Θ) = Θ T s = J j=1 Uj u=1 Wju w=1 θ juw n juw (9)
In ( 9), Θ = [θ 111 , ..., θ juw , ..., θ JU J W JU J ] T is the parameter vector. Obviously, the dimension of Θ and V (s, Θ) in the studied problem is

D = dim R (Θ) = dim R [ V (s, Θ)] = J j=1 Uj u=1 W ju (10)
With parameter vector Θ, the Q-value of any state-action pair can be approximated by

Q(s, a) ≈ Q(s, a, Θ) = C(s, a) + γΘs (11) 
where s = [n 111 , ..., n juw , ..., n JU J W JU J ] T is the subsequent state of {s, a}. Let Ψ = [ψ 111 , ..., ψ juw , ..., ψ JU J W JU J ] T be the numbers of newly arrived patients, and the post-action state for {s, a} is denoted by H(s, a) = [h sa 111 , ..., h sa juw , ..., h sa JU J W JU J

] T where h sa ju,w+1 = n juw -m juw for any j, u and w < W ju , then we have s = Ψ + H(s, a). Further, the approximate greedy action â(s, Θ) minimizes the approximate Q-value for state-action pair {s, a}: (n juw + 1) (13)

As the number of patients in the waiting list is not bounded, A(s) can be extremely large. Therefore, enumerating all the feasible actions in A(s) for each visited state will consume enormous amount of CPU time and computer resources. Considering that commercial optimization solvers (e.g., CPLEX, GUROBI) can efficiently solve MP problems, we formulate the process of searching for â(s, Θ) as the following MIP problem: 

o 2 J j=1  l j Uj u=1 Wju w=1 m juw   -R (18) 0 m juw ∈ Z, ∀j, ∀u, ∀w (17) 
0 o j 1 , o 2 ∈ R, ∀j (19) 
The objective function ( 14) is derived from ( 3) and ( 12) by removing the terms that are independent of a. Constraints ( 15) and ( 16) define the feasible region of a. Constraints ( 17) and (18) determine the overuse of ORs and the insufficiency of SICU beds, respectively. Constraints ( 19) and ( 20) clarify the domains of decision variables. This MIP problem can be efficiently solved by commercial solvers since it only has D integer variables and J + 1 continuous variables. The approximate greedy action â(s, Θ) can be obtained by extracting the values of m juw from the resulting solution for the MIP problem.

To obtain the best approximation of V * (S), we need to find the optimal parameter vector Θ * that minimizes the gap between V * (S) and V (S, Θ):

Θ * = arg min Θ∈R D V * (S) -V (S, Θ) (21) 
Then the following equations iteratively update the parameter vector Θ n so that Θ n converges to Θ * as n goes to infinity [START_REF] Xu | Efficient reinforcement learning using recursive least-squares methods[END_REF][START_REF] Yin | Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection[END_REF]:

                 e n = C(s n , a n ) -(s n -γs n+1 ) T Θ n-1 z n = γλz n-1 + s n P n = P n-1 - P n-1 z n (s n -γs n+1 ) T P n-1 1 + (s n -γs n+1 ) T P n-1 z n Θ n = Θ n-1 + P n-1 e n z n 1 + (s n -γs n+1 ) T P n-1 z n (22)
where e n is the TD error of the nth iteration; the elements of Θ 0 are initialized as θ 0 juw = 0, ∀j, u, w; z n is the eligibility trace with all the elements of z 0 initialized as 0; λ ∈ [0, 1] is the trace decay parameter; P n is the variance matrix initialized as P 0 = δI (δ is some positive constant and I is the identity matrix).

Finally the RLS-TD(λ)-based ADP approach is presented in Algorithm 1. The way that we explore the state space and update the parameter vector Θ can be regarded as an on-policy learning strategy. For each given state, we explore the state space along sampled trajectories for multiple times until the relative improvement of Θ is lower than the threshold . Each sampled trajectory consists of N states that are randomly generated based on the actions determined by the current policy. It can be observed from Algorithm 1 that the exhaustive searching of action space is converted to an MIP problem which can be efficiently solved by commercial solvers, and that the infinite-dimensional value function is approximated by computing and updating the D-dimensional parameter vector Θ. Therefore, Algorithm 1 can significantly improve the computational efficiency in comparison with the conventional DP-based algorithms. increase of cost is less than 4.6%. Besides, regulating the values of λ and δ results in few change in the simulation results. Figure 1 illustrates the evolutions of the parameter vector Θ in the numerical simulations. The length of Θ for the small-sized problem is D = 7, and we arbitrarily select the curves of θ 111 , θ 112 , and θ 211 to be shown in Figure 1. It can be seen that the values of θ juw becomes relatively stable before 100 states are visited. In addition, larger value of δ results in higher convergence speed and the values of θ juw are increasing in λ, which explains the minor differences in the simulation results of ADP for different values of λ and δ (see Table 1). Computing the exact optimal solution for this real-sized problem with DP-based algorithms is computationally intractable. Therefore, we compute a myopic policy by setting the discount factor of MDP as γ = 0. The myopic policy serves as the benchmark of the resulting policy of ADP and can be easily obtained. Numerical simulations for 100 consecutive weeks are carried out for the realsized problem with γ = 0.99, N = 100 and = 0.001. The results are presented in Table 3. We can see that the resulting cost of ADP is less than 10% of that of the myopic policy. As for the computational efficiency, the total CPU time consumed by the ADP approach is no more than seven minutes, i.e., in the worst case, it takes the ADP approach averagely less than four seconds to provide the near-optimal action for the current week. Therefore, it can be concluded that the proposed ADP approach is a highly 

Results for a Real-Sized Case

  state space S = {s}, action space A = {a}, cost function C(s, a), transition probability function P (s, a, s ) and discount factor γ ∈ [0, 1]. For the studied problem, state and action can be defined as column vectors of n juw and m juw : s = [n 111 , ..., n juw , ..., n JU J W JU J ] T a = [m 111 , ..., m juw , ..., m JU J W JU J ] T(2)Note that superscript τ can be dropped in some cases for simplicity due to the stationary property of the infinite-horizon MDP model. Next, the cost function of MDP is given byC(s τ , a τ ) = • •) + = max{• • •, 0}, and the transition probability function can be derived from (1) as follows:

θ

  ju,w+1 (n juw -m juw )   Next, we consider the size of action space A(s) for a given state s, which can be calculated by

m

  s -c w )v j uwm juw ] + c o J j=1 o j 1 + c e o 2 .m juw n juw , ∀j, u, and w < W ju (15) m juw = n juw , ∀j, u, and w = W ju (juw -B j , ∀j

  Section 4.1 demonstrates the superiority of the RLS-TD(λ)-based ADP approach over conventional DP-based algorithms. Next, we examine the capability of the ADP approach in solving a real-sized problem which is derived from the multi-specialty test problem of Min and Yih (2010b) and[START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF] with reasonable modifications. The configuration of specialties is presented in Table2, where the specialties for j = 1, 2, ..., 9 are ENT, OBGYN, ORTHO, NEURO, GEN, OPHTH, VASCULAR, CARDIAC, and UROL-OGY, respectively. The unit costs are determined as [c s , c w , c o , c e ] =[50, 200, 1000, 1000] and the SICU capacity is B = 105 bed-days per week (15 recovery beds).

  Fig. 1. Evolutions of the parameter vector Θ

Table 1 .

 1 Results of the small-sized test problem wju : average waiting time of patients from urgency group u of specialty j; 2 ōj 1 : average overuse of ORs for specialty j per week (h); 3 ō2 : average shortage of SICU beds per week (bed-days); 4 c: average cost per week; 5 T : total CPU time (s).

	Approach	λ	δ	w11 1	w21 1	ō1 1	2	ō2 1	2	ō2 3	c 4	T 5
	DP (VI)	-	-	1.131	1.000	0.659 0.594 1.048	980.138 2 336.229
	ADP	0.0 0.001	1.093	1.000	0.670 0.638 1.161 1 025.303	156.137
			1	1.089	1.000	0.606 0.704 1.163 1 023.500	147.699
			1000	1.089	1.000	0.658 0.686 1.110 1 017.781	153.924
		0.5 0.001	1.091	1.000	0.658 0.617 1.173 1 019.684	159.356
			1	1.000	1.000	0.607 0.665 1.208 1 008.493	122.608
			1000	1.000	1.000	0.593 0.719 1.179 1 012.051	122.957
		1.0 0.001	1.000	1.000	0.775 0.660 1.042 1 007.810	123.567
			1	1.000	1.000	0.615 0.758 1.133 1 016.393	122.746
			1000	1.000	1.000	0.653 0.643 1.186 1 009.272	127.639
	1											

Table 2 .

 2 Configuration of multiple specialties

	j	v j	u W ju	nju	dj	1	lj	2	B j	1
	1	1	1	20 10.00 1.23±0.38 0.10±0.10	48
	2	2	1	15	4.00 1.43±0.44 2.00±2.00	24
			3	6	0.50					
	3	2	1	15 10.00 1.78±0.54 1.50±1.50	48
			3	6	2.00					
	4	5	1	8	2.50 2.67±1.65 2.00±2.00	8
	5	1	1	20	9.00 1.55±0.67 0.05±0.05	64
			2	15	2.00					
	6	2	1	15	1.50 0.63±0.10 0.05±0.05	32
	7	4	1	10	1.00 2.00±1.03 3.50±3.50	16
			2	5	2.50					
			4	2	0.50					
	8	5	1	8	0.25 4.00±2.95 2.00±2.00	8
			2	3	1.25					
			6	1	0.50					
	9	3	1	12	2.00 1.07±0.75 0.80±0.80	8
			2	6	0.50					
		1 unit: hours; 2 unit: days.					
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Algorithm 1: RLS-TD(λ)-based ADP approach Input: s τ , z τ -1 , P τ -1 , Θ τ -1 ; Output: â(s τ , Θ n ), z τ , P τ , Θ τ ; Let s 1 = s τ , z 0 = z τ -1 , P 0 = P τ -1 , Θ 0 = Θ τ -1 ; while true do for n = 1, 2, ..., N do Solve the MIP problem to obtain â(s n , Θ n-1 ); Generate Ψ n via Monte-Carlo simulation; Let s n+1 = Ψ n + H[s n , â(s n , Θ n-1 )]; Update z n , P n and Θ n by ( 22);

NUMERICAL EXPERIMENTS

In this section, we first present the experimental results for a small-sized case to compare the computational performance of the RLS-TD(λ)-based ADP approach and that of a conventional DP algorithm, then we validate the capability of the ADP approach in solving real-sized problems. All the algorithms are implemented in C++ and GUROBI is used as the solver of MIP. All the experiments are conducted on a computer with a processor of Inter(R) Core(TM) i7-3770 CPU @3.40GHz and a RAM of 8GB.

Comparison Between ADP and Conventional DP

We employ VI as the benchmark of the proposed ADP approach, since VI is the most widely used DP-based algorithm for solving MDP models. Considering the low computational efficiency of VI, we use a small-sized twospecialty case as the test problem so that VI can provide the optimal policy with an acceptable computation time. The problem configurations are arbitrarily determined as follows: the relative importance of the two considered specialties Numerical simulations for 1000 consecutive weeks are conducted for the small-sized problem and the results are presented in Table 1. Since λ and δ are the key parameters of the RLS-TD(λ)-based ADP approach, different values of λ and δ are tried in the simulations, while the other parameters are fixed as γ = 0.99, N = 100 and = 0.001. Table 1 shows that the ADP approach saves CPU time by approximately 94% in comparison with VI, while the 1 : average overuse of ORs for specialty j per week (h); 2 ō2 : average shortage of SICU beds per week (beddays); 3 ch : average hospital-related cost (overuse of OR and shortage of SICU beds) per week; 4 cp: average patient-related cost (surgery cost and waiting cost) per week; 5 c = ch + cp; 6 T : total CPU time (s).

efficient solution technique to provide high-quality policies for real-sized problems.

CONCLUSIONS

In this paper, we propose an MDP model for the advance scheduling of elective surgeries. To the best of our knowledge, this MDP model is the first one that simultaneously considers time-dependent patient priority, multiple specialties, capacity constraints of both ORs and SICU, and uncertainties in patient arrivals, surgery durations, and LOS. In order to efficiently solve the proposed MDP model, we develop an ADP approach based on RLS-TD(λ) learning and MIP. Experimental results validate the high performance of the ADP approach in solving real-sized problems. For further research, the MDP model proposed in this paper can be extended to an integrated model for operational-level surgery planning, which optimizes not only the decision-making of surgery dates but also the assignment of surgeries to specific surgical blocks.