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. This computation allows to determine the interpolation space in the sense of Peetre for such couple. It happens that the result is always a GΓ-space, since this last space covers many spaces. The motivations of such study are various, among them we wish to obtain a regularity estimate for the so called very weak solution of a linear equation in a domain Ω with data in the space of the integrable function with respect to the distance function to the boundary of Ω.

Introduction

The present work finds its motivation in the recent results in [START_REF] Fiorenza | Pointwise estimates for GΓ-functions and applications[END_REF][START_REF] Díaz | On the differentiability of the very weak solution with right-hand side data integrable with respect to the distance to the boundary[END_REF][START_REF] Rakotoson | New hardy inequalities and behaviour of linear elliptic equations[END_REF]. The original question comes from an unpublished manuscript by H. Brezis (see comments in [START_REF] Díaz | On the differentiability of the very weak solution with right-hand side data integrable with respect to the distance to the boundary[END_REF]) and later presented in [START_REF] Brezis | Blow up for u t -Du = g(u) revisited[END_REF] (see also the mention made in [START_REF] Veron | Singularities of solutions of second order quasilinear equations[END_REF]) concerning the following problem : let f be given in L 1 (Ω, dist (x, ∂Ω)) (Ω bounded smooth open set of IR n ), then H. Brezis shows the existence and uniqueness of a function u ∈ L 1 (Ω) satisfying

|u| L 1 (Ω) c|f | L 1 (Ω,dist (x,∂Ω)) with GD(Ω) =      - Ω u∆ϕ dx = Ω f ϕ dx, ∀ϕ ∈ C 2 0 (Ω),
with C 2 0 (Ω) = ϕ ∈ C 2 (Ω), ϕ = 0 on ∂Ω . Therefore, the question of the integrability of the generalized derivative of u arises in a natural way and was raised already in the note by H. Brezis and developed in [START_REF] Díaz | On the differentiability of the very weak solution with right-hand side data integrable with respect to the distance to the boundary[END_REF], [START_REF] Rakotoson | New hardy inequalities and behaviour of linear elliptic equations[END_REF], [START_REF] Rakotoson | A sufficient condition for a blow-up on the space. Absolutely conditions functions for the very weak solution[END_REF]. More generally, the question of the regularity of u is arised, according to f . In [START_REF] Díaz | Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach[END_REF][START_REF] Fiorenza | Pointwise estimates for GΓ-functions and applications[END_REF], we have shown the following theorem: Consider u ∈ L n ,∞ (Ω), the very weak solution (v.w.s. ) of

- Ω u∆ϕdx = Ω f ϕdx ∀ ϕ ∈ C 2 (Ω), ϕ = 0 on ∂Ω. (1.1)
Then,

(1) if f ∈ L 1 Ω; δ(1 + |Log δ|) α and α > 1 n :

u ∈ L (n ,nα-n+1 (Ω) = GΓ(n , 1; w α ), w α (t) = t -1 (1 -Log t) α-1-1 n and ||u|| GΓ(n ,1;wα) K 0 |f | L 1 (Ω;δ(1+|Log δ|) α ) (1.2) (2) if f ∈ L 1 Ω; δ 1 + |Log δ| 1 n
then u ∈ L n (Ω) and similar estimate as (1.2) holds.

Note that the assumption on the regularity of Ω, needed in the proof of Theorem 1.1, is necessary for the development of the theory of very weak solutions; we stress that the estimates in this paper will be obtained following arguments valid regardless of the regularity of Ω, which will be definitively dropped in our statements.

The Lorentz GΓ-space is defined as follows :

Definition 1.2. of Generalized Gamma space with double weights (Lorentz-GΓ) Let w 1 , w 2 be two weights on (0, 1), m ∈ [1, +∞], 1 p < +∞. We assume the following conditions: c1) There exists K 12 > 0 such that w 2 (2t) K 12 w 2 (t) ∀ t ∈ (0, 1/2). The space L p (0, 1; w 2 ) is continuously embedded in L 1 (0, 1).

c2) The function A generalized Gamma space with double weights is the set :

GΓ(p, m; w 1 , w 2 ) = v : Ω → IR measurable t 0 v p * (σ)w 2 (σ)dσ is in L m p (0, 1; w 1 ) .

A similar definition has been considered in [START_REF] Gogatishvili | Embeddings of Lorentz-type spaces involving weighted integral means[END_REF]. They were interested in the embeddings between GΓ-spaces.

The following property has been proved in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF], p.424.

Property 1.3.

Let GΓ(p, m; w 1 , w 2 ) be a Generalized Gamma space with double weights and let us define for v ∈ GΓ(p, m; w 1 , w 2 )

ρ(v) = 1 0 w 1 (t) t 0 v p * (σ)w 2 (σ)dσ m p dt 1 m
with the obvious change for m = +∞. Then,

(1) ρ is a quasinorm.

(2) GΓ(p, m; w 1 , w 2 ) endowed with ρ is a quasi-Banach function space.

(

) If w 2 = 1 GΓ(p, m; w 1 , 1) = GΓ(p, m; w 1 ). 3 
Generalized Gamma spaces with double weights originate from the GΓ(p, m, w) spaces introduced and studied in [START_REF] Fiorenza | Some estimates in GΓ(p,m,w) spaces[END_REF] Example 1.1. of weights Let w We note that the solution u of (1.1) satisfies also

1 (t) = (1 -Log t) γ , w 2 (t) = (1 -Log t) β with (γ, β) ∈ IR 2 . Then
|u| L n ,∞ (Ω) K 1 |f | L 1 (Ω;δ) , (1.3) 
therefore, since (1.1) defines implicitly the linear operator datum f → solution u, a natural idea is to obtain an estimate through the real interpolation method of Marcinkiewicz (see [START_REF] Bennett | Interpolation of Operators[END_REF][START_REF] Bergh | Interpolation Spaces. An Introduction[END_REF][START_REF] Cerdà | Interpolation of classical Lorentz Spaces[END_REF] ) to derive

|u| (L n ,∞ ,L (n ) α,1 K 2 |f | L 1 (Ω;δ(1+|Log δ|) α ) for 0 < α 1. (1.4)
Note that L (n ,1 = L (n (see below for a full definition.)

Question 2 How to characterize the space L n ,∞ (Ω), L (n (Ω)

α,1

?

We still have not an answer to this question. Therefore, we will provide a lower estimate for the norm of u in relation (1.4), a particular overbound can be obtained from our work made in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF] :

Since L n ,∞ (Ω) ⊂ L n ) , then we have L n ,∞ (Ω), L (n (Ω) α,1 ⊂ L n ) (Ω), L (n (Ω) α,1
and we have shown in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF] the following Theorem 1.4. (characterization of the interpolation between Grand and Small Lebesgue space)

L n ) (Ω), L (n (Ω) α,1 = GΓ(n ; 1; w 1 ; w 2 ) with w 1 (t) = (1 -Log t) α-1 t , w 2 (t) = 1 1 -Log t .
(see next section for the definition of GΓ).

Therefore, we have the following non optimal result but valid for all α.

Proposition 1.5.

Let u be the solution of (1.1). Then,

||u|| GΓ(n ;1;w 1 ;w 2 ) = 1 0 (1 -Log t) α t 0 u n * (x)dx 1 -Log x 1 n dt (1 -Log t)t K 4 |f | L 1 (Ω;δ(1+|Log δ|) α )
whenever 0 < α < 1.

To give a new improved statement for Proposition 1.5 namely, we will show the Theorem 1.6.

Let 1 < p < ∞, 0 < θ < 1 and 1 r < ∞. Then f GΓ(p,r;w 1 ,w 2 )∩GΓ(∞,r;v 1 ,v 2 ) f (L p,∞ ,L (p ) θ,1 ,
where

w 1 (t) = t -1 (1 -Log t) rθ-1 , w 2 (t) = (1 -Log t) -1 , v 1 (t) = t -1 (1 -Log t) rθ(1-1/p)-1 and v 2 (t) = t 1/p .
Thanks to this last theorem, we deduce from relation (1.4) a new estimate of the solution u valid also for α < 1 n and better than Proposition 1.5 in that case. To complete the results of [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF],

we shall introduce different results on the interpolation spaces namely, between (L n , L (n ) θ,r , (L p),α , L p),β ) θ,r , (L p) , L p ) θ,r . It happens all of these spaces are Lorentz G-gamma spaces. We state few of those results.

Theorem 1.7.

For 0 < θ < 1, r ∈ [1, +∞[ (L n , L (n ) θ,r = G(n , r; w 1 ; 1) with w 1 (t) = t -1 (1 -Log t) r θ n -1 .
Corollary 1.8. of Theorem 1.7 For 0 < θ < 1, one has

(L n , L (n ) θ,1 = L (n ,θ .
As in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF][START_REF] Díaz | Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach[END_REF], the proofs of the above results rely on the computation of the K-functional; similarly, in order to treat the couple (L n ,∞ , L n ), we will show the following Theorem 1.9.

The K-functional for (L n ,∞ , L n ) is given by, for t ∈]0, 1[, f 0 in L n ,∞ K 0 (f ; t) = t sup E f n * (σ)dσ 1 n ; t -n = E dx x Remark 1.10. Setting dν = dx x , |E| ν = E dν, f * ,ν
the decreasing rearrangement of a nonnegative function f with respect to the measure ν, then we can write the preceding theorem as :

Theorem 1.11.

The K-functional for the couple

(L p,∞ , L p ) is given, for f 0 in L p,∞ , t > 0 K 0 (f ; t) = t t -p 0 ψ(s) p * ,ν (x)dx 1 p 
.

Here 1 p < +∞, ψ(s) = s 1 p f * (s), s ∈ (0, 1).

Applying Theorem 1.9 with real interpolation method of Marcinkiewiecz, we then deduce the following partial answer for very weak solution :

Proposition 1.12. For 0 < α 1, let u be the solution of (1.1). Then one has a constant c > 0 such that

1 0 t -α sup {E:|E|ν =t -n } E u n * (x)dx 1 n dt c|f | L 1 (Ω;δ(1+|Log δ|) α n ) .
Other consequences of the above interpolation results are the interpolation inequalities, we state few of them.

Property 1.13. (Interpolation inequalities for small and grand Lebesgue spaces) If

1 α > 1 n , then ∀ v ∈ L (n ||v|| L n ,∞ c||v|| 1-α L n ) ||v|| α L (n .

Notation and Primary results

For a measurable function f : Ω → IR, we set for t 0

D f (t) = measure x ∈ Ω : |f (x)| > t and f * the decreasing rearrangement of |f |, f * (s) = inf t : D f (t) s with s ∈ 0, |Ω| , |Ω| is the measure of Ω,
that we shall assume to be equal to 1 for simplicity.

If A 1 and A 2 are two quantities depending on some parameters, we shall write

A 1 A 2 if there exists c > 0 (independent of the parameters) such that A 1 cA 2 A 1 A 2 if and only if A 1 A 2 and A 2 A 1 .
We recall also the following definition of interpolation spaces. Let (X 0 , || • || 0 ), (X 1 , || • || 1 ) two Banach spaces contained continuously in a Hausdorff topological vector space (that is (X 0 , X 1 ) is a compatible couple).

For g ∈ X 0 + X 1 , t > 0 one defines the so called K functional K(g, t; X 0 , X 1 ) =K(g, t) by setting

K(g, t) = inf g=g 0 +g 1 ||g 0 || 0 + t||g 1 || 1 . (2.1)
For 0 θ 1, 1 p +∞, α ∈ IR we shall consider

(X 0 , X 1 ) θ,p;α = g ∈ X 0 + X 1 , ||g|| θ,p;α = ||t -θ-1 p 1 -Log t α K(g, t)|| L p (0,1) is finite .
Here || • || V denotes the norm in a Banach space V . The weighted Lebesgue space L p (0, 1; ω), 0 < p +∞, is endowed with the usual norm or quasi norm defined through ||g||

L p (0,1;ω) = 1 0 |g(t)| p ω(t)dt 1/p
, where ω is a weight function on (0, 1). Our definition of the interpolation space is different from the usual one (see [START_REF] Bennett | Interpolation of Operators[END_REF][START_REF] Tartar | An introduction to Sobolev spaces and Interpolation spaces[END_REF]) since we restrict the norms on the interval (0, 1). We recall that these modified interpolation spaces have been already used by other authors, see e.g. [START_REF] Gomez | Extrapolation spaces and almost-everywhere convergence of singular integrals[END_REF][START_REF] Cobos | On Besov spaces of logarithmic smoothness and Lipschitz spaces[END_REF] and the references given there. If we consider ordered couple, i.e. X 1 → X 0 and α = 0, the following equality holds with equivalence of norms (X 0 , X 1 ) θ,p;0 = (X 0 , X 1 ) θ,p , where the space on the right hand side is the interpolation space as defined by J. Peetre (see [START_REF] Bennett | Interpolation of Operators[END_REF][START_REF] Tartar | An introduction to Sobolev spaces and Interpolation spaces[END_REF][START_REF] Bergh | Interpolation Spaces. An Introduction[END_REF]).

Some remarkable GΓ-spaces.

In this paragraph, we want to prove among other that GΓ-spaces cover many well-known spaces.

Proposition 2.1. Let 1 ≤ p < +∞. If w 1 and w 2 are integrable weights on (0, 1) and w 2 satisfies c1), then

GΓ(p, m; w 1 , w 2 ) = Λ p (w 2 ),
where Λ p (w 2 ) denotes the classical Lorentz space defined through f : Ω → IR measurable :

1 0 f p * (σ)w 2 (σ)dσ) 1 p = ||f || Λ p (w 2 ) < +∞ . Proof If v ∈ Λ p (w 2 ) then ρ(v) ||v|| Λ p (w 2 ) 1 0 w 1 (t)dt 1 m < +∞.
Conversely, let v be such that ρ(v) < +∞. We have for some a > 0,

1 a w 1 (t)dt > 0. Then for all t a a 0 f p * (σ)w 2 (σ)dσ m p t 0 f p * (σ)w 2 (σ)dσ m p
, from which we derive after multiplying by w 1 (t) and integrating from a to 1,

a 0 f p * (σ)w 2 (σ)dσ 1 p ρ(f ) 1 a w 1 (t)dt 1 m ρ(f ) < +∞. (2.2)
Between (a, 1), we have :

1 a f p * (σ)w 2 (σ)dσ 1 p f * (a)||w 2 || 1 p L 1 a 0 f * (σ)dσ = 1 0 f * (σ)χ [0,a] (σ)dσ. (2.
3)

The condition c1) implies

a 0 f * (σ)dσ 1 0 (f * χ [0,a] ) p (σ)w 2 (σ)dσ 1 p . (2.4) So that relations (2.2) to (2.4) imply 1 a f p * (σ)w 2 (σ)dσ 1 p a 0 f p * (σ)w 2 (σ)dσ 1 p ρ(v) < +∞. (2.5) This shows ||f || Λ p (w 2 ) ρ(v).
♦ Next we want to focus in a special case :

Proposition 2.2. Assume that w 1 (t) = t -1 (1 -Log t) γ , w 2 (t) = (1 -Log t) β , (γ, β) ∈ IR 2 , m ∈ [1, +∞[, p ∈ [1, +∞[. (1) If γ < -1 then GΓ(p, m; w 1 , w 2 ) = Λ p (w 2 ). (2) If γ > -1 and γ + β m p + 1 0 then GΓ(p, m; w 1 , w 2 ) = GΓ(p, m; w 1 , 1), w 1 (t) = t -1 (1 -Log t) γ+β m p .

Proof

For the first statement, we observe that if γ + 1 < 0,

1 0 (1 -Log t) γ dt t is finite. Then applying
Proposition 2.1 we derive the first result.

For the case γ + 1 > 0, we shall need the following lemma whose proof is in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF], p. 447:

Lemma 2.3. Let t k = 2 1-2 k , k ∈ IN, λ > 0, q > 0, H a nonnegative locally integrable function on (0, 1) satisfying 1 0 H(x)dx 1 2 0 H(x)dx. Then (1) 2 k ≈ 1 -Log x, x ∈ [t k+1 , t k ]. ( 2 
) 1 0 (1 -Log t) λ t 0 H(x)dx q dt (1 -Log t)t ≈ k∈IN t k 0 H(x)dx q 2 λkq ≈ k∈IN 2 λk t k t k+1 H(x)dx q .
We shall apply this Lemma with

H(x) = f p * (x)(1 -Log x) β . We have 1 0 H(x)dx 1 2 0 H(x)dx since f p * is decreasing and 1 0 (1 -Log t) γ dt < +∞ ∀ γ ∈ IR. Indeed 1 1 2 H(x)dx 1 p f * 1 2 1 2 0 f * (t)dt 1 2 0 f p * (t)(1 -Log t) β dt 1 p • 1 2 0 (1 -Log t) -β p p dt 1 p 1 2 0 H(x)dx 1 p .
Applying statement 2. of this Lemma 2.3, we derive

ρ m (f ) = 1 0 (1 -Log t) γ t 0 H(x)dx m p dt t = 1 0 (1 -Log t) (γ+1) p m t 0 H(x)dx m p dt (1 -Log t)t if γ + 1 > 0 ≈ k∈IN 2 λk t k t k+1 H(x)dx q with λ = (γ + 1) p m , q = m p (2.6) ≈ k∈IN 2 (λ+β)k t k t k+1 f p * (x)dx q ≈ 1 0 (1 -Log t) λ+β t 0 f p * (x)dx q dt (1 -Log t)t ≈ 1 0 (1 -Log t) (λ+β)q-1 t 0 f p * (x)dx q dt t . (2.7) 
If γ > -1, γ + β m p + 1 0, then the equality comes from the definition of GΓ(p, m; w 1 ).

This ends of the proof of Proposition 2.2

♦ Lemma 2.4. Assume that w 1 (t) = t -1 (1 -Log t) γ , w 2 (t) = (1 -Log t) β , (γ, β) ∈ R 2 , m ∈ [1, ∞[, p ∈ [1, ∞[. If γ > -1 and γ + β m p + 1 < 0, then f m GΓ(p,m;w 1 ,w 2 ) ≈ 1 0 (1 -Log t) γ+β m p 1 t f p * (x)dx m/p dt t .
Proof. Put

I = 1 0 (1 -Log t) γ+β m p 1 t f p * (x)dx m/p dt t . Let t k = 2 1-2 k , k ∈ N. Since γ + β m p + 1 < 0,
we can apply the second assertion of Lemma 6.3 in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF] to obtain

I ≈ k∈N 1 t k+1 f p * (x)dx m/p 2 (γ+β m p +1)k ,
then using the second assertion of Lemma 6.1 in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF] gives

I ≈ k∈N t k t k+1 f p * (x)dx m/p 2 (γ+β m p +1)k ,
by first assertion in Lemma 2.3, we get

I ≈ k∈N t k t k+1 (1 -Log x) β f p * (x)dx m/p 2 (γ+1)k , since γ > -1
, we can apply the first assertion of Lemma 6.1 in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF] to obtain

I ≈ k∈N t k 0 (1 -Log x) β f p * (x)dx m/p 2 (γ+1)k ,
finally an application of the second assertion in Lemma 2.3 yields

I ≈ f m GΓ(p,m;w 1 ,w 2 ) ,
which completes the proof.

We shall need in particular the Corollary 2.7, consequence of relation (2.7) and the following Definition 2.5. of the small Lebesgue space [START_REF] Iwaniec | On the integrability of the jacobian under minimal[END_REF][START_REF] Di Fratta | A direct approach in the duality of grand and small Lebesgue spaces[END_REF] The small Lebesgue space associated to the parameters p ∈]1, +∞[ and θ > 0 is the set

L (p,θ (Ω) = f : Ω → IR measurable : ||f || (p,θ = 1 0 (1 -Log t) -θ p +θ-1 t 0 f p * (σ)dσ 1/p dt t < +∞ .
Definition 2.6. of the grand Lebesgue space [START_REF] Iwaniec | On the integrability of the jacobian under minimal[END_REF][START_REF] Di Fratta | A direct approach in the duality of grand and small Lebesgue spaces[END_REF] The grand Lebesgue space is the associate space of the small Lebesgue space, with the parameters p ∈]1, +∞[ and θ > 0 is the set

L p),θ (Ω) = f : Ω → IR measurable : ||f || p),θ = sup 0<t<1 (1 -Log t) -θ p 1 t f p * (σ)dσ 1/p < +∞ . Corollary 2.7. of Proposition 2.2 If m = 1, γ + 1 + β p > 0, γ > -1 and β ∈ IR, the functions w i , i = 1, 2 as in Proposition 2.2 then GΓ(p, 1; w 1 , w 2 ) = L (p,θ , θ = p γ + 1 + β p .
3. Some K-functional computations and the associated interpolation spaces 3.1. The case of the couple (L n , L (n ).

Theorem 3.1. Let 1 < n < +∞, and let ϕ(t) = e 1-1 t n , 0 < t 1. Then

K(f, t; L n , L (n ) ≈ t 1 ϕ(t) (1 -Log σ) -1 n σ 0 f n * (x)dx 1 n dσ σ =K 2 (t)
for all f ∈ L n .

Proof:

First , let us show:

K 2 (t) K(f, t; L n , L (n ). Let f = g + h with g ∈ L n and h ∈ L (n . Then, for all x, f * (x) g * x 2 + h * x 2
. Therefore, we have

K 2 (t) ||g|| L n t 1 ϕ(t) (1 -Log σ) -1 n dσ σ + t||h|| L (n ||g|| L n + t||h|| L (n
Taking the infinimum, one derives

K 2 (t) K(f, t; L n , L (n ). (3.1)
For the converse, we adopt the same decomposition as in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF] 

g = |f | -f * ϕ(t) + , h = f -g. (3.2) 
Then

f * = h * + g * , g * = f * -f * ϕ(t) + , h * = f * ϕ(t) χ [0,ϕ(t)] + f * (s)χ [ϕ(t),1] ||g|| L n ϕ(t) 2 0 f * (s) -f * ϕ(t) n + ds 1 n ϕ(t) 2 0 f n * (s)ds 1 n = ||f || L n (0, ϕ(t) 2 ) K 2 (t) 1 ϕ(t)/2 (1 -Log σ) -1 n dσ σ K 2 (t). (3.3)
As in [START_REF] Fiorenza | Characterization of interpolation between Grand, small or classical Lebesgue spaces[END_REF], we have

t||h|| L (n t ϕ(t) 0 (1 -Log s) -1/n s 1/n ds s f * ϕ(t) +t 1 ϕ(t) (1 -Log s) -1/n ds s ϕ(t) 1/n f * ϕ(t) +t 1 ϕ(t) (1 -Log s) -1/n s ϕ(t) f n * (x)dx 1/n ds s (3.4) = I 1 + I 2 + I 3 .
Since

ϕ(t) 0 s 1/n (1 -Log s) -1/n ds s ϕ(t) 1/n 1 -Log ϕ(t) -1/n
, we obtain

I 1 t 1 -Log ϕ(t) -1/n ϕ(t) 1/n f * ϕ(t) K 2 (t) (3.5) I 2 ϕ(t) 1/n f * ϕ(t) sup 0<s<ϕ(t) s 1/n f * (s) K 2 (t) (3.6) 
and

I 3 K 2 (t), (3.7) 
and using these relations (3.5) to (3.7), we derive t||h|| L (n

I 1 + I 2 + I 3 K 2 (t). (3.8) 
From relations (3.3) and (3.8) we infer:

||g|| L n + t||h|| L (n K 2 (t). (3.9) 
and therefore

K(f, t; L n , L (n ) K 2 (t). (3.10)
The combination of the above relations (3.10), (3.1) gives Theorem 3.1.

♦ Corollary 3.2. (of Theorem 3.1) If n ∈]1, +∞[, r ∈ [1, +∞[, 0 < θ < 1, then ||f || r (L n ,L (n ) θ,r ≈ 1 0 (1 -Log x) θr n x 0 f n * (s)ds r n dx x(1 -Log x)
.

Proof:

One has for f ∈ L n + L (n , 1 r + ∞ ||f || r (L n ,L (n ) θ,r ≈ 1 0 [t -θ K(f, t)] r dt t (3.11)
Using Theorem 3.1 and making a change of variable x = ϕ(t) that is t = (1 -Log x) -1 n , one derives from relation (3.11)

||f || r (L n ,L (n ) θ,r ≈ J f J f = 1 0 (1 -Log x) θ-1 n 1 x (1 -Log σ) -1 n σ 0 f n * (s)ds 1 n dσ σ r dx x(1 -Log x)
.

Applying Hardy's inequality (we take into account that θ < 1 and apply [3] Theorem 6.5, (6.14)), we have

J f 1 0 (1 -Log x) θ n x 0 f n * (σ)dσ 1 n r dx x(1 -Log x) = J f .
For the converse, since we have for all x > 0

1 x (1 -Log σ) -1 n σ 0 f n * (s)ds 1 n dσ σ x 0 f n * (s)ds 1 n (1 -Log x) -1 n |Log x|,
we then have

J f 1 0 (1 -Log x) θ n -1-1 r |Log x| x 0 f n * (s)ds 1 n r dx x . (3.12) 
From this relation we deduce

J f J f + 1 0 (1 -Log x) θ n -1-1 r x 0 f n * (s)ds 1 n r dx x =J f + I r , (3.13) 
while to estimate the last integral, one has

I r ||f || r L n 1 0 (1 -Log x) ( θ n -1)r-1 dx x c||f || r L n .
Since (L n , L (n ) θ,r is continuously embedded in L n , we then have

I r c||f || r (L n ,L (n ) θ,r . (3.14) 
Thus, we derive

J f J f + I r ||f || r (L n ,L (n ) θ,r . ♦ Proof of Theorem 1.7
We derive it from Corollary 3.2 of Theorem 3.1. ♦

Interpolation between grand and classical

Lebesgue spaces in the critical case.

Lemma 3.3. Let 1 < p < ∞, and let f ∈ L p) . Then, for all 0 < t < 1,

K(f, t; L p) , L p ) ≈ sup 0<s<ϕ(t) (1 -Log s) -1/p 1 s f p * (x)dx 1/p
, where ϕ(t) = e 1-1 t p .

Proof. Fix f ∈ L p) and 0 < t < 1. Set

K 1 (t) = sup 0<s<ϕ(t) (1 -Log s) -1/p 1 s f p * (x)dx 1/p . First we show that K 1 (t) K(f, t; L p) , L p ). (3.15) 
Let f = g + h be an arbitrary decomposition with g ∈ L p) and h ∈ L p . Using the elementary inequality f * (x) g * (x/2) + h * (x/2), we derive

K 1 (t) g L p) + h L p sup 0<s<ϕ(t) (1 -Log s) -1/p = g L p) + t h L p ,
from which (3.15) follows. Next we establish the converse estimate K(f, t; L p) , L p ) K 1 (t). (3.16) To this end, we take the same particular decomposition f = g + h as in Theorem 3.1 relation (3.2). Clearly, g L p) K 1 (t).

(3.17)

Next we note that

t h L p = tf * (ϕ(t))[ϕ(t)] 1/p + t 1 ϕ(t) f p * (x)dx 1/p ≈ 1 -Log ϕ(t) 2 -1/p f * (ϕ(t))[ϕ(t)] 1/p + sup 0<s<φ(t) (1 -Log s) -1/p 1 ϕ(t) f p * (x)dx 1/p , 1 -Log ϕ(t) 2 -1/p ϕ(t) ϕ(t) 2 f * (x)dx 1/p + sup 0<s<φ(t) (1 -Log s) -1/p 1 s f p * (x)dx 1/p , which gives t h L p K 1 (t). (3.18)
Now (3.16) follows from (3.17) and (3.18). The proof is complete.

Theorem 3.4. Let 1 < p < ∞, 0 < θ < 1, and 1 r < ∞. Then

(L p) , L p ) θ,r = GΓ(p, r; w 1 , w 2 ),
where

w 1 (t) = t -1 (1 -Log t) rθ/p-1 and w 2 (t) = (1 -Log t) -1 .
Proof.

Let f ∈ L p) . Then, using Lemma 3.3, we get at

f r (L p) ,L p ) θ,r ≈ 1 0 (1 -Log t) rθ p -1 sup 0<s<t ψ(s) r dt t , (3.19) 
where 

ψ(s) = (1 -Log s) -1/p 1 s f p * (x)dx 1/p . Now, in view of Lemma 2.4 (applied with γ = rθ p -1, β = -1, m = r), it is sufficient to establish that f r (L p) ,L p ) θ,r ≈ 1 0 (1 -Log t) r( θ-1 p )-1 1 t f p * (x)dx
(L p) ,L p ) θ,r 1 0 (1 -Log t) θ p -1 r t 0 (1 -Log s) -1 ψ(s) ds s r dt t ,
from which follows the desired estimate " " in (3.20) by Hardy inequality [3] Theorem 6.5.

The proof is complete.

3.3.

Interpolation between grand Lebesgue spaces in the critical case.

Lemma 3.5. Let 1 < p < ∞ and 0 < β < α. Let f ∈ L p),α . Then, for all 0 < t < 1,

K(f, t; L p),α , L p),β ) ≈ sup 0<s<ϕ(t) (1 -Log s) -α p ϕ(t) s f p * (x)dx 1/p +t sup ϕ(t)<s<1 (1 -Log s) -β p 1 s f p * (x)dx 1/p
, where ϕ(t) = e 1-t p β-α .

Proof.

Fix f ∈ L p),α and 0 < t < 1. Set

K 1 (t) = sup 0<s<ϕ(t) (1 -Log s) -α p ϕ(t) s f p * (x)dx 1/p , and 
K 2 (t) = t sup ϕ(t)<s<1 (1 -Log s) -β p 1 s f p * (x)dx 1/p . First we show that K 1 (t) + K 2 (t) K(f, t; L p),α , L p),β ). ( 3 

.21)

Let f = g + h be an arbitrary decomposition with g ∈ L α),p and h ∈ L β),p . Using the elementary inequality f * (x) g * (x/2) + h * (x/2), we derive

K 1 (t) g L p),α + h L p),β sup 0<s<ϕ(t) (1 -Log s) β-α p = g L p),α + t h L p),β , and 
K 2 (t) t g L p),α sup ϕ(t)<s<1 (1 -Log s) α-β p + t h L p),β = g L p),α + t h L p),β .
Thus, we get

K 1 (t) + K 2 (t) g L p),α + t h L p),β ,
from which (3.21) follows.

It remains to establish the converse estimate

K(f, t; L p),α , L p),β ) K 1 (t) + K 2 (t). (3.22) 
We again take the same particular decomposition f = g + h as in Theorem 3.1. (relation

(3.2). It is easy to check that g L p),α K 1 (t). (3.23) 
Next we observe that

t h L p),β = J 1 (t) + J 2 (t) + K 2 (t), (3.24) 
where

J 1 (t) = tf * (ϕ(t)) sup 0<s<ϕ(t) (1 -Log s) -β p ϕ(t) s dx 1/p , and 
J 2 (t) = t 1 ϕ(t) f p * (x)dx 1/p sup 0<s<ϕ(t) (1 -Log s) -β p . Since sup 0<s<ϕ(t) (1 -Log s) -β p = (1 -Log ϕ(t)) -β p ,
we have

J 2 (t) K 2 (t). (3.25) 
Next we show that

J 1 (t) K 1 (t). (3.26) 
We have Theorem 3.6. Let 1 < p < ∞, 0 < β < α, 0 < θ < 1, and 1 r < ∞. Then

J 1 (t) tf * (ϕ(t)) ϕ(t) 0 dx 1/p sup 0<s<ϕ(t) (1 -Log s) -β p = t α α-β f * (ϕ(t)) [ϕ(t)] 1/p (1 -Log ϕ(t)) -α p ϕ(t) ϕ(t) 2 f p * (x)dx
(L p),α , L p),β ) θ,r = GΓ(p, r; w 1 , w 2 ),
where

w 1 (t) = t -1 (1 -Log t) rθ p (α-β)-1 and w 2 (t) = (1 -Log t) -α .
Proof. Let X = (L p),α , L p),β ) θ,r and take f ∈ L p),α . Then

f r X ≈ I 1 + I 2 ,
where

I 1 = 1 0 (1 -Log t) rθ(α-β) p -1 sup 0<s<t (1 -Log s) -α p t s f p * (x)dx 1/p r dt t ,
and

I 2 = 1 0 (1 -Log t) r(θ-1)(α-β) p -1 sup t<s<1 (1 -Log s) -β p 1 s f p * (x)dx 1/p r dt t .
Put

I 3 = 1 0 (1 -Log t) rθ(α-β) p -rα p -1 1 t f p * (x)dx r/p dt t .
In view of Lemma 2.4 (applied with γ = rθ(α -β)/p -1, β = -α, m = r), it is sufficient to show that

I 1 + I 2 ≈ I 3 .
Clearly, I 3 I 2 . Thus, it remains to establish that I 1 I 3 and I 2 I 3 . Now

I 1 1 0 (1 -Log t) rθ(α-β) p -1 sup 0<s<t (1 -Log s) -α p 1 s f p * (x)dx 1/p r dt t = 1 0 (1 -Log t) rθ(α-β) p -1 sup 0<s<t p rα s 0 (1 -Log y) -rα p -1 dy y 1 s f p * (x)dx r/p dt t 1 0 (1 -Log t) rθ(α-β) p -1 t 0 (1 -Log y) -rα p -1 1 y f p * (x)dx r/p dy y dt t ,
and applying Fubini's Theorem, we obtain I 1 I 3 . Finally, (1 -Log t) The first term can be bound as follows :

I 2 = 1 0 (1 -Log t) r(θ-1)(α-β) p -1 sup t<s<1 (1 -Log s) -rβ p -(1 -Log t) -rβ p 1 s f p * (x)dx r/p dt t + 1 0 (1 -Log t) r(θ-1)(α-β) p -1 (1 -Log t) -rβ p 1 t f p * (x)dx
r(θ-1)(α-β) p -1 1 t (1 -Log s) -rβ p -1 1 s f p * (x)dx
t sup |E|ν =t -p E s 1 p g * s 2
p ds s

1 p t||g|| L p,∞ sup |E|ν =t -p |E| 1 p ν = ||g|| L p,∞ (3.28) 
While the second term satisfies

t sup |E|ν =t -p E h p * s 2 ds 1 t||h|| L p . (3.29) 
From the three last relations, we have

K p (f, t) ||g|| L p,∞ + t||h|| L p . (3.30)
From which we derive K p (f, t) K(f, t; L p,∞ , L p ).

(3.31)

For the converse, let t be fixed and set A t = {s : ψ(s) > ψ * ,ν (t -p )}, where ψ(s) = s 1 p f * (s), s ∈ [0, 1], and ψ * ,ν denotes its decreasing rearrangement with respect to ν. By equimesurability, we have

|A t | ν = t -p .
Let us consider the measure preserving mapping σ : IR → (0, +∞) such that f = f * • σ and set f i = g i • σ, i = 1, 2 where, for s ∈ (0, 1)

g 1 (s) = s -1 p ψ * ,ν (t -p )χ At (s) + f * (s)χ A c t (s) g 2 (s) = s -1 p ψ(s) -ψ * ,ν (t -p ) χ At
and A c t is the complement of A t in (0, 1), say A c t = s : ψ(s) ψ * ,ν (t -p ) .

Since σ is measure preserving we have

||f 2 || p L p = ||g 2 || p L p = |At|ν 0 ψ * ,ν (x) -ψ * ,ν (t -p ) p dx.
From which we derive

||f 2 || p L p t -p 0 ψ * ,ν (x) p dx. (3.32)
While for f 1 , we have 

||f 1 || L p,∞ = ||g 1 || L p,∞ sup s ψ * ,ν (t -p )χ At (s) + s 1 p f * (s)χ A c t (s) sup s ψ * ,ν (t -p )χ At (s) + ψ(s)χ A c t (s) ψ * ,ν (t -p ) (by definition of A c t ). (3.33) Since f = f 1 + f 2 ∈ L p,∞ + L p ,
K(f, t; L p,∞ , L p ) K p (f, t).

♦

We end this section by proving Theorem 1.6 so we start with the following lemma :

Lemma 3.8. Let 1 < p < ∞. Then for any f ∈ L p,∞ and all 0 < t < 1, sup 0<s<t s 1 p f * (s) K(ρ(t), f ; L p,∞ , L (p ), where ρ(t) = (1 -Log t) -1+ 1 p . Proof. Fix f ∈ L p,∞ and 0 < t < 1. Set I(t, f ) = sup 0<s<t s 1 p f * (s).
It is sufficient to show that the following estimate

I(t, f ) f 0 L p,∞ + ρ(t) f 1 L (p ,
holds for an arbitrary decomposition f = f 0 + f 1 with f 0 ∈ L p,∞ and f 1 ∈ L (p . In view of the elementary inequality f * (t) f 0 * (t/2) + f 1 * (t/2), it follows that

I(t, f ) I(t/2, f 0 ) + I(t/2, f 1 ).
Clearly, I(t/2, f 0 ) f 0 L p,∞ . Therefore, it remains to show that

I(t/2, f 1 ) ρ(t) f 1 L (p . (3.39) 
Note that ρ(t) ≈ 1, 1/2 < t < 1. Therefore, (3.39) holds for all 1/2 < t < 1 in view of the fact that L (p → L p,∞ . Next let 0 < t < 1/2 and take 0 < v < t/2. Then

f 1 L (p 1 v (1 -Log s) -1/p s 0 f p 1 * (u)du 1 p ds s v 0 f p 1 * (u)du 1 p 1 v (1 -Log s) -1/p ds s v 1/p f 1 * (v) 1 t (1 -Log s) -1/p ds s ≈ (1 -Log t) 1-1/p v 1/p f 1 * (v),
whence we obtain (3.39) since v was arbitrarily taken to be between 0 and t/2. The proof is complete.

Theorem 3.9. Let 1 < p < ∞, 0 < θ < 1, and 1 r < ∞. Then, for any f ∈ (L p,∞ , L (p ) θ,r , one has where w 1 (t) = t -1 (1 -Log t) rθ-1 and w 2 (t) = (1 -Log t) -1 .

||f || GΓ(∞,r;v 1 ,v 2 ) ||f || (L p,∞ ,L (p ) θ,r , where v 1 (t) = t -1 (1 -Log t) rθ(1-1/p)-1 and v 2 (t) = t 1/p . Proof. Put ρ(t) = (1 -Log t) -1+
The GΓ spaces in Theorems 3.9 say GΓ(∞, r; v 1 , v 2 ) and 3.10 say GΓ(p, r, w 1 , w 2 ) are not comparable. Thus we get Theorem 1.6.

Some interpolation inequalities for Small and Grand Lebesgue spaces

One may combine the above results with some standard results on interpolation spaces to deduce few inequalities as Property 1.13. We recall the following result that can be found in [START_REF] Tartar | An introduction to Sobolev spaces and Interpolation spaces[END_REF]. Since L (p,β ∩ L (p,α = L (p,max{α,β} contains L ∞ and therefore is dense in both L (p,β , L (p,α (see [START_REF] Fiorenza | New properties of small Lebesgue spaces and their applications[END_REF]), and since in this setting the associate space and the dual space coincide (see [START_REF] Bennett | Interpolation of Operators[END_REF]), we may use the duality relation for real interpolation spaces (see, for instance, [START_REF] Bergh | Interpolation Spaces. An Introduction[END_REF] Theorem 3.7.1), and we get [GΓ(p, r; w)] = (L p ),β , L p ),α ) θ,r = (L p ),α , L p ),β ) 1-θ,r .

Finally, an application of Theorem 3.6 completes the proof. 

Theorem 1. 1 .

 1 Let Ω be a bounded open set of class C 2 of IR n , |Ω| = 1 and α 1 nwhere n = n n -1 , f ∈ L 1 (Ω; δ), with δ(x) = dist (x; ∂Ω).

t 0 w 2

 02 (σ)dσ belongs to L m p (0, 1; w 1 ).

w 2 Question 1

 21 satisfies condition c1) and w 1 and w 2 are in L max(γ;β) exp ]0, 1[ . The natural question is how to extend of Theorem 1.1 for α < 1 n and how to improve the estimate when α = 1 n ?

  from which follows(3.26). Altogether from the relations (3.23)-(3.26), we get(3.22). The proof is complete.

r/p dt t = 1 0( 1 -( 1 -

 111 Log t) Log y) -rβ p

Theorem 4. 1 .||a|| θ 1 where♦ 5 .

 115 Let E 0 and E 1 be two Banach spaces continuously embedded into some topological vector space. For 0 θ 1, one has(E 0 , E 1 ) θ,1 ⊂ E ⊂ E 0 + E 1 if and only if there exists c > 0 : ∀ a ∈ E 0 ∩ E 1 ||a|| E c||a|| 1-θ 0 || • || i denotes the norm in E i , i = 0, 1.Proof of Property 1.13 We apply the above Theorem 4.1 withE 0 = L n ) , E 1 = L (n .Then from Theorem 1.4 and Corollary 2.7 of Proposition 2.2 one hasL n ) , L (n α,1 = L (n ,β with β = nα -n + 1 and α > 1 n . Since L (n ,β ⊂ L n ,∞ ⊂ L n ), we deduce the result from Theorem 4.1 with E = L n ,∞ , θ = α. A remark on the associate space of GΓ(p, r; ω)Theorem 5.1. Let 1 < p < ∞, 1 < r < ∞ and δ > 0. Put w(t) = t -1 (1 -Log t) δ-1 . Then [GΓ(p, r; w)] = GΓ(p , r ; w 1 , w 2 ),wherew 1 (t) = t -1 (1 -Log t) r δ r -1 and w 2 (t) = (1 -Log t) -2p δ r .Proof. Put η = p δ/r, and take α = 2η, β = η/2 and θ = 1/3. Then by[START_REF] Ahmed | Real interpolation of small Lebesgue spaces in a critical case[END_REF] Theorem 7, we have GΓ(p, r; w) = (L (p,β , L (p,α ) θ,r .

Remark 5 . 2 . 1 0( 1 -,

 5211 In view of Lemma 2.4 , we get the following equivalent norm on [GΓ(p, r; w)] :f [GΓ(p,r;w)] ≈   Log t) -which is apparently simpler than the one which follows from[START_REF] Gogatishvili | Characterization of associate spaces of weighted Lorentz spaces with applications[END_REF] Theorem 1.1 (vi).

  Theorem, we obtain I 2 I 3 . The proof is complete.3.4. The K-functional for the couple (L p,∞ , L p ), 1 < p < +∞. (s), ψ * ,ν its decreasing rearrangement with respect to the measure ν.

	and											
					t -p					1 p		
	K p (f, t) = t		ψ * ,ν (x) p dx			
					0							
	where ψ(s) = s p f Proof: 1 Let f = g + h with g ∈ L p,∞ and h ∈ L p . Then, f * (s) g *	s 2	+ h *	s 2	, for s ∈]0, 1]
	K p (f, t) t sup |E|ν =t -p	E	g p *	s 2	ds	1 p	+ t sup |E|ν =t -p	E	h p *	s 2	1 p ds .	(3.27)
												r/p ds s	dt t	+ I 3 ,
	applying again Fubini's Theorem 3.7. For a measurable set E ⊂ [0, 1], we denote |E| ν = define	E	dx x	and for f ∈ L p,∞ , 1 < p < +∞, we
						1						
	K p (f, t) = t sup		f p * (σ)dσ	p	: |E| ν = t -p			t ∈]0, 1].
			E									
	Then											
		K(f, t; L p,∞ , L p ) ≈ K p (f, t)		

*

  we derive from relation (3.32) and (3.33) thatK(f, t; L p,∞ , L p ) ||f 1 || L p,∞ + t||f 2 || L p ψ * ,ν (t -p ) + t

								t -p	1 p
										ψ p * ,ν (x)dx	.	(3.34)
								0	
	Since the function x → ψ * ,ν (x) is decreasing one has				
					t -p		1 p		
				ψ * ,ν (t -p ) t	ψ p * ,ν (x)dx	.		(3.35)
					0				
	Thus, we derive from (3.34) and (3.35)					
					t -p		1 p	
						ψ p * ,ν (x)dx	.	(3.36)
					0				
	Making use of a corollary of the the Hardy Littlewood inequality (see Cor. 1.2.1 p. 12 in [25]),
	we have	0	t -p	ψ p * ,ν (x)dx = Max |E|ν =t -p E	ψ p (s)	ds s	= Max |E|ν =t -p E	f p * (s)ds.	(3.37)
	Thus				t -p		1 p		
				K p (f, t) = t	ψ * ,ν (x) p dx	.		(3.38)
				0					
	This equality with relation (3.36) leads to					

K(f, t; L p,∞ , L p ) t

  1 p , 0 < t < 1. It immediately follows from Lemma 3.8 that ||f || (L p,∞ ,L (p ) θ,r . Now the estimate resulting from Theorem 1.3 in [12] is: Theorem 3.10. Let 1 < p < ∞, 0 < θ < 1, and 1 r < ∞. Then f GΓ(p,r;w 1 ,w 2 ) f (L p,∞ ,L (p ) θ,r ,

	0	1	[ρ(t)] -θr sup 0<s<t	s 1/p f * (s)	ρ(t) r ρ (t)	dt	1/r
	The simple observation				
			ρ (t)			
			ρ(t)			

≈ t -1 (1 -Log t) -1

completes the proof.
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